Properties

Label 7616.2.a.bx.1.2
Level $7616$
Weight $2$
Character 7616.1
Self dual yes
Analytic conductor $60.814$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7616,2,Mod(1,7616)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7616, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7616.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7616 = 2^{6} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7616.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.8140661794\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.80686992.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 10x^{4} + 15x^{3} + 8x^{2} - 15x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 3808)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-3.19746\) of defining polynomial
Character \(\chi\) \(=\) 7616.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.52160 q^{3} -0.600745 q^{5} -1.00000 q^{7} +3.35847 q^{9} +5.46196 q^{11} +4.95922 q^{13} +1.51484 q^{15} -1.00000 q^{17} -4.17649 q^{19} +2.52160 q^{21} -2.69068 q^{23} -4.63911 q^{25} -0.903920 q^{27} -3.46196 q^{29} -2.09416 q^{31} -13.7729 q^{33} +0.600745 q^{35} +7.22776 q^{37} -12.5052 q^{39} -1.58865 q^{41} -4.85637 q^{43} -2.01758 q^{45} -0.590571 q^{47} +1.00000 q^{49} +2.52160 q^{51} -3.36780 q^{53} -3.28125 q^{55} +10.5314 q^{57} -5.54387 q^{59} +15.0132 q^{61} -3.35847 q^{63} -2.97922 q^{65} -6.53919 q^{67} +6.78481 q^{69} -12.5714 q^{71} +9.33527 q^{73} +11.6980 q^{75} -5.46196 q^{77} -14.6393 q^{79} -7.79609 q^{81} +7.33801 q^{83} +0.600745 q^{85} +8.72969 q^{87} +13.8988 q^{89} -4.95922 q^{91} +5.28063 q^{93} +2.50900 q^{95} -15.7126 q^{97} +18.3438 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{3} + 6 q^{5} - 6 q^{7} + 4 q^{9} - 2 q^{11} + 4 q^{13} - 2 q^{15} - 6 q^{17} - 10 q^{19} + 2 q^{21} - 4 q^{23} + 4 q^{25} - 8 q^{27} + 14 q^{29} - 8 q^{31} - 8 q^{33} - 6 q^{35} + 4 q^{37} - 14 q^{39}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.52160 −1.45585 −0.727923 0.685658i \(-0.759514\pi\)
−0.727923 + 0.685658i \(0.759514\pi\)
\(4\) 0 0
\(5\) −0.600745 −0.268661 −0.134331 0.990937i \(-0.542888\pi\)
−0.134331 + 0.990937i \(0.542888\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 3.35847 1.11949
\(10\) 0 0
\(11\) 5.46196 1.64684 0.823422 0.567430i \(-0.192062\pi\)
0.823422 + 0.567430i \(0.192062\pi\)
\(12\) 0 0
\(13\) 4.95922 1.37544 0.687720 0.725976i \(-0.258612\pi\)
0.687720 + 0.725976i \(0.258612\pi\)
\(14\) 0 0
\(15\) 1.51484 0.391130
\(16\) 0 0
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) −4.17649 −0.958152 −0.479076 0.877774i \(-0.659028\pi\)
−0.479076 + 0.877774i \(0.659028\pi\)
\(20\) 0 0
\(21\) 2.52160 0.550258
\(22\) 0 0
\(23\) −2.69068 −0.561045 −0.280522 0.959848i \(-0.590508\pi\)
−0.280522 + 0.959848i \(0.590508\pi\)
\(24\) 0 0
\(25\) −4.63911 −0.927821
\(26\) 0 0
\(27\) −0.903920 −0.173960
\(28\) 0 0
\(29\) −3.46196 −0.642870 −0.321435 0.946932i \(-0.604165\pi\)
−0.321435 + 0.946932i \(0.604165\pi\)
\(30\) 0 0
\(31\) −2.09416 −0.376122 −0.188061 0.982157i \(-0.560220\pi\)
−0.188061 + 0.982157i \(0.560220\pi\)
\(32\) 0 0
\(33\) −13.7729 −2.39755
\(34\) 0 0
\(35\) 0.600745 0.101544
\(36\) 0 0
\(37\) 7.22776 1.18824 0.594118 0.804378i \(-0.297501\pi\)
0.594118 + 0.804378i \(0.297501\pi\)
\(38\) 0 0
\(39\) −12.5052 −2.00243
\(40\) 0 0
\(41\) −1.58865 −0.248106 −0.124053 0.992276i \(-0.539589\pi\)
−0.124053 + 0.992276i \(0.539589\pi\)
\(42\) 0 0
\(43\) −4.85637 −0.740590 −0.370295 0.928914i \(-0.620743\pi\)
−0.370295 + 0.928914i \(0.620743\pi\)
\(44\) 0 0
\(45\) −2.01758 −0.300764
\(46\) 0 0
\(47\) −0.590571 −0.0861437 −0.0430718 0.999072i \(-0.513714\pi\)
−0.0430718 + 0.999072i \(0.513714\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 2.52160 0.353095
\(52\) 0 0
\(53\) −3.36780 −0.462603 −0.231302 0.972882i \(-0.574298\pi\)
−0.231302 + 0.972882i \(0.574298\pi\)
\(54\) 0 0
\(55\) −3.28125 −0.442443
\(56\) 0 0
\(57\) 10.5314 1.39492
\(58\) 0 0
\(59\) −5.54387 −0.721750 −0.360875 0.932614i \(-0.617522\pi\)
−0.360875 + 0.932614i \(0.617522\pi\)
\(60\) 0 0
\(61\) 15.0132 1.92225 0.961124 0.276116i \(-0.0890474\pi\)
0.961124 + 0.276116i \(0.0890474\pi\)
\(62\) 0 0
\(63\) −3.35847 −0.423128
