Properties

Label 7616.2.a.bo.1.4
Level $7616$
Weight $2$
Character 7616.1
Self dual yes
Analytic conductor $60.814$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7616,2,Mod(1,7616)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7616, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7616.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7616 = 2^{6} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7616.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.8140661794\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.13448.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 7x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 952)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(2.58874\) of defining polynomial
Character \(\chi\) \(=\) 7616.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.25886 q^{3} -0.557299 q^{5} -1.00000 q^{7} +7.62018 q^{9} -5.17748 q^{11} -2.00000 q^{13} -1.81616 q^{15} +1.00000 q^{17} -3.25886 q^{21} -6.51772 q^{23} -4.68942 q^{25} +15.0565 q^{27} -3.54515 q^{29} +4.84937 q^{31} -16.8727 q^{33} +0.557299 q^{35} +3.17748 q^{37} -6.51772 q^{39} -5.32174 q^{41} -4.59911 q^{43} -4.24672 q^{45} +0.746918 q^{47} +1.00000 q^{49} +3.25886 q^{51} -11.5056 q^{53} +2.88540 q^{55} +10.3550 q^{59} +1.25886 q^{61} -7.62018 q^{63} +1.11460 q^{65} -13.1379 q^{67} -21.2404 q^{69} +16.1258 q^{71} -14.0687 q^{73} -15.2822 q^{75} +5.17748 q^{77} -0.746918 q^{79} +26.2066 q^{81} -13.7824 q^{83} -0.557299 q^{85} -11.5532 q^{87} +2.20491 q^{89} +2.00000 q^{91} +15.8034 q^{93} -10.0233 q^{97} -39.4533 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 3 q^{3} - 5 q^{5} - 4 q^{7} + 7 q^{9} - 8 q^{13} + 4 q^{17} - 3 q^{21} - 6 q^{23} + 3 q^{25} + 6 q^{27} - 8 q^{29} + 7 q^{31} - 6 q^{33} + 5 q^{35} - 8 q^{37} - 6 q^{39} + 15 q^{41} - 9 q^{43} + 2 q^{45}+ \cdots - 50 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.25886 1.88150 0.940752 0.339095i \(-0.110121\pi\)
0.940752 + 0.339095i \(0.110121\pi\)
\(4\) 0 0
\(5\) −0.557299 −0.249232 −0.124616 0.992205i \(-0.539770\pi\)
−0.124616 + 0.992205i \(0.539770\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 7.62018 2.54006
\(10\) 0 0
\(11\) −5.17748 −1.56107 −0.780534 0.625114i \(-0.785053\pi\)
−0.780534 + 0.625114i \(0.785053\pi\)
\(12\) 0 0
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) 0 0
\(15\) −1.81616 −0.468931
\(16\) 0 0
\(17\) 1.00000 0.242536
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) −3.25886 −0.711142
\(22\) 0 0
\(23\) −6.51772 −1.35904 −0.679520 0.733657i \(-0.737812\pi\)
−0.679520 + 0.733657i \(0.737812\pi\)
\(24\) 0 0
\(25\) −4.68942 −0.937884
\(26\) 0 0
\(27\) 15.0565 2.89763
\(28\) 0 0
\(29\) −3.54515 −0.658319 −0.329159 0.944274i \(-0.606765\pi\)
−0.329159 + 0.944274i \(0.606765\pi\)
\(30\) 0 0
\(31\) 4.84937 0.870973 0.435486 0.900195i \(-0.356576\pi\)
0.435486 + 0.900195i \(0.356576\pi\)
