Properties

Label 7616.2.a.bv.1.1
Level $7616$
Weight $2$
Character 7616.1
Self dual yes
Analytic conductor $60.814$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7616,2,Mod(1,7616)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7616, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7616.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7616 = 2^{6} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7616.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.8140661794\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.147697840.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 10x^{4} + 10x^{3} + 18x^{2} - 16x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 3808)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-2.18379\) of defining polynomial
Character \(\chi\) \(=\) 7616.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.18379 q^{3} +3.11205 q^{5} -1.00000 q^{7} +7.13652 q^{9} +1.84951 q^{11} +5.61227 q^{13} -9.90811 q^{15} +1.00000 q^{17} -4.50640 q^{19} +3.18379 q^{21} +6.03193 q^{23} +4.68484 q^{25} -13.1698 q^{27} -7.37503 q^{29} -0.507231 q^{31} -5.88844 q^{33} -3.11205 q^{35} -10.3544 q^{37} -17.8683 q^{39} +0.176337 q^{41} -2.57897 q^{43} +22.2092 q^{45} -9.01133 q^{47} +1.00000 q^{49} -3.18379 q^{51} -9.46796 q^{53} +5.75576 q^{55} +14.3474 q^{57} -3.36714 q^{59} -9.30246 q^{61} -7.13652 q^{63} +17.4657 q^{65} -3.89541 q^{67} -19.2044 q^{69} +9.87609 q^{71} -1.50777 q^{73} -14.9156 q^{75} -1.84951 q^{77} -11.8534 q^{79} +20.5204 q^{81} -1.70681 q^{83} +3.11205 q^{85} +23.4806 q^{87} -7.48581 q^{89} -5.61227 q^{91} +1.61492 q^{93} -14.0241 q^{95} +13.9046 q^{97} +13.1990 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 4 q^{3} + 4 q^{5} - 6 q^{7} + 8 q^{9} - 8 q^{11} + 4 q^{13} + 6 q^{17} - 18 q^{19} + 4 q^{21} + 6 q^{23} + 12 q^{25} - 10 q^{27} - 4 q^{29} - 8 q^{31} - 6 q^{33} - 4 q^{35} + 8 q^{37} - 18 q^{39}+ \cdots - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.18379 −1.83816 −0.919081 0.394068i \(-0.871067\pi\)
−0.919081 + 0.394068i \(0.871067\pi\)
\(4\) 0 0
\(5\) 3.11205 1.39175 0.695875 0.718163i \(-0.255017\pi\)
0.695875 + 0.718163i \(0.255017\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 7.13652 2.37884
\(10\) 0 0
\(11\) 1.84951 0.557647 0.278824 0.960342i \(-0.410055\pi\)
0.278824 + 0.960342i \(0.410055\pi\)
\(12\) 0 0
\(13\) 5.61227 1.55656 0.778282 0.627915i \(-0.216091\pi\)
0.778282 + 0.627915i \(0.216091\pi\)
\(14\) 0 0
\(15\) −9.90811 −2.55826
\(16\) 0 0
\(17\) 1.00000 0.242536
\(18\) 0 0
\(19\) −4.50640 −1.03384 −0.516920 0.856034i \(-0.672921\pi\)
−0.516920 + 0.856034i \(0.672921\pi\)
\(20\) 0 0
\(21\) 3.18379 0.694760
\(22\) 0 0
\(23\) 6.03193 1.25774 0.628872 0.777509i \(-0.283517\pi\)
0.628872 + 0.777509i \(0.283517\pi\)
\(24\) 0 0
\(25\) 4.68484 0.936969
\(26\) 0 0
\(27\) −13.1698 −2.53453
\(28\) 0 0
\(29\) −7.37503 −1.36951 −0.684755 0.728774i \(-0.740091\pi\)
−0.684755 + 0.728774i \(0.740091\pi\)
\(30\) 0 0
\(31\) −0.507231 −0.0911014 −0.0455507 0.998962i \(-0.514504\pi\)
−0.0455507 + 0.998962i \(0.514504\pi\)
\(32\) 0 0
\(33\) −5.88844 −1.02505
\(34\) 0 0
\(35\) −3.11205 −0.526032
\(36\) 0 0
\(37\) −10.3544 −1.70226 −0.851130 0.524955i \(-0.824082\pi\)
−0.851130 + 0.524955i \(0.824082\pi\)
\(38\) 0 0
\(39\) −17.8683 −2.86122
\(40\) 0 0
\(41\) 0.176337 0.0275392 0.0137696 0.999905i \(-0.495617\pi\)
0.0137696 + 0.999905i \(0.495617\pi\)
\(42\) 0 0
\(43\) −2.57897 −0.393290 −0.196645 0.980475i \(-0.563005\pi\)
−0.196645 + 0.980475i \(0.563005\pi\)
\(44\) 0 0
\(45\) 22.2092 3.31075
\(46\) 0 0
\(47\) −9.01133 −1.31444 −0.657219 0.753700i \(-0.728267\pi\)
−0.657219 + 0.753700i \(0.728267\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −3.18379 −0.445820
\(52\) 0 0
\(53\) −9.46796 −1.30052 −0.650262 0.759710i \(-0.725341\pi\)
−0.650262 + 0.759710i \(0.725341\pi\)
\(54\) 0 0
\(55\) 5.75576 0.776106
\(56\) 0 0
\(57\) 14.3474 1.90036
\(58\) 0 0
\(59\) −3.36714 −0.438364 −0.219182 0.975684i \(-0.570339\pi\)
−0.219182 + 0.975684i \(0.570339\pi\)
\(60\) 0 0
\(61\) −9.30246 −1.19106 −0.595529 0.803334i \(-0.703058\pi\)
−0.595529 + 0.803334i \(0.703058\pi\)
\(62\) 0 0
\(63\) −7.13652 −0.899117
