Properties

Label 7616.2.a.br.1.4
Level $7616$
Weight $2$
Character 7616.1
Self dual yes
Analytic conductor $60.814$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7616,2,Mod(1,7616)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7616, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7616.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 7616 = 2^{6} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7616.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,0,0,2,0,-5,0,3,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.8140661794\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.804272.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 9x^{3} - 6x^{2} + 3x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 3808)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-0.783617\) of defining polynomial
Character \(\chi\) \(=\) 7616.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.783617 q^{3} -0.768652 q^{5} -1.00000 q^{7} -2.38595 q^{9} +1.28554 q^{11} -1.08825 q^{13} -0.602329 q^{15} -1.00000 q^{17} -5.47833 q^{19} -0.783617 q^{21} +6.37379 q^{23} -4.40917 q^{25} -4.22052 q^{27} +6.89097 q^{29} -6.41522 q^{31} +1.00737 q^{33} +0.768652 q^{35} +1.90283 q^{37} -0.852773 q^{39} +1.60646 q^{41} -5.32829 q^{43} +1.83396 q^{45} +5.18542 q^{47} +1.00000 q^{49} -0.783617 q^{51} +9.60064 q^{53} -0.988133 q^{55} -4.29291 q^{57} -8.30919 q^{59} -7.74477 q^{61} +2.38595 q^{63} +0.836488 q^{65} +11.0707 q^{67} +4.99461 q^{69} +5.36995 q^{71} +9.01755 q^{73} -3.45510 q^{75} -1.28554 q^{77} +8.85277 q^{79} +3.85057 q^{81} +5.32726 q^{83} +0.768652 q^{85} +5.39987 q^{87} +4.36015 q^{89} +1.08825 q^{91} -5.02707 q^{93} +4.21093 q^{95} -13.2218 q^{97} -3.06723 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 2 q^{5} - 5 q^{7} + 3 q^{9} + 4 q^{11} + 6 q^{13} + 8 q^{15} - 5 q^{17} + 6 q^{19} + 18 q^{23} + 5 q^{25} - 18 q^{27} + 14 q^{29} + 16 q^{31} - 26 q^{33} - 2 q^{35} - 2 q^{37} + 6 q^{39} - 10 q^{41}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.783617 0.452421 0.226211 0.974078i \(-0.427366\pi\)
0.226211 + 0.974078i \(0.427366\pi\)
\(4\) 0 0
\(5\) −0.768652 −0.343752 −0.171876 0.985119i \(-0.554983\pi\)
−0.171876 + 0.985119i \(0.554983\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) −2.38595 −0.795315
\(10\) 0 0
\(11\) 1.28554 0.387605 0.193802 0.981041i \(-0.437918\pi\)
0.193802 + 0.981041i \(0.437918\pi\)
\(12\) 0 0
\(13\) −1.08825 −0.301827 −0.150913 0.988547i \(-0.548221\pi\)
−0.150913 + 0.988547i \(0.548221\pi\)
\(14\) 0 0
\(15\) −0.602329 −0.155521
\(16\) 0 0
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) −5.47833 −1.25682 −0.628408 0.777884i \(-0.716293\pi\)
−0.628408 + 0.777884i \(0.716293\pi\)
\(20\) 0 0
\(21\) −0.783617 −0.170999
\(22\) 0 0
\(23\) 6.37379 1.32903 0.664514 0.747276i \(-0.268639\pi\)
0.664514 + 0.747276i \(0.268639\pi\)
\(24\) 0 0
\(25\) −4.40917 −0.881835
\(26\) 0 0
\(27\) −4.22052 −0.812239
\(28\) 0 0
\(29\) 6.89097 1.27962 0.639810 0.768533i \(-0.279013\pi\)
0.639810 + 0.768533i \(0.279013\pi\)
\(30\) 0 0
\(31\) −6.41522 −1.15221 −0.576104 0.817376i \(-0.695428\pi\)
−0.576104 + 0.817376i \(0.695428\pi\)
\(32\) 0 0
\(33\) 1.00737 0.175361
\(34\) 0 0
\(35\) 0.768652 0.129926
\(36\) 0 0
\(37\) 1.90283 0.312824 0.156412 0.987692i \(-0.450007\pi\)
0.156412 + 0.987692i \(0.450007\pi\)
\(38\) 0 0
\(39\) −0.852773 −0.136553
\(40\) 0 0
\(41\) 1.60646 0.250887 0.125444 0.992101i \(-0.459965\pi\)
0.125444 + 0.992101i \(0.459965\pi\)
\(42\) 0 0
\(43\) −5.32829 −0.812557 −0.406278 0.913749i \(-0.633174\pi\)
−0.406278 + 0.913749i \(0.633174\pi\)
\(44\) 0 0
\(45\) 1.83396 0.273391
\(46\) 0 0
\(47\) 5.18542 0.756371 0.378186 0.925730i \(-0.376548\pi\)
0.378186 + 0.925730i \(0.376548\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −0.783617 −0.109728
\(52\) 0 0
\(53\) 9.60064 1.31875 0.659375 0.751814i \(-0.270821\pi\)
0.659375 + 0.751814i \(0.270821\pi\)
\(54\) 0 0
\(55\) −0.988133 −0.133240
\(56\) 0 0
\(57\) −4.29291 −0.568610
\(58\) 0 0
\(59\) −8.30919 −1.08177 −0.540883 0.841098i \(-0.681910\pi\)
−0.540883 + 0.841098i \(0.681910\pi\)
\(60\) 0 0
\(61\) −7.74477 −0.991617 −0.495808 0.868432i \(-0.665128\pi\)
−0.495808 + 0.868432i \(0.665128\pi\)