\(32\) 0 0
\(33\) −16.8727 −2.93716
\(34\) 0 0
\(35\) 0.557299 0.0942007
\(36\) 0 0
\(37\) 3.17748 0.522374 0.261187 0.965288i \(-0.415886\pi\)
0.261187 + 0.965288i \(0.415886\pi\)
\(38\) 0 0
\(39\) −6.51772 −1.04367
\(40\) 0 0
\(41\) −5.32174 −0.831116 −0.415558 0.909567i \(-0.636414\pi\)
−0.415558 + 0.909567i \(0.636414\pi\)
\(42\) 0 0
\(43\) −4.59911 −0.701357 −0.350679 0.936496i \(-0.614049\pi\)
−0.350679 + 0.936496i \(0.614049\pi\)
\(44\) 0 0
\(45\) −4.24672 −0.633063
\(46\) 0 0
\(47\) 0.746918 0.108949 0.0544746 0.998515i \(-0.482652\pi\)
0.0544746 + 0.998515i \(0.482652\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 3.25886 0.456332
\(52\) 0 0
\(53\) −11.5056 −1.58041 −0.790206 0.612841i \(-0.790027\pi\)
−0.790206 + 0.612841i \(0.790027\pi\)
\(54\) 0 0
\(55\) 2.88540 0.389068
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 10.3550 1.34810 0.674050 0.738686i \(-0.264553\pi\)
0.674050 + 0.738686i \(0.264553\pi\)
\(60\) 0 0
\(61\) 1.25886 0.161181 0.0805903 0.996747i \(-0.474319\pi\)
0.0805903 + 0.996747i \(0.474319\pi\)
\(62\) 0 0
\(63\) −7.62018 −0.960052
\(64\) 0 0
\(65\) 1.11460 0.138249
\(66\) 0 0
\(67\) −13.1379 −1.60505 −0.802525 0.596619i \(-0.796511\pi\)
−0.802525 + 0.596619i \(0.796511\pi\)
\(68\) 0 0
\(69\) −21.2404 −2.55704
\(70\) 0 0
\(71\) 16.1258 1.91377 0.956887 0.290459i \(-0.0938080\pi\)
0.956887 + 0.290459i \(0.0938080\pi\)
\(72\) 0 0
\(73\) −14.0687 −1.64661 −0.823306 0.567598i \(-0.807873\pi\)
−0.823306 + 0.567598i \(0.807873\pi\)
\(74\) 0 0
\(75\) −15.2822 −1.76463
\(76\) 0 0
\(77\) 5.17748 0.590028
\(78\) 0 0
\(79\) −0.746918 −0.0840349 −0.0420174 0.999117i \(-0.513379\pi\)
−0.0420174 + 0.999117i \(0.513379\pi\)
\(80\) 0 0
\(81\) 26.2066 2.91184
\(82\) 0 0
\(83\) −13.7824 −1.51281 −0.756405 0.654103i \(-0.773046\pi\)
−0.756405 + 0.654103i \(0.773046\pi\)
\(84\) 0 0
\(85\) −0.557299 −0.0604476
\(86\) 0 0
\(87\) −11.5532 −1.23863
\(88\) 0 0
\(89\) 2.20491 0.233720 0.116860 0.993148i \(-0.462717\pi\)
0.116860 + 0.993148i \(0.462717\pi\)
\(90\) 0 0
\(91\) 2.00000 0.209657
\(92\) 0 0
\(93\) 15.8034 1.63874
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −10.0233 −1.01771 −0.508856 0.860852i \(-0.669931\pi\)
−0.508856 + 0.860852i \(0.669931\pi\)
\(98\) 0 0
\(99\) −39.4533 −3.96520
\(100\) 0 0
\(101\) −5.63232 −0.560437 −0.280218 0.959936i \(-0.590407\pi\)
−0.280218 + 0.959936i \(0.590407\pi\)
\(102\) 0 0
\(103\) −6.06642 −0.597743 −0.298871 0.954293i \(-0.596610\pi\)
−0.298871 + 0.954293i \(0.596610\pi\)
\(104\) 0 0
\(105\) 1.81616 0.177239
\(106\) 0 0
\(107\) 10.9483 1.05841 0.529205 0.848494i \(-0.322490\pi\)
0.529205 + 0.848494i \(0.322490\pi\)
\(108\) 0 0
\(109\) −10.8098 −1.03539 −0.517695 0.855565i \(-0.673210\pi\)
−0.517695 + 0.855565i \(0.673210\pi\)
\(110\) 0 0
\(111\) 10.3550 0.982848
\(112\) 0 0
\(113\) 14.5050 1.36451 0.682257 0.731112i \(-0.260998\pi\)
