Properties

Label 7616.2.a.bx.1.6
Level $7616$
Weight $2$
Character 7616.1
Self dual yes
Analytic conductor $60.814$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7616,2,Mod(1,7616)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7616, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7616.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7616 = 2^{6} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7616.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.8140661794\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.80686992.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 10x^{4} + 15x^{3} + 8x^{2} - 15x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 3808)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-1.06298\) of defining polynomial
Character \(\chi\) \(=\) 7616.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.39573 q^{3} +1.16130 q^{5} -1.00000 q^{7} +2.73954 q^{9} -3.38533 q^{11} +2.57825 q^{13} +2.78216 q^{15} -1.00000 q^{17} -6.30698 q^{19} -2.39573 q^{21} -8.41214 q^{23} -3.65139 q^{25} -0.623981 q^{27} +5.38533 q^{29} +2.05025 q^{31} -8.11035 q^{33} -1.16130 q^{35} -3.25564 q^{37} +6.17680 q^{39} +7.90703 q^{41} -8.38012 q^{43} +3.18142 q^{45} +4.48077 q^{47} +1.00000 q^{49} -2.39573 q^{51} +1.33508 q^{53} -3.93137 q^{55} -15.1098 q^{57} -11.6695 q^{59} +3.78325 q^{61} -2.73954 q^{63} +2.99411 q^{65} +3.57716 q^{67} -20.1533 q^{69} -10.4329 q^{71} +1.13637 q^{73} -8.74777 q^{75} +3.38533 q^{77} +13.1994 q^{79} -9.71353 q^{81} -17.5584 q^{83} -1.16130 q^{85} +12.9018 q^{87} -7.74736 q^{89} -2.57825 q^{91} +4.91185 q^{93} -7.32427 q^{95} -8.44376 q^{97} -9.27427 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{3} + 6 q^{5} - 6 q^{7} + 4 q^{9} - 2 q^{11} + 4 q^{13} - 2 q^{15} - 6 q^{17} - 10 q^{19} + 2 q^{21} - 4 q^{23} + 4 q^{25} - 8 q^{27} + 14 q^{29} - 8 q^{31} - 8 q^{33} - 6 q^{35} + 4 q^{37} - 14 q^{39}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.39573 1.38318 0.691589 0.722291i \(-0.256911\pi\)
0.691589 + 0.722291i \(0.256911\pi\)
\(4\) 0 0
\(5\) 1.16130 0.519347 0.259674 0.965696i \(-0.416385\pi\)
0.259674 + 0.965696i \(0.416385\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 2.73954 0.913182
\(10\) 0 0
\(11\) −3.38533 −1.02072 −0.510358 0.859962i \(-0.670487\pi\)
−0.510358 + 0.859962i \(0.670487\pi\)
\(12\) 0 0
\(13\) 2.57825 0.715078 0.357539 0.933898i \(-0.383616\pi\)
0.357539 + 0.933898i \(0.383616\pi\)
\(14\) 0 0
\(15\) 2.78216 0.718350
\(16\) 0 0
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) −6.30698 −1.44692 −0.723460 0.690366i \(-0.757449\pi\)
−0.723460 + 0.690366i \(0.757449\pi\)
\(20\) 0 0
\(21\) −2.39573 −0.522792
\(22\) 0 0
\(23\) −8.41214 −1.75405 −0.877026 0.480443i \(-0.840476\pi\)
−0.877026 + 0.480443i \(0.840476\pi\)
\(24\) 0 0
\(25\) −3.65139 −0.730278
\(26\) 0 0
\(27\) −0.623981 −0.120085
\(28\) 0 0
\(29\) 5.38533 1.00003 0.500015 0.866017i \(-0.333328\pi\)
0.500015 + 0.866017i \(0.333328\pi\)
\(30\) 0 0
\(31\) 2.05025 0.368235 0.184118 0.982904i \(-0.441057\pi\)
0.184118 + 0.982904i \(0.441057\pi\)
\(32\) 0 0
\(33\) −8.11035 −1.41183
\(34\) 0 0
\(35\) −1.16130 −0.196295
\(36\) 0 0
\(37\) −3.25564 −0.535224 −0.267612 0.963527i \(-0.586235\pi\)
−0.267612 + 0.963527i \(0.586235\pi\)
\(38\) 0 0
\(39\) 6.17680 0.989080
\(40\) 0 0
\(41\) 7.90703 1.23487 0.617436 0.786621i \(-0.288172\pi\)
0.617436 + 0.786621i \(0.288172\pi\)
\(42\) 0 0
\(43\) −8.38012 −1.27796 −0.638978 0.769225i \(-0.720643\pi\)
−0.638978 + 0.769225i \(0.720643\pi\)
\(44\) 0 0
\(45\) 3.18142 0.474258
\(46\) 0 0
\(47\) 4.48077 0.653587 0.326794 0.945096i \(-0.394032\pi\)
0.326794 + 0.945096i \(0.394032\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −2.39573 −0.335470
\(52\) 0 0
\(53\) 1.33508 0.183388 0.0916940 0.995787i \(-0.470772\pi\)
0.0916940 + 0.995787i \(0.470772\pi\)
\(54\) 0 0
\(55\) −3.93137 −0.530106
\(56\) 0 0
\(57\) −15.1098 −2.00135
\(58\) 0 0
\(59\) −11.6695 −1.51924 −0.759618 0.650369i \(-0.774614\pi\)
−0.759618 + 0.650369i \(0.774614\pi\)
\(60\) 0 0
\(61\) 3.78325 0.484395 0.242198 0.970227i \(-0.422132\pi\)
0.242198 + 0.970227i \(0.422132\pi\)
\(62\) 0 0
\(63\) −2.73954 −0.345150
\(64\) 0 0
