Properties

Label 7616.2.a.bv.1.2
Level $7616$
Weight $2$
Character 7616.1
Self dual yes
Analytic conductor $60.814$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7616,2,Mod(1,7616)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7616, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7616.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7616 = 2^{6} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7616.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.8140661794\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.147697840.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 10x^{4} + 10x^{3} + 18x^{2} - 16x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 3808)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.75839\) of defining polynomial
Character \(\chi\) \(=\) 7616.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.75839 q^{3} -1.29021 q^{5} -1.00000 q^{7} +4.60870 q^{9} -3.92967 q^{11} -3.02708 q^{13} +3.55891 q^{15} +1.00000 q^{17} -1.45247 q^{19} +2.75839 q^{21} -2.74235 q^{23} -3.33535 q^{25} -4.43741 q^{27} +4.12449 q^{29} +5.90440 q^{31} +10.8396 q^{33} +1.29021 q^{35} +2.16107 q^{37} +8.34987 q^{39} +10.3997 q^{41} -0.144202 q^{43} -5.94621 q^{45} +0.778926 q^{47} +1.00000 q^{49} -2.75839 q^{51} +3.76742 q^{53} +5.07012 q^{55} +4.00646 q^{57} -10.9905 q^{59} +2.81623 q^{61} -4.60870 q^{63} +3.90559 q^{65} +2.35105 q^{67} +7.56447 q^{69} -9.21823 q^{71} -1.02354 q^{73} +9.20018 q^{75} +3.92967 q^{77} -6.93267 q^{79} -1.58599 q^{81} +2.72771 q^{83} -1.29021 q^{85} -11.3769 q^{87} -3.41589 q^{89} +3.02708 q^{91} -16.2866 q^{93} +1.87399 q^{95} +13.0575 q^{97} -18.1107 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 4 q^{3} + 4 q^{5} - 6 q^{7} + 8 q^{9} - 8 q^{11} + 4 q^{13} + 6 q^{17} - 18 q^{19} + 4 q^{21} + 6 q^{23} + 12 q^{25} - 10 q^{27} - 4 q^{29} - 8 q^{31} - 6 q^{33} - 4 q^{35} + 8 q^{37} - 18 q^{39}+ \cdots - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.75839 −1.59256 −0.796278 0.604931i \(-0.793201\pi\)
−0.796278 + 0.604931i \(0.793201\pi\)
\(4\) 0 0
\(5\) −1.29021 −0.577001 −0.288501 0.957480i \(-0.593157\pi\)
−0.288501 + 0.957480i \(0.593157\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 4.60870 1.53623
\(10\) 0 0
\(11\) −3.92967 −1.18484 −0.592420 0.805629i \(-0.701828\pi\)
−0.592420 + 0.805629i \(0.701828\pi\)
\(12\) 0 0
\(13\) −3.02708 −0.839562 −0.419781 0.907625i \(-0.637893\pi\)
−0.419781 + 0.907625i \(0.637893\pi\)
\(14\) 0 0
\(15\) 3.55891 0.918907
\(16\) 0 0
\(17\) 1.00000 0.242536
\(18\) 0 0
\(19\) −1.45247 −0.333219 −0.166609 0.986023i \(-0.553282\pi\)
−0.166609 + 0.986023i \(0.553282\pi\)
\(20\) 0 0
\(21\) 2.75839 0.601929
\(22\) 0 0
\(23\) −2.74235 −0.571820 −0.285910 0.958256i \(-0.592296\pi\)
−0.285910 + 0.958256i \(0.592296\pi\)
\(24\) 0 0
\(25\) −3.33535 −0.667069
\(26\) 0 0
\(27\) −4.43741 −0.853981
\(28\) 0 0
\(29\) 4.12449 0.765899 0.382950 0.923769i \(-0.374908\pi\)
0.382950 + 0.923769i \(0.374908\pi\)
\(30\) 0 0
\(31\) 5.90440 1.06046 0.530231 0.847853i \(-0.322105\pi\)
0.530231 + 0.847853i \(0.322105\pi\)
\(32\) 0 0
\(33\) 10.8396 1.88692
\(34\) 0 0
\(35\) 1.29021 0.218086
\(36\) 0 0
\(37\) 2.16107 0.355277 0.177638 0.984096i \(-0.443154\pi\)
0.177638 + 0.984096i \(0.443154\pi\)
\(38\) 0 0
\(39\) 8.34987 1.33705
\(40\) 0 0
\(41\) 10.3997 1.62415 0.812077 0.583551i \(-0.198337\pi\)
0.812077 + 0.583551i \(0.198337\pi\)
\(42\) 0 0
\(43\) −0.144202 −0.0219907 −0.0109953 0.999940i \(-0.503500\pi\)
−0.0109953 + 0.999940i \(0.503500\pi\)
\(44\) 0 0
\(45\) −5.94621 −0.886408
\(46\) 0 0
\(47\) 0.778926 0.113618 0.0568090 0.998385i \(-0.481907\pi\)
0.0568090 + 0.998385i \(0.481907\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −2.75839 −0.386251
\(52\) 0 0
\(53\) 3.76742 0.517495 0.258747 0.965945i \(-0.416690\pi\)
0.258747 + 0.965945i \(0.416690\pi\)
\(54\) 0 0
\(55\) 5.07012 0.683655
\(56\) 0 0
\(57\) 4.00646 0.530669
\(58\) 0 0
\(59\) −10.9905 −1.43084 −0.715421 0.698693i \(-0.753765\pi\)
−0.715421 + 0.698693i \(0.753765\pi\)
\(60\) 0 0
\(61\) 2.81623 0.360581 0.180291 0.983613i \(-0.442296\pi\)
0.180291 + 0.983613i \(0.442296\pi\)
\(62\) 0 0
\(63\) −4.60870 −0.580641
\(64\) 0 0
\(65\) 3.90559 0.484428