0.682257 + 0.731112i \(0.260998\pi\)
\(114\) 0 0
\(115\) 3.63232 0.338716
\(116\) 0 0
\(117\) −15.2404 −1.40897
\(118\) 0 0
\(119\) −1.00000 −0.0916698
\(120\) 0 0
\(121\) 15.8062 1.43693
\(122\) 0 0
\(123\) −17.3428 −1.56375
\(124\) 0 0
\(125\) 5.39990 0.482982
\(126\) 0 0
\(127\) 9.66835 0.857927 0.428964 0.903322i \(-0.358879\pi\)
0.428964 + 0.903322i \(0.358879\pi\)
\(128\) 0 0
\(129\) −14.9879 −1.31961
\(130\) 0 0
\(131\) −10.5806 −0.924431 −0.462216 0.886768i \(-0.652945\pi\)
−0.462216 + 0.886768i \(0.652945\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −8.39098 −0.722181
\(136\) 0 0
\(137\) 1.85219 0.158243 0.0791216 0.996865i \(-0.474788\pi\)
0.0791216 + 0.996865i \(0.474788\pi\)
\(138\) 0 0
\(139\) −17.6592 −1.49783 −0.748916 0.662665i \(-0.769425\pi\)
−0.748916 + 0.662665i \(0.769425\pi\)
\(140\) 0 0
\(141\) 2.43410 0.204989
\(142\) 0 0
\(143\) 10.3550 0.865924
\(144\) 0 0
\(145\) 1.97571 0.164074
\(146\) 0 0
\(147\) 3.25886 0.268786
\(148\) 0 0
\(149\) −5.85219 −0.479430 −0.239715 0.970843i \(-0.577054\pi\)
−0.239715 + 0.970843i \(0.577054\pi\)
\(150\) 0 0
\(151\) −17.8816 −1.45518 −0.727592 0.686010i \(-0.759360\pi\)
−0.727592 + 0.686010i \(0.759360\pi\)
\(152\) 0 0
\(153\) 7.62018 0.616055
\(154\) 0 0
\(155\) −2.70255 −0.217074
\(156\) 0 0
\(157\) −0.722630 −0.0576721 −0.0288361 0.999584i \(-0.509180\pi\)
−0.0288361 + 0.999584i \(0.509180\pi\)
\(158\) 0 0
\(159\) −37.4951 −2.97355
\(160\) 0 0
\(161\) 6.51772 0.513668
\(162\) 0 0
\(163\) 3.03899 0.238032 0.119016 0.992892i \(-0.462026\pi\)
0.119016 + 0.992892i \(0.462026\pi\)
\(164\) 0 0
\(165\) 9.40312 0.732032
\(166\) 0 0
\(167\) −11.1590 −0.863507 −0.431753 0.901992i \(-0.642105\pi\)
−0.431753 + 0.901992i \(0.642105\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 17.3846 1.32173 0.660864 0.750506i \(-0.270190\pi\)
0.660864 + 0.750506i \(0.270190\pi\)
\(174\) 0 0
\(175\) 4.68942 0.354487
\(176\) 0 0
\(177\) 33.7453 2.53646
\(178\) 0 0
\(179\) 1.91861 0.143404 0.0717020 0.997426i \(-0.477157\pi\)
0.0717020 + 0.997426i \(0.477157\pi\)
\(180\) 0 0
\(181\) −15.2611 −1.13435 −0.567174 0.823598i \(-0.691963\pi\)
−0.567174 + 0.823598i \(0.691963\pi\)
\(182\) 0 0
\(183\) 4.10245 0.303262
\(184\) 0 0
\(185\) −1.77080 −0.130192
\(186\) 0 0
\(187\) −5.17748 −0.378614
\(188\) 0 0
\(189\) −15.0565 −1.09520
\(190\) 0 0
\(191\) 14.4574 1.04610 0.523051 0.852302i \(-0.324794\pi\)
0.523051 + 0.852302i \(0.324794\pi\)
\(192\) 0 0
\(193\) 23.1612 1.66718 0.833590 0.552384i \(-0.186282\pi\)
0.833590 + 0.552384i \(0.186282\pi\)
\(194\) 0 0
\(195\) 3.63232 0.260116
\(196\) 0 0
\(197\) −1.85797 −0.132375 −0.0661874 0.997807i \(-0.521084\pi\)
−0.0661874 + 0.997807i \(0.521084\pi\)
\(198\) 0 0
\(199\) −5.83946 −0.413948 −0.206974 0.978346i \(-0.566362\pi\)
−0.206974 + 0.978346i \(0.566362\pi\)
\(200\) 0 0
\(201\) −42.8146 −3.01991