\(62\) 0 0
\(63\) 2.38595 0.300601
\(64\) 0 0
\(65\) 0.836488 0.103754
\(66\) 0 0
\(67\) 11.0707 1.35250 0.676251 0.736671i \(-0.263603\pi\)
0.676251 + 0.736671i \(0.263603\pi\)
\(68\) 0 0
\(69\) 4.99461 0.601280
\(70\) 0 0
\(71\) 5.36995 0.637295 0.318648 0.947873i \(-0.396771\pi\)
0.318648 + 0.947873i \(0.396771\pi\)
\(72\) 0 0
\(73\) 9.01755 1.05542 0.527712 0.849423i \(-0.323050\pi\)
0.527712 + 0.849423i \(0.323050\pi\)
\(74\) 0 0
\(75\) −3.45510 −0.398961
\(76\) 0 0
\(77\) −1.28554 −0.146501
\(78\) 0 0
\(79\) 8.85277 0.996015 0.498007 0.867173i \(-0.334065\pi\)
0.498007 + 0.867173i \(0.334065\pi\)
\(80\) 0 0
\(81\) 3.85057 0.427841
\(82\) 0 0
\(83\) 5.32726 0.584742 0.292371 0.956305i \(-0.405556\pi\)
0.292371 + 0.956305i \(0.405556\pi\)
\(84\) 0 0
\(85\) 0.768652 0.0833720
\(86\) 0 0
\(87\) 5.39987 0.578927
\(88\) 0 0
\(89\) 4.36015 0.462175 0.231087 0.972933i \(-0.425772\pi\)
0.231087 + 0.972933i \(0.425772\pi\)
\(90\) 0 0
\(91\) 1.08825 0.114080
\(92\) 0 0
\(93\) −5.02707 −0.521283
\(94\) 0 0
\(95\) 4.21093 0.432032
\(96\) 0 0
\(97\) −13.2218 −1.34247 −0.671234 0.741245i \(-0.734236\pi\)
−0.671234 + 0.741245i \(0.734236\pi\)
\(98\) 0 0
\(99\) −3.06723 −0.308268
\(100\) 0 0
\(101\) −7.25200 −0.721601 −0.360800 0.932643i \(-0.617496\pi\)
−0.360800 + 0.932643i \(0.617496\pi\)
\(102\) 0 0
\(103\) 6.11640 0.602667 0.301334 0.953519i \(-0.402568\pi\)
0.301334 + 0.953519i \(0.402568\pi\)
\(104\) 0 0
\(105\) 0.602329 0.0587813
\(106\) 0 0
\(107\) −4.47898 −0.432999 −0.216500 0.976283i \(-0.569464\pi\)
−0.216500 + 0.976283i \(0.569464\pi\)
\(108\) 0 0
\(109\) −18.7923 −1.79997 −0.899986 0.435919i \(-0.856423\pi\)
−0.899986 + 0.435919i \(0.856423\pi\)
\(110\) 0 0
\(111\) 1.49109 0.141528
\(112\) 0 0
\(113\) 17.8094 1.67537 0.837685 0.546153i \(-0.183908\pi\)
0.837685 + 0.546153i \(0.183908\pi\)
\(114\) 0 0
\(115\) −4.89923 −0.456856
\(116\) 0 0
\(117\) 2.59651 0.240048
\(118\) 0 0
\(119\) 1.00000 0.0916698
\(120\) 0 0
\(121\) −9.34739 −0.849763
\(122\) 0 0
\(123\) 1.25885 0.113507
\(124\) 0 0
\(125\) 7.23238 0.646884
\(126\) 0 0
\(127\) 12.2550 1.08746 0.543728 0.839262i \(-0.317012\pi\)
0.543728 + 0.839262i \(0.317012\pi\)
\(128\) 0 0
\(129\) −4.17534 −0.367618
\(130\) 0 0
\(131\) 7.87643 0.688167 0.344083 0.938939i \(-0.388190\pi\)
0.344083 + 0.938939i \(0.388190\pi\)
\(132\) 0 0
\(133\) 5.47833 0.475031
\(134\) 0 0
\(135\) 3.24411 0.279208
\(136\) 0 0
\(137\) 17.8546 1.52542 0.762711 0.646739i \(-0.223868\pi\)
0.762711 + 0.646739i \(0.223868\pi\)
\(138\) 0 0
\(139\) −12.1290 −1.02877 −0.514386 0.857559i \(-0.671980\pi\)
−0.514386 + 0.857559i \(0.671980\pi\)
\(140\) 0 0
\(141\) 4.06338 0.342198
\(142\) 0 0
\(143\) −1.39899 −0.116990
\(144\) 0 0
\(145\) −5.29676 −0.439872
\(146\) 0 0
\(147\) 0.783617 0.0646316
\(148\) 0 0
\(149\) 8.18106 0.670219 0.335109 0.942179i \(-0.391227\pi\)
0.335109 + 0.942179i \(0.391227\pi\)
\(150\) 0 0
\(151\) 20.6449 1.68006 0.840028 0.542542i \(-0.182538\pi\)
0.840028 + 0.542542i \(0.182538\pi\)
\(152\) 0 0
\(153\) 2.38595 0.192892
\(154\) 0 0
\(155\) 4.93108 0.396074
\(156\) 0 0
\(157\) 22.1459 1.76744 0.883718 0.468019i \(-0.155032\pi\)
0.883718 + 0.468019i \(0.155032\pi\)
\(158\) 0 0
\(159\) 7.52322 0.596630
\(160\) 0 0
\(161\) −6.37379 −0.502325
\(162\) 0 0
\(163\) 5.12025 0.401049 0.200525 0.979689i \(-0.435735\pi\)
0.200525 + 0.979689i \(0.435735\pi\)
\(164\) 0 0
\(165\) −0.774317 −0.0602805
\(166\) 0 0
\(167\) 18.3330 1.41865 0.709326 0.704881i \(-0.248999\pi\)
0.709326 + 0.704881i \(0.248999\pi\)
\(168\) 0 0
\(169\) −11.8157 −0.908900
\(170\) 0 0
\(171\) 13.0710 0.999564
\(172\) 0 0
\(173\) −6.10173 −0.463906 −0.231953 0.972727i \(-0.574511\pi\)
−0.231953 + 0.972727i \(0.574511\pi\)
\(174\) 0 0
\(175\) 4.40917 0.333302
\(176\) 0 0
\(177\) −6.51122 −0.489413
\(178\) 0 0
\(179\) −4.43019 −0.331128 −0.165564 0.986199i \(-0.552944\pi\)
−0.165564 + 0.986199i \(0.552944\pi\)
\(180\) 0 0
\(181\) −12.6622 −0.941174 −0.470587 0.882354i \(-0.655958\pi\)
−0.470587 + 0.882354i \(0.655958\pi\)
\(182\) 0 0
\(183\) −6.06893 −0.448628
\(184\) 0 0
\(185\) −1.46262 −0.107534
\(186\) 0 0
\(187\) −1.28554 −0.0940080
\(188\) 0 0
\(189\) 4.22052 0.306997
\(190\) 0 0