\(66\) 0 0
\(67\) 2.35105 0.287227 0.143613 0.989634i \(-0.454128\pi\)
0.143613 + 0.989634i \(0.454128\pi\)
\(68\) 0 0
\(69\) 7.56447 0.910656
\(70\) 0 0
\(71\) −9.21823 −1.09400 −0.547001 0.837132i \(-0.684231\pi\)
−0.547001 + 0.837132i \(0.684231\pi\)
\(72\) 0 0
\(73\) −1.02354 −0.119796 −0.0598979 0.998205i \(-0.519078\pi\)
−0.0598979 + 0.998205i \(0.519078\pi\)
\(74\) 0 0
\(75\) 9.20018 1.06235
\(76\) 0 0
\(77\) 3.92967 0.447828
\(78\) 0 0
\(79\) −6.93267 −0.779986 −0.389993 0.920818i \(-0.627523\pi\)
−0.389993 + 0.920818i \(0.627523\pi\)
\(80\) 0 0
\(81\) −1.58599 −0.176221
\(82\) 0 0
\(83\) 2.72771 0.299405 0.149702 0.988731i \(-0.452168\pi\)
0.149702 + 0.988731i \(0.452168\pi\)
\(84\) 0 0
\(85\) −1.29021 −0.139943
\(86\) 0 0
\(87\) −11.3769 −1.21974
\(88\) 0 0
\(89\) −3.41589 −0.362084 −0.181042 0.983475i \(-0.557947\pi\)
−0.181042 + 0.983475i \(0.557947\pi\)
\(90\) 0 0
\(91\) 3.02708 0.317325
\(92\) 0 0
\(93\) −16.2866 −1.68884
\(94\) 0 0
\(95\) 1.87399 0.192268
\(96\) 0 0
\(97\) 13.0575 1.32579 0.662894 0.748714i \(-0.269328\pi\)
0.662894 + 0.748714i \(0.269328\pi\)
\(98\) 0 0
\(99\) −18.1107 −1.82019
\(100\) 0 0
\(101\) 10.9873 1.09328 0.546639 0.837368i \(-0.315907\pi\)
0.546639 + 0.837368i \(0.315907\pi\)
\(102\) 0 0
\(103\) 10.1810 1.00316 0.501582 0.865110i \(-0.332752\pi\)
0.501582 + 0.865110i \(0.332752\pi\)
\(104\) 0 0
\(105\) −3.55891 −0.347314
\(106\) 0 0
\(107\) 11.1548 1.07838 0.539189 0.842185i \(-0.318731\pi\)
0.539189 + 0.842185i \(0.318731\pi\)
\(108\) 0 0
\(109\) −3.45012 −0.330462 −0.165231 0.986255i \(-0.552837\pi\)
−0.165231 + 0.986255i \(0.552837\pi\)
\(110\) 0 0
\(111\) −5.96105 −0.565798
\(112\) 0 0
\(113\) 8.15505 0.767162 0.383581 0.923507i \(-0.374691\pi\)
0.383581 + 0.923507i \(0.374691\pi\)
\(114\) 0 0
\(115\) 3.53823 0.329941
\(116\) 0 0
\(117\) −13.9509 −1.28976
\(118\) 0 0
\(119\) −1.00000 −0.0916698
\(120\) 0 0
\(121\) 4.44233 0.403848
\(122\) 0 0
\(123\) −28.6863 −2.58655
\(124\) 0 0
\(125\) 10.7544 0.961901
\(126\) 0 0
\(127\) −0.619018 −0.0549289 −0.0274645 0.999623i \(-0.508743\pi\)
−0.0274645 + 0.999623i \(0.508743\pi\)
\(128\) 0 0
\(129\) 0.397766 0.0350214
\(130\) 0 0
\(131\) −8.37716 −0.731916 −0.365958 0.930631i \(-0.619259\pi\)
−0.365958 + 0.930631i \(0.619259\pi\)
\(132\) 0 0
\(133\) 1.45247 0.125945
\(134\) 0 0
\(135\) 5.72521 0.492748
\(136\) 0 0
\(137\) −2.17259 −0.185617 −0.0928085 0.995684i \(-0.529584\pi\)
−0.0928085 + 0.995684i \(0.529584\pi\)
\(138\) 0 0
\(139\) −1.75152 −0.148562 −0.0742809 0.997237i \(-0.523666\pi\)
−0.0742809 + 0.997237i \(0.523666\pi\)
\(140\) 0 0
\(141\) −2.14858 −0.180943
\(142\) 0 0
\(143\) 11.8954 0.994747
\(144\) 0 0
\(145\) −5.32148 −0.441925
\(146\) 0 0
\(147\) −2.75839 −0.227508
\(148\) 0 0
\(149\) 0.861610 0.0705858 0.0352929 0.999377i \(-0.488764\pi\)
0.0352929 + 0.999377i \(0.488764\pi\)
\(150\) 0 0
\(151\) 3.59946 0.292920 0.146460 0.989217i \(-0.453212\pi\)
0.146460 + 0.989217i \(0.453212\pi\)
\(152\) 0 0
\(153\) 4.60870 0.372591
\(154\) 0 0
\(155\) −7.61794 −0.611888
\(156\) 0 0
\(157\) 10.0755 0.804109 0.402055 0.915616i \(-0.368296\pi\)
0.402055 + 0.915616i \(0.368296\pi\)
\(158\) 0 0
\(159\) −10.3920 −0.824139
\(160\) 0 0
\(161\) 2.74235 0.216128
\(162\) 0 0
\(163\) 2.85588 0.223689 0.111845 0.993726i \(-0.464324\pi\)
0.111845 + 0.993726i \(0.464324\pi\)
\(164\) 0 0
\(165\) −13.9854 −1.08876
\(166\) 0 0
\(167\) 25.2347 1.95272 0.976360 0.216151i \(-0.0693502\pi\)
0.976360 + 0.216151i \(0.0693502\pi\)
\(168\) 0 0
\(169\) −3.83677 −0.295136
\(170\) 0 0
\(171\) −6.69398 −0.511901
\(172\) 0 0
\(173\) 17.1083 1.30072 0.650358 0.759628i \(-0.274619\pi\)
0.650358 + 0.759628i \(0.274619\pi\)
\(174\) 0 0
\(175\) 3.33535 0.252129
\(176\) 0 0
\(177\) 30.3161 2.27870
\(178\) 0 0
\(179\) −5.37992 −0.402114 −0.201057 0.979579i \(-0.564438\pi\)
−0.201057 + 0.979579i \(0.564438\pi\)
\(180\) 0 0
\(181\) 12.6040 0.936851 0.468426 0.883503i \(-0.344821\pi\)
0.468426 + 0.883503i \(0.344821\pi\)
\(182\) 0 0
\(183\) −7.76825 −0.574246
\(184\) 0 0
\(185\) −2.78824 −0.204995
\(186\) 0 0
\(187\) −3.92967 −0.287366
\(188\) 0 0
\(189\) 4.43741 0.322774
\(190\) 0 0
\(191\) 13.7934 0.998054 0.499027 0.866586i \(-0.333691\pi\)
