Properties

Label 7616.2.a.i.1.1
Level $7616$
Weight $2$
Character 7616.1
Self dual yes
Analytic conductor $60.814$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7616,2,Mod(1,7616)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7616.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7616, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7616 = 2^{6} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7616.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,2,0,-4,0,-1,0,1,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.8140661794\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 238)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 7616.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{3} -4.00000 q^{5} -1.00000 q^{7} +1.00000 q^{9} -4.00000 q^{11} +4.00000 q^{13} -8.00000 q^{15} -1.00000 q^{17} -6.00000 q^{19} -2.00000 q^{21} +11.0000 q^{25} -4.00000 q^{27} -6.00000 q^{29} -4.00000 q^{31} -8.00000 q^{33} +4.00000 q^{35} +10.0000 q^{37} +8.00000 q^{39} +6.00000 q^{41} -4.00000 q^{45} -4.00000 q^{47} +1.00000 q^{49} -2.00000 q^{51} -14.0000 q^{53} +16.0000 q^{55} -12.0000 q^{57} -6.00000 q^{59} +12.0000 q^{61} -1.00000 q^{63} -16.0000 q^{65} +4.00000 q^{67} +8.00000 q^{71} +2.00000 q^{73} +22.0000 q^{75} +4.00000 q^{77} -11.0000 q^{81} +10.0000 q^{83} +4.00000 q^{85} -12.0000 q^{87} +10.0000 q^{89} -4.00000 q^{91} -8.00000 q^{93} +24.0000 q^{95} +6.00000 q^{97} -4.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.00000 1.15470 0.577350 0.816497i \(-0.304087\pi\)
0.577350 + 0.816497i \(0.304087\pi\)
\(4\) 0 0
\(5\) −4.00000 −1.78885 −0.894427 0.447214i \(-0.852416\pi\)
−0.894427 + 0.447214i \(0.852416\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −4.00000 −1.20605 −0.603023 0.797724i \(-0.706037\pi\)
−0.603023 + 0.797724i \(0.706037\pi\)
\(12\) 0 0
\(13\) 4.00000 1.10940 0.554700 0.832050i \(-0.312833\pi\)
0.554700 + 0.832050i \(0.312833\pi\)
\(14\) 0 0
\(15\) −8.00000 −2.06559
\(16\) 0 0
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) −6.00000 −1.37649 −0.688247 0.725476i \(-0.741620\pi\)
−0.688247 + 0.725476i \(0.741620\pi\)
\(20\) 0 0
\(21\) −2.00000 −0.436436
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 11.0000 2.20000
\(26\) 0 0
\(27\) −4.00000 −0.769800
\(28\) 0 0
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) 0 0
\(33\) −8.00000 −1.39262
\(34\) 0 0
\(35\) 4.00000 0.676123
\(36\) 0 0
\(37\) 10.0000 1.64399 0.821995 0.569495i \(-0.192861\pi\)
0.821995 + 0.569495i \(0.192861\pi\)
\(38\) 0 0
\(39\) 8.00000 1.28103
\(40\) 0 0
\(41\) 6.00000 0.937043 0.468521 0.883452i \(-0.344787\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) −4.00000 −0.596285
\(46\) 0 0
\(47\) −4.00000 −0.583460 −0.291730 0.956501i \(-0.594231\pi\)
−0.291730 + 0.956501i \(0.594231\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −2.00000 −0.280056
\(52\) 0 0
\(53\) −14.0000 −1.92305 −0.961524 0.274721i \(-0.911414\pi\)
−0.961524 + 0.274721i \(0.911414\pi\)
\(54\) 0 0
\(55\) 16.0000 2.15744
\(56\) 0 0
\(57\) −12.0000 −1.58944
\(58\) 0 0
\(59\) −6.00000 −0.781133 −0.390567 0.920575i \(-0.627721\pi\)
−0.390567 + 0.920575i \(0.627721\pi\)
\(60\) 0 0
\(61\) 12.0000 1.53644 0.768221 0.640184i \(-0.221142\pi\)
0.768221 + 0.640184i \(0.221142\pi\)
\(62\) 0 0
\(63\) −1.00000 −0.125988
\(64\) 0 0
\(65\) −16.0000 −1.98456
\(66\) 0 0
\(67\) 4.00000 0.488678 0.244339 0.969690i \(-0.421429\pi\)
0.244339 + 0.969690i \(0.421429\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 8.00000 0.949425 0.474713 0.880141i \(-0.342552\pi\)
0.474713 + 0.880141i \(0.342552\pi\)
\(72\) 0 0
\(73\) 2.00000 0.234082 0.117041 0.993127i \(-0.462659\pi\)
0.117041 + 0.993127i \(0.462659\pi\)
\(74\) 0 0
\(75\) 22.0000 2.54034
\(76\) 0 0
\(77\) 4.00000 0.455842
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) −11.0000 −1.22222
\(82\) 0 0
\(83\) 10.0000 1.09764 0.548821 0.835940i \(-0.315077\pi\)
0.548821 + 0.835940i \(0.315077\pi\)