\(191\) −7.62969 −0.552065 −0.276032 0.961148i \(-0.589020\pi\)
−0.276032 + 0.961148i \(0.589020\pi\)
\(192\) 0 0
\(193\) −7.51145 −0.540686 −0.270343 0.962764i \(-0.587137\pi\)
−0.270343 + 0.962764i \(0.587137\pi\)
\(194\) 0 0
\(195\) 0.655486 0.0469403
\(196\) 0 0
\(197\) 6.86399 0.489039 0.244519 0.969644i \(-0.421370\pi\)
0.244519 + 0.969644i \(0.421370\pi\)
\(198\) 0 0
\(199\) −6.37948 −0.452229 −0.226115 0.974101i \(-0.572602\pi\)
−0.226115 + 0.974101i \(0.572602\pi\)
\(200\) 0 0
\(201\) 8.67519 0.611901
\(202\) 0 0
\(203\) −6.89097 −0.483651
\(204\) 0 0
\(205\) −1.23481 −0.0862428
\(206\) 0 0
\(207\) −15.2075 −1.05700
\(208\) 0 0
\(209\) −7.04261 −0.487148
\(210\) 0 0
\(211\) 18.4176 1.26792 0.633959 0.773366i \(-0.281429\pi\)
0.633959 + 0.773366i \(0.281429\pi\)
\(212\) 0 0
\(213\) 4.20798 0.288326
\(214\) 0 0
\(215\) 4.09560 0.279318
\(216\) 0 0
\(217\) 6.41522 0.435494
\(218\) 0 0
\(219\) 7.06630 0.477496
\(220\) 0 0
\(221\) 1.08825 0.0732038
\(222\) 0 0
\(223\) −7.71469 −0.516614 −0.258307 0.966063i \(-0.583165\pi\)
−0.258307 + 0.966063i \(0.583165\pi\)
\(224\) 0 0
\(225\) 10.5200 0.701336
\(226\) 0 0
\(227\) −25.5319 −1.69461 −0.847305 0.531107i \(-0.821776\pi\)
−0.847305 + 0.531107i \(0.821776\pi\)
\(228\) 0 0
\(229\) −28.0484 −1.85349 −0.926746 0.375687i \(-0.877407\pi\)
−0.926746 + 0.375687i \(0.877407\pi\)
\(230\) 0 0
\(231\) −1.00737 −0.0662801
\(232\) 0 0
\(233\) 3.67002 0.240431 0.120216 0.992748i \(-0.461641\pi\)
0.120216 + 0.992748i \(0.461641\pi\)
\(234\) 0 0
\(235\) −3.98578 −0.260004
\(236\) 0 0
\(237\) 6.93718 0.450618
\(238\) 0 0
\(239\) 18.4710 1.19479 0.597396 0.801947i \(-0.296202\pi\)
0.597396 + 0.801947i \(0.296202\pi\)
\(240\) 0 0
\(241\) 21.4990 1.38487 0.692435 0.721480i \(-0.256538\pi\)
0.692435 + 0.721480i \(0.256538\pi\)
\(242\) 0 0
\(243\) 15.6789 1.00580
\(244\) 0 0
\(245\) −0.768652 −0.0491074
\(246\) 0 0
\(247\) 5.96181 0.379341
\(248\) 0 0
\(249\) 4.17453 0.264550
\(250\) 0 0
\(251\) 18.8219 1.18803 0.594013 0.804455i \(-0.297543\pi\)
0.594013 + 0.804455i \(0.297543\pi\)
\(252\) 0 0
\(253\) 8.19376 0.515137
\(254\) 0 0
\(255\) 0.602329 0.0377193
\(256\) 0 0
\(257\) 3.00737 0.187595 0.0937973 0.995591i \(-0.470099\pi\)
0.0937973 + 0.995591i \(0.470099\pi\)
\(258\) 0 0
\(259\) −1.90283 −0.118236
\(260\) 0 0
\(261\) −16.4415 −1.01770
\(262\) 0 0
\(263\) 20.5885 1.26954 0.634769 0.772702i \(-0.281095\pi\)
0.634769 + 0.772702i \(0.281095\pi\)
\(264\) 0 0
\(265\) −7.37956 −0.453323
\(266\) 0 0
\(267\) 3.41668 0.209098
\(268\) 0 0
\(269\) 1.96181 0.119613 0.0598067 0.998210i \(-0.480952\pi\)
0.0598067 + 0.998210i \(0.480952\pi\)
\(270\) 0 0
\(271\) 21.2546 1.29113 0.645564 0.763706i \(-0.276623\pi\)
0.645564 + 0.763706i \(0.276623\pi\)
\(272\) 0 0
\(273\) 0.852773 0.0516122
\(274\) 0 0
\(275\) −5.66817 −0.341803
\(276\) 0 0
\(277\) −21.7614 −1.30752 −0.653759 0.756703i \(-0.726809\pi\)
−0.653759 + 0.756703i \(0.726809\pi\)
\(278\) 0 0
\(279\) 15.3064 0.916368
\(280\) 0 0
\(281\) 9.77095 0.582886 0.291443 0.956588i \(-0.405865\pi\)
0.291443 + 0.956588i \(0.405865\pi\)
\(282\) 0 0
\(283\) 5.40135 0.321077 0.160538 0.987030i \(-0.448677\pi\)
0.160538 + 0.987030i \(0.448677\pi\)
\(284\) 0 0
\(285\) 3.29975 0.195461
\(286\) 0 0
\(287\) −1.60646 −0.0948264
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) −10.3608 −0.607361
\(292\) 0 0
\(293\) 3.06546 0.179086 0.0895431 0.995983i \(-0.471459\pi\)
0.0895431 + 0.995983i \(0.471459\pi\)
\(294\) 0 0
\(295\) 6.38688 0.371859
\(296\) 0 0
\(297\) −5.42564 −0.314828
\(298\) 0 0
\(299\) −6.93630 −0.401136
\(300\) 0 0
\(301\) 5.32829 0.307118
\(302\) 0 0
\(303\) −5.68278 −0.326467
\(304\) 0 0
\(305\) 5.95304 0.340870
\(306\) 0 0
\(307\) 26.7760 1.52819 0.764093 0.645107i \(-0.223187\pi\)
0.764093 + 0.645107i \(0.223187\pi\)
\(308\) 0 0
\(309\) 4.79292 0.272659
\(310\) 0 0
\(311\) 23.6065 1.33860 0.669300 0.742992i \(-0.266594\pi\)
0.669300 + 0.742992i \(0.266594\pi\)
\(312\) 0 0
\(313\) 0.668533 0.0377877 0.0188938 0.999821i \(-0.493986\pi\)
0.0188938 + 0.999821i \(0.493986\pi\)
\(314\) 0 0
\(315\) −1.83396 −0.103332
\(316\) 0 0
\(317\) 10.5586 0.593028 0.296514 0.955029i \(-0.404176\pi\)
0.296514 + 0.955029i \(0.404176\pi\)