\(65\) 2.99411 0.371374
\(66\) 0 0
\(67\) 3.57716 0.437019 0.218510 0.975835i \(-0.429880\pi\)
0.218510 + 0.975835i \(0.429880\pi\)
\(68\) 0 0
\(69\) −20.1533 −2.42617
\(70\) 0 0
\(71\) −10.4329 −1.23816 −0.619081 0.785327i \(-0.712495\pi\)
−0.619081 + 0.785327i \(0.712495\pi\)
\(72\) 0 0
\(73\) 1.13637 0.133002 0.0665011 0.997786i \(-0.478816\pi\)
0.0665011 + 0.997786i \(0.478816\pi\)
\(74\) 0 0
\(75\) −8.74777 −1.01010
\(76\) 0 0
\(77\) 3.38533 0.385794
\(78\) 0 0
\(79\) 13.1994 1.48505 0.742524 0.669819i \(-0.233628\pi\)
0.742524 + 0.669819i \(0.233628\pi\)
\(80\) 0 0
\(81\) −9.71353 −1.07928
\(82\) 0 0
\(83\) −17.5584 −1.92729 −0.963643 0.267194i \(-0.913904\pi\)
−0.963643 + 0.267194i \(0.913904\pi\)
\(84\) 0 0
\(85\) −1.16130 −0.125960
\(86\) 0 0
\(87\) 12.9018 1.38322
\(88\) 0 0
\(89\) −7.74736 −0.821218 −0.410609 0.911812i \(-0.634684\pi\)
−0.410609 + 0.911812i \(0.634684\pi\)
\(90\) 0 0
\(91\) −2.57825 −0.270274
\(92\) 0 0
\(93\) 4.91185 0.509335
\(94\) 0 0
\(95\) −7.32427 −0.751454
\(96\) 0 0
\(97\) −8.44376 −0.857334 −0.428667 0.903463i \(-0.641017\pi\)
−0.428667 + 0.903463i \(0.641017\pi\)
\(98\) 0 0
\(99\) −9.27427 −0.932099
\(100\) 0 0
\(101\) −3.59855 −0.358069 −0.179035 0.983843i \(-0.557297\pi\)
−0.179035 + 0.983843i \(0.557297\pi\)
\(102\) 0 0
\(103\) −3.44207 −0.339157 −0.169579 0.985517i \(-0.554241\pi\)
−0.169579 + 0.985517i \(0.554241\pi\)
\(104\) 0 0
\(105\) −2.78216 −0.271511
\(106\) 0 0
\(107\) 15.6200 1.51004 0.755019 0.655703i \(-0.227627\pi\)
0.755019 + 0.655703i \(0.227627\pi\)
\(108\) 0 0
\(109\) −13.4271 −1.28608 −0.643039 0.765833i \(-0.722327\pi\)
−0.643039 + 0.765833i \(0.722327\pi\)
\(110\) 0 0
\(111\) −7.79965 −0.740310
\(112\) 0 0
\(113\) −5.15420 −0.484867 −0.242433 0.970168i \(-0.577946\pi\)
−0.242433 + 0.970168i \(0.577946\pi\)
\(114\) 0 0
\(115\) −9.76898 −0.910962
\(116\) 0 0
\(117\) 7.06323 0.652996
\(118\) 0 0
\(119\) 1.00000 0.0916698
\(120\) 0 0
\(121\) 0.460465 0.0418605
\(122\) 0 0
\(123\) 18.9432 1.70805
\(124\) 0 0
\(125\) −10.0468 −0.898615
\(126\) 0 0
\(127\) −16.2555 −1.44245 −0.721223 0.692703i \(-0.756420\pi\)
−0.721223 + 0.692703i \(0.756420\pi\)
\(128\) 0 0
\(129\) −20.0765 −1.76764
\(130\) 0 0
\(131\) 8.84678 0.772947 0.386473 0.922301i \(-0.373693\pi\)
0.386473 + 0.922301i \(0.373693\pi\)
\(132\) 0 0
\(133\) 6.30698 0.546884
\(134\) 0 0
\(135\) −0.724627 −0.0623660
\(136\) 0 0
\(137\) −12.8215 −1.09541 −0.547706 0.836671i \(-0.684499\pi\)
−0.547706 + 0.836671i \(0.684499\pi\)
\(138\) 0 0
\(139\) 6.94688 0.589226 0.294613 0.955617i \(-0.404809\pi\)
0.294613 + 0.955617i \(0.404809\pi\)
\(140\) 0 0
\(141\) 10.7347 0.904027
\(142\) 0 0
\(143\) −8.72823 −0.729891
\(144\) 0 0
\(145\) 6.25396 0.519363
\(146\) 0 0
\(147\) 2.39573 0.197597
\(148\) 0 0
\(149\) 15.9355 1.30549 0.652744 0.757578i \(-0.273618\pi\)
0.652744 + 0.757578i \(0.273618\pi\)
\(150\) 0 0
\(151\) −5.31591 −0.432603 −0.216301 0.976327i \(-0.569399\pi\)
−0.216301 + 0.976327i \(0.569399\pi\)
\(152\) 0 0
\(153\) −2.73954 −0.221479
\(154\) 0 0
\(155\) 2.38094 0.191242
\(156\) 0 0
\(157\) −1.66382 −0.132788 −0.0663938 0.997793i \(-0.521149\pi\)
−0.0663938 + 0.997793i \(0.521149\pi\)
\(158\) 0 0
\(159\) 3.19851 0.253658
\(160\) 0 0
\(161\) 8.41214 0.662969
\(162\) 0 0
\(163\) 19.9624 1.56357 0.781787 0.623545i \(-0.214308\pi\)
0.781787 + 0.623545i \(0.214308\pi\)
\(164\) 0 0
\(165\) −9.41852 −0.733231
\(166\) 0 0
\(167\) 0.251143 0.0194340 0.00971701 0.999953i \(-0.496907\pi\)
0.00971701 + 0.999953i \(0.496907\pi\)
\(168\) 0 0
\(169\) −6.35263 −0.488664
\(170\) 0 0
\(171\) −17.2783 −1.32130
\(172\) 0 0
\(173\) 14.1833 1.07834 0.539170 0.842197i \(-0.318738\pi\)
0.539170 + 0.842197i \(0.318738\pi\)
\(174\) 0 0
\(175\) 3.65139 0.276019
\(176\) 0 0
\(177\) −27.9570 −2.10137
\(178\) 0 0
\(179\) −2.76596 −0.206737 −0.103369 0.994643i \(-0.532962\pi\)
−0.103369 + 0.994643i \(0.532962\pi\)
\(180\) 0 0
\(181\) 8.53340 0.634283 0.317141 0.948378i \(-0.397277\pi\)
0.317141 + 0.948378i \(0.397277\pi\)
\(182\) 0 0
\(183\) 9.06366 0.670005
\(184\) 0 0
\(185\) −3.78076 −0.277967
\(186\) 0 0
\(187\) 3.38533 0.247560
\(188\) 0 0
\(189\) 0.623981 0.0453880
\(190\) 0 0