\(84\) 0 0
\(85\) 4.00000 0.433861
\(86\) 0 0
\(87\) −12.0000 −1.28654
\(88\) 0 0
\(89\) 10.0000 1.06000 0.529999 0.847998i \(-0.322192\pi\)
0.529999 + 0.847998i \(0.322192\pi\)
\(90\) 0 0
\(91\) −4.00000 −0.419314
\(92\) 0 0
\(93\) −8.00000 −0.829561
\(94\) 0 0
\(95\) 24.0000 2.46235
\(96\) 0 0
\(97\) 6.00000 0.609208 0.304604 0.952479i \(-0.401476\pi\)
0.304604 + 0.952479i \(0.401476\pi\)
\(98\) 0 0
\(99\) −4.00000 −0.402015
\(100\) 0 0
\(101\) −16.0000 −1.59206 −0.796030 0.605257i \(-0.793070\pi\)
−0.796030 + 0.605257i \(0.793070\pi\)
\(102\) 0 0
\(103\) 4.00000 0.394132 0.197066 0.980390i \(-0.436859\pi\)
0.197066 + 0.980390i \(0.436859\pi\)
\(104\) 0 0
\(105\) 8.00000 0.780720
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) 2.00000 0.191565 0.0957826 0.995402i \(-0.469465\pi\)
0.0957826 + 0.995402i \(0.469465\pi\)
\(110\) 0 0
\(111\) 20.0000 1.89832
\(112\) 0 0
\(113\) 14.0000 1.31701 0.658505 0.752577i \(-0.271189\pi\)
0.658505 + 0.752577i \(0.271189\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 4.00000 0.369800
\(118\) 0 0
\(119\) 1.00000 0.0916698
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) 0 0
\(123\) 12.0000 1.08200
\(124\) 0 0
\(125\) −24.0000 −2.14663
\(126\) 0 0
\(127\) 8.00000 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −18.0000 −1.57267 −0.786334 0.617802i \(-0.788023\pi\)
−0.786334 + 0.617802i \(0.788023\pi\)
\(132\) 0 0
\(133\) 6.00000 0.520266
\(134\) 0 0
\(135\) 16.0000 1.37706
\(136\) 0 0
\(137\) 2.00000 0.170872 0.0854358 0.996344i \(-0.472772\pi\)
0.0854358 + 0.996344i \(0.472772\pi\)
\(138\) 0 0
\(139\) 10.0000 0.848189 0.424094 0.905618i \(-0.360592\pi\)
0.424094 + 0.905618i \(0.360592\pi\)
\(140\) 0 0
\(141\) −8.00000 −0.673722
\(142\) 0 0
\(143\) −16.0000 −1.33799
\(144\) 0 0
\(145\) 24.0000 1.99309
\(146\) 0 0
\(147\) 2.00000 0.164957
\(148\) 0 0
\(149\) 2.00000 0.163846 0.0819232 0.996639i \(-0.473894\pi\)
0.0819232 + 0.996639i \(0.473894\pi\)
\(150\) 0 0
\(151\) 16.0000 1.30206 0.651031 0.759051i \(-0.274337\pi\)
0.651031 + 0.759051i \(0.274337\pi\)
\(152\) 0 0
\(153\) −1.00000 −0.0808452
\(154\) 0 0
\(155\) 16.0000 1.28515
\(156\) 0 0
\(157\) −4.00000 −0.319235 −0.159617 0.987179i \(-0.551026\pi\)
−0.159617 + 0.987179i \(0.551026\pi\)
\(158\) 0 0
\(159\) −28.0000 −2.22054
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 4.00000 0.313304 0.156652 0.987654i \(-0.449930\pi\)
0.156652 + 0.987654i \(0.449930\pi\)
\(164\) 0 0
\(165\) 32.0000 2.49120
\(166\) 0 0
\(167\) 20.0000 1.54765 0.773823 0.633402i \(-0.218342\pi\)
0.773823 + 0.633402i \(0.218342\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) 0 0
\(171\) −6.00000 −0.458831
\(172\) 0 0
\(173\) 8.00000 0.608229 0.304114 0.952636i \(-0.401639\pi\)
0.304114 + 0.952636i \(0.401639\pi\)
\(174\) 0 0
\(175\) −11.0000 −0.831522
\(176\) 0 0
\(177\) −12.0000 −0.901975
\(178\) 0 0
\(179\) −12.0000 −0.896922 −0.448461 0.893802i \(-0.648028\pi\)
−0.448461 + 0.893802i \(0.648028\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) 24.0000 1.77413
\(184\) 0 0
\(185\) −40.0000 −2.94086
\(186\) 0 0
\(187\) 4.00000 0.292509
\(188\) 0 0
\(189\) 4.00000 0.290957
\(190\) 0 0
\(191\) 24.0000 1.73658 0.868290 0.496058i \(-0.165220\pi\)
0.868290 + 0.496058i \(0.165220\pi\)
\(192\) 0 0
\(193\) −2.00000 −0.143963 −0.0719816 0.997406i \(-0.522932\pi\)
−0.0719816 + 0.997406i \(0.522932\pi\)
\(194\) 0 0
\(195\) −32.0000 −2.29157
\(196\) 0 0
\(197\) −2.00000 −0.142494 −0.0712470 0.997459i \(-0.522698\pi\)
−0.0712470 + 0.997459i \(0.522698\pi\)
\(198\) 0 0
\(199\) −28.0000 −1.98487 −0.992434 0.122782i \(-0.960818\pi\)
−0.992434 + 0.122782i \(0.960818\pi\)
\(200\) 0 0
\(201\) 8.00000 0.564276
\(202\) 0 0
\(203\) 6.00000 0.421117
\(204\) 0 0
\(205\) −24.0000 −1.67623
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 24.0000 1.66011
\(210\) 0 0
\(211\) −8.00000 −0.550743 −0.275371 0.961338i \(-0.588801\pi\)
−0.275371 + 0.961338i \(0.588801\pi\)
\(212\) 0 0