\(64\) 0 0
\(65\) 17.4657 2.16635
\(66\) 0 0
\(67\) −3.89541 −0.475900 −0.237950 0.971277i \(-0.576475\pi\)
−0.237950 + 0.971277i \(0.576475\pi\)
\(68\) 0 0
\(69\) −19.2044 −2.31194
\(70\) 0 0
\(71\) 9.87609 1.17208 0.586038 0.810284i \(-0.300687\pi\)
0.586038 + 0.810284i \(0.300687\pi\)
\(72\) 0 0
\(73\) −1.50777 −0.176471 −0.0882356 0.996100i \(-0.528123\pi\)
−0.0882356 + 0.996100i \(0.528123\pi\)
\(74\) 0 0
\(75\) −14.9156 −1.72230
\(76\) 0 0
\(77\) −1.84951 −0.210771
\(78\) 0 0
\(79\) −11.8534 −1.33361 −0.666805 0.745232i \(-0.732339\pi\)
−0.666805 + 0.745232i \(0.732339\pi\)
\(80\) 0 0
\(81\) 20.5204 2.28004
\(82\) 0 0
\(83\) −1.70681 −0.187347 −0.0936733 0.995603i \(-0.529861\pi\)
−0.0936733 + 0.995603i \(0.529861\pi\)
\(84\) 0 0
\(85\) 3.11205 0.337549
\(86\) 0 0
\(87\) 23.4806 2.51738
\(88\) 0 0
\(89\) −7.48581 −0.793494 −0.396747 0.917928i \(-0.629861\pi\)
−0.396747 + 0.917928i \(0.629861\pi\)
\(90\) 0 0
\(91\) −5.61227 −0.588326
\(92\) 0 0
\(93\) 1.61492 0.167459
\(94\) 0 0
\(95\) −14.0241 −1.43885
\(96\) 0 0
\(97\) 13.9046 1.41180 0.705901 0.708311i \(-0.250542\pi\)
0.705901 + 0.708311i \(0.250542\pi\)
\(98\) 0 0
\(99\) 13.1990 1.32655
\(100\) 0 0
\(101\) −12.4295 −1.23678 −0.618391 0.785870i \(-0.712215\pi\)
−0.618391 + 0.785870i \(0.712215\pi\)
\(102\) 0 0
\(103\) −15.3495 −1.51244 −0.756218 0.654320i \(-0.772955\pi\)
−0.756218 + 0.654320i \(0.772955\pi\)
\(104\) 0 0
\(105\) 9.90811 0.966933
\(106\) 0 0
\(107\) −14.4365 −1.39563 −0.697815 0.716278i \(-0.745844\pi\)
−0.697815 + 0.716278i \(0.745844\pi\)
\(108\) 0 0
\(109\) −3.25636 −0.311903 −0.155952 0.987765i \(-0.549844\pi\)
−0.155952 + 0.987765i \(0.549844\pi\)
\(110\) 0 0
\(111\) 32.9664 3.12903
\(112\) 0 0
\(113\) −12.3428 −1.16111 −0.580555 0.814221i \(-0.697164\pi\)
−0.580555 + 0.814221i \(0.697164\pi\)
\(114\) 0 0
\(115\) 18.7717 1.75047
\(116\) 0 0
\(117\) 40.0521 3.70282
\(118\) 0 0
\(119\) −1.00000 −0.0916698
\(120\) 0 0
\(121\) −7.57932 −0.689029
\(122\) 0 0
\(123\) −0.561419 −0.0506214
\(124\) 0 0
\(125\) −0.980779 −0.0877235
\(126\) 0 0
\(127\) 13.3797 1.18726 0.593630 0.804738i \(-0.297694\pi\)
0.593630 + 0.804738i \(0.297694\pi\)
\(128\) 0 0
\(129\) 8.21091 0.722930
\(130\) 0 0
\(131\) 21.3868 1.86857 0.934287 0.356521i \(-0.116037\pi\)
0.934287 + 0.356521i \(0.116037\pi\)
\(132\) 0 0
\(133\) 4.50640 0.390754
\(134\) 0 0
\(135\) −40.9851 −3.52744
\(136\) 0 0
\(137\) −18.2721 −1.56109 −0.780546 0.625098i \(-0.785059\pi\)
−0.780546 + 0.625098i \(0.785059\pi\)
\(138\) 0 0
\(139\) 6.82534 0.578918 0.289459 0.957190i \(-0.406525\pi\)
0.289459 + 0.957190i \(0.406525\pi\)
\(140\) 0 0
\(141\) 28.6902 2.41615
\(142\) 0 0
\(143\) 10.3799 0.868014
\(144\) 0 0
\(145\) −22.9515 −1.90602
\(146\) 0 0
\(147\) −3.18379 −0.262595
\(148\) 0 0
\(149\) 1.31560 0.107778 0.0538891 0.998547i \(-0.482838\pi\)
0.0538891 + 0.998547i \(0.482838\pi\)
\(150\) 0 0
\(151\) 14.6945 1.19582 0.597911 0.801562i \(-0.295997\pi\)
0.597911 + 0.801562i \(0.295997\pi\)
\(152\) 0 0
\(153\) 7.13652 0.576954
\(154\) 0 0
\(155\) −1.57853 −0.126790
\(156\) 0 0
\(157\) 24.7087 1.97197 0.985984 0.166840i \(-0.0533565\pi\)
0.985984 + 0.166840i \(0.0533565\pi\)
\(158\) 0 0
\(159\) 30.1440 2.39057
\(160\) 0 0
\(161\) −6.03193 −0.475382
\(162\) 0 0
\(163\) −8.34355 −0.653517 −0.326759 0.945108i \(-0.605956\pi\)
−0.326759 + 0.945108i \(0.605956\pi\)
\(164\) 0 0
\(165\) −18.3251 −1.42661
\(166\) 0 0
\(167\) 17.6987 1.36957 0.684785 0.728745i \(-0.259896\pi\)
0.684785 + 0.728745i \(0.259896\pi\)
\(168\) 0 0
\(169\) 18.4976 1.42289
\(170\) 0 0
\(171\) −32.1600 −2.45934
\(172\) 0 0
\(173\) −8.68450 −0.660271 −0.330135 0.943934i \(-0.607094\pi\)
−0.330135 + 0.943934i \(0.607094\pi\)
\(174\) 0 0
\(175\) −4.68484 −0.354141
\(176\) 0 0
\(177\) 10.7203 0.805784
\(178\) 0 0
\(179\) −13.2652 −0.991487 −0.495743 0.868469i \(-0.665104\pi\)
−0.495743 + 0.868469i \(0.665104\pi\)
\(180\) 0 0
\(181\) −4.48091 −0.333063 −0.166532 0.986036i \(-0.553257\pi\)
−0.166532 + 0.986036i \(0.553257\pi\)
\(182\) 0 0
\(183\) 29.6171 2.18936
\(184\) 0 0
\(185\) −32.2235 −2.36912
\(186\) 0 0
\(187\) 1.84951 0.135249
\(188\) 0 0
\(189\) 13.1698 0.957963
\(190\) 0 0