\(64\) 0 0
\(65\) −2.97922 −0.369527
\(66\) 0 0
\(67\) −6.53919 −0.798889 −0.399444 0.916757i \(-0.630797\pi\)
−0.399444 + 0.916757i \(0.630797\pi\)
\(68\) 0 0
\(69\) 6.78481 0.816795
\(70\) 0 0
\(71\) −12.5714 −1.49195 −0.745975 0.665974i \(-0.768016\pi\)
−0.745975 + 0.665974i \(0.768016\pi\)
\(72\) 0 0
\(73\) 9.33527 1.09261 0.546305 0.837586i \(-0.316034\pi\)
0.546305 + 0.837586i \(0.316034\pi\)
\(74\) 0 0
\(75\) 11.6980 1.35077
\(76\) 0 0
\(77\) −5.46196 −0.622448
\(78\) 0 0
\(79\) −14.6393 −1.64705 −0.823523 0.567283i \(-0.807995\pi\)
−0.823523 + 0.567283i \(0.807995\pi\)
\(80\) 0 0
\(81\) −7.79609 −0.866232
\(82\) 0 0
\(83\) 7.33801 0.805451 0.402726 0.915321i \(-0.368063\pi\)
0.402726 + 0.915321i \(0.368063\pi\)
\(84\) 0 0
\(85\) 0.600745 0.0651600
\(86\) 0 0
\(87\) 8.72969 0.935920
\(88\) 0 0
\(89\) 13.8988 1.47327 0.736636 0.676290i \(-0.236413\pi\)
0.736636 + 0.676290i \(0.236413\pi\)
\(90\) 0 0
\(91\) −4.95922 −0.519867
\(92\) 0 0
\(93\) 5.28063 0.547576
\(94\) 0 0
\(95\) 2.50900 0.257418
\(96\) 0 0
\(97\) −15.7126 −1.59537 −0.797686 0.603073i \(-0.793943\pi\)
−0.797686 + 0.603073i \(0.793943\pi\)
\(98\) 0 0
\(99\) 18.3438 1.84363
\(100\) 0 0
\(101\) 17.4644 1.73777 0.868885 0.495013i \(-0.164837\pi\)
0.868885 + 0.495013i \(0.164837\pi\)
\(102\) 0 0
\(103\) 5.99435 0.590641 0.295320 0.955398i \(-0.404574\pi\)
0.295320 + 0.955398i \(0.404574\pi\)
\(104\) 0 0
\(105\) −1.51484 −0.147833
\(106\) 0 0
\(107\) 6.62489 0.640452 0.320226 0.947341i \(-0.396241\pi\)
0.320226 + 0.947341i \(0.396241\pi\)
\(108\) 0 0
\(109\) −9.59217 −0.918763 −0.459382 0.888239i \(-0.651929\pi\)
−0.459382 + 0.888239i \(0.651929\pi\)
\(110\) 0 0
\(111\) −18.2255 −1.72989
\(112\) 0 0
\(113\) 4.37106 0.411195 0.205597 0.978637i \(-0.434086\pi\)
0.205597 + 0.978637i \(0.434086\pi\)
\(114\) 0 0
\(115\) 1.61641 0.150731
\(116\) 0 0
\(117\) 16.6554 1.53979
\(118\) 0 0
\(119\) 1.00000 0.0916698
\(120\) 0 0
\(121\) 18.8330 1.71209
\(122\) 0 0
\(123\) 4.00594 0.361204
\(124\) 0 0
\(125\) 5.79065 0.517931
\(126\) 0 0
\(127\) 9.75420 0.865545 0.432773 0.901503i \(-0.357535\pi\)
0.432773 + 0.901503i \(0.357535\pi\)
\(128\) 0 0
\(129\) 12.2458 1.07819
\(130\) 0 0
\(131\) 15.3430 1.34053 0.670263 0.742124i \(-0.266181\pi\)
0.670263 + 0.742124i \(0.266181\pi\)
\(132\) 0 0
\(133\) 4.17649 0.362147
\(134\) 0 0
\(135\) 0.543026 0.0467362
\(136\) 0 0
\(137\) −13.5012 −1.15348 −0.576741 0.816927i \(-0.695676\pi\)
−0.576741 + 0.816927i \(0.695676\pi\)
\(138\) 0 0
\(139\) −10.6232 −0.901046 −0.450523 0.892765i \(-0.648762\pi\)
−0.450523 + 0.892765i \(0.648762\pi\)
\(140\) 0 0
\(141\) 1.48919 0.125412
\(142\) 0 0
\(143\) 27.0870 2.26513
\(144\) 0 0
\(145\) 2.07976 0.172714
\(146\) 0 0
\(147\) −2.52160 −0.207978
\(148\) 0 0
\(149\) 3.25647 0.266781 0.133390 0.991064i \(-0.457414\pi\)
0.133390 + 0.991064i \(0.457414\pi\)
\(150\) 0 0
\(151\) 4.77097 0.388256 0.194128 0.980976i \(-0.437812\pi\)
0.194128 + 0.980976i \(0.437812\pi\)
\(152\) 0 0
\(153\) −3.35847 −0.271516
\(154\) 0 0
\(155\) 1.25806 0.101049
\(156\) 0 0
\(157\) 6.13060 0.489275 0.244638 0.969615i \(-0.421331\pi\)
0.244638 + 0.969615i \(0.421331\pi\)
\(158\) 0 0
\(159\) 8.49225 0.673479
\(160\) 0 0
\(161\) 2.69068 0.212055
\(162\) 0 0
\(163\) −14.5276 −1.13789 −0.568944 0.822376i \(-0.692648\pi\)
−0.568944 + 0.822376i \(0.692648\pi\)
\(164\) 0 0
\(165\) 8.27399 0.644130
\(166\) 0 0
\(167\) 8.19957 0.634502 0.317251 0.948342i \(-0.397240\pi\)
0.317251 + 0.948342i \(0.397240\pi\)
\(168\) 0 0
\(169\) 11.5938 0.891833
\(170\) 0 0
\(171\) −14.0266 −1.07264
\(172\) 0 0
\(173\) −19.2541 −1.46386 −0.731931 0.681379i \(-0.761381\pi\)
−0.731931 + 0.681379i \(0.761381\pi\)
\(174\) 0 0
\(175\) 4.63911 0.350683
\(176\) 0 0
\(177\) 13.9794 1.05076
\(178\) 0 0
\(179\) −21.6987 −1.62184 −0.810920 0.585158i \(-0.801033\pi\)
−0.810920 + 0.585158i \(0.801033\pi\)
\(180\) 0 0
\(181\) 12.7427 0.947161 0.473580 0.880751i \(-0.342961\pi\)
0.473580 + 0.880751i \(0.342961\pi\)
\(182\) 0 0
\(183\) −37.8574 −2.79850
\(184\) 0 0
\(185\) −4.34204 −0.319233
\(186\) 0 0
\(187\) −5.46196 −0.399418
\(188\) 0 0
\(189\) 0.903920 0.0657505
\(190\) 0 0
\(191\) −0.442118 −0.0319905 −0.0159953 0.999872i \(-0.505092\pi\)