0.499027 + 0.866586i \(0.333691\pi\)
\(192\) 0 0
\(193\) 6.65245 0.478854 0.239427 0.970914i \(-0.423040\pi\)
0.239427 + 0.970914i \(0.423040\pi\)
\(194\) 0 0
\(195\) −10.7731 −0.771479
\(196\) 0 0
\(197\) −9.86898 −0.703136 −0.351568 0.936162i \(-0.614351\pi\)
−0.351568 + 0.936162i \(0.614351\pi\)
\(198\) 0 0
\(199\) −10.1040 −0.716250 −0.358125 0.933674i \(-0.616584\pi\)
−0.358125 + 0.933674i \(0.616584\pi\)
\(200\) 0 0
\(201\) −6.48511 −0.457425
\(202\) 0 0
\(203\) −4.12449 −0.289483
\(204\) 0 0
\(205\) −13.4178 −0.937139
\(206\) 0 0
\(207\) −12.6387 −0.878449
\(208\) 0 0
\(209\) 5.70772 0.394811
\(210\) 0 0
\(211\) 11.8529 0.815984 0.407992 0.912986i \(-0.366229\pi\)
0.407992 + 0.912986i \(0.366229\pi\)
\(212\) 0 0
\(213\) 25.4274 1.74226
\(214\) 0 0
\(215\) 0.186052 0.0126886
\(216\) 0 0
\(217\) −5.90440 −0.400817
\(218\) 0 0
\(219\) 2.82331 0.190781
\(220\) 0 0
\(221\) −3.02708 −0.203624
\(222\) 0 0
\(223\) 25.6464 1.71741 0.858704 0.512472i \(-0.171270\pi\)
0.858704 + 0.512472i \(0.171270\pi\)
\(224\) 0 0
\(225\) −15.3716 −1.02477
\(226\) 0 0
\(227\) −15.6657 −1.03977 −0.519884 0.854237i \(-0.674025\pi\)
−0.519884 + 0.854237i \(0.674025\pi\)
\(228\) 0 0
\(229\) −8.93961 −0.590746 −0.295373 0.955382i \(-0.595444\pi\)
−0.295373 + 0.955382i \(0.595444\pi\)
\(230\) 0 0
\(231\) −10.8396 −0.713190
\(232\) 0 0
\(233\) −27.7483 −1.81785 −0.908925 0.416960i \(-0.863095\pi\)
−0.908925 + 0.416960i \(0.863095\pi\)
\(234\) 0 0
\(235\) −1.00498 −0.0655578
\(236\) 0 0
\(237\) 19.1230 1.24217
\(238\) 0 0
\(239\) −0.951517 −0.0615485 −0.0307743 0.999526i \(-0.509797\pi\)
−0.0307743 + 0.999526i \(0.509797\pi\)
\(240\) 0 0
\(241\) −4.53858 −0.292356 −0.146178 0.989258i \(-0.546697\pi\)
−0.146178 + 0.989258i \(0.546697\pi\)
\(242\) 0 0
\(243\) 17.6870 1.13462
\(244\) 0 0
\(245\) −1.29021 −0.0824288
\(246\) 0 0
\(247\) 4.39674 0.279758
\(248\) 0 0
\(249\) −7.52407 −0.476819
\(250\) 0 0
\(251\) −9.51998 −0.600896 −0.300448 0.953798i \(-0.597136\pi\)
−0.300448 + 0.953798i \(0.597136\pi\)
\(252\) 0 0
\(253\) 10.7766 0.677516
\(254\) 0 0
\(255\) 3.55891 0.222868
\(256\) 0 0
\(257\) −27.9156 −1.74133 −0.870665 0.491876i \(-0.836311\pi\)
−0.870665 + 0.491876i \(0.836311\pi\)
\(258\) 0 0
\(259\) −2.16107 −0.134282
\(260\) 0 0
\(261\) 19.0085 1.17660
\(262\) 0 0
\(263\) 6.33759 0.390793 0.195396 0.980724i \(-0.437401\pi\)
0.195396 + 0.980724i \(0.437401\pi\)
\(264\) 0 0
\(265\) −4.86078 −0.298595
\(266\) 0 0
\(267\) 9.42236 0.576639
\(268\) 0 0
\(269\) 20.9665 1.27835 0.639174 0.769062i \(-0.279276\pi\)
0.639174 + 0.769062i \(0.279276\pi\)
\(270\) 0 0
\(271\) −24.7898 −1.50587 −0.752937 0.658092i \(-0.771364\pi\)
−0.752937 + 0.658092i \(0.771364\pi\)
\(272\) 0 0
\(273\) −8.34987 −0.505357
\(274\) 0 0
\(275\) 13.1068 0.790371
\(276\) 0 0
\(277\) −16.8201 −1.01062 −0.505312 0.862937i \(-0.668623\pi\)
−0.505312 + 0.862937i \(0.668623\pi\)
\(278\) 0 0
\(279\) 27.2116 1.62912
\(280\) 0 0
\(281\) −25.5535 −1.52439 −0.762196 0.647346i \(-0.775879\pi\)
−0.762196 + 0.647346i \(0.775879\pi\)
\(282\) 0 0
\(283\) −26.5441 −1.57788 −0.788942 0.614467i \(-0.789371\pi\)
−0.788942 + 0.614467i \(0.789371\pi\)
\(284\) 0 0
\(285\) −5.16920 −0.306197
\(286\) 0 0
\(287\) −10.3997 −0.613872
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) −36.0176 −2.11139
\(292\) 0 0
\(293\) −3.90321 −0.228028 −0.114014 0.993479i \(-0.536371\pi\)
−0.114014 + 0.993479i \(0.536371\pi\)
\(294\) 0 0
\(295\) 14.1801 0.825598
\(296\) 0 0
\(297\) 17.4376 1.01183
\(298\) 0 0
\(299\) 8.30133 0.480079
\(300\) 0 0
\(301\) 0.144202 0.00831169
\(302\) 0 0
\(303\) −30.3072 −1.74111
\(304\) 0 0
\(305\) −3.63354 −0.208056
\(306\) 0 0
\(307\) −22.1879 −1.26633 −0.633166 0.774016i \(-0.718245\pi\)
−0.633166 + 0.774016i \(0.718245\pi\)
\(308\) 0 0
\(309\) −28.0831 −1.59759
\(310\) 0 0
\(311\) −12.2149 −0.692644 −0.346322 0.938116i \(-0.612569\pi\)
−0.346322 + 0.938116i \(0.612569\pi\)
\(312\) 0 0
\(313\) 22.0216 1.24473 0.622366 0.782726i \(-0.286171\pi\)
0.622366 + 0.782726i \(0.286171\pi\)
\(314\) 0 0
\(315\) 5.94621 0.335031
\(316\) 0 0
\(317\) 25.1191 1.41083 0.705414 0.708795i \(-0.250761\pi\)
0.705414 + 0.708795i \(0.250761\pi\)
\(318\) 0 0