\(191\) −4.47473 −0.323780 −0.161890 0.986809i \(-0.551759\pi\)
−0.161890 + 0.986809i \(0.551759\pi\)
\(192\) 0 0
\(193\) −7.97711 −0.574205 −0.287103 0.957900i \(-0.592692\pi\)
−0.287103 + 0.957900i \(0.592692\pi\)
\(194\) 0 0
\(195\) −55.6070 −3.98210
\(196\) 0 0
\(197\) 12.2507 0.872825 0.436412 0.899747i \(-0.356249\pi\)
0.436412 + 0.899747i \(0.356249\pi\)
\(198\) 0 0
\(199\) −8.82009 −0.625240 −0.312620 0.949878i \(-0.601207\pi\)
−0.312620 + 0.949878i \(0.601207\pi\)
\(200\) 0 0
\(201\) 12.4022 0.874781
\(202\) 0 0
\(203\) 7.37503 0.517626
\(204\) 0 0
\(205\) 0.548768 0.0383276
\(206\) 0 0
\(207\) 43.0470 2.99197
\(208\) 0 0
\(209\) −8.33462 −0.576518
\(210\) 0 0
\(211\) 3.37102 0.232070 0.116035 0.993245i \(-0.462981\pi\)
0.116035 + 0.993245i \(0.462981\pi\)
\(212\) 0 0
\(213\) −31.4434 −2.15447
\(214\) 0 0
\(215\) −8.02589 −0.547361
\(216\) 0 0
\(217\) 0.507231 0.0344331
\(218\) 0 0
\(219\) 4.80042 0.324383
\(220\) 0 0
\(221\) 5.61227 0.377522
\(222\) 0 0
\(223\) −19.5883 −1.31173 −0.655866 0.754877i \(-0.727697\pi\)
−0.655866 + 0.754877i \(0.727697\pi\)
\(224\) 0 0
\(225\) 33.4335 2.22890
\(226\) 0 0
\(227\) 6.89634 0.457726 0.228863 0.973459i \(-0.426499\pi\)
0.228863 + 0.973459i \(0.426499\pi\)
\(228\) 0 0
\(229\) −13.1425 −0.868478 −0.434239 0.900798i \(-0.642983\pi\)
−0.434239 + 0.900798i \(0.642983\pi\)
\(230\) 0 0
\(231\) 5.88844 0.387431
\(232\) 0 0
\(233\) 18.9448 1.24111 0.620557 0.784161i \(-0.286906\pi\)
0.620557 + 0.784161i \(0.286906\pi\)
\(234\) 0 0
\(235\) −28.0437 −1.82937
\(236\) 0 0
\(237\) 37.7387 2.45139
\(238\) 0 0
\(239\) −7.26079 −0.469661 −0.234831 0.972036i \(-0.575454\pi\)
−0.234831 + 0.972036i \(0.575454\pi\)
\(240\) 0 0
\(241\) −6.38077 −0.411021 −0.205511 0.978655i \(-0.565886\pi\)
−0.205511 + 0.978655i \(0.565886\pi\)
\(242\) 0 0
\(243\) −25.8231 −1.65655
\(244\) 0 0
\(245\) 3.11205 0.198821
\(246\) 0 0
\(247\) −25.2911 −1.60924
\(248\) 0 0
\(249\) 5.43412 0.344373
\(250\) 0 0
\(251\) −26.1642 −1.65147 −0.825736 0.564057i \(-0.809240\pi\)
−0.825736 + 0.564057i \(0.809240\pi\)
\(252\) 0 0
\(253\) 11.1561 0.701378
\(254\) 0 0
\(255\) −9.90811 −0.620470
\(256\) 0 0
\(257\) 10.1670 0.634198 0.317099 0.948392i \(-0.397291\pi\)
0.317099 + 0.948392i \(0.397291\pi\)
\(258\) 0 0
\(259\) 10.3544 0.643394
\(260\) 0 0
\(261\) −52.6321 −3.25785
\(262\) 0 0
\(263\) 24.4026 1.50473 0.752365 0.658747i \(-0.228913\pi\)
0.752365 + 0.658747i \(0.228913\pi\)
\(264\) 0 0
\(265\) −29.4647 −1.81000
\(266\) 0 0
\(267\) 23.8332 1.45857
\(268\) 0 0
\(269\) 11.4364 0.697292 0.348646 0.937254i \(-0.386642\pi\)
0.348646 + 0.937254i \(0.386642\pi\)
\(270\) 0 0
\(271\) −4.11951 −0.250242 −0.125121 0.992141i \(-0.539932\pi\)
−0.125121 + 0.992141i \(0.539932\pi\)
\(272\) 0 0
\(273\) 17.8683 1.08144
\(274\) 0 0
\(275\) 8.66465 0.522498
\(276\) 0 0
\(277\) 17.5133 1.05227 0.526135 0.850401i \(-0.323640\pi\)
0.526135 + 0.850401i \(0.323640\pi\)
\(278\) 0 0
\(279\) −3.61987 −0.216716
\(280\) 0 0
\(281\) −20.3210 −1.21225 −0.606125 0.795370i \(-0.707277\pi\)
−0.606125 + 0.795370i \(0.707277\pi\)
\(282\) 0 0
\(283\) −2.90331 −0.172584 −0.0862919 0.996270i \(-0.527502\pi\)
−0.0862919 + 0.996270i \(0.527502\pi\)
\(284\) 0 0
\(285\) 44.6499 2.64483
\(286\) 0 0
\(287\) −0.176337 −0.0104088
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) −44.2694 −2.59512
\(292\) 0 0
\(293\) 22.4801 1.31330 0.656651 0.754194i \(-0.271972\pi\)
0.656651 + 0.754194i \(0.271972\pi\)
\(294\) 0 0
\(295\) −10.4787 −0.610093
\(296\) 0 0
\(297\) −24.3577 −1.41338
\(298\) 0 0
\(299\) 33.8528 1.95776
\(300\) 0 0
\(301\) 2.57897 0.148650
\(302\) 0 0
\(303\) 39.5730 2.27341
\(304\) 0 0
\(305\) −28.9497 −1.65766
\(306\) 0 0
\(307\) 4.06046 0.231743 0.115871 0.993264i \(-0.463034\pi\)
0.115871 + 0.993264i \(0.463034\pi\)
\(308\) 0 0
\(309\) 48.8697 2.78010
\(310\) 0 0
\(311\) 25.0053 1.41792 0.708959 0.705250i \(-0.249165\pi\)
0.708959 + 0.705250i \(0.249165\pi\)
\(312\) 0 0
\(313\) −18.7763 −1.06130 −0.530650 0.847591i \(-0.678052\pi\)
−0.530650 + 0.847591i \(0.678052\pi\)
\(314\) 0 0
\(315\) −22.2092 −1.25135
\(316\) 0 0
\(317\) −23.6062 −1.32586 −0.662929 0.748682i \(-0.730687\pi\)
−0.662929 + 0.748682i \(0.730687\pi\)