−0.0159953 + 0.999872i \(0.505092\pi\)
\(192\) 0 0
\(193\) −7.90958 −0.569344 −0.284672 0.958625i \(-0.591885\pi\)
−0.284672 + 0.958625i \(0.591885\pi\)
\(194\) 0 0
\(195\) 7.51242 0.537975
\(196\) 0 0
\(197\) 13.1416 0.936302 0.468151 0.883649i \(-0.344920\pi\)
0.468151 + 0.883649i \(0.344920\pi\)
\(198\) 0 0
\(199\) 4.64763 0.329462 0.164731 0.986339i \(-0.447324\pi\)
0.164731 + 0.986339i \(0.447324\pi\)
\(200\) 0 0
\(201\) 16.4892 1.16306
\(202\) 0 0
\(203\) 3.46196 0.242982
\(204\) 0 0
\(205\) 0.954374 0.0666564
\(206\) 0 0
\(207\) −9.03655 −0.628084
\(208\) 0 0
\(209\) −22.8118 −1.57793
\(210\) 0 0
\(211\) −26.9781 −1.85725 −0.928626 0.371017i \(-0.879009\pi\)
−0.928626 + 0.371017i \(0.879009\pi\)
\(212\) 0 0
\(213\) 31.7000 2.17205
\(214\) 0 0
\(215\) 2.91744 0.198968
\(216\) 0 0
\(217\) 2.09416 0.142161
\(218\) 0 0
\(219\) −23.5398 −1.59067
\(220\) 0 0
\(221\) −4.95922 −0.333593
\(222\) 0 0
\(223\) 9.77289 0.654441 0.327220 0.944948i \(-0.393888\pi\)
0.327220 + 0.944948i \(0.393888\pi\)
\(224\) 0 0
\(225\) −15.5803 −1.03869
\(226\) 0 0
\(227\) −5.76530 −0.382657 −0.191328 0.981526i \(-0.561280\pi\)
−0.191328 + 0.981526i \(0.561280\pi\)
\(228\) 0 0
\(229\) −1.96385 −0.129775 −0.0648875 0.997893i \(-0.520669\pi\)
−0.0648875 + 0.997893i \(0.520669\pi\)
\(230\) 0 0
\(231\) 13.7729 0.906189
\(232\) 0 0
\(233\) −21.0962 −1.38206 −0.691028 0.722828i \(-0.742842\pi\)
−0.691028 + 0.722828i \(0.742842\pi\)
\(234\) 0 0
\(235\) 0.354783 0.0231435
\(236\) 0 0
\(237\) 36.9144 2.39785
\(238\) 0 0
\(239\) 9.42471 0.609634 0.304817 0.952411i \(-0.401405\pi\)
0.304817 + 0.952411i \(0.401405\pi\)
\(240\) 0 0
\(241\) −21.1024 −1.35933 −0.679663 0.733525i \(-0.737874\pi\)
−0.679663 + 0.733525i \(0.737874\pi\)
\(242\) 0 0
\(243\) 22.3704 1.43506
\(244\) 0 0
\(245\) −0.600745 −0.0383802
\(246\) 0 0
\(247\) −20.7121 −1.31788
\(248\) 0 0
\(249\) −18.5035 −1.17261
\(250\) 0 0
\(251\) −17.5740 −1.10926 −0.554630 0.832097i \(-0.687140\pi\)
−0.554630 + 0.832097i \(0.687140\pi\)
\(252\) 0 0
\(253\) −14.6964 −0.923953
\(254\) 0 0
\(255\) −1.51484 −0.0948629
\(256\) 0 0
\(257\) −22.1759 −1.38329 −0.691646 0.722236i \(-0.743114\pi\)
−0.691646 + 0.722236i \(0.743114\pi\)
\(258\) 0 0
\(259\) −7.22776 −0.449111
\(260\) 0 0
\(261\) −11.6269 −0.719687
\(262\) 0 0
\(263\) 0.702119 0.0432945 0.0216473 0.999766i \(-0.493109\pi\)
0.0216473 + 0.999766i \(0.493109\pi\)
\(264\) 0 0
\(265\) 2.02319 0.124284
\(266\) 0 0
\(267\) −35.0473 −2.14486
\(268\) 0 0
\(269\) −28.2940 −1.72512 −0.862558 0.505959i \(-0.831139\pi\)
−0.862558 + 0.505959i \(0.831139\pi\)
\(270\) 0 0
\(271\) 19.0366 1.15639 0.578195 0.815898i \(-0.303757\pi\)
0.578195 + 0.815898i \(0.303757\pi\)
\(272\) 0 0
\(273\) 12.5052 0.756847
\(274\) 0 0
\(275\) −25.3386 −1.52798
\(276\) 0 0
\(277\) 18.2896 1.09892 0.549458 0.835521i \(-0.314834\pi\)
0.549458 + 0.835521i \(0.314834\pi\)
\(278\) 0 0
\(279\) −7.03317 −0.421065
\(280\) 0 0
\(281\) 25.5368 1.52340 0.761698 0.647932i \(-0.224366\pi\)
0.761698 + 0.647932i \(0.224366\pi\)
\(282\) 0 0
\(283\) 4.44290 0.264103 0.132052 0.991243i \(-0.457844\pi\)
0.132052 + 0.991243i \(0.457844\pi\)
\(284\) 0 0
\(285\) −6.32670 −0.374762
\(286\) 0 0
\(287\) 1.58865 0.0937751
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 39.6209 2.32262
\(292\) 0 0
\(293\) −4.98013 −0.290943 −0.145471 0.989362i \(-0.546470\pi\)
−0.145471 + 0.989362i \(0.546470\pi\)
\(294\) 0 0
\(295\) 3.33045 0.193906
\(296\) 0 0
\(297\) −4.93718 −0.286484
\(298\) 0 0
\(299\) −13.3436 −0.771683
\(300\) 0 0
\(301\) 4.85637 0.279917
\(302\) 0 0
\(303\) −44.0382 −2.52993
\(304\) 0 0
\(305\) −9.01913 −0.516434
\(306\) 0 0
\(307\) −11.3554 −0.648085 −0.324043 0.946042i \(-0.605042\pi\)
−0.324043 + 0.946042i \(0.605042\pi\)
\(308\) 0 0
\(309\) −15.1154 −0.859882
\(310\) 0 0
\(311\) −29.3717 −1.66552 −0.832758 0.553638i \(-0.813239\pi\)
−0.832758 + 0.553638i \(0.813239\pi\)
\(312\) 0 0
\(313\) 10.6749 0.603379 0.301690 0.953406i \(-0.402449\pi\)
0.301690 + 0.953406i \(0.402449\pi\)
\(314\) 0 0
\(315\) 2.01758 0.113678
\(316\) 0 0
\(317\) 22.9163 1.28711 0.643554 0.765400i \(-0.277459\pi\)
0.643554 + 0.765400i \(0.277459\pi\)
\(318\) 0 0