\(319\) −16.2079 −0.907469
\(320\) 0 0
\(321\) −30.7694 −1.71738
\(322\) 0 0
\(323\) −1.45247 −0.0808174
\(324\) 0 0
\(325\) 10.0964 0.560046
\(326\) 0 0
\(327\) 9.51677 0.526279
\(328\) 0 0
\(329\) −0.778926 −0.0429436
\(330\) 0 0
\(331\) −26.2391 −1.44223 −0.721117 0.692813i \(-0.756371\pi\)
−0.721117 + 0.692813i \(0.756371\pi\)
\(332\) 0 0
\(333\) 9.95970 0.545788
\(334\) 0 0
\(335\) −3.03336 −0.165730
\(336\) 0 0
\(337\) −29.8425 −1.62563 −0.812813 0.582525i \(-0.802065\pi\)
−0.812813 + 0.582525i \(0.802065\pi\)
\(338\) 0 0
\(339\) −22.4948 −1.22175
\(340\) 0 0
\(341\) −23.2024 −1.25648
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) −9.75979 −0.525450
\(346\) 0 0
\(347\) −11.2458 −0.603708 −0.301854 0.953354i \(-0.597606\pi\)
−0.301854 + 0.953354i \(0.597606\pi\)
\(348\) 0 0
\(349\) −6.03325 −0.322953 −0.161476 0.986877i \(-0.551626\pi\)
−0.161476 + 0.986877i \(0.551626\pi\)
\(350\) 0 0
\(351\) 13.4324 0.716969
\(352\) 0 0
\(353\) −1.29356 −0.0688495 −0.0344247 0.999407i \(-0.510960\pi\)
−0.0344247 + 0.999407i \(0.510960\pi\)
\(354\) 0 0
\(355\) 11.8935 0.631241
\(356\) 0 0
\(357\) 2.75839 0.145989
\(358\) 0 0
\(359\) −30.2891 −1.59860 −0.799299 0.600933i \(-0.794796\pi\)
−0.799299 + 0.600933i \(0.794796\pi\)
\(360\) 0 0
\(361\) −16.8903 −0.888965
\(362\) 0 0
\(363\) −12.2537 −0.643150
\(364\) 0 0
\(365\) 1.32058 0.0691223
\(366\) 0 0
\(367\) −35.1168 −1.83308 −0.916541 0.399941i \(-0.869031\pi\)
−0.916541 + 0.399941i \(0.869031\pi\)
\(368\) 0 0
\(369\) 47.9289 2.49508
\(370\) 0 0
\(371\) −3.76742 −0.195595
\(372\) 0 0
\(373\) 6.79540 0.351853 0.175926 0.984403i \(-0.443708\pi\)
0.175926 + 0.984403i \(0.443708\pi\)
\(374\) 0 0
\(375\) −29.6648 −1.53188
\(376\) 0 0
\(377\) −12.4852 −0.643020
\(378\) 0 0
\(379\) 23.6660 1.21564 0.607820 0.794075i \(-0.292044\pi\)
0.607820 + 0.794075i \(0.292044\pi\)
\(380\) 0 0
\(381\) 1.70749 0.0874774
\(382\) 0 0
\(383\) 35.6595 1.82211 0.911057 0.412280i \(-0.135267\pi\)
0.911057 + 0.412280i \(0.135267\pi\)
\(384\) 0 0
\(385\) −5.07012 −0.258397
\(386\) 0 0
\(387\) −0.664586 −0.0337828
\(388\) 0 0
\(389\) −11.4453 −0.580299 −0.290150 0.956981i \(-0.593705\pi\)
−0.290150 + 0.956981i \(0.593705\pi\)
\(390\) 0 0
\(391\) −2.74235 −0.138687
\(392\) 0 0
\(393\) 23.1074 1.16562
\(394\) 0 0
\(395\) 8.94463 0.450053
\(396\) 0 0
\(397\) 8.32376 0.417758 0.208879 0.977942i \(-0.433019\pi\)
0.208879 + 0.977942i \(0.433019\pi\)
\(398\) 0 0
\(399\) −4.00646 −0.200574
\(400\) 0 0
\(401\) −0.238688 −0.0119195 −0.00595976 0.999982i \(-0.501897\pi\)
−0.00595976 + 0.999982i \(0.501897\pi\)
\(402\) 0 0
\(403\) −17.8731 −0.890323
\(404\) 0 0
\(405\) 2.04627 0.101680
\(406\) 0 0
\(407\) −8.49228 −0.420947
\(408\) 0 0
\(409\) −13.9318 −0.688885 −0.344442 0.938807i \(-0.611932\pi\)
−0.344442 + 0.938807i \(0.611932\pi\)
\(410\) 0 0
\(411\) 5.99285 0.295605
\(412\) 0 0
\(413\) 10.9905 0.540808
\(414\) 0 0
\(415\) −3.51933 −0.172757
\(416\) 0 0
\(417\) 4.83136 0.236593
\(418\) 0 0
\(419\) −19.4728 −0.951309 −0.475655 0.879632i \(-0.657789\pi\)
−0.475655 + 0.879632i \(0.657789\pi\)
\(420\) 0 0
\(421\) −2.48294 −0.121011 −0.0605055 0.998168i \(-0.519271\pi\)
−0.0605055 + 0.998168i \(0.519271\pi\)
\(422\) 0 0
\(423\) 3.58984 0.174544
\(424\) 0 0
\(425\) −3.33535 −0.161788
\(426\) 0 0
\(427\) −2.81623 −0.136287
\(428\) 0 0
\(429\) −32.8122 −1.58419
\(430\) 0 0
\(431\) 7.27607 0.350476 0.175238 0.984526i \(-0.443931\pi\)
0.175238 + 0.984526i \(0.443931\pi\)
\(432\) 0 0
\(433\) 36.5277 1.75541 0.877704 0.479203i \(-0.159074\pi\)
0.877704 + 0.479203i \(0.159074\pi\)
\(434\) 0 0
\(435\) 14.6787 0.703790
\(436\) 0 0
\(437\) 3.98318 0.190541
\(438\) 0 0
\(439\) −7.62099 −0.363730 −0.181865 0.983324i \(-0.558213\pi\)
−0.181865 + 0.983324i \(0.558213\pi\)
\(440\) 0 0
\(441\) 4.60870 0.219462
\(442\) 0 0
\(443\) 1.40984 0.0669837 0.0334919 0.999439i \(-0.489337\pi\)
0.0334919 + 0.999439i \(0.489337\pi\)
\(444\) 0 0
\(445\) 4.40724 0.208923
\(446\) 0 0
\(447\) −2.37665 −0.112412
\(448\) 0 0
\(449\) 17.9454 0.846896 0.423448 0.905921i \(-0.360820\pi\)
0.423448 + 0.905921i \(0.360820\pi\)
\(450\) 0 0
\(451\) −40.8672 −1.92436
\(452\) 0 0
\(453\) −9.92870 −0.466491
\(454\) 0 0