\(318\) 0 0
\(319\) 8.85861 0.495987
\(320\) 0 0
\(321\) −3.50980 −0.195898
\(322\) 0 0
\(323\) 5.47833 0.304822
\(324\) 0 0
\(325\) 4.79830 0.266162
\(326\) 0 0
\(327\) −14.7259 −0.814345
\(328\) 0 0
\(329\) −5.18542 −0.285881
\(330\) 0 0
\(331\) −12.0313 −0.661301 −0.330650 0.943753i \(-0.607268\pi\)
−0.330650 + 0.943753i \(0.607268\pi\)
\(332\) 0 0
\(333\) −4.54005 −0.248793
\(334\) 0 0
\(335\) −8.50953 −0.464925
\(336\) 0 0
\(337\) −3.42628 −0.186641 −0.0933207 0.995636i \(-0.529748\pi\)
−0.0933207 + 0.995636i \(0.529748\pi\)
\(338\) 0 0
\(339\) 13.9558 0.757973
\(340\) 0 0
\(341\) −8.24702 −0.446601
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) −3.83912 −0.206691
\(346\) 0 0
\(347\) −4.40931 −0.236704 −0.118352 0.992972i \(-0.537761\pi\)
−0.118352 + 0.992972i \(0.537761\pi\)
\(348\) 0 0
\(349\) 14.3758 0.769517 0.384759 0.923017i \(-0.374285\pi\)
0.384759 + 0.923017i \(0.374285\pi\)
\(350\) 0 0
\(351\) 4.59299 0.245156
\(352\) 0 0
\(353\) −12.1664 −0.647551 −0.323776 0.946134i \(-0.604952\pi\)
−0.323776 + 0.946134i \(0.604952\pi\)
\(354\) 0 0
\(355\) −4.12762 −0.219071
\(356\) 0 0
\(357\) 0.783617 0.0414734
\(358\) 0 0
\(359\) 19.1027 1.00820 0.504101 0.863645i \(-0.331824\pi\)
0.504101 + 0.863645i \(0.331824\pi\)
\(360\) 0 0
\(361\) 11.0121 0.579584
\(362\) 0 0
\(363\) −7.32477 −0.384451
\(364\) 0 0
\(365\) −6.93136 −0.362804
\(366\) 0 0
\(367\) 4.12275 0.215206 0.107603 0.994194i \(-0.465682\pi\)
0.107603 + 0.994194i \(0.465682\pi\)
\(368\) 0 0
\(369\) −3.83293 −0.199534
\(370\) 0 0
\(371\) −9.60064 −0.498441
\(372\) 0 0
\(373\) −4.88585 −0.252980 −0.126490 0.991968i \(-0.540371\pi\)
−0.126490 + 0.991968i \(0.540371\pi\)
\(374\) 0 0
\(375\) 5.66741 0.292664
\(376\) 0 0
\(377\) −7.49911 −0.386224
\(378\) 0 0
\(379\) −9.40040 −0.482866 −0.241433 0.970417i \(-0.577617\pi\)
−0.241433 + 0.970417i \(0.577617\pi\)
\(380\) 0 0
\(381\) 9.60322 0.491988
\(382\) 0 0
\(383\) 0.211502 0.0108073 0.00540363 0.999985i \(-0.498280\pi\)
0.00540363 + 0.999985i \(0.498280\pi\)
\(384\) 0 0
\(385\) 0.988133 0.0503599
\(386\) 0 0
\(387\) 12.7130 0.646239
\(388\) 0 0
\(389\) −21.1297 −1.07132 −0.535659 0.844435i \(-0.679937\pi\)
−0.535659 + 0.844435i \(0.679937\pi\)
\(390\) 0 0
\(391\) −6.37379 −0.322337
\(392\) 0 0
\(393\) 6.17210 0.311341
\(394\) 0 0
\(395\) −6.80470 −0.342382
\(396\) 0 0
\(397\) −4.29826 −0.215724 −0.107862 0.994166i \(-0.534400\pi\)
−0.107862 + 0.994166i \(0.534400\pi\)
\(398\) 0 0
\(399\) 4.29291 0.214914
\(400\) 0 0
\(401\) −3.49222 −0.174393 −0.0871965 0.996191i \(-0.527791\pi\)
−0.0871965 + 0.996191i \(0.527791\pi\)
\(402\) 0 0
\(403\) 6.98138 0.347767
\(404\) 0 0
\(405\) −2.95975 −0.147071
\(406\) 0 0
\(407\) 2.44617 0.121252
\(408\) 0 0
\(409\) −36.4671 −1.80318 −0.901592 0.432587i \(-0.857601\pi\)
−0.901592 + 0.432587i \(0.857601\pi\)
\(410\) 0 0
\(411\) 13.9912 0.690133
\(412\) 0 0
\(413\) 8.30919 0.408869
\(414\) 0 0
\(415\) −4.09481 −0.201006
\(416\) 0 0
\(417\) −9.50451 −0.465438
\(418\) 0 0
\(419\) 27.2865 1.33303 0.666516 0.745490i \(-0.267785\pi\)
0.666516 + 0.745490i \(0.267785\pi\)
\(420\) 0 0
\(421\) 29.3003 1.42801 0.714006 0.700140i \(-0.246879\pi\)
0.714006 + 0.700140i \(0.246879\pi\)
\(422\) 0 0
\(423\) −12.3721 −0.601553
\(424\) 0 0
\(425\) 4.40917 0.213876
\(426\) 0 0
\(427\) 7.74477 0.374796
\(428\) 0 0
\(429\) −1.09627 −0.0529286
\(430\) 0 0
\(431\) −29.9041 −1.44043 −0.720214 0.693751i \(-0.755957\pi\)
−0.720214 + 0.693751i \(0.755957\pi\)
\(432\) 0 0
\(433\) 35.4200 1.70218 0.851089 0.525021i \(-0.175943\pi\)
0.851089 + 0.525021i \(0.175943\pi\)
\(434\) 0 0
\(435\) −4.15063 −0.199007
\(436\) 0 0
\(437\) −34.9177 −1.67034
\(438\) 0 0
\(439\) 24.8448 1.18578 0.592889 0.805284i \(-0.297987\pi\)
0.592889 + 0.805284i \(0.297987\pi\)
\(440\) 0 0
\(441\) −2.38595 −0.113616
\(442\) 0 0
\(443\) −33.2096 −1.57783 −0.788917 0.614500i \(-0.789358\pi\)
−0.788917 + 0.614500i \(0.789358\pi\)
\(444\) 0 0
\(445\) −3.35144 −0.158873
\(446\) 0 0
\(447\) 6.41082 0.303221
\(448\) 0 0
\(449\) −1.92122 −0.0906678 −0.0453339 0.998972i \(-0.514435\pi\)
−0.0453339 + 0.998972i \(0.514435\pi\)
\(450\) 0 0
\(451\) 2.06517 0.0972450
\(452\) 0 0
\(453\) 16.1777 0.760093
\(454\) 0 0