\(318\) 0 0
\(319\) −13.6402 −0.763703
\(320\) 0 0
\(321\) 45.9629 2.56540
\(322\) 0 0
\(323\) −4.50640 −0.250743
\(324\) 0 0
\(325\) 26.2926 1.45845
\(326\) 0 0
\(327\) 10.3676 0.573329
\(328\) 0 0
\(329\) 9.01133 0.496811
\(330\) 0 0
\(331\) −9.00795 −0.495122 −0.247561 0.968872i \(-0.579629\pi\)
−0.247561 + 0.968872i \(0.579629\pi\)
\(332\) 0 0
\(333\) −73.8947 −4.04940
\(334\) 0 0
\(335\) −12.1227 −0.662333
\(336\) 0 0
\(337\) 12.8813 0.701689 0.350844 0.936434i \(-0.385895\pi\)
0.350844 + 0.936434i \(0.385895\pi\)
\(338\) 0 0
\(339\) 39.2968 2.13431
\(340\) 0 0
\(341\) −0.938128 −0.0508025
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) −59.7650 −3.21764
\(346\) 0 0
\(347\) 4.92381 0.264324 0.132162 0.991228i \(-0.457808\pi\)
0.132162 + 0.991228i \(0.457808\pi\)
\(348\) 0 0
\(349\) 12.8085 0.685622 0.342811 0.939404i \(-0.388621\pi\)
0.342811 + 0.939404i \(0.388621\pi\)
\(350\) 0 0
\(351\) −73.9126 −3.94516
\(352\) 0 0
\(353\) 5.80004 0.308705 0.154352 0.988016i \(-0.450671\pi\)
0.154352 + 0.988016i \(0.450671\pi\)
\(354\) 0 0
\(355\) 30.7349 1.63124
\(356\) 0 0
\(357\) 3.18379 0.168504
\(358\) 0 0
\(359\) −21.6651 −1.14344 −0.571719 0.820450i \(-0.693723\pi\)
−0.571719 + 0.820450i \(0.693723\pi\)
\(360\) 0 0
\(361\) 1.30764 0.0688231
\(362\) 0 0
\(363\) 24.1310 1.26655
\(364\) 0 0
\(365\) −4.69225 −0.245604
\(366\) 0 0
\(367\) 4.80370 0.250751 0.125375 0.992109i \(-0.459986\pi\)
0.125375 + 0.992109i \(0.459986\pi\)
\(368\) 0 0
\(369\) 1.25843 0.0655113
\(370\) 0 0
\(371\) 9.46796 0.491552
\(372\) 0 0
\(373\) 8.56349 0.443401 0.221700 0.975115i \(-0.428839\pi\)
0.221700 + 0.975115i \(0.428839\pi\)
\(374\) 0 0
\(375\) 3.12259 0.161250
\(376\) 0 0
\(377\) −41.3907 −2.13173
\(378\) 0 0
\(379\) 21.9474 1.12736 0.563681 0.825992i \(-0.309385\pi\)
0.563681 + 0.825992i \(0.309385\pi\)
\(380\) 0 0
\(381\) −42.5983 −2.18238
\(382\) 0 0
\(383\) 37.0174 1.89150 0.945751 0.324892i \(-0.105328\pi\)
0.945751 + 0.324892i \(0.105328\pi\)
\(384\) 0 0
\(385\) −5.75576 −0.293340
\(386\) 0 0
\(387\) −18.4049 −0.935574
\(388\) 0 0
\(389\) −23.2409 −1.17836 −0.589181 0.808001i \(-0.700549\pi\)
−0.589181 + 0.808001i \(0.700549\pi\)
\(390\) 0 0
\(391\) 6.03193 0.305048
\(392\) 0 0
\(393\) −68.0911 −3.43474
\(394\) 0 0
\(395\) −36.8883 −1.85605
\(396\) 0 0
\(397\) 5.62311 0.282216 0.141108 0.989994i \(-0.454934\pi\)
0.141108 + 0.989994i \(0.454934\pi\)
\(398\) 0 0
\(399\) −14.3474 −0.718270
\(400\) 0 0
\(401\) 20.3066 1.01406 0.507032 0.861927i \(-0.330742\pi\)
0.507032 + 0.861927i \(0.330742\pi\)
\(402\) 0 0
\(403\) −2.84672 −0.141805
\(404\) 0 0
\(405\) 63.8604 3.17325
\(406\) 0 0
\(407\) −19.1506 −0.949261
\(408\) 0 0
\(409\) 14.5104 0.717492 0.358746 0.933435i \(-0.383204\pi\)
0.358746 + 0.933435i \(0.383204\pi\)
\(410\) 0 0
\(411\) 58.1746 2.86954
\(412\) 0 0
\(413\) 3.36714 0.165686
\(414\) 0 0
\(415\) −5.31167 −0.260740
\(416\) 0 0
\(417\) −21.7305 −1.06415
\(418\) 0 0
\(419\) −32.3875 −1.58223 −0.791116 0.611667i \(-0.790499\pi\)
−0.791116 + 0.611667i \(0.790499\pi\)
\(420\) 0 0
\(421\) −5.30325 −0.258464 −0.129232 0.991614i \(-0.541251\pi\)
−0.129232 + 0.991614i \(0.541251\pi\)
\(422\) 0 0
\(423\) −64.3096 −3.12684
\(424\) 0 0
\(425\) 4.68484 0.227248
\(426\) 0 0
\(427\) 9.30246 0.450178
\(428\) 0 0
\(429\) −33.0475 −1.59555
\(430\) 0 0
\(431\) −24.3623 −1.17349 −0.586746 0.809771i \(-0.699591\pi\)
−0.586746 + 0.809771i \(0.699591\pi\)
\(432\) 0 0
\(433\) 19.0987 0.917826 0.458913 0.888481i \(-0.348239\pi\)
0.458913 + 0.888481i \(0.348239\pi\)
\(434\) 0 0
\(435\) 73.0727 3.50357
\(436\) 0 0
\(437\) −27.1823 −1.30030
\(438\) 0 0
\(439\) −34.9043 −1.66589 −0.832946 0.553354i \(-0.813348\pi\)
−0.832946 + 0.553354i \(0.813348\pi\)
\(440\) 0 0
\(441\) 7.13652 0.339834
\(442\) 0 0
\(443\) −39.1983 −1.86237 −0.931183 0.364552i \(-0.881222\pi\)
−0.931183 + 0.364552i \(0.881222\pi\)
\(444\) 0 0
\(445\) −23.2962 −1.10435
\(446\) 0 0
\(447\) −4.18860 −0.198114
\(448\) 0 0
\(449\) −18.4030 −0.868493 −0.434246 0.900794i \(-0.642985\pi\)
−0.434246 + 0.900794i \(0.642985\pi\)
\(450\) 0 0
\(451\) 0.326136 0.0153571
\(452\) 0 0
\(453\) −46.7843 −2.19812
\(454\) 0 0
\(455\) −17.4657 −0.818803