\(191\) 17.8415 1.29096 0.645482 0.763776i \(-0.276657\pi\)
0.645482 + 0.763776i \(0.276657\pi\)
\(192\) 0 0
\(193\) 24.1012 1.73484 0.867422 0.497573i \(-0.165775\pi\)
0.867422 + 0.497573i \(0.165775\pi\)
\(194\) 0 0
\(195\) 7.17309 0.513676
\(196\) 0 0
\(197\) −0.686765 −0.0489300 −0.0244650 0.999701i \(-0.507788\pi\)
−0.0244650 + 0.999701i \(0.507788\pi\)
\(198\) 0 0
\(199\) −6.64718 −0.471206 −0.235603 0.971849i \(-0.575707\pi\)
−0.235603 + 0.971849i \(0.575707\pi\)
\(200\) 0 0
\(201\) 8.56992 0.604476
\(202\) 0 0
\(203\) −5.38533 −0.377976
\(204\) 0 0
\(205\) 9.18241 0.641327
\(206\) 0 0
\(207\) −23.0454 −1.60177
\(208\) 0 0
\(209\) 21.3512 1.47689
\(210\) 0 0
\(211\) −10.1514 −0.698854 −0.349427 0.936964i \(-0.613624\pi\)
−0.349427 + 0.936964i \(0.613624\pi\)
\(212\) 0 0
\(213\) −24.9946 −1.71260
\(214\) 0 0
\(215\) −9.73180 −0.663703
\(216\) 0 0
\(217\) −2.05025 −0.139180
\(218\) 0 0
\(219\) 2.72244 0.183966
\(220\) 0 0
\(221\) −2.57825 −0.173432
\(222\) 0 0
\(223\) 4.11035 0.275250 0.137625 0.990484i \(-0.456053\pi\)
0.137625 + 0.990484i \(0.456053\pi\)
\(224\) 0 0
\(225\) −10.0032 −0.666877
\(226\) 0 0
\(227\) 20.3981 1.35387 0.676935 0.736043i \(-0.263308\pi\)
0.676935 + 0.736043i \(0.263308\pi\)
\(228\) 0 0
\(229\) −11.1147 −0.734478 −0.367239 0.930127i \(-0.619697\pi\)
−0.367239 + 0.930127i \(0.619697\pi\)
\(230\) 0 0
\(231\) 8.11035 0.533622
\(232\) 0 0
\(233\) −17.1600 −1.12419 −0.562094 0.827073i \(-0.690004\pi\)
−0.562094 + 0.827073i \(0.690004\pi\)
\(234\) 0 0
\(235\) 5.20350 0.339439
\(236\) 0 0
\(237\) 31.6223 2.05409
\(238\) 0 0
\(239\) −15.8180 −1.02318 −0.511590 0.859230i \(-0.670943\pi\)
−0.511590 + 0.859230i \(0.670943\pi\)
\(240\) 0 0
\(241\) −2.02068 −0.130163 −0.0650816 0.997880i \(-0.520731\pi\)
−0.0650816 + 0.997880i \(0.520731\pi\)
\(242\) 0 0
\(243\) −21.3991 −1.37275
\(244\) 0 0
\(245\) 1.16130 0.0741925
\(246\) 0 0
\(247\) −16.2610 −1.03466
\(248\) 0 0
\(249\) −42.0653 −2.66578
\(250\) 0 0
\(251\) −25.5890 −1.61516 −0.807580 0.589758i \(-0.799223\pi\)
−0.807580 + 0.589758i \(0.799223\pi\)
\(252\) 0 0
\(253\) 28.4779 1.79039
\(254\) 0 0
\(255\) −2.78216 −0.174225
\(256\) 0 0
\(257\) −9.46517 −0.590421 −0.295211 0.955432i \(-0.595390\pi\)
−0.295211 + 0.955432i \(0.595390\pi\)
\(258\) 0 0
\(259\) 3.25564 0.202296
\(260\) 0 0
\(261\) 14.7534 0.913210
\(262\) 0 0
\(263\) 16.4809 1.01625 0.508127 0.861282i \(-0.330338\pi\)
0.508127 + 0.861282i \(0.330338\pi\)
\(264\) 0 0
\(265\) 1.55043 0.0952420
\(266\) 0 0
\(267\) −18.5606 −1.13589
\(268\) 0 0
\(269\) 20.6355 1.25817 0.629083 0.777338i \(-0.283431\pi\)
0.629083 + 0.777338i \(0.283431\pi\)
\(270\) 0 0
\(271\) −25.2867 −1.53605 −0.768027 0.640417i \(-0.778762\pi\)
−0.768027 + 0.640417i \(0.778762\pi\)
\(272\) 0 0
\(273\) −6.17680 −0.373837
\(274\) 0 0
\(275\) 12.3612 0.745407
\(276\) 0 0
\(277\) −10.1964 −0.612640 −0.306320 0.951929i \(-0.599098\pi\)
−0.306320 + 0.951929i \(0.599098\pi\)
\(278\) 0 0
\(279\) 5.61674 0.336266
\(280\) 0 0
\(281\) −27.3535 −1.63177 −0.815886 0.578212i \(-0.803750\pi\)
−0.815886 + 0.578212i \(0.803750\pi\)
\(282\) 0 0
\(283\) 16.1874 0.962241 0.481120 0.876655i \(-0.340230\pi\)
0.481120 + 0.876655i \(0.340230\pi\)
\(284\) 0 0
\(285\) −17.5470 −1.03940
\(286\) 0 0
\(287\) −7.90703 −0.466737
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) −20.2290 −1.18585
\(292\) 0 0
\(293\) −14.8361 −0.866734 −0.433367 0.901218i \(-0.642675\pi\)
−0.433367 + 0.901218i \(0.642675\pi\)
\(294\) 0 0
\(295\) −13.5517 −0.789011
\(296\) 0 0
\(297\) 2.11238 0.122573
\(298\) 0 0
\(299\) −21.6886 −1.25428
\(300\) 0 0
\(301\) 8.38012 0.483022
\(302\) 0 0
\(303\) −8.62117 −0.495274
\(304\) 0 0
\(305\) 4.39347 0.251569
\(306\) 0 0
\(307\) 17.0617 0.973761 0.486880 0.873469i \(-0.338135\pi\)
0.486880 + 0.873469i \(0.338135\pi\)
\(308\) 0 0
\(309\) −8.24628 −0.469115
\(310\) 0 0
\(311\) 24.8146 1.40711 0.703554 0.710641i \(-0.251595\pi\)
0.703554 + 0.710641i \(0.251595\pi\)
\(312\) 0 0
\(313\) −20.1543 −1.13919 −0.569595 0.821925i \(-0.692900\pi\)
−0.569595 + 0.821925i \(0.692900\pi\)
\(314\) 0 0
\(315\) −3.18142 −0.179253
\(316\) 0 0
\(317\) 4.01313 0.225400 0.112700 0.993629i \(-0.464050\pi\)
0.112700 + 0.993629i \(0.464050\pi\)