\(319\) −18.9091 −1.05871
\(320\) 0 0
\(321\) −16.7053 −0.932400
\(322\) 0 0
\(323\) 4.17649 0.232386
\(324\) 0 0
\(325\) −23.0063 −1.27616
\(326\) 0 0
\(327\) 24.1876 1.33758
\(328\) 0 0
\(329\) 0.590571 0.0325593
\(330\) 0 0
\(331\) 5.21678 0.286740 0.143370 0.989669i \(-0.454206\pi\)
0.143370 + 0.989669i \(0.454206\pi\)
\(332\) 0 0
\(333\) 24.2742 1.33022
\(334\) 0 0
\(335\) 3.92838 0.214631
\(336\) 0 0
\(337\) 12.8981 0.702604 0.351302 0.936262i \(-0.385739\pi\)
0.351302 + 0.936262i \(0.385739\pi\)
\(338\) 0 0
\(339\) −11.0221 −0.598637
\(340\) 0 0
\(341\) −11.4382 −0.619414
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) −4.07594 −0.219441
\(346\) 0 0
\(347\) −24.2592 −1.30230 −0.651151 0.758948i \(-0.725714\pi\)
−0.651151 + 0.758948i \(0.725714\pi\)
\(348\) 0 0
\(349\) −12.2213 −0.654191 −0.327095 0.944991i \(-0.606070\pi\)
−0.327095 + 0.944991i \(0.606070\pi\)
\(350\) 0 0
\(351\) −4.48274 −0.239271
\(352\) 0 0
\(353\) −22.0151 −1.17174 −0.585872 0.810403i \(-0.699248\pi\)
−0.585872 + 0.810403i \(0.699248\pi\)
\(354\) 0 0
\(355\) 7.55220 0.400829
\(356\) 0 0
\(357\) −2.52160 −0.133457
\(358\) 0 0
\(359\) 14.2558 0.752391 0.376196 0.926540i \(-0.377232\pi\)
0.376196 + 0.926540i \(0.377232\pi\)
\(360\) 0 0
\(361\) −1.55697 −0.0819457
\(362\) 0 0
\(363\) −47.4894 −2.49255
\(364\) 0 0
\(365\) −5.60812 −0.293542
\(366\) 0 0
\(367\) −6.31553 −0.329668 −0.164834 0.986321i \(-0.552709\pi\)
−0.164834 + 0.986321i \(0.552709\pi\)
\(368\) 0 0
\(369\) −5.33544 −0.277752
\(370\) 0 0
\(371\) 3.36780 0.174848
\(372\) 0 0
\(373\) −8.99627 −0.465809 −0.232905 0.972500i \(-0.574823\pi\)
−0.232905 + 0.972500i \(0.574823\pi\)
\(374\) 0 0
\(375\) −14.6017 −0.754028
\(376\) 0 0
\(377\) −17.1686 −0.884229
\(378\) 0 0
\(379\) 31.3775 1.61176 0.805878 0.592081i \(-0.201694\pi\)
0.805878 + 0.592081i \(0.201694\pi\)
\(380\) 0 0
\(381\) −24.5962 −1.26010
\(382\) 0 0
\(383\) −27.1190 −1.38571 −0.692857 0.721075i \(-0.743648\pi\)
−0.692857 + 0.721075i \(0.743648\pi\)
\(384\) 0 0
\(385\) 3.28125 0.167228
\(386\) 0 0
\(387\) −16.3100 −0.829084
\(388\) 0 0
\(389\) −21.6322 −1.09679 −0.548397 0.836218i \(-0.684762\pi\)
−0.548397 + 0.836218i \(0.684762\pi\)
\(390\) 0 0
\(391\) 2.69068 0.136073
\(392\) 0 0
\(393\) −38.6890 −1.95160
\(394\) 0 0
\(395\) 8.79447 0.442498
\(396\) 0 0
\(397\) 2.22325 0.111582 0.0557909 0.998442i \(-0.482232\pi\)
0.0557909 + 0.998442i \(0.482232\pi\)
\(398\) 0 0
\(399\) −10.5314 −0.527231
\(400\) 0 0
\(401\) 3.71483 0.185510 0.0927548 0.995689i \(-0.470433\pi\)
0.0927548 + 0.995689i \(0.470433\pi\)
\(402\) 0 0
\(403\) −10.3854 −0.517333
\(404\) 0 0
\(405\) 4.68346 0.232723
\(406\) 0 0
\(407\) 39.4777 1.95684
\(408\) 0 0
\(409\) −15.3159 −0.757323 −0.378661 0.925535i \(-0.623615\pi\)
−0.378661 + 0.925535i \(0.623615\pi\)
\(410\) 0 0
\(411\) 34.0445 1.67929
\(412\) 0 0
\(413\) 5.54387 0.272796
\(414\) 0 0
\(415\) −4.40827 −0.216394
\(416\) 0 0
\(417\) 26.7874 1.31178
\(418\) 0 0
\(419\) −7.88425 −0.385171 −0.192585 0.981280i \(-0.561687\pi\)
−0.192585 + 0.981280i \(0.561687\pi\)
\(420\) 0 0
\(421\) −16.5852 −0.808315 −0.404158 0.914689i \(-0.632435\pi\)
−0.404158 + 0.914689i \(0.632435\pi\)
\(422\) 0 0
\(423\) −1.98342 −0.0964370
\(424\) 0 0
\(425\) 4.63911 0.225030
\(426\) 0 0
\(427\) −15.0132 −0.726542
\(428\) 0 0
\(429\) −68.3027 −3.29769
\(430\) 0 0
\(431\) −14.4179 −0.694486 −0.347243 0.937775i \(-0.612882\pi\)
−0.347243 + 0.937775i \(0.612882\pi\)
\(432\) 0 0
\(433\) −7.08548 −0.340506 −0.170253 0.985400i \(-0.554459\pi\)
−0.170253 + 0.985400i \(0.554459\pi\)
\(434\) 0 0
\(435\) −5.24432 −0.251446
\(436\) 0 0
\(437\) 11.2376 0.537566
\(438\) 0 0
\(439\) −21.1477 −1.00932 −0.504662 0.863317i \(-0.668383\pi\)
−0.504662 + 0.863317i \(0.668383\pi\)
\(440\) 0 0
\(441\) 3.35847 0.159927
\(442\) 0 0
\(443\) 4.83752 0.229837 0.114919 0.993375i \(-0.463339\pi\)
0.114919 + 0.993375i \(0.463339\pi\)
\(444\) 0 0
\(445\) −8.34964 −0.395811
\(446\) 0 0
\(447\) −8.21152 −0.388392
\(448\) 0 0
\(449\) −19.2445 −0.908206 −0.454103 0.890949i \(-0.650040\pi\)
−0.454103 + 0.890949i \(0.650040\pi\)
\(450\) 0 0
\(451\) −8.67715 −0.408591
\(452\) 0 0
\(453\) −12.0305 −0.565241
\(454\) 0 0
\(455\) 2.97922 0.139668