\(455\) −3.90559 −0.183097
\(456\) 0 0
\(457\) −26.3854 −1.23426 −0.617129 0.786862i \(-0.711704\pi\)
−0.617129 + 0.786862i \(0.711704\pi\)
\(458\) 0 0
\(459\) −4.43741 −0.207121
\(460\) 0 0
\(461\) 39.4155 1.83576 0.917881 0.396856i \(-0.129899\pi\)
0.917881 + 0.396856i \(0.129899\pi\)
\(462\) 0 0
\(463\) −6.01921 −0.279736 −0.139868 0.990170i \(-0.544668\pi\)
−0.139868 + 0.990170i \(0.544668\pi\)
\(464\) 0 0
\(465\) 21.0132 0.974465
\(466\) 0 0
\(467\) 22.1884 1.02675 0.513377 0.858163i \(-0.328394\pi\)
0.513377 + 0.858163i \(0.328394\pi\)
\(468\) 0 0
\(469\) −2.35105 −0.108562
\(470\) 0 0
\(471\) −27.7920 −1.28059
\(472\) 0 0
\(473\) 0.566669 0.0260554
\(474\) 0 0
\(475\) 4.84448 0.222280
\(476\) 0 0
\(477\) 17.3629 0.794993
\(478\) 0 0
\(479\) 8.93363 0.408188 0.204094 0.978951i \(-0.434575\pi\)
0.204094 + 0.978951i \(0.434575\pi\)
\(480\) 0 0
\(481\) −6.54172 −0.298277
\(482\) 0 0
\(483\) −7.56447 −0.344196
\(484\) 0 0
\(485\) −16.8470 −0.764981
\(486\) 0 0
\(487\) −8.56471 −0.388104 −0.194052 0.980991i \(-0.562163\pi\)
−0.194052 + 0.980991i \(0.562163\pi\)
\(488\) 0 0
\(489\) −7.87761 −0.356238
\(490\) 0 0
\(491\) 43.9981 1.98561 0.992803 0.119757i \(-0.0382114\pi\)
0.992803 + 0.119757i \(0.0382114\pi\)
\(492\) 0 0
\(493\) 4.12449 0.185758
\(494\) 0 0
\(495\) 23.3667 1.05025
\(496\) 0 0
\(497\) 9.21823 0.413494
\(498\) 0 0
\(499\) −7.03332 −0.314855 −0.157427 0.987531i \(-0.550320\pi\)
−0.157427 + 0.987531i \(0.550320\pi\)
\(500\) 0 0
\(501\) −69.6071 −3.10981
\(502\) 0 0
\(503\) 11.8203 0.527040 0.263520 0.964654i \(-0.415116\pi\)
0.263520 + 0.964654i \(0.415116\pi\)
\(504\) 0 0
\(505\) −14.1760 −0.630823
\(506\) 0 0
\(507\) 10.5833 0.470021
\(508\) 0 0
\(509\) −20.0352 −0.888045 −0.444023 0.896016i \(-0.646449\pi\)
−0.444023 + 0.896016i \(0.646449\pi\)
\(510\) 0 0
\(511\) 1.02354 0.0452786
\(512\) 0 0
\(513\) 6.44519 0.284562
\(514\) 0 0
\(515\) −13.1357 −0.578827
\(516\) 0 0
\(517\) −3.06093 −0.134619
\(518\) 0 0
\(519\) −47.1912 −2.07146
\(520\) 0 0
\(521\) 8.85121 0.387779 0.193889 0.981023i \(-0.437890\pi\)
0.193889 + 0.981023i \(0.437890\pi\)
\(522\) 0 0
\(523\) 32.0496 1.40143 0.700716 0.713441i \(-0.252864\pi\)
0.700716 + 0.713441i \(0.252864\pi\)
\(524\) 0 0
\(525\) −9.20018 −0.401529
\(526\) 0 0
\(527\) 5.90440 0.257200
\(528\) 0 0
\(529\) −15.4795 −0.673021
\(530\) 0 0
\(531\) −50.6520 −2.19811
\(532\) 0 0
\(533\) −31.4806 −1.36358
\(534\) 0 0
\(535\) −14.3921 −0.622226
\(536\) 0 0
\(537\) 14.8399 0.640390
\(538\) 0 0
\(539\) −3.92967 −0.169263
\(540\) 0 0
\(541\) 34.3819 1.47819 0.739097 0.673599i \(-0.235253\pi\)
0.739097 + 0.673599i \(0.235253\pi\)
\(542\) 0 0
\(543\) −34.7668 −1.49199
\(544\) 0 0
\(545\) 4.45140 0.190677
\(546\) 0 0
\(547\) 2.22436 0.0951068 0.0475534 0.998869i \(-0.484858\pi\)
0.0475534 + 0.998869i \(0.484858\pi\)
\(548\) 0 0
\(549\) 12.9792 0.553937
\(550\) 0 0
\(551\) −5.99069 −0.255212
\(552\) 0 0
\(553\) 6.93267 0.294807
\(554\) 0 0
\(555\) 7.69104 0.326466
\(556\) 0 0
\(557\) −19.3197 −0.818604 −0.409302 0.912399i \(-0.634228\pi\)
−0.409302 + 0.912399i \(0.634228\pi\)
\(558\) 0 0
\(559\) 0.436513 0.0184625
\(560\) 0 0
\(561\) 10.8396 0.457646
\(562\) 0 0
\(563\) −15.9783 −0.673403 −0.336702 0.941611i \(-0.609311\pi\)
−0.336702 + 0.941611i \(0.609311\pi\)
\(564\) 0 0
\(565\) −10.5218 −0.442654
\(566\) 0 0
\(567\) 1.58599 0.0666055
\(568\) 0 0
\(569\) −28.0056 −1.17406 −0.587028 0.809567i \(-0.699702\pi\)
−0.587028 + 0.809567i \(0.699702\pi\)
\(570\) 0 0
\(571\) −5.11050 −0.213868 −0.106934 0.994266i \(-0.534103\pi\)
−0.106934 + 0.994266i \(0.534103\pi\)
\(572\) 0 0
\(573\) −38.0475 −1.58946
\(574\) 0 0
\(575\) 9.14670 0.381444
\(576\) 0 0
\(577\) −32.9436 −1.37146 −0.685729 0.727857i \(-0.740517\pi\)
−0.685729 + 0.727857i \(0.740517\pi\)
\(578\) 0 0
\(579\) −18.3500 −0.762601
\(580\) 0 0
\(581\) −2.72771 −0.113164
\(582\) 0 0
\(583\) −14.8047 −0.613149
\(584\) 0 0
\(585\) 17.9997 0.744195
\(586\) 0 0
\(587\) −14.3178 −0.590959 −0.295479 0.955349i \(-0.595479\pi\)
−0.295479 + 0.955349i \(0.595479\pi\)
\(588\) 0 0
\(589\) −8.57594 −0.353366
\(590\) 0 0
\(591\) 27.2225 1.11978
\(592\) 0 0
\(593\) 35.9635 1.47685 0.738423 0.674338i \(-0.235571\pi\)