\(318\) 0 0
\(319\) −18.2311 −1.02075
\(320\) 0 0
\(321\) 37.4213 2.08865
\(322\) 0 0
\(323\) 6.30698 0.350930
\(324\) 0 0
\(325\) −9.41420 −0.522206
\(326\) 0 0
\(327\) −32.1677 −1.77888
\(328\) 0 0
\(329\) −4.48077 −0.247033
\(330\) 0 0
\(331\) 33.0083 1.81430 0.907151 0.420805i \(-0.138252\pi\)
0.907151 + 0.420805i \(0.138252\pi\)
\(332\) 0 0
\(333\) −8.91898 −0.488757
\(334\) 0 0
\(335\) 4.15414 0.226965
\(336\) 0 0
\(337\) 21.9800 1.19732 0.598662 0.801002i \(-0.295699\pi\)
0.598662 + 0.801002i \(0.295699\pi\)
\(338\) 0 0
\(339\) −12.3481 −0.670657
\(340\) 0 0
\(341\) −6.94076 −0.375863
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) −23.4039 −1.26002
\(346\) 0 0
\(347\) 34.7488 1.86541 0.932707 0.360635i \(-0.117440\pi\)
0.932707 + 0.360635i \(0.117440\pi\)
\(348\) 0 0
\(349\) −13.4233 −0.718535 −0.359267 0.933235i \(-0.616973\pi\)
−0.359267 + 0.933235i \(0.616973\pi\)
\(350\) 0 0
\(351\) −1.60878 −0.0858703
\(352\) 0 0
\(353\) 18.0159 0.958887 0.479443 0.877573i \(-0.340839\pi\)
0.479443 + 0.877573i \(0.340839\pi\)
\(354\) 0 0
\(355\) −12.1157 −0.643037
\(356\) 0 0
\(357\) 2.39573 0.126796
\(358\) 0 0
\(359\) 20.0356 1.05744 0.528720 0.848796i \(-0.322672\pi\)
0.528720 + 0.848796i \(0.322672\pi\)
\(360\) 0 0
\(361\) 20.7780 1.09358
\(362\) 0 0
\(363\) 1.10315 0.0579005
\(364\) 0 0
\(365\) 1.31966 0.0690743
\(366\) 0 0
\(367\) −33.6842 −1.75830 −0.879151 0.476543i \(-0.841890\pi\)
−0.879151 + 0.476543i \(0.841890\pi\)
\(368\) 0 0
\(369\) 21.6617 1.12766
\(370\) 0 0
\(371\) −1.33508 −0.0693141
\(372\) 0 0
\(373\) −3.98420 −0.206294 −0.103147 0.994666i \(-0.532891\pi\)
−0.103147 + 0.994666i \(0.532891\pi\)
\(374\) 0 0
\(375\) −24.0695 −1.24295
\(376\) 0 0
\(377\) 13.8847 0.715100
\(378\) 0 0
\(379\) −24.3603 −1.25131 −0.625653 0.780101i \(-0.715167\pi\)
−0.625653 + 0.780101i \(0.715167\pi\)
\(380\) 0 0
\(381\) −38.9439 −1.99516
\(382\) 0 0
\(383\) 6.21921 0.317787 0.158893 0.987296i \(-0.449207\pi\)
0.158893 + 0.987296i \(0.449207\pi\)
\(384\) 0 0
\(385\) 3.93137 0.200361
\(386\) 0 0
\(387\) −22.9577 −1.16701
\(388\) 0 0
\(389\) 37.8774 1.92046 0.960230 0.279212i \(-0.0900731\pi\)
0.960230 + 0.279212i \(0.0900731\pi\)
\(390\) 0 0
\(391\) 8.41214 0.425420
\(392\) 0 0
\(393\) 21.1945 1.06912
\(394\) 0 0
\(395\) 15.3284 0.771256
\(396\) 0 0
\(397\) 18.3294 0.919924 0.459962 0.887939i \(-0.347863\pi\)
0.459962 + 0.887939i \(0.347863\pi\)
\(398\) 0 0
\(399\) 15.1098 0.756439
\(400\) 0 0
\(401\) −11.6643 −0.582486 −0.291243 0.956649i \(-0.594069\pi\)
−0.291243 + 0.956649i \(0.594069\pi\)
\(402\) 0 0
\(403\) 5.28605 0.263317
\(404\) 0 0
\(405\) −11.2803 −0.560522
\(406\) 0 0
\(407\) 11.0214 0.546312
\(408\) 0 0
\(409\) −0.332982 −0.0164649 −0.00823246 0.999966i \(-0.502621\pi\)
−0.00823246 + 0.999966i \(0.502621\pi\)
\(410\) 0 0
\(411\) −30.7168 −1.51515
\(412\) 0 0
\(413\) 11.6695 0.574217
\(414\) 0 0
\(415\) −20.3905 −1.00093
\(416\) 0 0
\(417\) 16.6429 0.815005
\(418\) 0 0
\(419\) −27.1772 −1.32769 −0.663846 0.747869i \(-0.731077\pi\)
−0.663846 + 0.747869i \(0.731077\pi\)
\(420\) 0 0
\(421\) 2.40440 0.117183 0.0585916 0.998282i \(-0.481339\pi\)
0.0585916 + 0.998282i \(0.481339\pi\)
\(422\) 0 0
\(423\) 12.2753 0.596844
\(424\) 0 0
\(425\) 3.65139 0.177119
\(426\) 0 0
\(427\) −3.78325 −0.183084
\(428\) 0 0
\(429\) −20.9105 −1.00957
\(430\) 0 0
\(431\) −39.8697 −1.92046 −0.960228 0.279216i \(-0.909925\pi\)
−0.960228 + 0.279216i \(0.909925\pi\)
\(432\) 0 0
\(433\) 1.06816 0.0513324 0.0256662 0.999671i \(-0.491829\pi\)
0.0256662 + 0.999671i \(0.491829\pi\)
\(434\) 0 0
\(435\) 14.9828 0.718372
\(436\) 0 0
\(437\) 53.0552 2.53797
\(438\) 0 0
\(439\) −10.9720 −0.523663 −0.261831 0.965114i \(-0.584326\pi\)
−0.261831 + 0.965114i \(0.584326\pi\)
\(440\) 0 0
\(441\) 2.73954 0.130455
\(442\) 0 0
\(443\) 6.81228 0.323661 0.161831 0.986819i \(-0.448260\pi\)
0.161831 + 0.986819i \(0.448260\pi\)
\(444\) 0 0
\(445\) −8.99697 −0.426497
\(446\) 0 0
\(447\) 38.1773 1.80572
\(448\) 0 0
\(449\) 16.4833 0.777895 0.388947 0.921260i \(-0.372839\pi\)
0.388947 + 0.921260i \(0.372839\pi\)
\(450\) 0 0
\(451\) −26.7679 −1.26045
\(452\) 0 0
\(453\) −12.7355 −0.598367
\(454\) 0 0
\(455\) −2.99411 −0.140366