\(456\) 0 0
\(457\) −11.7635 −0.550271 −0.275136 0.961405i \(-0.588723\pi\)
−0.275136 + 0.961405i \(0.588723\pi\)
\(458\) 0 0
\(459\) −13.1698 −0.614715
\(460\) 0 0
\(461\) 33.2983 1.55086 0.775428 0.631436i \(-0.217534\pi\)
0.775428 + 0.631436i \(0.217534\pi\)
\(462\) 0 0
\(463\) 5.68338 0.264129 0.132065 0.991241i \(-0.457839\pi\)
0.132065 + 0.991241i \(0.457839\pi\)
\(464\) 0 0
\(465\) 5.02570 0.233061
\(466\) 0 0
\(467\) −38.3971 −1.77681 −0.888403 0.459064i \(-0.848185\pi\)
−0.888403 + 0.459064i \(0.848185\pi\)
\(468\) 0 0
\(469\) 3.89541 0.179873
\(470\) 0 0
\(471\) −78.6673 −3.62480
\(472\) 0 0
\(473\) −4.76983 −0.219317
\(474\) 0 0
\(475\) −21.1118 −0.968675
\(476\) 0 0
\(477\) −67.5683 −3.09374
\(478\) 0 0
\(479\) 3.56259 0.162779 0.0813893 0.996682i \(-0.474064\pi\)
0.0813893 + 0.996682i \(0.474064\pi\)
\(480\) 0 0
\(481\) −58.1119 −2.64968
\(482\) 0 0
\(483\) 19.2044 0.873830
\(484\) 0 0
\(485\) 43.2719 1.96488
\(486\) 0 0
\(487\) −23.5851 −1.06874 −0.534371 0.845250i \(-0.679452\pi\)
−0.534371 + 0.845250i \(0.679452\pi\)
\(488\) 0 0
\(489\) 26.5641 1.20127
\(490\) 0 0
\(491\) −14.1037 −0.636492 −0.318246 0.948008i \(-0.603094\pi\)
−0.318246 + 0.948008i \(0.603094\pi\)
\(492\) 0 0
\(493\) −7.37503 −0.332155
\(494\) 0 0
\(495\) 41.0761 1.84623
\(496\) 0 0
\(497\) −9.87609 −0.443003
\(498\) 0 0
\(499\) 32.3990 1.45038 0.725188 0.688551i \(-0.241753\pi\)
0.725188 + 0.688551i \(0.241753\pi\)
\(500\) 0 0
\(501\) −56.3491 −2.51749
\(502\) 0 0
\(503\) 16.5150 0.736367 0.368184 0.929753i \(-0.379980\pi\)
0.368184 + 0.929753i \(0.379980\pi\)
\(504\) 0 0
\(505\) −38.6812 −1.72129
\(506\) 0 0
\(507\) −58.8924 −2.61551
\(508\) 0 0
\(509\) −30.9498 −1.37183 −0.685913 0.727684i \(-0.740597\pi\)
−0.685913 + 0.727684i \(0.740597\pi\)
\(510\) 0 0
\(511\) 1.50777 0.0666998
\(512\) 0 0
\(513\) 59.3485 2.62030
\(514\) 0 0
\(515\) −47.7685 −2.10493
\(516\) 0 0
\(517\) −16.6665 −0.732993
\(518\) 0 0
\(519\) 27.6496 1.21368
\(520\) 0 0
\(521\) −33.4868 −1.46708 −0.733541 0.679645i \(-0.762134\pi\)
−0.733541 + 0.679645i \(0.762134\pi\)
\(522\) 0 0
\(523\) 10.9080 0.476974 0.238487 0.971146i \(-0.423348\pi\)
0.238487 + 0.971146i \(0.423348\pi\)
\(524\) 0 0
\(525\) 14.9156 0.650969
\(526\) 0 0
\(527\) −0.507231 −0.0220953
\(528\) 0 0
\(529\) 13.3842 0.581920
\(530\) 0 0
\(531\) −24.0296 −1.04280
\(532\) 0 0
\(533\) 0.989649 0.0428664
\(534\) 0 0
\(535\) −44.9271 −1.94237
\(536\) 0 0
\(537\) 42.2336 1.82251
\(538\) 0 0
\(539\) 1.84951 0.0796639
\(540\) 0 0
\(541\) 39.9806 1.71890 0.859450 0.511219i \(-0.170806\pi\)
0.859450 + 0.511219i \(0.170806\pi\)
\(542\) 0 0
\(543\) 14.2663 0.612224
\(544\) 0 0
\(545\) −10.1340 −0.434091
\(546\) 0 0
\(547\) −14.2550 −0.609502 −0.304751 0.952432i \(-0.598573\pi\)
−0.304751 + 0.952432i \(0.598573\pi\)
\(548\) 0 0
\(549\) −66.3872 −2.83334
\(550\) 0 0
\(551\) 33.2349 1.41585
\(552\) 0 0
\(553\) 11.8534 0.504057
\(554\) 0 0
\(555\) 102.593 4.35483
\(556\) 0 0
\(557\) 31.5818 1.33817 0.669083 0.743188i \(-0.266687\pi\)
0.669083 + 0.743188i \(0.266687\pi\)
\(558\) 0 0
\(559\) −14.4739 −0.612181
\(560\) 0 0
\(561\) −5.88844 −0.248610
\(562\) 0 0
\(563\) −38.5652 −1.62533 −0.812665 0.582732i \(-0.801984\pi\)
−0.812665 + 0.582732i \(0.801984\pi\)
\(564\) 0 0
\(565\) −38.4113 −1.61598
\(566\) 0 0
\(567\) −20.5204 −0.861775
\(568\) 0 0
\(569\) −7.83080 −0.328284 −0.164142 0.986437i \(-0.552486\pi\)
−0.164142 + 0.986437i \(0.552486\pi\)
\(570\) 0 0
\(571\) −5.40294 −0.226106 −0.113053 0.993589i \(-0.536063\pi\)
−0.113053 + 0.993589i \(0.536063\pi\)
\(572\) 0 0
\(573\) 14.2466 0.595160
\(574\) 0 0
\(575\) 28.2586 1.17847
\(576\) 0 0
\(577\) 37.9284 1.57898 0.789489 0.613764i \(-0.210345\pi\)
0.789489 + 0.613764i \(0.210345\pi\)
\(578\) 0 0
\(579\) 25.3975 1.05548
\(580\) 0 0
\(581\) 1.70681 0.0708103
\(582\) 0 0
\(583\) −17.5111 −0.725234
\(584\) 0 0
\(585\) 124.644 5.15340
\(586\) 0 0
\(587\) 30.2997 1.25060 0.625302 0.780383i \(-0.284976\pi\)
0.625302 + 0.780383i \(0.284976\pi\)
\(588\) 0 0
\(589\) 2.28579 0.0941842
\(590\) 0 0
\(591\) −39.0036 −1.60439
\(592\) 0 0
\(593\) −3.82803 −0.157198 −0.0785992 0.996906i \(-0.525045\pi\)
−0.0785992 + 0.996906i \(0.525045\pi\)