0.738423 + 0.674338i \(0.235571\pi\)
\(594\) 0 0
\(595\) 1.29021 0.0528936
\(596\) 0 0
\(597\) 27.8706 1.14067
\(598\) 0 0
\(599\) −9.72582 −0.397386 −0.198693 0.980062i \(-0.563670\pi\)
−0.198693 + 0.980062i \(0.563670\pi\)
\(600\) 0 0
\(601\) −33.1659 −1.35287 −0.676433 0.736504i \(-0.736475\pi\)
−0.676433 + 0.736504i \(0.736475\pi\)
\(602\) 0 0
\(603\) 10.8353 0.441247
\(604\) 0 0
\(605\) −5.73155 −0.233021
\(606\) 0 0
\(607\) −14.7413 −0.598332 −0.299166 0.954201i \(-0.596708\pi\)
−0.299166 + 0.954201i \(0.596708\pi\)
\(608\) 0 0
\(609\) 11.3769 0.461017
\(610\) 0 0
\(611\) −2.35787 −0.0953894
\(612\) 0 0
\(613\) −34.7578 −1.40385 −0.701927 0.712249i \(-0.747677\pi\)
−0.701927 + 0.712249i \(0.747677\pi\)
\(614\) 0 0
\(615\) 37.0114 1.49245
\(616\) 0 0
\(617\) −40.2723 −1.62130 −0.810650 0.585531i \(-0.800886\pi\)
−0.810650 + 0.585531i \(0.800886\pi\)
\(618\) 0 0
\(619\) 23.3453 0.938327 0.469164 0.883111i \(-0.344555\pi\)
0.469164 + 0.883111i \(0.344555\pi\)
\(620\) 0 0
\(621\) 12.1690 0.488324
\(622\) 0 0
\(623\) 3.41589 0.136855
\(624\) 0 0
\(625\) 2.80127 0.112051
\(626\) 0 0
\(627\) −15.7441 −0.628759
\(628\) 0 0
\(629\) 2.16107 0.0861673
\(630\) 0 0
\(631\) −41.2545 −1.64232 −0.821158 0.570701i \(-0.806672\pi\)
−0.821158 + 0.570701i \(0.806672\pi\)
\(632\) 0 0
\(633\) −32.6948 −1.29950
\(634\) 0 0
\(635\) 0.798666 0.0316941
\(636\) 0 0
\(637\) −3.02708 −0.119937
\(638\) 0 0
\(639\) −42.4840 −1.68064
\(640\) 0 0
\(641\) 33.3902 1.31884 0.659418 0.751777i \(-0.270803\pi\)
0.659418 + 0.751777i \(0.270803\pi\)
\(642\) 0 0
\(643\) −30.8226 −1.21553 −0.607763 0.794119i \(-0.707933\pi\)
−0.607763 + 0.794119i \(0.707933\pi\)
\(644\) 0 0
\(645\) −0.513204 −0.0202074
\(646\) 0 0
\(647\) −5.04316 −0.198267 −0.0991335 0.995074i \(-0.531607\pi\)
−0.0991335 + 0.995074i \(0.531607\pi\)
\(648\) 0 0
\(649\) 43.1891 1.69532
\(650\) 0 0
\(651\) 16.2866 0.638323
\(652\) 0 0
\(653\) −24.8776 −0.973535 −0.486768 0.873532i \(-0.661824\pi\)
−0.486768 + 0.873532i \(0.661824\pi\)
\(654\) 0 0
\(655\) 10.8083 0.422316
\(656\) 0 0
\(657\) −4.71717 −0.184034
\(658\) 0 0
\(659\) 20.1111 0.783416 0.391708 0.920090i \(-0.371884\pi\)
0.391708 + 0.920090i \(0.371884\pi\)
\(660\) 0 0
\(661\) −29.3305 −1.14082 −0.570412 0.821359i \(-0.693216\pi\)
−0.570412 + 0.821359i \(0.693216\pi\)
\(662\) 0 0
\(663\) 8.34987 0.324282
\(664\) 0 0
\(665\) −1.87399 −0.0726703
\(666\) 0 0
\(667\) −11.3108 −0.437957
\(668\) 0 0
\(669\) −70.7426 −2.73507
\(670\) 0 0
\(671\) −11.0669 −0.427231
\(672\) 0 0
\(673\) −2.92023 −0.112567 −0.0562834 0.998415i \(-0.517925\pi\)
−0.0562834 + 0.998415i \(0.517925\pi\)
\(674\) 0 0
\(675\) 14.8003 0.569664
\(676\) 0 0
\(677\) 2.20861 0.0848838 0.0424419 0.999099i \(-0.486486\pi\)
0.0424419 + 0.999099i \(0.486486\pi\)
\(678\) 0 0
\(679\) −13.0575 −0.501100
\(680\) 0 0
\(681\) 43.2120 1.65589
\(682\) 0 0
\(683\) 29.7005 1.13646 0.568230 0.822870i \(-0.307629\pi\)
0.568230 + 0.822870i \(0.307629\pi\)
\(684\) 0 0
\(685\) 2.80311 0.107101
\(686\) 0 0
\(687\) 24.6589 0.940795
\(688\) 0 0
\(689\) −11.4043 −0.434469
\(690\) 0 0
\(691\) −6.99178 −0.265980 −0.132990 0.991117i \(-0.542458\pi\)
−0.132990 + 0.991117i \(0.542458\pi\)
\(692\) 0 0
\(693\) 18.1107 0.687968
\(694\) 0 0
\(695\) 2.25983 0.0857203
\(696\) 0 0
\(697\) 10.3997 0.393915
\(698\) 0 0
\(699\) 76.5405 2.89503
\(700\) 0 0
\(701\) −42.6627 −1.61135 −0.805674 0.592360i \(-0.798197\pi\)
−0.805674 + 0.592360i \(0.798197\pi\)
\(702\) 0 0
\(703\) −3.13888 −0.118385
\(704\) 0 0
\(705\) 2.77213 0.104404
\(706\) 0 0
\(707\) −10.9873 −0.413220
\(708\) 0 0
\(709\) −19.4110 −0.728996 −0.364498 0.931204i \(-0.618759\pi\)
−0.364498 + 0.931204i \(0.618759\pi\)
\(710\) 0 0
\(711\) −31.9506 −1.19824
\(712\) 0 0
\(713\) −16.1920 −0.606393
\(714\) 0 0
\(715\) −15.3477 −0.573970
\(716\) 0 0
\(717\) 2.62465 0.0980194
\(718\) 0 0
\(719\) 31.5643 1.17715 0.588576 0.808442i \(-0.299689\pi\)
0.588576 + 0.808442i \(0.299689\pi\)
\(720\) 0 0
\(721\) −10.1810 −0.379160
\(722\) 0 0
\(723\) 12.5192 0.465592
\(724\) 0 0
\(725\) −13.7566 −0.510908
\(726\) 0 0
\(727\) 25.9764 0.963410 0.481705 0.876333i \(-0.340018\pi\)
0.481705 + 0.876333i \(0.340018\pi\)
\(728\) 0 0
\(729\) −44.0297 −1.63073