\(456\) 0 0
\(457\) −6.04469 −0.282758 −0.141379 0.989956i \(-0.545154\pi\)
−0.141379 + 0.989956i \(0.545154\pi\)
\(458\) 0 0
\(459\) 0.623981 0.0291250
\(460\) 0 0
\(461\) 5.69584 0.265282 0.132641 0.991164i \(-0.457654\pi\)
0.132641 + 0.991164i \(0.457654\pi\)
\(462\) 0 0
\(463\) 20.8144 0.967328 0.483664 0.875254i \(-0.339306\pi\)
0.483664 + 0.875254i \(0.339306\pi\)
\(464\) 0 0
\(465\) 5.70411 0.264522
\(466\) 0 0
\(467\) 28.1763 1.30384 0.651922 0.758286i \(-0.273963\pi\)
0.651922 + 0.758286i \(0.273963\pi\)
\(468\) 0 0
\(469\) −3.57716 −0.165178
\(470\) 0 0
\(471\) −3.98608 −0.183669
\(472\) 0 0
\(473\) 28.3695 1.30443
\(474\) 0 0
\(475\) 23.0293 1.05665
\(476\) 0 0
\(477\) 3.65752 0.167467
\(478\) 0 0
\(479\) −23.0546 −1.05339 −0.526696 0.850054i \(-0.676569\pi\)
−0.526696 + 0.850054i \(0.676569\pi\)
\(480\) 0 0
\(481\) −8.39385 −0.382727
\(482\) 0 0
\(483\) 20.1533 0.917005
\(484\) 0 0
\(485\) −9.80571 −0.445254
\(486\) 0 0
\(487\) −10.8207 −0.490331 −0.245166 0.969481i \(-0.578842\pi\)
−0.245166 + 0.969481i \(0.578842\pi\)
\(488\) 0 0
\(489\) 47.8246 2.16270
\(490\) 0 0
\(491\) −23.5001 −1.06055 −0.530273 0.847827i \(-0.677911\pi\)
−0.530273 + 0.847827i \(0.677911\pi\)
\(492\) 0 0
\(493\) −5.38533 −0.242543
\(494\) 0 0
\(495\) −10.7702 −0.484083
\(496\) 0 0
\(497\) 10.4329 0.467982
\(498\) 0 0
\(499\) −26.6838 −1.19453 −0.597265 0.802044i \(-0.703746\pi\)
−0.597265 + 0.802044i \(0.703746\pi\)
\(500\) 0 0
\(501\) 0.601672 0.0268807
\(502\) 0 0
\(503\) −24.8091 −1.10618 −0.553091 0.833121i \(-0.686552\pi\)
−0.553091 + 0.833121i \(0.686552\pi\)
\(504\) 0 0
\(505\) −4.17898 −0.185962
\(506\) 0 0
\(507\) −15.2192 −0.675909
\(508\) 0 0
\(509\) 40.6166 1.80030 0.900151 0.435579i \(-0.143456\pi\)
0.900151 + 0.435579i \(0.143456\pi\)
\(510\) 0 0
\(511\) −1.13637 −0.0502701
\(512\) 0 0
\(513\) 3.93544 0.173754
\(514\) 0 0
\(515\) −3.99726 −0.176140
\(516\) 0 0
\(517\) −15.1689 −0.667127
\(518\) 0 0
\(519\) 33.9795 1.49154
\(520\) 0 0
\(521\) −22.1578 −0.970749 −0.485375 0.874306i \(-0.661317\pi\)
−0.485375 + 0.874306i \(0.661317\pi\)
\(522\) 0 0
\(523\) −33.3672 −1.45905 −0.729523 0.683956i \(-0.760258\pi\)
−0.729523 + 0.683956i \(0.760258\pi\)
\(524\) 0 0
\(525\) 8.74777 0.381784
\(526\) 0 0
\(527\) −2.05025 −0.0893101
\(528\) 0 0
\(529\) 47.7641 2.07670
\(530\) 0 0
\(531\) −31.9690 −1.38734
\(532\) 0 0
\(533\) 20.3863 0.883029
\(534\) 0 0
\(535\) 18.1394 0.784235
\(536\) 0 0
\(537\) −6.62650 −0.285955
\(538\) 0 0
\(539\) −3.38533 −0.145817
\(540\) 0 0
\(541\) 45.8423 1.97092 0.985458 0.169919i \(-0.0543507\pi\)
0.985458 + 0.169919i \(0.0543507\pi\)
\(542\) 0 0
\(543\) 20.4438 0.877326
\(544\) 0 0
\(545\) −15.5928 −0.667922
\(546\) 0 0
\(547\) −21.6713 −0.926597 −0.463298 0.886202i \(-0.653334\pi\)
−0.463298 + 0.886202i \(0.653334\pi\)
\(548\) 0 0
\(549\) 10.3644 0.442341
\(550\) 0 0
\(551\) −33.9652 −1.44696
\(552\) 0 0
\(553\) −13.1994 −0.561295
\(554\) 0 0
\(555\) −9.05771 −0.384478
\(556\) 0 0
\(557\) −37.8659 −1.60443 −0.802214 0.597036i \(-0.796345\pi\)
−0.802214 + 0.597036i \(0.796345\pi\)
\(558\) 0 0
\(559\) −21.6060 −0.913838
\(560\) 0 0
\(561\) 8.11035 0.342419
\(562\) 0 0
\(563\) 9.58873 0.404117 0.202058 0.979373i \(-0.435237\pi\)
0.202058 + 0.979373i \(0.435237\pi\)
\(564\) 0 0
\(565\) −5.98556 −0.251814
\(566\) 0 0
\(567\) 9.71353 0.407930
\(568\) 0 0
\(569\) 23.6665 0.992153 0.496077 0.868279i \(-0.334774\pi\)
0.496077 + 0.868279i \(0.334774\pi\)
\(570\) 0 0
\(571\) 5.53501 0.231633 0.115816 0.993271i \(-0.463052\pi\)
0.115816 + 0.993271i \(0.463052\pi\)
\(572\) 0 0
\(573\) 42.7434 1.78563
\(574\) 0 0
\(575\) 30.7160 1.28095
\(576\) 0 0
\(577\) 37.1491 1.54654 0.773268 0.634079i \(-0.218621\pi\)
0.773268 + 0.634079i \(0.218621\pi\)
\(578\) 0 0
\(579\) 57.7401 2.39960
\(580\) 0 0
\(581\) 17.5584 0.728446
\(582\) 0 0
\(583\) −4.51970 −0.187187
\(584\) 0 0
\(585\) 8.20250 0.339132
\(586\) 0 0
\(587\) −21.7498 −0.897712 −0.448856 0.893604i \(-0.648168\pi\)
−0.448856 + 0.893604i \(0.648168\pi\)
\(588\) 0 0
\(589\) −12.9309 −0.532807
\(590\) 0 0
\(591\) −1.64531 −0.0676789
\(592\) 0 0
\(593\) −37.2945 −1.53150 −0.765750 0.643138i \(-0.777632\pi\)
−0.765750 + 0.643138i \(0.777632\pi\)