\(213\) 16.0000 1.09630
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 4.00000 0.271538
\(218\) 0 0
\(219\) 4.00000 0.270295
\(220\) 0 0
\(221\) −4.00000 −0.269069
\(222\) 0 0
\(223\) −24.0000 −1.60716 −0.803579 0.595198i \(-0.797074\pi\)
−0.803579 + 0.595198i \(0.797074\pi\)
\(224\) 0 0
\(225\) 11.0000 0.733333
\(226\) 0 0
\(227\) −2.00000 −0.132745 −0.0663723 0.997795i \(-0.521143\pi\)
−0.0663723 + 0.997795i \(0.521143\pi\)
\(228\) 0 0
\(229\) 28.0000 1.85029 0.925146 0.379611i \(-0.123942\pi\)
0.925146 + 0.379611i \(0.123942\pi\)
\(230\) 0 0
\(231\) 8.00000 0.526361
\(232\) 0 0
\(233\) 26.0000 1.70332 0.851658 0.524097i \(-0.175597\pi\)
0.851658 + 0.524097i \(0.175597\pi\)
\(234\) 0 0
\(235\) 16.0000 1.04372
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 8.00000 0.517477 0.258738 0.965947i \(-0.416693\pi\)
0.258738 + 0.965947i \(0.416693\pi\)
\(240\) 0 0
\(241\) −2.00000 −0.128831 −0.0644157 0.997923i \(-0.520518\pi\)
−0.0644157 + 0.997923i \(0.520518\pi\)
\(242\) 0 0
\(243\) −10.0000 −0.641500
\(244\) 0 0
\(245\) −4.00000 −0.255551
\(246\) 0 0
\(247\) −24.0000 −1.52708
\(248\) 0 0
\(249\) 20.0000 1.26745
\(250\) 0 0
\(251\) 14.0000 0.883672 0.441836 0.897096i \(-0.354327\pi\)
0.441836 + 0.897096i \(0.354327\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 8.00000 0.500979
\(256\) 0 0
\(257\) −6.00000 −0.374270 −0.187135 0.982334i \(-0.559920\pi\)
−0.187135 + 0.982334i \(0.559920\pi\)
\(258\) 0 0
\(259\) −10.0000 −0.621370
\(260\) 0 0
\(261\) −6.00000 −0.371391
\(262\) 0 0
\(263\) −24.0000 −1.47990 −0.739952 0.672660i \(-0.765152\pi\)
−0.739952 + 0.672660i \(0.765152\pi\)
\(264\) 0 0
\(265\) 56.0000 3.44005
\(266\) 0 0
\(267\) 20.0000 1.22398
\(268\) 0 0
\(269\) 24.0000 1.46331 0.731653 0.681677i \(-0.238749\pi\)
0.731653 + 0.681677i \(0.238749\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) −8.00000 −0.484182
\(274\) 0 0
\(275\) −44.0000 −2.65330
\(276\) 0 0
\(277\) −18.0000 −1.08152 −0.540758 0.841178i \(-0.681862\pi\)
−0.540758 + 0.841178i \(0.681862\pi\)
\(278\) 0 0
\(279\) −4.00000 −0.239474
\(280\) 0 0
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) 0 0
\(283\) 14.0000 0.832214 0.416107 0.909316i \(-0.363394\pi\)
0.416107 + 0.909316i \(0.363394\pi\)
\(284\) 0 0
\(285\) 48.0000 2.84327
\(286\) 0 0
\(287\) −6.00000 −0.354169
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 12.0000 0.703452
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 24.0000 1.39733
\(296\) 0 0
\(297\) 16.0000 0.928414
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −32.0000 −1.83835
\(304\) 0 0
\(305\) −48.0000 −2.74847
\(306\) 0 0
\(307\) 10.0000 0.570730 0.285365 0.958419i \(-0.407885\pi\)
0.285365 + 0.958419i \(0.407885\pi\)
\(308\) 0 0
\(309\) 8.00000 0.455104
\(310\) 0 0
\(311\) −8.00000 −0.453638 −0.226819 0.973937i \(-0.572833\pi\)
−0.226819 + 0.973937i \(0.572833\pi\)
\(312\) 0 0
\(313\) 6.00000 0.339140 0.169570 0.985518i \(-0.445762\pi\)
0.169570 + 0.985518i \(0.445762\pi\)
\(314\) 0 0
\(315\) 4.00000 0.225374
\(316\) 0 0
\(317\) 22.0000 1.23564 0.617822 0.786318i \(-0.288015\pi\)
0.617822 + 0.786318i \(0.288015\pi\)
\(318\) 0 0
\(319\) 24.0000 1.34374
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 6.00000 0.333849
\(324\) 0 0
\(325\) 44.0000 2.44068
\(326\) 0 0
\(327\) 4.00000 0.221201
\(328\) 0 0
\(329\) 4.00000 0.220527
\(330\) 0 0
\(331\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(332\) 0 0
\(333\) 10.0000 0.547997
\(334\) 0 0
\(335\) −16.0000 −0.874173
\(336\) 0 0
\(337\) 22.0000 1.19842 0.599208 0.800593i \(-0.295482\pi\)
0.599208 + 0.800593i \(0.295482\pi\)
\(338\) 0 0
\(339\) 28.0000 1.52075
\(340\) 0 0
\(341\) 16.0000 0.866449
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 12.0000 0.644194 0.322097 0.946707i \(-0.395612\pi\)
0.322097 + 0.946707i \(0.395612\pi\)
\(348\) 0 0
\(349\) −20.0000 −1.07058 −0.535288 0.844670i \(-0.679797\pi\)
−0.535288 + 0.844670i \(0.679797\pi\)
\(350\) 0 0
\(351\) −16.0000 −0.854017