\(455\) −0.836488 −0.0392152
\(456\) 0 0
\(457\) 25.0347 1.17108 0.585538 0.810645i \(-0.300883\pi\)
0.585538 + 0.810645i \(0.300883\pi\)
\(458\) 0 0
\(459\) 4.22052 0.196997
\(460\) 0 0
\(461\) 19.4920 0.907832 0.453916 0.891045i \(-0.350027\pi\)
0.453916 + 0.891045i \(0.350027\pi\)
\(462\) 0 0
\(463\) 35.0356 1.62824 0.814122 0.580694i \(-0.197219\pi\)
0.814122 + 0.580694i \(0.197219\pi\)
\(464\) 0 0
\(465\) 3.86407 0.179192
\(466\) 0 0
\(467\) −1.25691 −0.0581630 −0.0290815 0.999577i \(-0.509258\pi\)
−0.0290815 + 0.999577i \(0.509258\pi\)
\(468\) 0 0
\(469\) −11.0707 −0.511198
\(470\) 0 0
\(471\) 17.3539 0.799626
\(472\) 0 0
\(473\) −6.84973 −0.314951
\(474\) 0 0
\(475\) 24.1549 1.10830
\(476\) 0 0
\(477\) −22.9066 −1.04882
\(478\) 0 0
\(479\) 11.8058 0.539419 0.269709 0.962942i \(-0.413072\pi\)
0.269709 + 0.962942i \(0.413072\pi\)
\(480\) 0 0
\(481\) −2.07076 −0.0944186
\(482\) 0 0
\(483\) −4.99461 −0.227263
\(484\) 0 0
\(485\) 10.1630 0.461476
\(486\) 0 0
\(487\) −19.4622 −0.881916 −0.440958 0.897528i \(-0.645361\pi\)
−0.440958 + 0.897528i \(0.645361\pi\)
\(488\) 0 0
\(489\) 4.01231 0.181443
\(490\) 0 0
\(491\) −17.3951 −0.785030 −0.392515 0.919746i \(-0.628395\pi\)
−0.392515 + 0.919746i \(0.628395\pi\)
\(492\) 0 0
\(493\) −6.89097 −0.310353
\(494\) 0 0
\(495\) 2.35763 0.105968
\(496\) 0 0
\(497\) −5.36995 −0.240875
\(498\) 0 0
\(499\) 6.33937 0.283789 0.141895 0.989882i \(-0.454681\pi\)
0.141895 + 0.989882i \(0.454681\pi\)
\(500\) 0 0
\(501\) 14.3661 0.641828
\(502\) 0 0
\(503\) −5.96727 −0.266067 −0.133034 0.991112i \(-0.542472\pi\)
−0.133034 + 0.991112i \(0.542472\pi\)
\(504\) 0 0
\(505\) 5.57426 0.248051
\(506\) 0 0
\(507\) −9.25898 −0.411206
\(508\) 0 0
\(509\) −4.31074 −0.191070 −0.0955351 0.995426i \(-0.530456\pi\)
−0.0955351 + 0.995426i \(0.530456\pi\)
\(510\) 0 0
\(511\) −9.01755 −0.398913
\(512\) 0 0
\(513\) 23.1214 1.02083
\(514\) 0 0
\(515\) −4.70139 −0.207168
\(516\) 0 0
\(517\) 6.66606 0.293173
\(518\) 0 0
\(519\) −4.78141 −0.209881
\(520\) 0 0
\(521\) −29.3337 −1.28513 −0.642567 0.766230i \(-0.722130\pi\)
−0.642567 + 0.766230i \(0.722130\pi\)
\(522\) 0 0
\(523\) 19.9821 0.873758 0.436879 0.899520i \(-0.356084\pi\)
0.436879 + 0.899520i \(0.356084\pi\)
\(524\) 0 0
\(525\) 3.45510 0.150793
\(526\) 0 0
\(527\) 6.41522 0.279452
\(528\) 0 0
\(529\) 17.6252 0.766314
\(530\) 0 0
\(531\) 19.8253 0.860344
\(532\) 0 0
\(533\) −1.74824 −0.0757245
\(534\) 0 0
\(535\) 3.44278 0.148844
\(536\) 0 0
\(537\) −3.47157 −0.149809
\(538\) 0 0
\(539\) 1.28554 0.0553721
\(540\) 0 0
\(541\) −13.0394 −0.560606 −0.280303 0.959912i \(-0.590435\pi\)
−0.280303 + 0.959912i \(0.590435\pi\)
\(542\) 0 0
\(543\) −9.92231 −0.425807
\(544\) 0 0
\(545\) 14.4447 0.618743
\(546\) 0 0
\(547\) 28.2140 1.20635 0.603173 0.797611i \(-0.293903\pi\)
0.603173 + 0.797611i \(0.293903\pi\)
\(548\) 0 0
\(549\) 18.4786 0.788648
\(550\) 0 0
\(551\) −37.7510 −1.60825
\(552\) 0 0
\(553\) −8.85277 −0.376458
\(554\) 0 0
\(555\) −1.14613 −0.0486505
\(556\) 0 0
\(557\) −18.3281 −0.776585 −0.388292 0.921536i \(-0.626935\pi\)
−0.388292 + 0.921536i \(0.626935\pi\)
\(558\) 0 0
\(559\) 5.79853 0.245252
\(560\) 0 0
\(561\) −1.00737 −0.0425312
\(562\) 0 0
\(563\) 42.9382 1.80963 0.904814 0.425807i \(-0.140010\pi\)
0.904814 + 0.425807i \(0.140010\pi\)
\(564\) 0 0
\(565\) −13.6893 −0.575912
\(566\) 0 0
\(567\) −3.85057 −0.161709
\(568\) 0 0
\(569\) −37.8151 −1.58529 −0.792646 0.609682i \(-0.791297\pi\)
−0.792646 + 0.609682i \(0.791297\pi\)
\(570\) 0 0
\(571\) −14.9518 −0.625715 −0.312857 0.949800i \(-0.601286\pi\)
−0.312857 + 0.949800i \(0.601286\pi\)
\(572\) 0 0
\(573\) −5.97875 −0.249766
\(574\) 0 0
\(575\) −28.1032 −1.17198
\(576\) 0 0
\(577\) −25.3420 −1.05500 −0.527501 0.849555i \(-0.676871\pi\)
−0.527501 + 0.849555i \(0.676871\pi\)
\(578\) 0 0
\(579\) −5.88610 −0.244618
\(580\) 0 0
\(581\) −5.32726 −0.221012
\(582\) 0 0
\(583\) 12.3420 0.511154
\(584\) 0 0
\(585\) −1.99581 −0.0825168
\(586\) 0 0
\(587\) −31.1377 −1.28519 −0.642594 0.766207i \(-0.722142\pi\)
−0.642594 + 0.766207i \(0.722142\pi\)
\(588\) 0 0
\(589\) 35.1447 1.44811
\(590\) 0 0
\(591\) 5.37874 0.221252
\(592\) 0 0
\(593\) −18.3651 −0.754163 −0.377082 0.926180i \(-0.623072\pi\)