\(594\) 0 0
\(595\) 1.16130 0.0476085
\(596\) 0 0
\(597\) −15.9249 −0.651762
\(598\) 0 0
\(599\) 36.8856 1.50711 0.753553 0.657387i \(-0.228338\pi\)
0.753553 + 0.657387i \(0.228338\pi\)
\(600\) 0 0
\(601\) −3.86531 −0.157669 −0.0788346 0.996888i \(-0.525120\pi\)
−0.0788346 + 0.996888i \(0.525120\pi\)
\(602\) 0 0
\(603\) 9.79978 0.399078
\(604\) 0 0
\(605\) 0.534736 0.0217401
\(606\) 0 0
\(607\) −6.04946 −0.245540 −0.122770 0.992435i \(-0.539178\pi\)
−0.122770 + 0.992435i \(0.539178\pi\)
\(608\) 0 0
\(609\) −12.9018 −0.522808
\(610\) 0 0
\(611\) 11.5525 0.467366
\(612\) 0 0
\(613\) −9.26251 −0.374109 −0.187055 0.982350i \(-0.559894\pi\)
−0.187055 + 0.982350i \(0.559894\pi\)
\(614\) 0 0
\(615\) 21.9986 0.887070
\(616\) 0 0
\(617\) 10.9184 0.439558 0.219779 0.975550i \(-0.429466\pi\)
0.219779 + 0.975550i \(0.429466\pi\)
\(618\) 0 0
\(619\) 1.96825 0.0791108 0.0395554 0.999217i \(-0.487406\pi\)
0.0395554 + 0.999217i \(0.487406\pi\)
\(620\) 0 0
\(621\) 5.24902 0.210636
\(622\) 0 0
\(623\) 7.74736 0.310391
\(624\) 0 0
\(625\) 6.58962 0.263585
\(626\) 0 0
\(627\) 51.1518 2.04281
\(628\) 0 0
\(629\) 3.25564 0.129811
\(630\) 0 0
\(631\) 3.34802 0.133283 0.0666414 0.997777i \(-0.478772\pi\)
0.0666414 + 0.997777i \(0.478772\pi\)
\(632\) 0 0
\(633\) −24.3202 −0.966640
\(634\) 0 0
\(635\) −18.8775 −0.749130
\(636\) 0 0
\(637\) 2.57825 0.102154
\(638\) 0 0
\(639\) −28.5815 −1.13067
\(640\) 0 0
\(641\) −8.23207 −0.325147 −0.162574 0.986696i \(-0.551980\pi\)
−0.162574 + 0.986696i \(0.551980\pi\)
\(642\) 0 0
\(643\) −5.24865 −0.206986 −0.103493 0.994630i \(-0.533002\pi\)
−0.103493 + 0.994630i \(0.533002\pi\)
\(644\) 0 0
\(645\) −23.3148 −0.918020
\(646\) 0 0
\(647\) −17.9286 −0.704846 −0.352423 0.935841i \(-0.614642\pi\)
−0.352423 + 0.935841i \(0.614642\pi\)
\(648\) 0 0
\(649\) 39.5050 1.55071
\(650\) 0 0
\(651\) −4.91185 −0.192510
\(652\) 0 0
\(653\) 10.2360 0.400565 0.200282 0.979738i \(-0.435814\pi\)
0.200282 + 0.979738i \(0.435814\pi\)
\(654\) 0 0
\(655\) 10.2737 0.401428
\(656\) 0 0
\(657\) 3.11314 0.121455
\(658\) 0 0
\(659\) 36.9011 1.43746 0.718732 0.695287i \(-0.244723\pi\)
0.718732 + 0.695287i \(0.244723\pi\)
\(660\) 0 0
\(661\) −42.7374 −1.66229 −0.831146 0.556055i \(-0.812315\pi\)
−0.831146 + 0.556055i \(0.812315\pi\)
\(662\) 0 0
\(663\) −6.17680 −0.239887
\(664\) 0 0
\(665\) 7.32427 0.284023
\(666\) 0 0
\(667\) −45.3022 −1.75411
\(668\) 0 0
\(669\) 9.84732 0.380719
\(670\) 0 0
\(671\) −12.8075 −0.494430
\(672\) 0 0
\(673\) −28.3933 −1.09448 −0.547241 0.836975i \(-0.684322\pi\)
−0.547241 + 0.836975i \(0.684322\pi\)
\(674\) 0 0
\(675\) 2.27840 0.0876957
\(676\) 0 0
\(677\) 42.9223 1.64964 0.824818 0.565398i \(-0.191277\pi\)
0.824818 + 0.565398i \(0.191277\pi\)
\(678\) 0 0
\(679\) 8.44376 0.324042
\(680\) 0 0
\(681\) 48.8684 1.87264
\(682\) 0 0
\(683\) 13.2145 0.505640 0.252820 0.967513i \(-0.418642\pi\)
0.252820 + 0.967513i \(0.418642\pi\)
\(684\) 0 0
\(685\) −14.8895 −0.568899
\(686\) 0 0
\(687\) −26.6278 −1.01591
\(688\) 0 0
\(689\) 3.44218 0.131137
\(690\) 0 0
\(691\) −13.5646 −0.516022 −0.258011 0.966142i \(-0.583067\pi\)
−0.258011 + 0.966142i \(0.583067\pi\)
\(692\) 0 0
\(693\) 9.27427 0.352300
\(694\) 0 0
\(695\) 8.06738 0.306013
\(696\) 0 0
\(697\) −7.90703 −0.299500
\(698\) 0 0
\(699\) −41.1108 −1.55495
\(700\) 0 0
\(701\) −18.3008 −0.691212 −0.345606 0.938380i \(-0.612327\pi\)
−0.345606 + 0.938380i \(0.612327\pi\)
\(702\) 0 0
\(703\) 20.5333 0.774427
\(704\) 0 0
\(705\) 12.4662 0.469504
\(706\) 0 0
\(707\) 3.59855 0.135337
\(708\) 0 0
\(709\) −18.8780 −0.708980 −0.354490 0.935060i \(-0.615346\pi\)
−0.354490 + 0.935060i \(0.615346\pi\)
\(710\) 0 0
\(711\) 36.1603 1.35612
\(712\) 0 0
\(713\) −17.2470 −0.645904
\(714\) 0 0
\(715\) −10.1361 −0.379067
\(716\) 0 0
\(717\) −37.8957 −1.41524
\(718\) 0 0
\(719\) −38.8925 −1.45044 −0.725222 0.688515i \(-0.758263\pi\)
−0.725222 + 0.688515i \(0.758263\pi\)
\(720\) 0 0
\(721\) 3.44207 0.128189
\(722\) 0 0
\(723\) −4.84100 −0.180039
\(724\) 0 0
\(725\) −19.6640 −0.730301
\(726\) 0 0
\(727\) 33.3780 1.23792 0.618961 0.785421i \(-0.287554\pi\)
0.618961 + 0.785421i \(0.287554\pi\)
\(728\) 0 0
\(729\) −22.1260 −0.819480
\(730\) 0 0