\(456\) 0 0
\(457\) 17.3388 0.811073 0.405537 0.914079i \(-0.367085\pi\)
0.405537 + 0.914079i \(0.367085\pi\)
\(458\) 0 0
\(459\) 0.903920 0.0421914
\(460\) 0 0
\(461\) 26.6692 1.24211 0.621054 0.783768i \(-0.286705\pi\)
0.621054 + 0.783768i \(0.286705\pi\)
\(462\) 0 0
\(463\) 26.3856 1.22624 0.613122 0.789988i \(-0.289913\pi\)
0.613122 + 0.789988i \(0.289913\pi\)
\(464\) 0 0
\(465\) −3.17232 −0.147113
\(466\) 0 0
\(467\) −5.42102 −0.250855 −0.125427 0.992103i \(-0.540030\pi\)
−0.125427 + 0.992103i \(0.540030\pi\)
\(468\) 0 0
\(469\) 6.53919 0.301952
\(470\) 0 0
\(471\) −15.4589 −0.712310
\(472\) 0 0
\(473\) −26.5253 −1.21964
\(474\) 0 0
\(475\) 19.3752 0.888993
\(476\) 0 0
\(477\) −11.3107 −0.517880
\(478\) 0 0
\(479\) −11.7002 −0.534596 −0.267298 0.963614i \(-0.586131\pi\)
−0.267298 + 0.963614i \(0.586131\pi\)
\(480\) 0 0
\(481\) 35.8440 1.63435
\(482\) 0 0
\(483\) −6.78481 −0.308720
\(484\) 0 0
\(485\) 9.43927 0.428615
\(486\) 0 0
\(487\) −10.9109 −0.494421 −0.247210 0.968962i \(-0.579514\pi\)
−0.247210 + 0.968962i \(0.579514\pi\)
\(488\) 0 0
\(489\) 36.6328 1.65659
\(490\) 0 0
\(491\) −10.6687 −0.481470 −0.240735 0.970591i \(-0.577389\pi\)
−0.240735 + 0.970591i \(0.577389\pi\)
\(492\) 0 0
\(493\) 3.46196 0.155919
\(494\) 0 0
\(495\) −11.0200 −0.495311
\(496\) 0 0
\(497\) 12.5714 0.563904
\(498\) 0 0
\(499\) −31.4888 −1.40963 −0.704816 0.709390i \(-0.748971\pi\)
−0.704816 + 0.709390i \(0.748971\pi\)
\(500\) 0 0
\(501\) −20.6760 −0.923737
\(502\) 0 0
\(503\) 41.7535 1.86169 0.930847 0.365408i \(-0.119071\pi\)
0.930847 + 0.365408i \(0.119071\pi\)
\(504\) 0 0
\(505\) −10.4916 −0.466872
\(506\) 0 0
\(507\) −29.2350 −1.29837
\(508\) 0 0
\(509\) 0.269289 0.0119360 0.00596802 0.999982i \(-0.498100\pi\)
0.00596802 + 0.999982i \(0.498100\pi\)
\(510\) 0 0
\(511\) −9.33527 −0.412968
\(512\) 0 0
\(513\) 3.77521 0.166680
\(514\) 0 0
\(515\) −3.60108 −0.158682
\(516\) 0 0
\(517\) −3.22568 −0.141865
\(518\) 0 0
\(519\) 48.5511 2.13116
\(520\) 0 0
\(521\) −26.0361 −1.14066 −0.570331 0.821415i \(-0.693185\pi\)
−0.570331 + 0.821415i \(0.693185\pi\)
\(522\) 0 0
\(523\) 19.4264 0.849456 0.424728 0.905321i \(-0.360370\pi\)
0.424728 + 0.905321i \(0.360370\pi\)
\(524\) 0 0
\(525\) −11.6980 −0.510541
\(526\) 0 0
\(527\) 2.09416 0.0912230
\(528\) 0 0
\(529\) −15.7603 −0.685229
\(530\) 0 0
\(531\) −18.6189 −0.807992
\(532\) 0 0
\(533\) −7.87846 −0.341254
\(534\) 0 0
\(535\) −3.97987 −0.172065
\(536\) 0 0
\(537\) 54.7155 2.36115
\(538\) 0 0
\(539\) 5.46196 0.235263
\(540\) 0 0
\(541\) −7.38506 −0.317509 −0.158754 0.987318i \(-0.550748\pi\)
−0.158754 + 0.987318i \(0.550748\pi\)
\(542\) 0 0
\(543\) −32.1321 −1.37892
\(544\) 0 0
\(545\) 5.76245 0.246836
\(546\) 0 0
\(547\) −14.9175 −0.637827 −0.318913 0.947784i \(-0.603318\pi\)
−0.318913 + 0.947784i \(0.603318\pi\)
\(548\) 0 0
\(549\) 50.4215 2.15194
\(550\) 0 0
\(551\) 14.4588 0.615967
\(552\) 0 0
\(553\) 14.6393 0.622525
\(554\) 0 0
\(555\) 10.9489 0.464755
\(556\) 0 0
\(557\) 7.10542 0.301066 0.150533 0.988605i \(-0.451901\pi\)
0.150533 + 0.988605i \(0.451901\pi\)
\(558\) 0 0
\(559\) −24.0838 −1.01864
\(560\) 0 0
\(561\) 13.7729 0.581492
\(562\) 0 0
\(563\) 46.5174 1.96048 0.980238 0.197822i \(-0.0633868\pi\)
0.980238 + 0.197822i \(0.0633868\pi\)
\(564\) 0 0
\(565\) −2.62589 −0.110472
\(566\) 0 0
\(567\) 7.79609 0.327405
\(568\) 0 0
\(569\) 20.7632 0.870440 0.435220 0.900324i \(-0.356671\pi\)
0.435220 + 0.900324i \(0.356671\pi\)
\(570\) 0 0
\(571\) 3.78287 0.158308 0.0791542 0.996862i \(-0.474778\pi\)
0.0791542 + 0.996862i \(0.474778\pi\)
\(572\) 0 0
\(573\) 1.11484 0.0465733
\(574\) 0 0
\(575\) 12.4823 0.520549
\(576\) 0 0
\(577\) −28.8197 −1.19978 −0.599889 0.800083i \(-0.704789\pi\)
−0.599889 + 0.800083i \(0.704789\pi\)
\(578\) 0 0
\(579\) 19.9448 0.828878
\(580\) 0 0
\(581\) −7.33801 −0.304432
\(582\) 0 0
\(583\) −18.3948 −0.761835
\(584\) 0 0
\(585\) −10.0056 −0.413682
\(586\) 0 0
\(587\) 20.1931 0.833459 0.416729 0.909031i \(-0.363176\pi\)
0.416729 + 0.909031i \(0.363176\pi\)
\(588\) 0 0
\(589\) 8.74623 0.360382
\(590\) 0 0
\(591\) −33.1379 −1.36311
\(592\) 0 0
\(593\) 6.27942 0.257865 0.128932 0.991653i \(-0.458845\pi\)
0.128932 + 0.991653i \(0.458845\pi\)