\(352\) 0 0
\(353\) 26.0000 1.38384 0.691920 0.721974i \(-0.256765\pi\)
0.691920 + 0.721974i \(0.256765\pi\)
\(354\) 0 0
\(355\) −32.0000 −1.69838
\(356\) 0 0
\(357\) 2.00000 0.105851
\(358\) 0 0
\(359\) −24.0000 −1.26667 −0.633336 0.773877i \(-0.718315\pi\)
−0.633336 + 0.773877i \(0.718315\pi\)
\(360\) 0 0
\(361\) 17.0000 0.894737
\(362\) 0 0
\(363\) 10.0000 0.524864
\(364\) 0 0
\(365\) −8.00000 −0.418739
\(366\) 0 0
\(367\) 24.0000 1.25279 0.626395 0.779506i \(-0.284530\pi\)
0.626395 + 0.779506i \(0.284530\pi\)
\(368\) 0 0
\(369\) 6.00000 0.312348
\(370\) 0 0
\(371\) 14.0000 0.726844
\(372\) 0 0
\(373\) 10.0000 0.517780 0.258890 0.965907i \(-0.416643\pi\)
0.258890 + 0.965907i \(0.416643\pi\)
\(374\) 0 0
\(375\) −48.0000 −2.47871
\(376\) 0 0
\(377\) −24.0000 −1.23606
\(378\) 0 0
\(379\) −4.00000 −0.205466 −0.102733 0.994709i \(-0.532759\pi\)
−0.102733 + 0.994709i \(0.532759\pi\)
\(380\) 0 0
\(381\) 16.0000 0.819705
\(382\) 0 0
\(383\) −4.00000 −0.204390 −0.102195 0.994764i \(-0.532587\pi\)
−0.102195 + 0.994764i \(0.532587\pi\)
\(384\) 0 0
\(385\) −16.0000 −0.815436
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 30.0000 1.52106 0.760530 0.649303i \(-0.224939\pi\)
0.760530 + 0.649303i \(0.224939\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −36.0000 −1.81596
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 16.0000 0.803017 0.401508 0.915855i \(-0.368486\pi\)
0.401508 + 0.915855i \(0.368486\pi\)
\(398\) 0 0
\(399\) 12.0000 0.600751
\(400\) 0 0
\(401\) −18.0000 −0.898877 −0.449439 0.893311i \(-0.648376\pi\)
−0.449439 + 0.893311i \(0.648376\pi\)
\(402\) 0 0
\(403\) −16.0000 −0.797017
\(404\) 0 0
\(405\) 44.0000 2.18638
\(406\) 0 0
\(407\) −40.0000 −1.98273
\(408\) 0 0
\(409\) −26.0000 −1.28562 −0.642809 0.766027i \(-0.722231\pi\)
−0.642809 + 0.766027i \(0.722231\pi\)
\(410\) 0 0
\(411\) 4.00000 0.197305
\(412\) 0 0
\(413\) 6.00000 0.295241
\(414\) 0 0
\(415\) −40.0000 −1.96352
\(416\) 0 0
\(417\) 20.0000 0.979404
\(418\) 0 0
\(419\) 18.0000 0.879358 0.439679 0.898155i \(-0.355092\pi\)
0.439679 + 0.898155i \(0.355092\pi\)
\(420\) 0 0
\(421\) 18.0000 0.877266 0.438633 0.898666i \(-0.355463\pi\)
0.438633 + 0.898666i \(0.355463\pi\)
\(422\) 0 0
\(423\) −4.00000 −0.194487
\(424\) 0 0
\(425\) −11.0000 −0.533578
\(426\) 0 0
\(427\) −12.0000 −0.580721
\(428\) 0 0
\(429\) −32.0000 −1.54497
\(430\) 0 0
\(431\) 8.00000 0.385346 0.192673 0.981263i \(-0.438284\pi\)
0.192673 + 0.981263i \(0.438284\pi\)
\(432\) 0 0
\(433\) −34.0000 −1.63394 −0.816968 0.576683i \(-0.804347\pi\)
−0.816968 + 0.576683i \(0.804347\pi\)
\(434\) 0 0
\(435\) 48.0000 2.30142
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −40.0000 −1.90910 −0.954548 0.298057i \(-0.903661\pi\)
−0.954548 + 0.298057i \(0.903661\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) 0 0
\(443\) 12.0000 0.570137 0.285069 0.958507i \(-0.407984\pi\)
0.285069 + 0.958507i \(0.407984\pi\)
\(444\) 0 0
\(445\) −40.0000 −1.89618
\(446\) 0 0
\(447\) 4.00000 0.189194
\(448\) 0 0
\(449\) 10.0000 0.471929 0.235965 0.971762i \(-0.424175\pi\)
0.235965 + 0.971762i \(0.424175\pi\)
\(450\) 0 0
\(451\) −24.0000 −1.13012
\(452\) 0 0
\(453\) 32.0000 1.50349
\(454\) 0 0
\(455\) 16.0000 0.750092
\(456\) 0 0
\(457\) 22.0000 1.02912 0.514558 0.857455i \(-0.327956\pi\)
0.514558 + 0.857455i \(0.327956\pi\)
\(458\) 0 0
\(459\) 4.00000 0.186704
\(460\) 0 0
\(461\) 20.0000 0.931493 0.465746 0.884918i \(-0.345786\pi\)
0.465746 + 0.884918i \(0.345786\pi\)
\(462\) 0 0
\(463\) 40.0000 1.85896 0.929479 0.368875i \(-0.120257\pi\)
0.929479 + 0.368875i \(0.120257\pi\)
\(464\) 0 0
\(465\) 32.0000 1.48396
\(466\) 0 0
\(467\) 18.0000 0.832941 0.416470 0.909149i \(-0.363267\pi\)
0.416470 + 0.909149i \(0.363267\pi\)
\(468\) 0 0
\(469\) −4.00000 −0.184703
\(470\) 0 0
\(471\) −8.00000 −0.368621
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −66.0000 −3.02829
\(476\) 0 0
\(477\) −14.0000 −0.641016
\(478\) 0 0