−0.377082 + 0.926180i \(0.623072\pi\)
\(594\) 0 0
\(595\) −0.768652 −0.0315117
\(596\) 0 0
\(597\) −4.99906 −0.204598
\(598\) 0 0
\(599\) −34.8865 −1.42542 −0.712712 0.701456i \(-0.752534\pi\)
−0.712712 + 0.701456i \(0.752534\pi\)
\(600\) 0 0
\(601\) −10.1224 −0.412899 −0.206450 0.978457i \(-0.566191\pi\)
−0.206450 + 0.978457i \(0.566191\pi\)
\(602\) 0 0
\(603\) −26.4141 −1.07567
\(604\) 0 0
\(605\) 7.18489 0.292107
\(606\) 0 0
\(607\) 10.0180 0.406618 0.203309 0.979115i \(-0.434830\pi\)
0.203309 + 0.979115i \(0.434830\pi\)
\(608\) 0 0
\(609\) −5.39987 −0.218814
\(610\) 0 0
\(611\) −5.64305 −0.228293
\(612\) 0 0
\(613\) 3.16466 0.127820 0.0639098 0.997956i \(-0.479643\pi\)
0.0639098 + 0.997956i \(0.479643\pi\)
\(614\) 0 0
\(615\) −0.967617 −0.0390181
\(616\) 0 0
\(617\) −10.4545 −0.420884 −0.210442 0.977606i \(-0.567490\pi\)
−0.210442 + 0.977606i \(0.567490\pi\)
\(618\) 0 0
\(619\) 37.9814 1.52660 0.763302 0.646042i \(-0.223577\pi\)
0.763302 + 0.646042i \(0.223577\pi\)
\(620\) 0 0
\(621\) −26.9007 −1.07949
\(622\) 0 0
\(623\) −4.36015 −0.174686
\(624\) 0 0
\(625\) 16.4867 0.659467
\(626\) 0 0
\(627\) −5.51871 −0.220396
\(628\) 0 0
\(629\) −1.90283 −0.0758709
\(630\) 0 0
\(631\) −23.2117 −0.924042 −0.462021 0.886869i \(-0.652875\pi\)
−0.462021 + 0.886869i \(0.652875\pi\)
\(632\) 0 0
\(633\) 14.4323 0.573633
\(634\) 0 0
\(635\) −9.41984 −0.373815
\(636\) 0 0
\(637\) −1.08825 −0.0431181
\(638\) 0 0
\(639\) −12.8124 −0.506851
\(640\) 0 0
\(641\) 28.6658 1.13223 0.566116 0.824326i \(-0.308445\pi\)
0.566116 + 0.824326i \(0.308445\pi\)
\(642\) 0 0
\(643\) −9.05125 −0.356946 −0.178473 0.983945i \(-0.557116\pi\)
−0.178473 + 0.983945i \(0.557116\pi\)
\(644\) 0 0
\(645\) 3.20938 0.126369
\(646\) 0 0
\(647\) 17.6468 0.693768 0.346884 0.937908i \(-0.387240\pi\)
0.346884 + 0.937908i \(0.387240\pi\)
\(648\) 0 0
\(649\) −10.6818 −0.419297
\(650\) 0 0
\(651\) 5.02707 0.197027
\(652\) 0 0
\(653\) −18.7515 −0.733804 −0.366902 0.930260i \(-0.619582\pi\)
−0.366902 + 0.930260i \(0.619582\pi\)
\(654\) 0 0
\(655\) −6.05423 −0.236558
\(656\) 0 0
\(657\) −21.5154 −0.839395
\(658\) 0 0
\(659\) 26.0064 1.01307 0.506533 0.862220i \(-0.330927\pi\)
0.506533 + 0.862220i \(0.330927\pi\)
\(660\) 0 0
\(661\) 23.8933 0.929340 0.464670 0.885484i \(-0.346173\pi\)
0.464670 + 0.885484i \(0.346173\pi\)
\(662\) 0 0
\(663\) 0.852773 0.0331190
\(664\) 0 0
\(665\) −4.21093 −0.163293
\(666\) 0 0
\(667\) 43.9216 1.70065
\(668\) 0 0
\(669\) −6.04536 −0.233727
\(670\) 0 0
\(671\) −9.95621 −0.384355
\(672\) 0 0
\(673\) 14.2500 0.549296 0.274648 0.961545i \(-0.411439\pi\)
0.274648 + 0.961545i \(0.411439\pi\)
\(674\) 0 0
\(675\) 18.6090 0.716260
\(676\) 0 0
\(677\) −25.9475 −0.997245 −0.498622 0.866819i \(-0.666161\pi\)
−0.498622 + 0.866819i \(0.666161\pi\)
\(678\) 0 0
\(679\) 13.2218 0.507405
\(680\) 0 0
\(681\) −20.0072 −0.766677
\(682\) 0 0
\(683\) 44.7301 1.71155 0.855775 0.517348i \(-0.173081\pi\)
0.855775 + 0.517348i \(0.173081\pi\)
\(684\) 0 0
\(685\) −13.7240 −0.524367
\(686\) 0 0
\(687\) −21.9792 −0.838559
\(688\) 0 0
\(689\) −10.4479 −0.398034
\(690\) 0 0
\(691\) 41.2568 1.56948 0.784741 0.619824i \(-0.212796\pi\)
0.784741 + 0.619824i \(0.212796\pi\)
\(692\) 0 0
\(693\) 3.06723 0.116514
\(694\) 0 0
\(695\) 9.32301 0.353642
\(696\) 0 0
\(697\) −1.60646 −0.0608490
\(698\) 0 0
\(699\) 2.87589 0.108776
\(700\) 0 0
\(701\) 27.9208 1.05455 0.527277 0.849693i \(-0.323213\pi\)
0.527277 + 0.849693i \(0.323213\pi\)
\(702\) 0 0
\(703\) −10.4243 −0.393162
\(704\) 0 0
\(705\) −3.12333 −0.117631
\(706\) 0 0
\(707\) 7.25200 0.272739
\(708\) 0 0
\(709\) −51.4457 −1.93208 −0.966042 0.258385i \(-0.916810\pi\)
−0.966042 + 0.258385i \(0.916810\pi\)
\(710\) 0 0
\(711\) −21.1222 −0.792146
\(712\) 0 0
\(713\) −40.8893 −1.53132
\(714\) 0 0
\(715\) 1.07534 0.0402154
\(716\) 0 0
\(717\) 14.4742 0.540549
\(718\) 0 0
\(719\) 9.67403 0.360780 0.180390 0.983595i \(-0.442264\pi\)
0.180390 + 0.983595i \(0.442264\pi\)
\(720\) 0 0
\(721\) −6.11640 −0.227787
\(722\) 0 0
\(723\) 16.8470 0.626545
\(724\) 0 0
\(725\) −30.3835 −1.12841
\(726\) 0 0
\(727\) −12.7398 −0.472495 −0.236247 0.971693i \(-0.575918\pi\)
−0.236247 + 0.971693i \(0.575918\pi\)
\(728\) 0 0
\(729\) 0.734549 0.0272055