\(730\) 0 0
\(731\) −0.144202 −0.00533352
\(732\) 0 0
\(733\) 29.2473 1.08027 0.540137 0.841577i \(-0.318373\pi\)
0.540137 + 0.841577i \(0.318373\pi\)
\(734\) 0 0
\(735\) 3.55891 0.131272
\(736\) 0 0
\(737\) −9.23887 −0.340318
\(738\) 0 0
\(739\) −1.50508 −0.0553652 −0.0276826 0.999617i \(-0.508813\pi\)
−0.0276826 + 0.999617i \(0.508813\pi\)
\(740\) 0 0
\(741\) −12.1279 −0.445530
\(742\) 0 0
\(743\) 0.915905 0.0336013 0.0168006 0.999859i \(-0.494652\pi\)
0.0168006 + 0.999859i \(0.494652\pi\)
\(744\) 0 0
\(745\) −1.11166 −0.0407281
\(746\) 0 0
\(747\) 12.5712 0.459955
\(748\) 0 0
\(749\) −11.1548 −0.407589
\(750\) 0 0
\(751\) −12.7202 −0.464166 −0.232083 0.972696i \(-0.574554\pi\)
−0.232083 + 0.972696i \(0.574554\pi\)
\(752\) 0 0
\(753\) 26.2598 0.956960
\(754\) 0 0
\(755\) −4.64407 −0.169015
\(756\) 0 0
\(757\) 6.48632 0.235749 0.117875 0.993028i \(-0.462392\pi\)
0.117875 + 0.993028i \(0.462392\pi\)
\(758\) 0 0
\(759\) −29.7259 −1.07898
\(760\) 0 0
\(761\) −46.2819 −1.67772 −0.838858 0.544350i \(-0.816776\pi\)
−0.838858 + 0.544350i \(0.816776\pi\)
\(762\) 0 0
\(763\) 3.45012 0.124903
\(764\) 0 0
\(765\) −5.94621 −0.214986
\(766\) 0 0
\(767\) 33.2692 1.20128
\(768\) 0 0
\(769\) −43.9980 −1.58661 −0.793305 0.608825i \(-0.791641\pi\)
−0.793305 + 0.608825i \(0.791641\pi\)
\(770\) 0 0
\(771\) 77.0022 2.77316
\(772\) 0 0
\(773\) −46.9173 −1.68750 −0.843749 0.536738i \(-0.819656\pi\)
−0.843749 + 0.536738i \(0.819656\pi\)
\(774\) 0 0
\(775\) −19.6932 −0.707401
\(776\) 0 0
\(777\) 5.96105 0.213852
\(778\) 0 0
\(779\) −15.1052 −0.541198
\(780\) 0 0
\(781\) 36.2246 1.29622
\(782\) 0 0
\(783\) −18.3021 −0.654063
\(784\) 0 0
\(785\) −12.9995 −0.463972
\(786\) 0 0
\(787\) 13.2391 0.471924 0.235962 0.971762i \(-0.424176\pi\)
0.235962 + 0.971762i \(0.424176\pi\)
\(788\) 0 0
\(789\) −17.4815 −0.622359
\(790\) 0 0
\(791\) −8.15505 −0.289960
\(792\) 0 0
\(793\) −8.52496 −0.302730
\(794\) 0 0
\(795\) 13.4079 0.475530
\(796\) 0 0
\(797\) 8.53741 0.302411 0.151205 0.988502i \(-0.451685\pi\)
0.151205 + 0.988502i \(0.451685\pi\)
\(798\) 0 0
\(799\) 0.778926 0.0275564
\(800\) 0 0
\(801\) −15.7428 −0.556246
\(802\) 0 0
\(803\) 4.02216 0.141939
\(804\) 0 0
\(805\) −3.53823 −0.124706
\(806\) 0 0
\(807\) −57.8337 −2.03584
\(808\) 0 0
\(809\) 37.8270 1.32993 0.664964 0.746875i \(-0.268447\pi\)
0.664964 + 0.746875i \(0.268447\pi\)
\(810\) 0 0
\(811\) 39.9844 1.40404 0.702021 0.712156i \(-0.252281\pi\)
0.702021 + 0.712156i \(0.252281\pi\)
\(812\) 0 0
\(813\) 68.3799 2.39819
\(814\) 0 0
\(815\) −3.68469 −0.129069
\(816\) 0 0
\(817\) 0.209449 0.00732770
\(818\) 0 0
\(819\) 13.9509 0.487484
\(820\) 0 0
\(821\) 45.0117 1.57092 0.785459 0.618913i \(-0.212427\pi\)
0.785459 + 0.618913i \(0.212427\pi\)
\(822\) 0 0
\(823\) 43.6830 1.52270 0.761348 0.648344i \(-0.224538\pi\)
0.761348 + 0.648344i \(0.224538\pi\)
\(824\) 0 0
\(825\) −36.1537 −1.25871
\(826\) 0 0
\(827\) 7.70896 0.268067 0.134033 0.990977i \(-0.457207\pi\)
0.134033 + 0.990977i \(0.457207\pi\)
\(828\) 0 0
\(829\) −17.2803 −0.600171 −0.300086 0.953912i \(-0.597015\pi\)
−0.300086 + 0.953912i \(0.597015\pi\)
\(830\) 0 0
\(831\) 46.3964 1.60947
\(832\) 0 0
\(833\) 1.00000 0.0346479
\(834\) 0 0
\(835\) −32.5582 −1.12672
\(836\) 0 0
\(837\) −26.2003 −0.905613
\(838\) 0 0
\(839\) −19.9727 −0.689533 −0.344766 0.938689i \(-0.612042\pi\)
−0.344766 + 0.938689i \(0.612042\pi\)
\(840\) 0 0
\(841\) −11.9886 −0.413398
\(842\) 0 0
\(843\) 70.4863 2.42768
\(844\) 0 0
\(845\) 4.95025 0.170294
\(846\) 0 0
\(847\) −4.44233 −0.152640
\(848\) 0 0
\(849\) 73.2190 2.51287
\(850\) 0 0
\(851\) −5.92641 −0.203155
\(852\) 0 0
\(853\) 29.5400 1.01143 0.505715 0.862701i \(-0.331229\pi\)
0.505715 + 0.862701i \(0.331229\pi\)
\(854\) 0 0
\(855\) 8.63667 0.295368
\(856\) 0 0
\(857\) 21.9361 0.749323 0.374661 0.927162i \(-0.377759\pi\)
0.374661 + 0.927162i \(0.377759\pi\)
\(858\) 0 0
\(859\) 36.7294 1.25319 0.626596 0.779344i \(-0.284448\pi\)
0.626596 + 0.779344i \(0.284448\pi\)
\(860\) 0 0
\(861\) 28.6863 0.977625
\(862\) 0 0
\(863\) 54.6780 1.86126 0.930631 0.365958i \(-0.119259\pi\)
0.930631 + 0.365958i \(0.119259\pi\)
\(864\) 0 0
\(865\) −22.0733 −0.750515
\(866\) 0 0
\(867\) −2.75839 −0.0936797