\(594\) 0 0
\(595\) −0.600745 −0.0246281
\(596\) 0 0
\(597\) −11.7195 −0.479646
\(598\) 0 0
\(599\) −31.0338 −1.26801 −0.634003 0.773330i \(-0.718589\pi\)
−0.634003 + 0.773330i \(0.718589\pi\)
\(600\) 0 0
\(601\) −20.3227 −0.828981 −0.414490 0.910054i \(-0.636040\pi\)
−0.414490 + 0.910054i \(0.636040\pi\)
\(602\) 0 0
\(603\) −21.9617 −0.894348
\(604\) 0 0
\(605\) −11.3138 −0.459973
\(606\) 0 0
\(607\) −32.2811 −1.31025 −0.655124 0.755521i \(-0.727384\pi\)
−0.655124 + 0.755521i \(0.727384\pi\)
\(608\) 0 0
\(609\) −8.72969 −0.353745
\(610\) 0 0
\(611\) −2.92877 −0.118485
\(612\) 0 0
\(613\) 30.8167 1.24467 0.622337 0.782750i \(-0.286183\pi\)
0.622337 + 0.782750i \(0.286183\pi\)
\(614\) 0 0
\(615\) −2.40655 −0.0970415
\(616\) 0 0
\(617\) −30.4533 −1.22600 −0.613001 0.790082i \(-0.710038\pi\)
−0.613001 + 0.790082i \(0.710038\pi\)
\(618\) 0 0
\(619\) −42.9368 −1.72578 −0.862888 0.505394i \(-0.831347\pi\)
−0.862888 + 0.505394i \(0.831347\pi\)
\(620\) 0 0
\(621\) 2.43216 0.0975991
\(622\) 0 0
\(623\) −13.8988 −0.556844
\(624\) 0 0
\(625\) 19.7168 0.788673
\(626\) 0 0
\(627\) 57.5223 2.29722
\(628\) 0 0
\(629\) −7.22776 −0.288190
\(630\) 0 0
\(631\) −42.6584 −1.69821 −0.849103 0.528228i \(-0.822857\pi\)
−0.849103 + 0.528228i \(0.822857\pi\)
\(632\) 0 0
\(633\) 68.0281 2.70387
\(634\) 0 0
\(635\) −5.85979 −0.232539
\(636\) 0 0
\(637\) 4.95922 0.196491
\(638\) 0 0
\(639\) −42.2207 −1.67022
\(640\) 0 0
\(641\) −16.2407 −0.641470 −0.320735 0.947169i \(-0.603930\pi\)
−0.320735 + 0.947169i \(0.603930\pi\)
\(642\) 0 0
\(643\) 15.7543 0.621291 0.310645 0.950526i \(-0.399455\pi\)
0.310645 + 0.950526i \(0.399455\pi\)
\(644\) 0 0
\(645\) −7.35663 −0.289667
\(646\) 0 0
\(647\) 15.8946 0.624881 0.312441 0.949937i \(-0.398853\pi\)
0.312441 + 0.949937i \(0.398853\pi\)
\(648\) 0 0
\(649\) −30.2804 −1.18861
\(650\) 0 0
\(651\) −5.28063 −0.206964
\(652\) 0 0
\(653\) 17.0447 0.667011 0.333506 0.942748i \(-0.391768\pi\)
0.333506 + 0.942748i \(0.391768\pi\)
\(654\) 0 0
\(655\) −9.21725 −0.360148
\(656\) 0 0
\(657\) 31.3522 1.22317
\(658\) 0 0
\(659\) 42.6352 1.66083 0.830415 0.557145i \(-0.188103\pi\)
0.830415 + 0.557145i \(0.188103\pi\)
\(660\) 0 0
\(661\) 25.0946 0.976066 0.488033 0.872825i \(-0.337715\pi\)
0.488033 + 0.872825i \(0.337715\pi\)
\(662\) 0 0
\(663\) 12.5052 0.485660
\(664\) 0 0
\(665\) −2.50900 −0.0972950
\(666\) 0 0
\(667\) 9.31501 0.360679
\(668\) 0 0
\(669\) −24.6433 −0.952766
\(670\) 0 0
\(671\) 82.0017 3.16564
\(672\) 0 0
\(673\) −31.2540 −1.20475 −0.602376 0.798213i \(-0.705779\pi\)
−0.602376 + 0.798213i \(0.705779\pi\)
\(674\) 0 0
\(675\) 4.19338 0.161403
\(676\) 0 0
\(677\) 10.7104 0.411634 0.205817 0.978590i \(-0.434015\pi\)
0.205817 + 0.978590i \(0.434015\pi\)
\(678\) 0 0
\(679\) 15.7126 0.602994
\(680\) 0 0
\(681\) 14.5378 0.557090
\(682\) 0 0
\(683\) −30.9331 −1.18362 −0.591811 0.806077i \(-0.701587\pi\)
−0.591811 + 0.806077i \(0.701587\pi\)
\(684\) 0 0
\(685\) 8.11076 0.309896
\(686\) 0 0
\(687\) 4.95205 0.188933
\(688\) 0 0
\(689\) −16.7017 −0.636282
\(690\) 0 0
\(691\) 3.29592 0.125383 0.0626914 0.998033i \(-0.480032\pi\)
0.0626914 + 0.998033i \(0.480032\pi\)
\(692\) 0 0
\(693\) −18.3438 −0.696825
\(694\) 0 0
\(695\) 6.38182 0.242076
\(696\) 0 0
\(697\) 1.58865 0.0601745
\(698\) 0 0
\(699\) 53.1961 2.01206
\(700\) 0 0
\(701\) 22.9139 0.865447 0.432723 0.901527i \(-0.357553\pi\)
0.432723 + 0.901527i \(0.357553\pi\)
\(702\) 0 0
\(703\) −30.1866 −1.13851
\(704\) 0 0
\(705\) −0.894621 −0.0336934
\(706\) 0 0
\(707\) −17.4644 −0.656816
\(708\) 0 0
\(709\) −51.3935 −1.93012 −0.965062 0.262023i \(-0.915610\pi\)
−0.965062 + 0.262023i \(0.915610\pi\)
\(710\) 0 0
\(711\) −49.1655 −1.84385
\(712\) 0 0
\(713\) 5.63470 0.211021
\(714\) 0 0
\(715\) −16.2724 −0.608554
\(716\) 0 0
\(717\) −23.7654 −0.887534
\(718\) 0 0
\(719\) −11.0252 −0.411170 −0.205585 0.978639i \(-0.565910\pi\)
−0.205585 + 0.978639i \(0.565910\pi\)
\(720\) 0 0
\(721\) −5.99435 −0.223241
\(722\) 0 0
\(723\) 53.2118 1.97897
\(724\) 0 0
\(725\) 16.0604 0.596468
\(726\) 0 0
\(727\) 41.5890 1.54245 0.771226 0.636561i \(-0.219644\pi\)
0.771226 + 0.636561i \(0.219644\pi\)
\(728\) 0 0
\(729\) −33.0209 −1.22300
\(730\) 0 0
\(731\) 4.85637 0.179620