\(730\) 0 0
\(731\) 5.32829 0.197074
\(732\) 0 0
\(733\) −22.2798 −0.822924 −0.411462 0.911427i \(-0.634982\pi\)
−0.411462 + 0.911427i \(0.634982\pi\)
\(734\) 0 0
\(735\) −0.602329 −0.0222172
\(736\) 0 0
\(737\) 14.2318 0.524236
\(738\) 0 0
\(739\) 5.48049 0.201603 0.100802 0.994907i \(-0.467859\pi\)
0.100802 + 0.994907i \(0.467859\pi\)
\(740\) 0 0
\(741\) 4.67177 0.171622
\(742\) 0 0
\(743\) 45.2576 1.66034 0.830170 0.557510i \(-0.188243\pi\)
0.830170 + 0.557510i \(0.188243\pi\)
\(744\) 0 0
\(745\) −6.28839 −0.230389
\(746\) 0 0
\(747\) −12.7105 −0.465054
\(748\) 0 0
\(749\) 4.47898 0.163658
\(750\) 0 0
\(751\) −53.9692 −1.96936 −0.984682 0.174359i \(-0.944215\pi\)
−0.984682 + 0.174359i \(0.944215\pi\)
\(752\) 0 0
\(753\) 14.7491 0.537488
\(754\) 0 0
\(755\) −15.8687 −0.577523
\(756\) 0 0
\(757\) 11.8707 0.431447 0.215724 0.976454i \(-0.430789\pi\)
0.215724 + 0.976454i \(0.430789\pi\)
\(758\) 0 0
\(759\) 6.42077 0.233059
\(760\) 0 0
\(761\) −26.8278 −0.972507 −0.486254 0.873818i \(-0.661637\pi\)
−0.486254 + 0.873818i \(0.661637\pi\)
\(762\) 0 0
\(763\) 18.7923 0.680325
\(764\) 0 0
\(765\) −1.83396 −0.0663070
\(766\) 0 0
\(767\) 9.04250 0.326506
\(768\) 0 0
\(769\) −33.0913 −1.19330 −0.596652 0.802500i \(-0.703503\pi\)
−0.596652 + 0.802500i \(0.703503\pi\)
\(770\) 0 0
\(771\) 2.35662 0.0848718
\(772\) 0 0
\(773\) 38.5501 1.38655 0.693275 0.720673i \(-0.256167\pi\)
0.693275 + 0.720673i \(0.256167\pi\)
\(774\) 0 0
\(775\) 28.2858 1.01606
\(776\) 0 0
\(777\) −1.49109 −0.0534926
\(778\) 0 0
\(779\) −8.80072 −0.315319
\(780\) 0 0
\(781\) 6.90328 0.247019
\(782\) 0 0
\(783\) −29.0834 −1.03936
\(784\) 0 0
\(785\) −17.0225 −0.607559
\(786\) 0 0
\(787\) 9.60159 0.342260 0.171130 0.985248i \(-0.445258\pi\)
0.171130 + 0.985248i \(0.445258\pi\)
\(788\) 0 0
\(789\) 16.1335 0.574366
\(790\) 0 0
\(791\) −17.8094 −0.633231
\(792\) 0 0
\(793\) 8.42827 0.299297
\(794\) 0 0
\(795\) −5.78274 −0.205093
\(796\) 0 0
\(797\) −29.2539 −1.03623 −0.518113 0.855312i \(-0.673365\pi\)
−0.518113 + 0.855312i \(0.673365\pi\)
\(798\) 0 0
\(799\) −5.18542 −0.183447
\(800\) 0 0
\(801\) −10.4031 −0.367575
\(802\) 0 0
\(803\) 11.5924 0.409088
\(804\) 0 0
\(805\) 4.89923 0.172675
\(806\) 0 0
\(807\) 1.53730 0.0541157
\(808\) 0 0
\(809\) 37.8777 1.33171 0.665855 0.746082i \(-0.268067\pi\)
0.665855 + 0.746082i \(0.268067\pi\)
\(810\) 0 0
\(811\) 16.2827 0.571764 0.285882 0.958265i \(-0.407713\pi\)
0.285882 + 0.958265i \(0.407713\pi\)
\(812\) 0 0
\(813\) 16.6555 0.584133
\(814\) 0 0
\(815\) −3.93569 −0.137861
\(816\) 0 0
\(817\) 29.1901 1.02123
\(818\) 0 0
\(819\) −2.59651 −0.0907294
\(820\) 0 0
\(821\) 11.2464 0.392501 0.196251 0.980554i \(-0.437123\pi\)
0.196251 + 0.980554i \(0.437123\pi\)
\(822\) 0 0
\(823\) 1.95608 0.0681845 0.0340923 0.999419i \(-0.489146\pi\)
0.0340923 + 0.999419i \(0.489146\pi\)
\(824\) 0 0
\(825\) −4.44167 −0.154639
\(826\) 0 0
\(827\) −39.9767 −1.39013 −0.695063 0.718949i \(-0.744623\pi\)
−0.695063 + 0.718949i \(0.744623\pi\)
\(828\) 0 0
\(829\) 29.1065 1.01091 0.505456 0.862852i \(-0.331324\pi\)
0.505456 + 0.862852i \(0.331324\pi\)
\(830\) 0 0
\(831\) −17.0526 −0.591549
\(832\) 0 0
\(833\) −1.00000 −0.0346479
\(834\) 0 0
\(835\) −14.0917 −0.487664
\(836\) 0 0
\(837\) 27.0755 0.935868
\(838\) 0 0
\(839\) 53.7143 1.85442 0.927211 0.374539i \(-0.122199\pi\)
0.927211 + 0.374539i \(0.122199\pi\)
\(840\) 0 0
\(841\) 18.4854 0.637428
\(842\) 0 0
\(843\) 7.65668 0.263710
\(844\) 0 0
\(845\) 9.08217 0.312436
\(846\) 0 0
\(847\) 9.34739 0.321180
\(848\) 0 0
\(849\) 4.23259 0.145262
\(850\) 0 0
\(851\) 12.1283 0.415751
\(852\) 0 0
\(853\) 3.46654 0.118692 0.0593461 0.998237i \(-0.481098\pi\)
0.0593461 + 0.998237i \(0.481098\pi\)
\(854\) 0 0
\(855\) −10.0470 −0.343602
\(856\) 0 0
\(857\) 49.3139 1.68453 0.842266 0.539062i \(-0.181221\pi\)
0.842266 + 0.539062i \(0.181221\pi\)
\(858\) 0 0
\(859\) 29.0076 0.989727 0.494864 0.868971i \(-0.335218\pi\)
0.494864 + 0.868971i \(0.335218\pi\)
\(860\) 0 0
\(861\) −1.25885 −0.0429015
\(862\) 0 0
\(863\) −36.0564 −1.22738 −0.613688 0.789549i \(-0.710315\pi\)
−0.613688 + 0.789549i \(0.710315\pi\)
\(864\) 0 0
\(865\) 4.69011 0.159468
\(866\) 0 0
\(867\) 0.783617 0.0266130
\(868\) 0 0