\(479\) −4.00000 −0.182765 −0.0913823 0.995816i \(-0.529129\pi\)
−0.0913823 + 0.995816i \(0.529129\pi\)
\(480\) 0 0
\(481\) 40.0000 1.82384
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −24.0000 −1.08978
\(486\) 0 0
\(487\) 32.0000 1.45006 0.725029 0.688718i \(-0.241826\pi\)
0.725029 + 0.688718i \(0.241826\pi\)
\(488\) 0 0
\(489\) 8.00000 0.361773
\(490\) 0 0
\(491\) −28.0000 −1.26362 −0.631811 0.775122i \(-0.717688\pi\)
−0.631811 + 0.775122i \(0.717688\pi\)
\(492\) 0 0
\(493\) 6.00000 0.270226
\(494\) 0 0
\(495\) 16.0000 0.719147
\(496\) 0 0
\(497\) −8.00000 −0.358849
\(498\) 0 0
\(499\) −24.0000 −1.07439 −0.537194 0.843459i \(-0.680516\pi\)
−0.537194 + 0.843459i \(0.680516\pi\)
\(500\) 0 0
\(501\) 40.0000 1.78707
\(502\) 0 0
\(503\) 16.0000 0.713405 0.356702 0.934218i \(-0.383901\pi\)
0.356702 + 0.934218i \(0.383901\pi\)
\(504\) 0 0
\(505\) 64.0000 2.84796
\(506\) 0 0
\(507\) 6.00000 0.266469
\(508\) 0 0
\(509\) −12.0000 −0.531891 −0.265945 0.963988i \(-0.585684\pi\)
−0.265945 + 0.963988i \(0.585684\pi\)
\(510\) 0 0
\(511\) −2.00000 −0.0884748
\(512\) 0 0
\(513\) 24.0000 1.05963
\(514\) 0 0
\(515\) −16.0000 −0.705044
\(516\) 0 0
\(517\) 16.0000 0.703679
\(518\) 0 0
\(519\) 16.0000 0.702322
\(520\) 0 0
\(521\) 14.0000 0.613351 0.306676 0.951814i \(-0.400783\pi\)
0.306676 + 0.951814i \(0.400783\pi\)
\(522\) 0 0
\(523\) 34.0000 1.48672 0.743358 0.668894i \(-0.233232\pi\)
0.743358 + 0.668894i \(0.233232\pi\)
\(524\) 0 0
\(525\) −22.0000 −0.960159
\(526\) 0 0
\(527\) 4.00000 0.174243
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) −6.00000 −0.260378
\(532\) 0 0
\(533\) 24.0000 1.03956
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −24.0000 −1.03568
\(538\) 0 0
\(539\) −4.00000 −0.172292
\(540\) 0 0
\(541\) −26.0000 −1.11783 −0.558914 0.829226i \(-0.688782\pi\)
−0.558914 + 0.829226i \(0.688782\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −8.00000 −0.342682
\(546\) 0 0
\(547\) −4.00000 −0.171028 −0.0855138 0.996337i \(-0.527253\pi\)
−0.0855138 + 0.996337i \(0.527253\pi\)
\(548\) 0 0
\(549\) 12.0000 0.512148
\(550\) 0 0
\(551\) 36.0000 1.53365
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −80.0000 −3.39581
\(556\) 0 0
\(557\) 18.0000 0.762684 0.381342 0.924434i \(-0.375462\pi\)
0.381342 + 0.924434i \(0.375462\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 8.00000 0.337760
\(562\) 0 0
\(563\) 14.0000 0.590030 0.295015 0.955493i \(-0.404675\pi\)
0.295015 + 0.955493i \(0.404675\pi\)
\(564\) 0 0
\(565\) −56.0000 −2.35594
\(566\) 0 0
\(567\) 11.0000 0.461957
\(568\) 0 0
\(569\) −26.0000 −1.08998 −0.544988 0.838444i \(-0.683466\pi\)
−0.544988 + 0.838444i \(0.683466\pi\)
\(570\) 0 0
\(571\) 36.0000 1.50655 0.753277 0.657704i \(-0.228472\pi\)
0.753277 + 0.657704i \(0.228472\pi\)
\(572\) 0 0
\(573\) 48.0000 2.00523
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −22.0000 −0.915872 −0.457936 0.888985i \(-0.651411\pi\)
−0.457936 + 0.888985i \(0.651411\pi\)
\(578\) 0 0
\(579\) −4.00000 −0.166234
\(580\) 0 0
\(581\) −10.0000 −0.414870
\(582\) 0 0
\(583\) 56.0000 2.31928
\(584\) 0 0
\(585\) −16.0000 −0.661519
\(586\) 0 0
\(587\) −18.0000 −0.742940 −0.371470 0.928445i \(-0.621146\pi\)
−0.371470 + 0.928445i \(0.621146\pi\)
\(588\) 0 0
\(589\) 24.0000 0.988903
\(590\) 0 0
\(591\) −4.00000 −0.164538
\(592\) 0 0
\(593\) −6.00000 −0.246390 −0.123195 0.992382i \(-0.539314\pi\)
−0.123195 + 0.992382i \(0.539314\pi\)
\(594\) 0 0
\(595\) −4.00000 −0.163984
\(596\) 0 0
\(597\) −56.0000 −2.29193
\(598\) 0 0
\(599\) −32.0000 −1.30748 −0.653742 0.756717i \(-0.726802\pi\)
−0.653742 + 0.756717i \(0.726802\pi\)
\(600\) 0 0
\(601\) 2.00000 0.0815817 0.0407909 0.999168i \(-0.487012\pi\)
0.0407909 + 0.999168i \(0.487012\pi\)
\(602\) 0 0
\(603\) 4.00000 0.162893
\(604\) 0 0
\(605\) −20.0000 −0.813116
\(606\) 0 0
\(607\) −16.0000 −0.649420 −0.324710 0.945814i \(-0.605267\pi\)
−0.324710 + 0.945814i \(0.605267\pi\)
\(608\) 0 0
\(609\) 12.0000 0.486265
\(610\) 0 0
\(611\) −16.0000 −0.647291