\(868\) 0 0
\(869\) 27.2431 0.924159
\(870\) 0 0
\(871\) −7.11683 −0.241145
\(872\) 0 0
\(873\) 60.1780 2.03672
\(874\) 0 0
\(875\) −10.7544 −0.363565
\(876\) 0 0
\(877\) −35.5141 −1.19923 −0.599613 0.800290i \(-0.704679\pi\)
−0.599613 + 0.800290i \(0.704679\pi\)
\(878\) 0 0
\(879\) 10.7666 0.363147
\(880\) 0 0
\(881\) 34.6323 1.16679 0.583397 0.812187i \(-0.301723\pi\)
0.583397 + 0.812187i \(0.301723\pi\)
\(882\) 0 0
\(883\) 20.7500 0.698294 0.349147 0.937068i \(-0.386471\pi\)
0.349147 + 0.937068i \(0.386471\pi\)
\(884\) 0 0
\(885\) −39.1142 −1.31481
\(886\) 0 0
\(887\) 40.2243 1.35060 0.675300 0.737543i \(-0.264014\pi\)
0.675300 + 0.737543i \(0.264014\pi\)
\(888\) 0 0
\(889\) 0.619018 0.0207612
\(890\) 0 0
\(891\) 6.23243 0.208794
\(892\) 0 0
\(893\) −1.13136 −0.0378597
\(894\) 0 0
\(895\) 6.94126 0.232021
\(896\) 0 0
\(897\) −22.8983 −0.764552
\(898\) 0 0
\(899\) 24.3527 0.812206
\(900\) 0 0
\(901\) 3.76742 0.125511
\(902\) 0 0
\(903\) −0.397766 −0.0132368
\(904\) 0 0
\(905\) −16.2619 −0.540564
\(906\) 0 0
\(907\) 19.0850 0.633706 0.316853 0.948475i \(-0.397374\pi\)
0.316853 + 0.948475i \(0.397374\pi\)
\(908\) 0 0
\(909\) 50.6372 1.67953
\(910\) 0 0
\(911\) 41.0238 1.35918 0.679590 0.733593i \(-0.262158\pi\)
0.679590 + 0.733593i \(0.262158\pi\)
\(912\) 0 0
\(913\) −10.7190 −0.354747
\(914\) 0 0
\(915\) 10.0227 0.331341
\(916\) 0 0
\(917\) 8.37716 0.276638
\(918\) 0 0
\(919\) −21.7218 −0.716536 −0.358268 0.933619i \(-0.616633\pi\)
−0.358268 + 0.933619i \(0.616633\pi\)
\(920\) 0 0
\(921\) 61.2029 2.01670
\(922\) 0 0
\(923\) 27.9043 0.918483
\(924\) 0 0
\(925\) −7.20790 −0.236994
\(926\) 0 0
\(927\) 46.9212 1.54109
\(928\) 0 0
\(929\) −21.1377 −0.693505 −0.346752 0.937957i \(-0.612716\pi\)
−0.346752 + 0.937957i \(0.612716\pi\)
\(930\) 0 0
\(931\) −1.45247 −0.0476027
\(932\) 0 0
\(933\) 33.6934 1.10307
\(934\) 0 0
\(935\) 5.07012 0.165811
\(936\) 0 0
\(937\) −58.4445 −1.90930 −0.954649 0.297733i \(-0.903770\pi\)
−0.954649 + 0.297733i \(0.903770\pi\)
\(938\) 0 0
\(939\) −60.7440 −1.98231
\(940\) 0 0
\(941\) −7.34959 −0.239590 −0.119795 0.992799i \(-0.538224\pi\)
−0.119795 + 0.992799i \(0.538224\pi\)
\(942\) 0 0
\(943\) −28.5195 −0.928724
\(944\) 0 0
\(945\) −5.72521 −0.186241
\(946\) 0 0
\(947\) −4.88408 −0.158711 −0.0793557 0.996846i \(-0.525286\pi\)
−0.0793557 + 0.996846i \(0.525286\pi\)
\(948\) 0 0
\(949\) 3.09833 0.100576
\(950\) 0 0
\(951\) −69.2882 −2.24682
\(952\) 0 0
\(953\) −35.5542 −1.15171 −0.575857 0.817550i \(-0.695331\pi\)
−0.575857 + 0.817550i \(0.695331\pi\)
\(954\) 0 0
\(955\) −17.7964 −0.575878
\(956\) 0 0
\(957\) 44.7077 1.44519
\(958\) 0 0
\(959\) 2.17259 0.0701566
\(960\) 0 0
\(961\) 3.86192 0.124578
\(962\) 0 0
\(963\) 51.4093 1.65664
\(964\) 0 0
\(965\) −8.58308 −0.276299
\(966\) 0 0
\(967\) −4.27193 −0.137376 −0.0686880 0.997638i \(-0.521881\pi\)
−0.0686880 + 0.997638i \(0.521881\pi\)
\(968\) 0 0
\(969\) 4.00646 0.128706
\(970\) 0 0
\(971\) 33.9390 1.08915 0.544577 0.838711i \(-0.316690\pi\)
0.544577 + 0.838711i \(0.316690\pi\)
\(972\) 0 0
\(973\) 1.75152 0.0561511
\(974\) 0 0
\(975\) −27.8497 −0.891904
\(976\) 0 0
\(977\) −0.163504 −0.00523096 −0.00261548 0.999997i \(-0.500833\pi\)
−0.00261548 + 0.999997i \(0.500833\pi\)
\(978\) 0 0
\(979\) 13.4233 0.429012
\(980\) 0 0
\(981\) −15.9006 −0.507666
\(982\) 0 0
\(983\) 1.06979 0.0341209 0.0170604 0.999854i \(-0.494569\pi\)
0.0170604 + 0.999854i \(0.494569\pi\)
\(984\) 0 0
\(985\) 12.7331 0.405710
\(986\) 0 0
\(987\) 2.14858 0.0683901
\(988\) 0 0
\(989\) 0.395454 0.0125747
\(990\) 0 0
\(991\) −46.4429 −1.47531 −0.737654 0.675179i \(-0.764066\pi\)
−0.737654 + 0.675179i \(0.764066\pi\)
\(992\) 0 0
\(993\) 72.3777 2.29684
\(994\) 0 0
\(995\) 13.0363 0.413277
\(996\) 0 0
\(997\) −20.7666 −0.657686 −0.328843 0.944385i \(-0.606659\pi\)
−0.328843 + 0.944385i \(0.606659\pi\)
\(998\) 0 0
\(999\) −9.58954 −0.303400
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7616.2.a.bv.1.2 6
4.3 odd 2 7616.2.a.cd.1.5 6
8.3 odd 2 3808.2.a.g.1.2 6
8.5 even 2 3808.2.a.o.1.5 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3808.2.a.g.1.2 6 8.3 odd 2
3808.2.a.o.1.5 yes 6 8.5 even 2
7616.2.a.bv.1.2 6 1.1 even 1 trivial
7616.2.a.cd.1.5 6 4.3 odd 2