\(202\) 0 0
\(203\) 3.54515 0.248821
\(204\) 0 0
\(205\) 2.96580 0.207140
\(206\) 0 0
\(207\) −49.6662 −3.45204
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −12.9726 −0.893068 −0.446534 0.894767i \(-0.647342\pi\)
−0.446534 + 0.894767i \(0.647342\pi\)
\(212\) 0 0
\(213\) 52.5516 3.60078
\(214\) 0 0
\(215\) 2.56308 0.174801
\(216\) 0 0
\(217\) −4.84937 −0.329197
\(218\) 0 0
\(219\) −45.8478 −3.09811
\(220\) 0 0
\(221\) −2.00000 −0.134535
\(222\) 0 0
\(223\) 20.5841 1.37842 0.689208 0.724563i \(-0.257959\pi\)
0.689208 + 0.724563i \(0.257959\pi\)
\(224\) 0 0
\(225\) −35.7342 −2.38228
\(226\) 0 0
\(227\) 12.8701 0.854219 0.427110 0.904200i \(-0.359532\pi\)
0.427110 + 0.904200i \(0.359532\pi\)
\(228\) 0 0
\(229\) −25.3904 −1.67784 −0.838922 0.544251i \(-0.816814\pi\)
−0.838922 + 0.544251i \(0.816814\pi\)
\(230\) 0 0
\(231\) 16.8727 1.11014
\(232\) 0 0
\(233\) −21.8417 −1.43090 −0.715448 0.698666i \(-0.753778\pi\)
−0.715448 + 0.698666i \(0.753778\pi\)
\(234\) 0 0
\(235\) −0.416257 −0.0271536
\(236\) 0 0
\(237\) −2.43410 −0.158112
\(238\) 0 0
\(239\) 23.9895 1.55175 0.775876 0.630885i \(-0.217308\pi\)
0.775876 + 0.630885i \(0.217308\pi\)
\(240\) 0 0
\(241\) 13.4928 0.869151 0.434575 0.900635i \(-0.356898\pi\)
0.434575 + 0.900635i \(0.356898\pi\)
\(242\) 0 0
\(243\) 40.2340 2.58101
\(244\) 0 0
\(245\) −0.557299 −0.0356045
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −44.9148 −2.84636
\(250\) 0 0
\(251\) 19.8488 1.25284 0.626422 0.779484i \(-0.284519\pi\)
0.626422 + 0.779484i \(0.284519\pi\)
\(252\) 0 0
\(253\) 33.7453 2.12155
\(254\) 0 0
\(255\) −1.81616 −0.113732
\(256\) 0 0
\(257\) −0.343391 −0.0214201 −0.0107101 0.999943i \(-0.503409\pi\)
−0.0107101 + 0.999943i \(0.503409\pi\)
\(258\) 0 0
\(259\) −3.17748 −0.197439
\(260\) 0 0
\(261\) −27.0147 −1.67217
\(262\) 0 0
\(263\) 28.4258 1.75281 0.876406 0.481573i \(-0.159934\pi\)
0.876406 + 0.481573i \(0.159934\pi\)
\(264\) 0 0
\(265\) 6.41205 0.393889
\(266\) 0 0
\(267\) 7.18549 0.439745
\(268\) 0 0
\(269\) −12.9904 −0.792040 −0.396020 0.918242i \(-0.629609\pi\)
−0.396020 + 0.918242i \(0.629609\pi\)
\(270\) 0 0
\(271\) 24.9984 1.51855 0.759273 0.650772i \(-0.225555\pi\)
0.759273 + 0.650772i \(0.225555\pi\)
\(272\) 0 0
\(273\) 6.51772 0.394470
\(274\) 0 0
\(275\) 24.2793 1.46410
\(276\) 0 0
\(277\) 17.6952 1.06320 0.531601 0.846995i \(-0.321591\pi\)
0.531601 + 0.846995i \(0.321591\pi\)
\(278\) 0 0
\(279\) 36.9531 2.21232
\(280\) 0 0
\(281\) 12.2946 0.733436 0.366718 0.930332i \(-0.380481\pi\)
0.366718 + 0.930332i \(0.380481\pi\)
\(282\) 0 0
\(283\) −18.3154 −1.08874 −0.544368 0.838847i \(-0.683230\pi\)
−0.544368 + 0.838847i \(0.683230\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 5.32174 0.314132
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) −32.6645 −1.91483
\(292\) 0 0
\(293\) −21.9630 −1.28309 −0.641546 0.767085i \(-0.721706\pi\)