\(594\) 0 0
\(595\) −3.11205 −0.127582
\(596\) 0 0
\(597\) 28.0813 1.14929
\(598\) 0 0
\(599\) −23.6279 −0.965409 −0.482704 0.875783i \(-0.660345\pi\)
−0.482704 + 0.875783i \(0.660345\pi\)
\(600\) 0 0
\(601\) 5.61162 0.228903 0.114451 0.993429i \(-0.463489\pi\)
0.114451 + 0.993429i \(0.463489\pi\)
\(602\) 0 0
\(603\) −27.7996 −1.13209
\(604\) 0 0
\(605\) −23.5872 −0.958957
\(606\) 0 0
\(607\) 31.5340 1.27992 0.639962 0.768406i \(-0.278950\pi\)
0.639962 + 0.768406i \(0.278950\pi\)
\(608\) 0 0
\(609\) −23.4806 −0.951481
\(610\) 0 0
\(611\) −50.5741 −2.04601
\(612\) 0 0
\(613\) −31.4283 −1.26938 −0.634689 0.772767i \(-0.718872\pi\)
−0.634689 + 0.772767i \(0.718872\pi\)
\(614\) 0 0
\(615\) −1.74716 −0.0704524
\(616\) 0 0
\(617\) −14.2555 −0.573905 −0.286952 0.957945i \(-0.592642\pi\)
−0.286952 + 0.957945i \(0.592642\pi\)
\(618\) 0 0
\(619\) −6.08036 −0.244390 −0.122195 0.992506i \(-0.538993\pi\)
−0.122195 + 0.992506i \(0.538993\pi\)
\(620\) 0 0
\(621\) −79.4394 −3.18779
\(622\) 0 0
\(623\) 7.48581 0.299913
\(624\) 0 0
\(625\) −26.4765 −1.05906
\(626\) 0 0
\(627\) 26.5357 1.05973
\(628\) 0 0
\(629\) −10.3544 −0.412859
\(630\) 0 0
\(631\) −5.88983 −0.234470 −0.117235 0.993104i \(-0.537403\pi\)
−0.117235 + 0.993104i \(0.537403\pi\)
\(632\) 0 0
\(633\) −10.7326 −0.426583
\(634\) 0 0
\(635\) 41.6384 1.65237
\(636\) 0 0
\(637\) 5.61227 0.222366
\(638\) 0 0
\(639\) 70.4809 2.78818
\(640\) 0 0
\(641\) 6.12352 0.241865 0.120932 0.992661i \(-0.461412\pi\)
0.120932 + 0.992661i \(0.461412\pi\)
\(642\) 0 0
\(643\) 37.6734 1.48569 0.742847 0.669462i \(-0.233475\pi\)
0.742847 + 0.669462i \(0.233475\pi\)
\(644\) 0 0
\(645\) 25.5528 1.00614
\(646\) 0 0
\(647\) 40.5122 1.59270 0.796350 0.604836i \(-0.206761\pi\)
0.796350 + 0.604836i \(0.206761\pi\)
\(648\) 0 0
\(649\) −6.22754 −0.244452
\(650\) 0 0
\(651\) −1.61492 −0.0632936
\(652\) 0 0
\(653\) −11.2530 −0.440365 −0.220183 0.975459i \(-0.570665\pi\)
−0.220183 + 0.975459i \(0.570665\pi\)
\(654\) 0 0
\(655\) 66.5568 2.60059
\(656\) 0 0
\(657\) −10.7602 −0.419797
\(658\) 0 0
\(659\) −25.0186 −0.974587 −0.487294 0.873238i \(-0.662016\pi\)
−0.487294 + 0.873238i \(0.662016\pi\)
\(660\) 0 0
\(661\) −35.1914 −1.36879 −0.684393 0.729113i \(-0.739933\pi\)
−0.684393 + 0.729113i \(0.739933\pi\)
\(662\) 0 0
\(663\) −17.8683 −0.693947
\(664\) 0 0
\(665\) 14.0241 0.543833
\(666\) 0 0
\(667\) −44.4857 −1.72249
\(668\) 0 0
\(669\) 62.3652 2.41118
\(670\) 0 0
\(671\) −17.2050 −0.664190
\(672\) 0 0
\(673\) −19.5402 −0.753221 −0.376610 0.926372i \(-0.622910\pi\)
−0.376610 + 0.926372i \(0.622910\pi\)
\(674\) 0 0
\(675\) −61.6986 −2.37478
\(676\) 0 0
\(677\) 29.7159 1.14208 0.571038 0.820923i \(-0.306541\pi\)
0.571038 + 0.820923i \(0.306541\pi\)
\(678\) 0 0
\(679\) −13.9046 −0.533611
\(680\) 0 0
\(681\) −21.9565 −0.841375
\(682\) 0 0
\(683\) −26.0686 −0.997486 −0.498743 0.866750i \(-0.666205\pi\)
−0.498743 + 0.866750i \(0.666205\pi\)
\(684\) 0 0
\(685\) −56.8637 −2.17265
\(686\) 0 0
\(687\) 41.8429 1.59640
\(688\) 0 0
\(689\) −53.1367 −2.02435
\(690\) 0 0
\(691\) 39.2377 1.49267 0.746335 0.665570i \(-0.231812\pi\)
0.746335 + 0.665570i \(0.231812\pi\)
\(692\) 0 0
\(693\) −13.1990 −0.501390
\(694\) 0 0
\(695\) 21.2408 0.805709
\(696\) 0 0
\(697\) 0.176337 0.00667922
\(698\) 0 0
\(699\) −60.3163 −2.28137
\(700\) 0 0
\(701\) −2.30117 −0.0869141 −0.0434570 0.999055i \(-0.513837\pi\)
−0.0434570 + 0.999055i \(0.513837\pi\)
\(702\) 0 0
\(703\) 46.6613 1.75986
\(704\) 0 0
\(705\) 89.2853 3.36268
\(706\) 0 0
\(707\) 12.4295 0.467460
\(708\) 0 0
\(709\) 2.18085 0.0819035 0.0409518 0.999161i \(-0.486961\pi\)
0.0409518 + 0.999161i \(0.486961\pi\)
\(710\) 0 0
\(711\) −84.5920 −3.17245
\(712\) 0 0
\(713\) −3.05958 −0.114582
\(714\) 0 0
\(715\) 32.3029 1.20806
\(716\) 0 0
\(717\) 23.1168 0.863313
\(718\) 0 0
\(719\) −9.06273 −0.337983 −0.168991 0.985618i \(-0.554051\pi\)
−0.168991 + 0.985618i \(0.554051\pi\)
\(720\) 0 0
\(721\) 15.3495 0.571647
\(722\) 0 0
\(723\) 20.3150 0.755524
\(724\) 0 0
\(725\) −34.5509 −1.28319
\(726\) 0 0
\(727\) 47.6743 1.76814 0.884070 0.467354i \(-0.154793\pi\)
0.884070 + 0.467354i \(0.154793\pi\)
\(728\) 0 0
\(729\) 20.6543 0.764974
\(730\) 0 0