\(612\) 0 0
\(613\) 14.0000 0.565455 0.282727 0.959200i \(-0.408761\pi\)
0.282727 + 0.959200i \(0.408761\pi\)
\(614\) 0 0
\(615\) −48.0000 −1.93555
\(616\) 0 0
\(617\) 14.0000 0.563619 0.281809 0.959470i \(-0.409065\pi\)
0.281809 + 0.959470i \(0.409065\pi\)
\(618\) 0 0
\(619\) −26.0000 −1.04503 −0.522514 0.852631i \(-0.675006\pi\)
−0.522514 + 0.852631i \(0.675006\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −10.0000 −0.400642
\(624\) 0 0
\(625\) 41.0000 1.64000
\(626\) 0 0
\(627\) 48.0000 1.91694
\(628\) 0 0
\(629\) −10.0000 −0.398726
\(630\) 0 0
\(631\) −16.0000 −0.636950 −0.318475 0.947931i \(-0.603171\pi\)
−0.318475 + 0.947931i \(0.603171\pi\)
\(632\) 0 0
\(633\) −16.0000 −0.635943
\(634\) 0 0
\(635\) −32.0000 −1.26988
\(636\) 0 0
\(637\) 4.00000 0.158486
\(638\) 0 0
\(639\) 8.00000 0.316475
\(640\) 0 0
\(641\) −18.0000 −0.710957 −0.355479 0.934684i \(-0.615682\pi\)
−0.355479 + 0.934684i \(0.615682\pi\)
\(642\) 0 0
\(643\) 34.0000 1.34083 0.670415 0.741987i \(-0.266116\pi\)
0.670415 + 0.741987i \(0.266116\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −36.0000 −1.41531 −0.707653 0.706560i \(-0.750246\pi\)
−0.707653 + 0.706560i \(0.750246\pi\)
\(648\) 0 0
\(649\) 24.0000 0.942082
\(650\) 0 0
\(651\) 8.00000 0.313545
\(652\) 0 0
\(653\) −14.0000 −0.547862 −0.273931 0.961749i \(-0.588324\pi\)
−0.273931 + 0.961749i \(0.588324\pi\)
\(654\) 0 0
\(655\) 72.0000 2.81327
\(656\) 0 0
\(657\) 2.00000 0.0780274
\(658\) 0 0
\(659\) −24.0000 −0.934907 −0.467454 0.884018i \(-0.654829\pi\)
−0.467454 + 0.884018i \(0.654829\pi\)
\(660\) 0 0
\(661\) −24.0000 −0.933492 −0.466746 0.884391i \(-0.654574\pi\)
−0.466746 + 0.884391i \(0.654574\pi\)
\(662\) 0 0
\(663\) −8.00000 −0.310694
\(664\) 0 0
\(665\) −24.0000 −0.930680
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −48.0000 −1.85579
\(670\) 0 0
\(671\) −48.0000 −1.85302
\(672\) 0 0
\(673\) −30.0000 −1.15642 −0.578208 0.815890i \(-0.696248\pi\)
−0.578208 + 0.815890i \(0.696248\pi\)
\(674\) 0 0
\(675\) −44.0000 −1.69356
\(676\) 0 0
\(677\) −16.0000 −0.614930 −0.307465 0.951559i \(-0.599481\pi\)
−0.307465 + 0.951559i \(0.599481\pi\)
\(678\) 0 0
\(679\) −6.00000 −0.230259
\(680\) 0 0
\(681\) −4.00000 −0.153280
\(682\) 0 0
\(683\) −16.0000 −0.612223 −0.306111 0.951996i \(-0.599028\pi\)
−0.306111 + 0.951996i \(0.599028\pi\)
\(684\) 0 0
\(685\) −8.00000 −0.305664
\(686\) 0 0
\(687\) 56.0000 2.13653
\(688\) 0 0
\(689\) −56.0000 −2.13343
\(690\) 0 0
\(691\) 6.00000 0.228251 0.114125 0.993466i \(-0.463593\pi\)
0.114125 + 0.993466i \(0.463593\pi\)
\(692\) 0 0
\(693\) 4.00000 0.151947
\(694\) 0 0
\(695\) −40.0000 −1.51729
\(696\) 0 0
\(697\) −6.00000 −0.227266
\(698\) 0 0
\(699\) 52.0000 1.96682
\(700\) 0 0
\(701\) −42.0000 −1.58632 −0.793159 0.609015i \(-0.791565\pi\)
−0.793159 + 0.609015i \(0.791565\pi\)
\(702\) 0 0
\(703\) −60.0000 −2.26294
\(704\) 0 0
\(705\) 32.0000 1.20519
\(706\) 0 0
\(707\) 16.0000 0.601742
\(708\) 0 0
\(709\) 2.00000 0.0751116 0.0375558 0.999295i \(-0.488043\pi\)
0.0375558 + 0.999295i \(0.488043\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 64.0000 2.39346
\(716\) 0 0
\(717\) 16.0000 0.597531
\(718\) 0 0
\(719\) −36.0000 −1.34257 −0.671287 0.741198i \(-0.734258\pi\)
−0.671287 + 0.741198i \(0.734258\pi\)
\(720\) 0 0
\(721\) −4.00000 −0.148968
\(722\) 0 0
\(723\) −4.00000 −0.148762
\(724\) 0 0
\(725\) −66.0000 −2.45118
\(726\) 0 0
\(727\) −12.0000 −0.445055 −0.222528 0.974926i \(-0.571431\pi\)
−0.222528 + 0.974926i \(0.571431\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 24.0000 0.886460 0.443230 0.896408i \(-0.353832\pi\)
0.443230 + 0.896408i \(0.353832\pi\)
\(734\) 0 0
\(735\) −8.00000 −0.295084
\(736\) 0 0
\(737\) −16.0000 −0.589368
\(738\) 0 0
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 0 0
\(741\) −48.0000 −1.76332
\(742\) 0 0
\(743\) 48.0000 1.76095 0.880475 0.474093i \(-0.157224\pi\)
0.880475 + 0.474093i \(0.157224\pi\)
\(744\) 0 0
\(745\) −8.00000 −0.293097