\(869\) 11.3806 0.386060
\(870\) 0 0
\(871\) −12.0477 −0.408222
\(872\) 0 0
\(873\) 31.5464 1.06769
\(874\) 0 0
\(875\) −7.23238 −0.244499
\(876\) 0 0
\(877\) −48.5717 −1.64015 −0.820075 0.572256i \(-0.806069\pi\)
−0.820075 + 0.572256i \(0.806069\pi\)
\(878\) 0 0
\(879\) 2.40215 0.0810224
\(880\) 0 0
\(881\) −53.1509 −1.79070 −0.895349 0.445365i \(-0.853074\pi\)
−0.895349 + 0.445365i \(0.853074\pi\)
\(882\) 0 0
\(883\) −4.45366 −0.149878 −0.0749388 0.997188i \(-0.523876\pi\)
−0.0749388 + 0.997188i \(0.523876\pi\)
\(884\) 0 0
\(885\) 5.00487 0.168237
\(886\) 0 0
\(887\) 19.4244 0.652206 0.326103 0.945334i \(-0.394264\pi\)
0.326103 + 0.945334i \(0.394264\pi\)
\(888\) 0 0
\(889\) −12.2550 −0.411020
\(890\) 0 0
\(891\) 4.95006 0.165833
\(892\) 0 0
\(893\) −28.4074 −0.950619
\(894\) 0 0
\(895\) 3.40527 0.113826
\(896\) 0 0
\(897\) −5.43540 −0.181483
\(898\) 0 0
\(899\) −44.2071 −1.47439
\(900\) 0 0
\(901\) −9.60064 −0.319844
\(902\) 0 0
\(903\) 4.17534 0.138947
\(904\) 0 0
\(905\) 9.73283 0.323530
\(906\) 0 0
\(907\) −52.6769 −1.74911 −0.874555 0.484927i \(-0.838846\pi\)
−0.874555 + 0.484927i \(0.838846\pi\)
\(908\) 0 0
\(909\) 17.3029 0.573900
\(910\) 0 0
\(911\) 19.2458 0.637642 0.318821 0.947815i \(-0.396713\pi\)
0.318821 + 0.947815i \(0.396713\pi\)
\(912\) 0 0
\(913\) 6.84840 0.226649
\(914\) 0 0
\(915\) 4.66490 0.154217
\(916\) 0 0
\(917\) −7.87643 −0.260103
\(918\) 0 0
\(919\) −46.9278 −1.54801 −0.774003 0.633182i \(-0.781749\pi\)
−0.774003 + 0.633182i \(0.781749\pi\)
\(920\) 0 0
\(921\) 20.9821 0.691383
\(922\) 0 0
\(923\) −5.84386 −0.192353
\(924\) 0 0
\(925\) −8.38992 −0.275859
\(926\) 0 0
\(927\) −14.5934 −0.479310
\(928\) 0 0
\(929\) −15.0255 −0.492970 −0.246485 0.969147i \(-0.579276\pi\)
−0.246485 + 0.969147i \(0.579276\pi\)
\(930\) 0 0
\(931\) −5.47833 −0.179545
\(932\) 0 0
\(933\) 18.4984 0.605611
\(934\) 0 0
\(935\) 0.988133 0.0323154
\(936\) 0 0
\(937\) −30.9575 −1.01134 −0.505669 0.862728i \(-0.668754\pi\)
−0.505669 + 0.862728i \(0.668754\pi\)
\(938\) 0 0
\(939\) 0.523873 0.0170960
\(940\) 0 0
\(941\) 41.8333 1.36373 0.681863 0.731480i \(-0.261170\pi\)
0.681863 + 0.731480i \(0.261170\pi\)
\(942\) 0 0
\(943\) 10.2392 0.333436
\(944\) 0 0
\(945\) −3.24411 −0.105531
\(946\) 0 0
\(947\) 2.96865 0.0964682 0.0482341 0.998836i \(-0.484641\pi\)
0.0482341 + 0.998836i \(0.484641\pi\)
\(948\) 0 0
\(949\) −9.81337 −0.318556
\(950\) 0 0
\(951\) 8.27386 0.268298
\(952\) 0 0
\(953\) 31.6462 1.02512 0.512560 0.858651i \(-0.328697\pi\)
0.512560 + 0.858651i \(0.328697\pi\)
\(954\) 0 0
\(955\) 5.86458 0.189773
\(956\) 0 0
\(957\) 6.94175 0.224395
\(958\) 0 0
\(959\) −17.8546 −0.576555
\(960\) 0 0
\(961\) 10.1551 0.327584
\(962\) 0 0
\(963\) 10.6866 0.344371
\(964\) 0 0
\(965\) 5.77370 0.185862
\(966\) 0 0
\(967\) −35.7671 −1.15019 −0.575097 0.818085i \(-0.695036\pi\)
−0.575097 + 0.818085i \(0.695036\pi\)
\(968\) 0 0
\(969\) 4.29291 0.137908
\(970\) 0 0
\(971\) −29.1248 −0.934660 −0.467330 0.884083i \(-0.654784\pi\)
−0.467330 + 0.884083i \(0.654784\pi\)
\(972\) 0 0
\(973\) 12.1290 0.388839
\(974\) 0 0
\(975\) 3.76002 0.120417
\(976\) 0 0
\(977\) 52.2733 1.67237 0.836185 0.548448i \(-0.184781\pi\)
0.836185 + 0.548448i \(0.184781\pi\)
\(978\) 0 0
\(979\) 5.60514 0.179141
\(980\) 0 0
\(981\) 44.8373 1.43154
\(982\) 0 0
\(983\) −23.0540 −0.735308 −0.367654 0.929963i \(-0.619839\pi\)
−0.367654 + 0.929963i \(0.619839\pi\)
\(984\) 0 0
\(985\) −5.27602 −0.168108
\(986\) 0 0
\(987\) −4.06338 −0.129339
\(988\) 0 0
\(989\) −33.9614 −1.07991
\(990\) 0 0
\(991\) −0.246696 −0.00783657 −0.00391829 0.999992i \(-0.501247\pi\)
−0.00391829 + 0.999992i \(0.501247\pi\)
\(992\) 0 0
\(993\) −9.42793 −0.299186
\(994\) 0 0
\(995\) 4.90360 0.155455
\(996\) 0 0
\(997\) −22.5050 −0.712741 −0.356371 0.934345i \(-0.615986\pi\)
−0.356371 + 0.934345i \(0.615986\pi\)
\(998\) 0 0
\(999\) −8.03093 −0.254088
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7616.2.a.br.1.4 5
4.3 odd 2 7616.2.a.bs.1.2 5
8.3 odd 2 3808.2.a.f.1.4 yes 5
8.5 even 2 3808.2.a.e.1.2 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3808.2.a.e.1.2 5 8.5 even 2
3808.2.a.f.1.4 yes 5 8.3 odd 2
7616.2.a.br.1.4 5 1.1 even 1 trivial
7616.2.a.bs.1.2 5 4.3 odd 2