\(731\) −2.57897 −0.0953868
\(732\) 0 0
\(733\) 17.1971 0.635189 0.317594 0.948227i \(-0.397125\pi\)
0.317594 + 0.948227i \(0.397125\pi\)
\(734\) 0 0
\(735\) −9.90811 −0.365466
\(736\) 0 0
\(737\) −7.20458 −0.265384
\(738\) 0 0
\(739\) −5.99838 −0.220654 −0.110327 0.993895i \(-0.535190\pi\)
−0.110327 + 0.993895i \(0.535190\pi\)
\(740\) 0 0
\(741\) 80.5217 2.95804
\(742\) 0 0
\(743\) −2.05061 −0.0752296 −0.0376148 0.999292i \(-0.511976\pi\)
−0.0376148 + 0.999292i \(0.511976\pi\)
\(744\) 0 0
\(745\) 4.09421 0.150000
\(746\) 0 0
\(747\) −12.1807 −0.445668
\(748\) 0 0
\(749\) 14.4365 0.527499
\(750\) 0 0
\(751\) 33.7674 1.23219 0.616096 0.787671i \(-0.288713\pi\)
0.616096 + 0.787671i \(0.288713\pi\)
\(752\) 0 0
\(753\) 83.3014 3.03567
\(754\) 0 0
\(755\) 45.7300 1.66429
\(756\) 0 0
\(757\) −13.9018 −0.505269 −0.252635 0.967562i \(-0.581297\pi\)
−0.252635 + 0.967562i \(0.581297\pi\)
\(758\) 0 0
\(759\) −35.5187 −1.28925
\(760\) 0 0
\(761\) 26.9919 0.978456 0.489228 0.872156i \(-0.337279\pi\)
0.489228 + 0.872156i \(0.337279\pi\)
\(762\) 0 0
\(763\) 3.25636 0.117888
\(764\) 0 0
\(765\) 22.2092 0.802975
\(766\) 0 0
\(767\) −18.8973 −0.682341
\(768\) 0 0
\(769\) −41.3033 −1.48944 −0.744718 0.667379i \(-0.767416\pi\)
−0.744718 + 0.667379i \(0.767416\pi\)
\(770\) 0 0
\(771\) −32.3695 −1.16576
\(772\) 0 0
\(773\) −18.0477 −0.649130 −0.324565 0.945863i \(-0.605218\pi\)
−0.324565 + 0.945863i \(0.605218\pi\)
\(774\) 0 0
\(775\) −2.37630 −0.0853592
\(776\) 0 0
\(777\) −32.9664 −1.18266
\(778\) 0 0
\(779\) −0.794643 −0.0284710
\(780\) 0 0
\(781\) 18.2659 0.653605
\(782\) 0 0
\(783\) 97.1279 3.47107
\(784\) 0 0
\(785\) 76.8946 2.74449
\(786\) 0 0
\(787\) 2.45217 0.0874105 0.0437053 0.999044i \(-0.486084\pi\)
0.0437053 + 0.999044i \(0.486084\pi\)
\(788\) 0 0
\(789\) −77.6928 −2.76594
\(790\) 0 0
\(791\) 12.3428 0.438858
\(792\) 0 0
\(793\) −52.2079 −1.85396
\(794\) 0 0
\(795\) 93.8095 3.32708
\(796\) 0 0
\(797\) 33.8480 1.19896 0.599478 0.800391i \(-0.295375\pi\)
0.599478 + 0.800391i \(0.295375\pi\)
\(798\) 0 0
\(799\) −9.01133 −0.318798
\(800\) 0 0
\(801\) −53.4226 −1.88760
\(802\) 0 0
\(803\) −2.78863 −0.0984087
\(804\) 0 0
\(805\) −18.7717 −0.661614
\(806\) 0 0
\(807\) −36.4112 −1.28174
\(808\) 0 0
\(809\) 23.5930 0.829484 0.414742 0.909939i \(-0.363872\pi\)
0.414742 + 0.909939i \(0.363872\pi\)
\(810\) 0 0
\(811\) −3.55235 −0.124740 −0.0623700 0.998053i \(-0.519866\pi\)
−0.0623700 + 0.998053i \(0.519866\pi\)
\(812\) 0 0
\(813\) 13.1157 0.459986
\(814\) 0 0
\(815\) −25.9655 −0.909533
\(816\) 0 0
\(817\) 11.6219 0.406598
\(818\) 0 0
\(819\) −40.0521 −1.39953
\(820\) 0 0
\(821\) 37.4720 1.30778 0.653891 0.756589i \(-0.273135\pi\)
0.653891 + 0.756589i \(0.273135\pi\)
\(822\) 0 0
\(823\) −43.3752 −1.51196 −0.755982 0.654592i \(-0.772840\pi\)
−0.755982 + 0.654592i \(0.772840\pi\)
\(824\) 0 0
\(825\) −27.5864 −0.960437
\(826\) 0 0
\(827\) −13.5519 −0.471246 −0.235623 0.971844i \(-0.575713\pi\)
−0.235623 + 0.971844i \(0.575713\pi\)
\(828\) 0 0
\(829\) 18.0498 0.626895 0.313447 0.949606i \(-0.398516\pi\)
0.313447 + 0.949606i \(0.398516\pi\)
\(830\) 0 0
\(831\) −55.7586 −1.93424
\(832\) 0 0
\(833\) 1.00000 0.0346479
\(834\) 0 0
\(835\) 55.0793 1.90610
\(836\) 0 0
\(837\) 6.68014 0.230900
\(838\) 0 0
\(839\) 56.6173 1.95465 0.977323 0.211754i \(-0.0679174\pi\)
0.977323 + 0.211754i \(0.0679174\pi\)
\(840\) 0 0
\(841\) 25.3911 0.875557
\(842\) 0 0
\(843\) 64.6978 2.22831
\(844\) 0 0
\(845\) 57.5654 1.98031
\(846\) 0 0
\(847\) 7.57932 0.260429
\(848\) 0 0
\(849\) 9.24353 0.317237
\(850\) 0 0
\(851\) −62.4572 −2.14101
\(852\) 0 0
\(853\) 11.9233 0.408245 0.204122 0.978945i \(-0.434566\pi\)
0.204122 + 0.978945i \(0.434566\pi\)
\(854\) 0 0
\(855\) −100.084 −3.42278
\(856\) 0 0
\(857\) 4.17512 0.142619 0.0713097 0.997454i \(-0.477282\pi\)
0.0713097 + 0.997454i \(0.477282\pi\)
\(858\) 0 0
\(859\) 12.8623 0.438855 0.219428 0.975629i \(-0.429581\pi\)
0.219428 + 0.975629i \(0.429581\pi\)
\(860\) 0 0
\(861\) 0.561419 0.0191331
\(862\) 0 0
\(863\) −53.6300 −1.82559 −0.912794 0.408420i \(-0.866080\pi\)
−0.912794 + 0.408420i \(0.866080\pi\)
\(864\) 0 0
\(865\) −27.0266 −0.918932
\(866\) 0 0
\(867\) −3.18379 −0.108127