\(746\) 0 0
\(747\) 10.0000 0.365881
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 40.0000 1.45962 0.729810 0.683650i \(-0.239608\pi\)
0.729810 + 0.683650i \(0.239608\pi\)
\(752\) 0 0
\(753\) 28.0000 1.02038
\(754\) 0 0
\(755\) −64.0000 −2.32920
\(756\) 0 0
\(757\) 30.0000 1.09037 0.545184 0.838316i \(-0.316460\pi\)
0.545184 + 0.838316i \(0.316460\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −10.0000 −0.362500 −0.181250 0.983437i \(-0.558014\pi\)
−0.181250 + 0.983437i \(0.558014\pi\)
\(762\) 0 0
\(763\) −2.00000 −0.0724049
\(764\) 0 0
\(765\) 4.00000 0.144620
\(766\) 0 0
\(767\) −24.0000 −0.866590
\(768\) 0 0
\(769\) −26.0000 −0.937584 −0.468792 0.883309i \(-0.655311\pi\)
−0.468792 + 0.883309i \(0.655311\pi\)
\(770\) 0 0
\(771\) −12.0000 −0.432169
\(772\) 0 0
\(773\) −32.0000 −1.15096 −0.575480 0.817816i \(-0.695185\pi\)
−0.575480 + 0.817816i \(0.695185\pi\)
\(774\) 0 0
\(775\) −44.0000 −1.58053
\(776\) 0 0
\(777\) −20.0000 −0.717496
\(778\) 0 0
\(779\) −36.0000 −1.28983
\(780\) 0 0
\(781\) −32.0000 −1.14505
\(782\) 0 0
\(783\) 24.0000 0.857690
\(784\) 0 0
\(785\) 16.0000 0.571064
\(786\) 0 0
\(787\) −10.0000 −0.356462 −0.178231 0.983989i \(-0.557037\pi\)
−0.178231 + 0.983989i \(0.557037\pi\)
\(788\) 0 0
\(789\) −48.0000 −1.70885
\(790\) 0 0
\(791\) −14.0000 −0.497783
\(792\) 0 0
\(793\) 48.0000 1.70453
\(794\) 0 0
\(795\) 112.000 3.97223
\(796\) 0 0
\(797\) 28.0000 0.991811 0.495905 0.868377i \(-0.334836\pi\)
0.495905 + 0.868377i \(0.334836\pi\)
\(798\) 0 0
\(799\) 4.00000 0.141510
\(800\) 0 0
\(801\) 10.0000 0.353333
\(802\) 0 0
\(803\) −8.00000 −0.282314
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 48.0000 1.68968
\(808\) 0 0
\(809\) −26.0000 −0.914111 −0.457056 0.889438i \(-0.651096\pi\)
−0.457056 + 0.889438i \(0.651096\pi\)
\(810\) 0 0
\(811\) −26.0000 −0.912983 −0.456492 0.889728i \(-0.650894\pi\)
−0.456492 + 0.889728i \(0.650894\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −16.0000 −0.560456
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) −4.00000 −0.139771
\(820\) 0 0
\(821\) 54.0000 1.88461 0.942306 0.334751i \(-0.108652\pi\)
0.942306 + 0.334751i \(0.108652\pi\)
\(822\) 0 0
\(823\) −32.0000 −1.11545 −0.557725 0.830026i \(-0.688326\pi\)
−0.557725 + 0.830026i \(0.688326\pi\)
\(824\) 0 0
\(825\) −88.0000 −3.06377
\(826\) 0 0
\(827\) −8.00000 −0.278187 −0.139094 0.990279i \(-0.544419\pi\)
−0.139094 + 0.990279i \(0.544419\pi\)
\(828\) 0 0
\(829\) −16.0000 −0.555703 −0.277851 0.960624i \(-0.589622\pi\)
−0.277851 + 0.960624i \(0.589622\pi\)
\(830\) 0 0
\(831\) −36.0000 −1.24883
\(832\) 0 0
\(833\) −1.00000 −0.0346479
\(834\) 0 0
\(835\) −80.0000 −2.76851
\(836\) 0 0
\(837\) 16.0000 0.553041
\(838\) 0 0
\(839\) −52.0000 −1.79524 −0.897620 0.440771i \(-0.854705\pi\)
−0.897620 + 0.440771i \(0.854705\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 0 0
\(843\) −12.0000 −0.413302
\(844\) 0 0
\(845\) −12.0000 −0.412813
\(846\) 0 0
\(847\) −5.00000 −0.171802
\(848\) 0 0
\(849\) 28.0000 0.960958
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −16.0000 −0.547830 −0.273915 0.961754i \(-0.588319\pi\)
−0.273915 + 0.961754i \(0.588319\pi\)
\(854\) 0 0
\(855\) 24.0000 0.820783
\(856\) 0 0
\(857\) 30.0000 1.02478 0.512390 0.858753i \(-0.328760\pi\)
0.512390 + 0.858753i \(0.328760\pi\)
\(858\) 0 0
\(859\) 30.0000 1.02359 0.511793 0.859109i \(-0.328981\pi\)
0.511793 + 0.859109i \(0.328981\pi\)
\(860\) 0 0
\(861\) −12.0000 −0.408959
\(862\) 0 0
\(863\) −16.0000 −0.544646 −0.272323 0.962206i \(-0.587792\pi\)
−0.272323 + 0.962206i \(0.587792\pi\)
\(864\) 0 0
\(865\) −32.0000 −1.08803
\(866\) 0 0
\(867\) 2.00000 0.0679236
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 16.0000 0.542139
\(872\) 0 0
\(873\) 6.00000 0.203069
\(874\) 0 0
\(875\) 24.0000 0.811348
\(876\) 0 0
\(877\) 26.0000 0.877958 0.438979 0.898497i \(-0.355340\pi\)
0.438979 + 0.898497i \(0.355340\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 50.0000 1.68454 0.842271 0.539054i \(-0.181218\pi\)