\(732\) 0 0
\(733\) −48.9142 −1.80669 −0.903344 0.428917i \(-0.858895\pi\)
−0.903344 + 0.428917i \(0.858895\pi\)
\(734\) 0 0
\(735\) 1.51484 0.0558757
\(736\) 0 0
\(737\) −35.7168 −1.31564
\(738\) 0 0
\(739\) 16.4447 0.604928 0.302464 0.953161i \(-0.402191\pi\)
0.302464 + 0.953161i \(0.402191\pi\)
\(740\) 0 0
\(741\) 52.2276 1.91863
\(742\) 0 0
\(743\) 21.8911 0.803106 0.401553 0.915836i \(-0.368471\pi\)
0.401553 + 0.915836i \(0.368471\pi\)
\(744\) 0 0
\(745\) −1.95631 −0.0716736
\(746\) 0 0
\(747\) 24.6445 0.901695
\(748\) 0 0
\(749\) −6.62489 −0.242068
\(750\) 0 0
\(751\) 20.3651 0.743132 0.371566 0.928407i \(-0.378821\pi\)
0.371566 + 0.928407i \(0.378821\pi\)
\(752\) 0 0
\(753\) 44.3146 1.61491
\(754\) 0 0
\(755\) −2.86613 −0.104309
\(756\) 0 0
\(757\) −17.0412 −0.619373 −0.309687 0.950839i \(-0.600224\pi\)
−0.309687 + 0.950839i \(0.600224\pi\)
\(758\) 0 0
\(759\) 37.0584 1.34513
\(760\) 0 0
\(761\) −13.6557 −0.495020 −0.247510 0.968885i \(-0.579612\pi\)
−0.247510 + 0.968885i \(0.579612\pi\)
\(762\) 0 0
\(763\) 9.59217 0.347260
\(764\) 0 0
\(765\) 2.01758 0.0729459
\(766\) 0 0
\(767\) −27.4932 −0.992723
\(768\) 0 0
\(769\) −8.98523 −0.324016 −0.162008 0.986789i \(-0.551797\pi\)
−0.162008 + 0.986789i \(0.551797\pi\)
\(770\) 0 0
\(771\) 55.9187 2.01386
\(772\) 0 0
\(773\) 1.72211 0.0619400 0.0309700 0.999520i \(-0.490140\pi\)
0.0309700 + 0.999520i \(0.490140\pi\)
\(774\) 0 0
\(775\) 9.71503 0.348974
\(776\) 0 0
\(777\) 18.2255 0.653837
\(778\) 0 0
\(779\) 6.63498 0.237723
\(780\) 0 0
\(781\) −68.6645 −2.45701
\(782\) 0 0
\(783\) 3.12934 0.111833
\(784\) 0 0
\(785\) −3.68293 −0.131449
\(786\) 0 0
\(787\) −22.8493 −0.814491 −0.407245 0.913319i \(-0.633511\pi\)
−0.407245 + 0.913319i \(0.633511\pi\)
\(788\) 0 0
\(789\) −1.77047 −0.0630302
\(790\) 0 0
\(791\) −4.37106 −0.155417
\(792\) 0 0
\(793\) 74.4539 2.64394
\(794\) 0 0
\(795\) −5.10168 −0.180938
\(796\) 0 0
\(797\) −2.65098 −0.0939025 −0.0469513 0.998897i \(-0.514951\pi\)
−0.0469513 + 0.998897i \(0.514951\pi\)
\(798\) 0 0
\(799\) 0.590571 0.0208929
\(800\) 0 0
\(801\) 46.6788 1.64931
\(802\) 0 0
\(803\) 50.9889 1.79936
\(804\) 0 0
\(805\) −1.61641 −0.0569710
\(806\) 0 0
\(807\) 71.3462 2.51150
\(808\) 0 0
\(809\) −36.2662 −1.27505 −0.637525 0.770430i \(-0.720042\pi\)
−0.637525 + 0.770430i \(0.720042\pi\)
\(810\) 0 0
\(811\) −52.6193 −1.84771 −0.923857 0.382739i \(-0.874981\pi\)
−0.923857 + 0.382739i \(0.874981\pi\)
\(812\) 0 0
\(813\) −48.0027 −1.68353
\(814\) 0 0
\(815\) 8.72738 0.305707
\(816\) 0 0
\(817\) 20.2826 0.709598
\(818\) 0 0
\(819\) −16.6554 −0.581986
\(820\) 0 0
\(821\) −37.5447 −1.31032 −0.655159 0.755491i \(-0.727399\pi\)
−0.655159 + 0.755491i \(0.727399\pi\)
\(822\) 0 0
\(823\) −14.9156 −0.519924 −0.259962 0.965619i \(-0.583710\pi\)
−0.259962 + 0.965619i \(0.583710\pi\)
\(824\) 0 0
\(825\) 63.8939 2.22450
\(826\) 0 0
\(827\) 46.3286 1.61100 0.805502 0.592592i \(-0.201896\pi\)
0.805502 + 0.592592i \(0.201896\pi\)
\(828\) 0 0
\(829\) 0.191257 0.00664265 0.00332132 0.999994i \(-0.498943\pi\)
0.00332132 + 0.999994i \(0.498943\pi\)
\(830\) 0 0
\(831\) −46.1191 −1.59985
\(832\) 0 0
\(833\) −1.00000 −0.0346479
\(834\) 0 0
\(835\) −4.92585 −0.170466
\(836\) 0 0
\(837\) 1.89295 0.0654301
\(838\) 0 0
\(839\) −12.2611 −0.423300 −0.211650 0.977345i \(-0.567884\pi\)
−0.211650 + 0.977345i \(0.567884\pi\)
\(840\) 0 0
\(841\) −17.0148 −0.586718
\(842\) 0 0
\(843\) −64.3935 −2.21783
\(844\) 0 0
\(845\) −6.96493 −0.239601
\(846\) 0 0
\(847\) −18.8330 −0.647110
\(848\) 0 0
\(849\) −11.2032 −0.384494
\(850\) 0 0
\(851\) −19.4475 −0.666653
\(852\) 0 0
\(853\) −50.3652 −1.72447 −0.862236 0.506506i \(-0.830937\pi\)
−0.862236 + 0.506506i \(0.830937\pi\)
\(854\) 0 0
\(855\) 8.42641 0.288177
\(856\) 0 0
\(857\) 40.1681 1.37212 0.686058 0.727547i \(-0.259340\pi\)
0.686058 + 0.727547i \(0.259340\pi\)
\(858\) 0 0
\(859\) 40.4420 1.37986 0.689932 0.723874i \(-0.257640\pi\)
0.689932 + 0.723874i \(0.257640\pi\)
\(860\) 0 0
\(861\) −4.00594 −0.136522
\(862\) 0 0
\(863\) −40.2893 −1.37147 −0.685733 0.727854i \(-0.740518\pi\)
−0.685733 + 0.727854i \(0.740518\pi\)
\(864\) 0 0
\(865\) 11.5668 0.393283
\(866\) 0 0
\(867\) −2.52160 −0.0856381