\(868\) 0 0
\(869\) −21.9229 −0.743684
\(870\) 0 0
\(871\) −21.8621 −0.740768
\(872\) 0 0
\(873\) 99.2307 3.35845
\(874\) 0 0
\(875\) 0.980779 0.0331564
\(876\) 0 0
\(877\) 17.8774 0.603677 0.301838 0.953359i \(-0.402400\pi\)
0.301838 + 0.953359i \(0.402400\pi\)
\(878\) 0 0
\(879\) −71.5720 −2.41406
\(880\) 0 0
\(881\) −36.4616 −1.22842 −0.614211 0.789142i \(-0.710526\pi\)
−0.614211 + 0.789142i \(0.710526\pi\)
\(882\) 0 0
\(883\) −22.3975 −0.753737 −0.376869 0.926267i \(-0.622999\pi\)
−0.376869 + 0.926267i \(0.622999\pi\)
\(884\) 0 0
\(885\) 33.3619 1.12145
\(886\) 0 0
\(887\) −48.6911 −1.63489 −0.817443 0.576010i \(-0.804609\pi\)
−0.817443 + 0.576010i \(0.804609\pi\)
\(888\) 0 0
\(889\) −13.3797 −0.448742
\(890\) 0 0
\(891\) 37.9526 1.27146
\(892\) 0 0
\(893\) 40.6087 1.35892
\(894\) 0 0
\(895\) −41.2819 −1.37990
\(896\) 0 0
\(897\) −107.780 −3.59868
\(898\) 0 0
\(899\) 3.74085 0.124764
\(900\) 0 0
\(901\) −9.46796 −0.315423
\(902\) 0 0
\(903\) −8.21091 −0.273242
\(904\) 0 0
\(905\) −13.9448 −0.463541
\(906\) 0 0
\(907\) 34.5972 1.14878 0.574391 0.818581i \(-0.305239\pi\)
0.574391 + 0.818581i \(0.305239\pi\)
\(908\) 0 0
\(909\) −88.7035 −2.94211
\(910\) 0 0
\(911\) −0.0140640 −0.000465962 0 −0.000232981 1.00000i \(-0.500074\pi\)
−0.000232981 1.00000i \(0.500074\pi\)
\(912\) 0 0
\(913\) −3.15675 −0.104473
\(914\) 0 0
\(915\) 92.1698 3.04704
\(916\) 0 0
\(917\) −21.3868 −0.706255
\(918\) 0 0
\(919\) −43.9804 −1.45078 −0.725389 0.688339i \(-0.758340\pi\)
−0.725389 + 0.688339i \(0.758340\pi\)
\(920\) 0 0
\(921\) −12.9277 −0.425981
\(922\) 0 0
\(923\) 55.4273 1.82441
\(924\) 0 0
\(925\) −48.5089 −1.59496
\(926\) 0 0
\(927\) −109.542 −3.59784
\(928\) 0 0
\(929\) −28.5407 −0.936389 −0.468194 0.883625i \(-0.655095\pi\)
−0.468194 + 0.883625i \(0.655095\pi\)
\(930\) 0 0
\(931\) −4.50640 −0.147691
\(932\) 0 0
\(933\) −79.6115 −2.60636
\(934\) 0 0
\(935\) 5.75576 0.188233
\(936\) 0 0
\(937\) 19.5088 0.637323 0.318662 0.947869i \(-0.396767\pi\)
0.318662 + 0.947869i \(0.396767\pi\)
\(938\) 0 0
\(939\) 59.7798 1.95084
\(940\) 0 0
\(941\) 14.5421 0.474059 0.237029 0.971502i \(-0.423826\pi\)
0.237029 + 0.971502i \(0.423826\pi\)
\(942\) 0 0
\(943\) 1.06365 0.0346372
\(944\) 0 0
\(945\) 40.9851 1.33325
\(946\) 0 0
\(947\) 18.5613 0.603162 0.301581 0.953441i \(-0.402486\pi\)
0.301581 + 0.953441i \(0.402486\pi\)
\(948\) 0 0
\(949\) −8.46201 −0.274689
\(950\) 0 0
\(951\) 75.1573 2.43714
\(952\) 0 0
\(953\) 45.7471 1.48189 0.740947 0.671564i \(-0.234377\pi\)
0.740947 + 0.671564i \(0.234377\pi\)
\(954\) 0 0
\(955\) −13.9256 −0.450621
\(956\) 0 0
\(957\) 43.4275 1.40381
\(958\) 0 0
\(959\) 18.2721 0.590038
\(960\) 0 0
\(961\) −30.7427 −0.991701
\(962\) 0 0
\(963\) −103.027 −3.31998
\(964\) 0 0
\(965\) −24.8252 −0.799150
\(966\) 0 0
\(967\) 2.41688 0.0777216 0.0388608 0.999245i \(-0.487627\pi\)
0.0388608 + 0.999245i \(0.487627\pi\)
\(968\) 0 0
\(969\) 14.3474 0.460906
\(970\) 0 0
\(971\) 11.1280 0.357115 0.178558 0.983929i \(-0.442857\pi\)
0.178558 + 0.983929i \(0.442857\pi\)
\(972\) 0 0
\(973\) −6.82534 −0.218810
\(974\) 0 0
\(975\) −83.7102 −2.68087
\(976\) 0 0
\(977\) 57.6117 1.84316 0.921580 0.388188i \(-0.126899\pi\)
0.921580 + 0.388188i \(0.126899\pi\)
\(978\) 0 0
\(979\) −13.8451 −0.442490
\(980\) 0 0
\(981\) −23.2391 −0.741968
\(982\) 0 0
\(983\) 1.07381 0.0342491 0.0171245 0.999853i \(-0.494549\pi\)
0.0171245 + 0.999853i \(0.494549\pi\)
\(984\) 0 0
\(985\) 38.1247 1.21475
\(986\) 0 0
\(987\) −28.6902 −0.913219
\(988\) 0 0
\(989\) −15.5562 −0.494658
\(990\) 0 0
\(991\) 24.8448 0.789222 0.394611 0.918848i \(-0.370879\pi\)
0.394611 + 0.918848i \(0.370879\pi\)
\(992\) 0 0
\(993\) 28.6794 0.910114
\(994\) 0 0
\(995\) −27.4485 −0.870177
\(996\) 0 0
\(997\) 14.1344 0.447641 0.223821 0.974630i \(-0.428147\pi\)
0.223821 + 0.974630i \(0.428147\pi\)
\(998\) 0 0
\(999\) 136.366 4.31443
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7616.2.a.bv.1.1 6
4.3 odd 2 7616.2.a.cd.1.6 6
8.3 odd 2 3808.2.a.g.1.1 6
8.5 even 2 3808.2.a.o.1.6 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3808.2.a.g.1.1 6 8.3 odd 2
3808.2.a.o.1.6 yes 6 8.5 even 2
7616.2.a.bv.1.1 6 1.1 even 1 trivial
7616.2.a.cd.1.6 6 4.3 odd 2