0.842271 + 0.539054i \(0.181218\pi\)
\(882\) 0 0
\(883\) −4.00000 −0.134611 −0.0673054 0.997732i \(-0.521440\pi\)
−0.0673054 + 0.997732i \(0.521440\pi\)
\(884\) 0 0
\(885\) 48.0000 1.61350
\(886\) 0 0
\(887\) 12.0000 0.402921 0.201460 0.979497i \(-0.435431\pi\)
0.201460 + 0.979497i \(0.435431\pi\)
\(888\) 0 0
\(889\) −8.00000 −0.268311
\(890\) 0 0
\(891\) 44.0000 1.47406
\(892\) 0 0
\(893\) 24.0000 0.803129
\(894\) 0 0
\(895\) 48.0000 1.60446
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 24.0000 0.800445
\(900\) 0 0
\(901\) 14.0000 0.466408
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −8.00000 −0.265636 −0.132818 0.991140i \(-0.542403\pi\)
−0.132818 + 0.991140i \(0.542403\pi\)
\(908\) 0 0
\(909\) −16.0000 −0.530687
\(910\) 0 0
\(911\) 24.0000 0.795155 0.397578 0.917568i \(-0.369851\pi\)
0.397578 + 0.917568i \(0.369851\pi\)
\(912\) 0 0
\(913\) −40.0000 −1.32381
\(914\) 0 0
\(915\) −96.0000 −3.17366
\(916\) 0 0
\(917\) 18.0000 0.594412
\(918\) 0 0
\(919\) 8.00000 0.263896 0.131948 0.991257i \(-0.457877\pi\)
0.131948 + 0.991257i \(0.457877\pi\)
\(920\) 0 0
\(921\) 20.0000 0.659022
\(922\) 0 0
\(923\) 32.0000 1.05329
\(924\) 0 0
\(925\) 110.000 3.61678
\(926\) 0 0
\(927\) 4.00000 0.131377
\(928\) 0 0
\(929\) −50.0000 −1.64045 −0.820223 0.572043i \(-0.806151\pi\)
−0.820223 + 0.572043i \(0.806151\pi\)
\(930\) 0 0
\(931\) −6.00000 −0.196642
\(932\) 0 0
\(933\) −16.0000 −0.523816
\(934\) 0 0
\(935\) −16.0000 −0.523256
\(936\) 0 0
\(937\) 10.0000 0.326686 0.163343 0.986569i \(-0.447772\pi\)
0.163343 + 0.986569i \(0.447772\pi\)
\(938\) 0 0
\(939\) 12.0000 0.391605
\(940\) 0 0
\(941\) 12.0000 0.391189 0.195594 0.980685i \(-0.437336\pi\)
0.195594 + 0.980685i \(0.437336\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) −16.0000 −0.520480
\(946\) 0 0
\(947\) −4.00000 −0.129983 −0.0649913 0.997886i \(-0.520702\pi\)
−0.0649913 + 0.997886i \(0.520702\pi\)
\(948\) 0 0
\(949\) 8.00000 0.259691
\(950\) 0 0
\(951\) 44.0000 1.42680
\(952\) 0 0
\(953\) 26.0000 0.842223 0.421111 0.907009i \(-0.361640\pi\)
0.421111 + 0.907009i \(0.361640\pi\)
\(954\) 0 0
\(955\) −96.0000 −3.10649
\(956\) 0 0
\(957\) 48.0000 1.55162
\(958\) 0 0
\(959\) −2.00000 −0.0645834
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 8.00000 0.257529
\(966\) 0 0
\(967\) −32.0000 −1.02905 −0.514525 0.857475i \(-0.672032\pi\)
−0.514525 + 0.857475i \(0.672032\pi\)
\(968\) 0 0
\(969\) 12.0000 0.385496
\(970\) 0 0
\(971\) 10.0000 0.320915 0.160458 0.987043i \(-0.448703\pi\)
0.160458 + 0.987043i \(0.448703\pi\)
\(972\) 0 0
\(973\) −10.0000 −0.320585
\(974\) 0 0
\(975\) 88.0000 2.81826
\(976\) 0 0
\(977\) −54.0000 −1.72761 −0.863807 0.503824i \(-0.831926\pi\)
−0.863807 + 0.503824i \(0.831926\pi\)
\(978\) 0 0
\(979\) −40.0000 −1.27841
\(980\) 0 0
\(981\) 2.00000 0.0638551
\(982\) 0 0
\(983\) 28.0000 0.893061 0.446531 0.894768i \(-0.352659\pi\)
0.446531 + 0.894768i \(0.352659\pi\)
\(984\) 0 0
\(985\) 8.00000 0.254901
\(986\) 0 0
\(987\) 8.00000 0.254643
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 24.0000 0.762385 0.381193 0.924496i \(-0.375513\pi\)
0.381193 + 0.924496i \(0.375513\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 112.000 3.55064
\(996\) 0 0
\(997\) 28.0000 0.886769 0.443384 0.896332i \(-0.353778\pi\)
0.443384 + 0.896332i \(0.353778\pi\)
\(998\) 0 0
\(999\) −40.0000 −1.26554
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7616.2.a.i.1.1 1
4.3 odd 2 7616.2.a.a.1.1 1
8.3 odd 2 238.2.a.b.1.1 1
8.5 even 2 1904.2.a.b.1.1 1
24.11 even 2 2142.2.a.l.1.1 1
40.19 odd 2 5950.2.a.k.1.1 1
56.27 even 2 1666.2.a.b.1.1 1
136.67 odd 2 4046.2.a.b.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
238.2.a.b.1.1 1 8.3 odd 2
1666.2.a.b.1.1 1 56.27 even 2
1904.2.a.b.1.1 1 8.5 even 2
2142.2.a.l.1.1 1 24.11 even 2
4046.2.a.b.1.1 1 136.67 odd 2
5950.2.a.k.1.1 1 40.19 odd 2
7616.2.a.a.1.1 1 4.3 odd 2
7616.2.a.i.1.1 1 1.1 even 1 trivial