\(868\) 0 0
\(869\) −79.9591 −2.71243
\(870\) 0 0
\(871\) −32.4292 −1.09882
\(872\) 0 0
\(873\) −52.7703 −1.78600
\(874\) 0 0
\(875\) −5.79065 −0.195760
\(876\) 0 0
\(877\) −19.3598 −0.653734 −0.326867 0.945070i \(-0.605993\pi\)
−0.326867 + 0.945070i \(0.605993\pi\)
\(878\) 0 0
\(879\) 12.5579 0.423568
\(880\) 0 0
\(881\) −12.0339 −0.405433 −0.202717 0.979237i \(-0.564977\pi\)
−0.202717 + 0.979237i \(0.564977\pi\)
\(882\) 0 0
\(883\) 18.1108 0.609476 0.304738 0.952436i \(-0.401431\pi\)
0.304738 + 0.952436i \(0.401431\pi\)
\(884\) 0 0
\(885\) −8.39807 −0.282298
\(886\) 0 0
\(887\) 19.6716 0.660508 0.330254 0.943892i \(-0.392866\pi\)
0.330254 + 0.943892i \(0.392866\pi\)
\(888\) 0 0
\(889\) −9.75420 −0.327145
\(890\) 0 0
\(891\) −42.5819 −1.42655
\(892\) 0 0
\(893\) 2.46651 0.0825387
\(894\) 0 0
\(895\) 13.0354 0.435726
\(896\) 0 0
\(897\) 33.6473 1.12345
\(898\) 0 0
\(899\) 7.24990 0.241798
\(900\) 0 0
\(901\) 3.36780 0.112198
\(902\) 0 0
\(903\) −12.2458 −0.407516
\(904\) 0 0
\(905\) −7.65514 −0.254465
\(906\) 0 0
\(907\) −7.69508 −0.255511 −0.127756 0.991806i \(-0.540777\pi\)
−0.127756 + 0.991806i \(0.540777\pi\)
\(908\) 0 0
\(909\) 58.6536 1.94542
\(910\) 0 0
\(911\) −40.7871 −1.35134 −0.675668 0.737206i \(-0.736145\pi\)
−0.675668 + 0.737206i \(0.736145\pi\)
\(912\) 0 0
\(913\) 40.0799 1.32645
\(914\) 0 0
\(915\) 22.7426 0.751849
\(916\) 0 0
\(917\) −15.3430 −0.506671
\(918\) 0 0
\(919\) 48.0744 1.58583 0.792913 0.609334i \(-0.208563\pi\)
0.792913 + 0.609334i \(0.208563\pi\)
\(920\) 0 0
\(921\) 28.6337 0.943513
\(922\) 0 0
\(923\) −62.3443 −2.05209
\(924\) 0 0
\(925\) −33.5303 −1.10247
\(926\) 0 0
\(927\) 20.1318 0.661217
\(928\) 0 0
\(929\) 33.9572 1.11410 0.557050 0.830479i \(-0.311933\pi\)
0.557050 + 0.830479i \(0.311933\pi\)
\(930\) 0 0
\(931\) −4.17649 −0.136879
\(932\) 0 0
\(933\) 74.0637 2.42474
\(934\) 0 0
\(935\) 3.28125 0.107308
\(936\) 0 0
\(937\) −2.74267 −0.0895992 −0.0447996 0.998996i \(-0.514265\pi\)
−0.0447996 + 0.998996i \(0.514265\pi\)
\(938\) 0 0
\(939\) −26.9178 −0.878428
\(940\) 0 0
\(941\) 25.3253 0.825581 0.412790 0.910826i \(-0.364554\pi\)
0.412790 + 0.910826i \(0.364554\pi\)
\(942\) 0 0
\(943\) 4.27454 0.139198
\(944\) 0 0
\(945\) −0.543026 −0.0176646
\(946\) 0 0
\(947\) −30.0639 −0.976947 −0.488473 0.872579i \(-0.662446\pi\)
−0.488473 + 0.872579i \(0.662446\pi\)
\(948\) 0 0
\(949\) 46.2956 1.50282
\(950\) 0 0
\(951\) −57.7858 −1.87383
\(952\) 0 0
\(953\) 47.3950 1.53527 0.767637 0.640885i \(-0.221432\pi\)
0.767637 + 0.640885i \(0.221432\pi\)
\(954\) 0 0
\(955\) 0.265600 0.00859462
\(956\) 0 0
\(957\) 47.6812 1.54131
\(958\) 0 0
\(959\) 13.5012 0.435975
\(960\) 0 0
\(961\) −26.6145 −0.858532
\(962\) 0 0
\(963\) 22.2495 0.716980
\(964\) 0 0
\(965\) 4.75164 0.152961
\(966\) 0 0
\(967\) 42.6663 1.37206 0.686028 0.727575i \(-0.259353\pi\)
0.686028 + 0.727575i \(0.259353\pi\)
\(968\) 0 0
\(969\) −10.5314 −0.338318
\(970\) 0 0
\(971\) −18.0128 −0.578059 −0.289030 0.957320i \(-0.593333\pi\)
−0.289030 + 0.957320i \(0.593333\pi\)
\(972\) 0 0
\(973\) 10.6232 0.340563
\(974\) 0 0
\(975\) 58.0128 1.85790
\(976\) 0 0
\(977\) −35.8450 −1.14678 −0.573391 0.819282i \(-0.694372\pi\)
−0.573391 + 0.819282i \(0.694372\pi\)
\(978\) 0 0
\(979\) 75.9148 2.42625
\(980\) 0 0
\(981\) −32.2150 −1.02855
\(982\) 0 0
\(983\) 2.72370 0.0868726 0.0434363 0.999056i \(-0.486169\pi\)
0.0434363 + 0.999056i \(0.486169\pi\)
\(984\) 0 0
\(985\) −7.89476 −0.251548
\(986\) 0 0
\(987\) −1.48919 −0.0474013
\(988\) 0 0
\(989\) 13.0669 0.415504
\(990\) 0 0
\(991\) −0.518829 −0.0164811 −0.00824057 0.999966i \(-0.502623\pi\)
−0.00824057 + 0.999966i \(0.502623\pi\)
\(992\) 0 0
\(993\) −13.1546 −0.417450
\(994\) 0 0
\(995\) −2.79204 −0.0885137
\(996\) 0 0
\(997\) −40.8584 −1.29400 −0.646999 0.762491i \(-0.723976\pi\)
−0.646999 + 0.762491i \(0.723976\pi\)
\(998\) 0 0
\(999\) −6.53332 −0.206705
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7616.2.a.bx.1.2 6
4.3 odd 2 7616.2.a.cb.1.5 6
8.3 odd 2 3808.2.a.i.1.2 6
8.5 even 2 3808.2.a.m.1.5 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3808.2.a.i.1.2 6 8.3 odd 2
3808.2.a.m.1.5 yes 6 8.5 even 2
7616.2.a.bx.1.2 6 1.1 even 1 trivial
7616.2.a.cb.1.5 6 4.3 odd 2