\(731\) 8.38012 0.309950
\(732\) 0 0
\(733\) 23.0143 0.850053 0.425026 0.905181i \(-0.360265\pi\)
0.425026 + 0.905181i \(0.360265\pi\)
\(734\) 0 0
\(735\) 2.78216 0.102621
\(736\) 0 0
\(737\) −12.1099 −0.446072
\(738\) 0 0
\(739\) 14.9546 0.550116 0.275058 0.961428i \(-0.411303\pi\)
0.275058 + 0.961428i \(0.411303\pi\)
\(740\) 0 0
\(741\) −38.9570 −1.43112
\(742\) 0 0
\(743\) 13.2351 0.485549 0.242774 0.970083i \(-0.421943\pi\)
0.242774 + 0.970083i \(0.421943\pi\)
\(744\) 0 0
\(745\) 18.5059 0.678002
\(746\) 0 0
\(747\) −48.1020 −1.75996
\(748\) 0 0
\(749\) −15.6200 −0.570741
\(750\) 0 0
\(751\) 38.9998 1.42312 0.711562 0.702624i \(-0.247988\pi\)
0.711562 + 0.702624i \(0.247988\pi\)
\(752\) 0 0
\(753\) −61.3043 −2.23405
\(754\) 0 0
\(755\) −6.17335 −0.224671
\(756\) 0 0
\(757\) 10.1665 0.369509 0.184754 0.982785i \(-0.440851\pi\)
0.184754 + 0.982785i \(0.440851\pi\)
\(758\) 0 0
\(759\) 68.2254 2.47643
\(760\) 0 0
\(761\) −34.7369 −1.25921 −0.629606 0.776914i \(-0.716784\pi\)
−0.629606 + 0.776914i \(0.716784\pi\)
\(762\) 0 0
\(763\) 13.4271 0.486092
\(764\) 0 0
\(765\) −3.18142 −0.115025
\(766\) 0 0
\(767\) −30.0868 −1.08637
\(768\) 0 0
\(769\) 11.8679 0.427967 0.213984 0.976837i \(-0.431356\pi\)
0.213984 + 0.976837i \(0.431356\pi\)
\(770\) 0 0
\(771\) −22.6760 −0.816658
\(772\) 0 0
\(773\) −6.55388 −0.235727 −0.117863 0.993030i \(-0.537604\pi\)
−0.117863 + 0.993030i \(0.537604\pi\)
\(774\) 0 0
\(775\) −7.48625 −0.268914
\(776\) 0 0
\(777\) 7.79965 0.279811
\(778\) 0 0
\(779\) −49.8695 −1.78676
\(780\) 0 0
\(781\) 35.3190 1.26381
\(782\) 0 0
\(783\) −3.36035 −0.120089
\(784\) 0 0
\(785\) −1.93219 −0.0689629
\(786\) 0 0
\(787\) −21.4732 −0.765438 −0.382719 0.923865i \(-0.625012\pi\)
−0.382719 + 0.923865i \(0.625012\pi\)
\(788\) 0 0
\(789\) 39.4838 1.40566
\(790\) 0 0
\(791\) 5.15420 0.183262
\(792\) 0 0
\(793\) 9.75416 0.346380
\(794\) 0 0
\(795\) 3.71441 0.131737
\(796\) 0 0
\(797\) −9.66267 −0.342269 −0.171135 0.985248i \(-0.554743\pi\)
−0.171135 + 0.985248i \(0.554743\pi\)
\(798\) 0 0
\(799\) −4.48077 −0.158518
\(800\) 0 0
\(801\) −21.2242 −0.749921
\(802\) 0 0
\(803\) −3.84699 −0.135757
\(804\) 0 0
\(805\) 9.76898 0.344311
\(806\) 0 0
\(807\) 49.4371 1.74027
\(808\) 0 0
\(809\) 17.9528 0.631185 0.315593 0.948895i \(-0.397797\pi\)
0.315593 + 0.948895i \(0.397797\pi\)
\(810\) 0 0
\(811\) −19.2609 −0.676342 −0.338171 0.941085i \(-0.609808\pi\)
−0.338171 + 0.941085i \(0.609808\pi\)
\(812\) 0 0
\(813\) −60.5801 −2.12464
\(814\) 0 0
\(815\) 23.1822 0.812038
\(816\) 0 0
\(817\) 52.8533 1.84910
\(818\) 0 0
\(819\) −7.06323 −0.246809
\(820\) 0 0
\(821\) −15.3663 −0.536286 −0.268143 0.963379i \(-0.586410\pi\)
−0.268143 + 0.963379i \(0.586410\pi\)
\(822\) 0 0
\(823\) −29.8971 −1.04215 −0.521074 0.853511i \(-0.674469\pi\)
−0.521074 + 0.853511i \(0.674469\pi\)
\(824\) 0 0
\(825\) 29.6141 1.03103
\(826\) 0 0
\(827\) 21.6766 0.753769 0.376884 0.926260i \(-0.376995\pi\)
0.376884 + 0.926260i \(0.376995\pi\)
\(828\) 0 0
\(829\) 15.9927 0.555450 0.277725 0.960661i \(-0.410420\pi\)
0.277725 + 0.960661i \(0.410420\pi\)
\(830\) 0 0
\(831\) −24.4278 −0.847391
\(832\) 0 0
\(833\) −1.00000 −0.0346479
\(834\) 0 0
\(835\) 0.291651 0.0100930
\(836\) 0 0
\(837\) −1.27932 −0.0442196
\(838\) 0 0
\(839\) 12.7481 0.440113 0.220056 0.975487i \(-0.429376\pi\)
0.220056 + 0.975487i \(0.429376\pi\)
\(840\) 0 0
\(841\) 0.00178882 6.16836e−5 0
\(842\) 0 0
\(843\) −65.5317 −2.25703
\(844\) 0 0
\(845\) −7.37729 −0.253786
\(846\) 0 0
\(847\) −0.460465 −0.0158218
\(848\) 0 0
\(849\) 38.7807 1.33095
\(850\) 0 0
\(851\) 27.3869 0.938811
\(852\) 0 0
\(853\) −36.3795 −1.24561 −0.622805 0.782377i \(-0.714007\pi\)
−0.622805 + 0.782377i \(0.714007\pi\)
\(854\) 0 0
\(855\) −20.0652 −0.686214
\(856\) 0 0
\(857\) −4.17301 −0.142547 −0.0712737 0.997457i \(-0.522706\pi\)
−0.0712737 + 0.997457i \(0.522706\pi\)
\(858\) 0 0
\(859\) 13.4228 0.457981 0.228991 0.973429i \(-0.426457\pi\)
0.228991 + 0.973429i \(0.426457\pi\)
\(860\) 0 0
\(861\) −18.9432 −0.645581
\(862\) 0 0
\(863\) −11.6858 −0.397790 −0.198895 0.980021i \(-0.563735\pi\)
−0.198895 + 0.980021i \(0.563735\pi\)
\(864\) 0 0
\(865\) 16.4711 0.560033
\(866\) 0 0
\(867\) 2.39573 0.0813634
\(868\) 0 0
\(869\) −44.6843 −1.51581
\(870\) 0 0
\(871\) 9.22280 0.312503
\(872\) 0 0
\(873\) −23.1321 −0.782902
\(874\) 0 0
\(875\) 10.0468 0.339645
\(876\) 0 0
\(877\) 1.47281 0.0497334 0.0248667 0.999691i \(-0.492084\pi\)
0.0248667 + 0.999691i \(0.492084\pi\)
\(878\) 0 0
\(879\) −35.5434 −1.19885
\(880\) 0 0
\(881\) −11.1792 −0.376637 −0.188319 0.982108i \(-0.560304\pi\)
−0.188319 + 0.982108i \(0.560304\pi\)
\(882\) 0 0
\(883\) −30.1071 −1.01318 −0.506592 0.862186i \(-0.669095\pi\)
−0.506592 + 0.862186i \(0.669095\pi\)
\(884\) 0 0
\(885\) −32.4663 −1.09134
\(886\) 0 0
\(887\) −52.6410 −1.76751 −0.883756 0.467948i \(-0.844993\pi\)
−0.883756 + 0.467948i \(0.844993\pi\)
\(888\) 0 0
\(889\) 16.2555 0.545193
\(890\) 0 0
\(891\) 32.8835 1.10164
\(892\) 0 0
\(893\) −28.2601 −0.945689
\(894\) 0 0
\(895\) −3.21210 −0.107369
\(896\) 0 0
\(897\) −51.9601 −1.73490
\(898\) 0 0
\(899\) 11.0413 0.368246
\(900\) 0 0
\(901\) −1.33508 −0.0444781
\(902\) 0 0
\(903\) 20.0765 0.668106
\(904\) 0 0
\(905\) 9.90980 0.329413
\(906\) 0 0
\(907\) 10.3695 0.344313 0.172156 0.985070i \(-0.444927\pi\)
0.172156 + 0.985070i \(0.444927\pi\)
\(908\) 0 0
\(909\) −9.85839 −0.326982
\(910\) 0 0
\(911\) −6.60928 −0.218975 −0.109488 0.993988i \(-0.534921\pi\)
−0.109488 + 0.993988i \(0.534921\pi\)
\(912\) 0 0
\(913\) 59.4410 1.96721
\(914\) 0 0
\(915\) 10.5256 0.347965
\(916\) 0 0
\(917\) −8.84678 −0.292146
\(918\) 0 0
\(919\) 18.1994 0.600342 0.300171 0.953885i \(-0.402956\pi\)
0.300171 + 0.953885i \(0.402956\pi\)
\(920\) 0 0
\(921\) 40.8752 1.34688
\(922\) 0 0
\(923\) −26.8987 −0.885383
\(924\) 0 0
\(925\) 11.8876 0.390863
\(926\) 0 0
\(927\) −9.42970 −0.309712
\(928\) 0 0
\(929\) 3.90926 0.128259 0.0641294 0.997942i \(-0.479573\pi\)
0.0641294 + 0.997942i \(0.479573\pi\)
\(930\) 0 0
\(931\) −6.30698 −0.206703
\(932\) 0 0
\(933\) 59.4493 1.94628
\(934\) 0 0
\(935\) 3.93137 0.128570
\(936\) 0 0
\(937\) 34.6920 1.13334 0.566669 0.823946i \(-0.308232\pi\)
0.566669 + 0.823946i \(0.308232\pi\)
\(938\) 0 0
\(939\) −48.2844 −1.57570
\(940\) 0 0
\(941\) −30.1987 −0.984449 −0.492225 0.870468i \(-0.663816\pi\)
−0.492225 + 0.870468i \(0.663816\pi\)
\(942\) 0 0
\(943\) −66.5151 −2.16603
\(944\) 0 0
\(945\) 0.724627 0.0235721
\(946\) 0 0
\(947\) 48.6183 1.57988 0.789941 0.613183i \(-0.210111\pi\)
0.789941 + 0.613183i \(0.210111\pi\)
\(948\) 0 0
\(949\) 2.92985 0.0951069
\(950\) 0 0
\(951\) 9.61439 0.311768
\(952\) 0 0
\(953\) −41.6805 −1.35016 −0.675082 0.737742i \(-0.735892\pi\)
−0.675082 + 0.737742i \(0.735892\pi\)
\(954\) 0 0
\(955\) 20.7192 0.670459
\(956\) 0 0
\(957\) −43.6769 −1.41188
\(958\) 0 0
\(959\) 12.8215 0.414026
\(960\) 0 0
\(961\) −26.7965 −0.864403
\(962\) 0 0
\(963\) 42.7916 1.37894
\(964\) 0 0
\(965\) 27.9887 0.900987
\(966\) 0 0
\(967\) −11.5094 −0.370118 −0.185059 0.982727i \(-0.559248\pi\)
−0.185059 + 0.982727i \(0.559248\pi\)
\(968\) 0 0
\(969\) 15.1098 0.485398
\(970\) 0 0
\(971\) −5.38443 −0.172795 −0.0863973 0.996261i \(-0.527535\pi\)
−0.0863973 + 0.996261i \(0.527535\pi\)
\(972\) 0 0
\(973\) −6.94688 −0.222707
\(974\) 0 0
\(975\) −22.5539 −0.722303
\(976\) 0 0
\(977\) −12.1466 −0.388603 −0.194302 0.980942i \(-0.562244\pi\)
−0.194302 + 0.980942i \(0.562244\pi\)
\(978\) 0 0
\(979\) 26.2274 0.838230
\(980\) 0 0
\(981\) −36.7840 −1.17442
\(982\) 0 0
\(983\) 50.2908 1.60403 0.802013 0.597307i \(-0.203762\pi\)
0.802013 + 0.597307i \(0.203762\pi\)
\(984\) 0 0
\(985\) −0.797537 −0.0254116
\(986\) 0 0
\(987\) −10.7347 −0.341690
\(988\) 0 0
\(989\) 70.4948 2.24160
\(990\) 0 0
\(991\) 51.7997 1.64547 0.822735 0.568425i \(-0.192447\pi\)
0.822735 + 0.568425i \(0.192447\pi\)
\(992\) 0 0
\(993\) 79.0792 2.50950
\(994\) 0 0
\(995\) −7.71934 −0.244720
\(996\) 0 0
\(997\) 14.9119 0.472264 0.236132 0.971721i \(-0.424120\pi\)
0.236132 + 0.971721i \(0.424120\pi\)
\(998\) 0 0
\(999\) 2.03146 0.0642725
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7616.2.a.bx.1.6 6
4.3 odd 2 7616.2.a.cb.1.1 6
8.3 odd 2 3808.2.a.i.1.6 6
8.5 even 2 3808.2.a.m.1.1 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3808.2.a.i.1.6 6 8.3 odd 2
3808.2.a.m.1.1 yes 6 8.5 even 2
7616.2.a.bx.1.6 6 1.1 even 1 trivial
7616.2.a.cb.1.1 6 4.3 odd 2