−0.641546 + 0.767085i \(0.721706\pi\)
\(294\) 0 0
\(295\) −5.77080 −0.335989
\(296\) 0 0
\(297\) −77.9547 −4.52339
\(298\) 0 0
\(299\) 13.0354 0.753859
\(300\) 0 0
\(301\) 4.59911 0.265088
\(302\) 0 0
\(303\) −18.3550 −1.05446
\(304\) 0 0
\(305\) −0.701562 −0.0401713
\(306\) 0 0
\(307\) −12.5050 −0.713698 −0.356849 0.934162i \(-0.616149\pi\)
−0.356849 + 0.934162i \(0.616149\pi\)
\(308\) 0 0
\(309\) −19.7696 −1.12466
\(310\) 0 0
\(311\) −26.6202 −1.50949 −0.754746 0.656017i \(-0.772240\pi\)
−0.754746 + 0.656017i \(0.772240\pi\)
\(312\) 0 0
\(313\) 8.45740 0.478041 0.239020 0.971015i \(-0.423174\pi\)
0.239020 + 0.971015i \(0.423174\pi\)
\(314\) 0 0
\(315\) 4.24672 0.239275
\(316\) 0 0
\(317\) 5.20176 0.292160 0.146080 0.989273i \(-0.453334\pi\)
0.146080 + 0.989273i \(0.453334\pi\)
\(318\) 0 0
\(319\) 18.3550 1.02768
\(320\) 0 0
\(321\) 35.6789 1.99140
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 9.37884 0.520244
\(326\) 0 0
\(327\) −35.2276 −1.94809
\(328\) 0 0
\(329\) −0.746918 −0.0411789
\(330\) 0 0
\(331\) 5.13790 0.282404 0.141202 0.989981i \(-0.454903\pi\)
0.141202 + 0.989981i \(0.454903\pi\)
\(332\) 0 0
\(333\) 24.2129 1.32686
\(334\) 0 0
\(335\) 7.32174 0.400029
\(336\) 0 0
\(337\) −23.4031 −1.27485 −0.637425 0.770513i \(-0.720000\pi\)
−0.637425 + 0.770513i \(0.720000\pi\)
\(338\) 0 0
\(339\) 47.2698 2.56734
\(340\) 0 0
\(341\) −25.1075 −1.35965
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 11.8372 0.637295
\(346\) 0 0
\(347\) 13.1775 0.707404 0.353702 0.935358i \(-0.384923\pi\)
0.353702 + 0.935358i \(0.384923\pi\)
\(348\) 0 0
\(349\) 14.1373 0.756753 0.378377 0.925652i \(-0.376482\pi\)
0.378377 + 0.925652i \(0.376482\pi\)
\(350\) 0 0
\(351\) −30.1130 −1.60731
\(352\) 0 0
\(353\) 18.5771 0.988757 0.494378 0.869247i \(-0.335396\pi\)
0.494378 + 0.869247i \(0.335396\pi\)
\(354\) 0 0
\(355\) −8.98687 −0.476973
\(356\) 0 0
\(357\) −3.25886 −0.172477
\(358\) 0 0
\(359\) −18.7575 −0.989982 −0.494991 0.868898i \(-0.664829\pi\)
−0.494991 + 0.868898i \(0.664829\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) 51.5104 2.70359
\(364\) 0 0
\(365\) 7.84045 0.410388
\(366\) 0 0
\(367\) 20.6412 1.07746 0.538732 0.842477i \(-0.318904\pi\)
0.538732 + 0.842477i \(0.318904\pi\)
\(368\) 0 0
\(369\) −40.5526 −2.11108
\(370\) 0 0
\(371\) 11.5056 0.597340
\(372\) 0 0
\(373\) −17.2381 −0.892556 −0.446278 0.894894i \(-0.647251\pi\)
−0.446278 + 0.894894i \(0.647251\pi\)
\(374\) 0 0
\(375\) 17.5975 0.908733
\(376\) 0 0
\(377\) 7.09031 0.365170
\(378\) 0 0
\(379\) 25.6033 1.31515 0.657577 0.753387i \(-0.271581\pi\)
0.657577 + 0.753387i \(0.271581\pi\)
\(380\) 0 0
\(381\) 31.5078 1.61419
\(382\) 0 0
\(383\) −27.6323 −1.41195 −0.705973 0.708239i \(-0.749490\pi\)
−0.705973 + 0.708239i \(0.749490\pi\)
\(384\) 0 0
\(385\) −2.88540 −0.147054
\(386\) 0 0
\(387\) −35.0460 −1.78149
\(388\) 0 0
\(389\) 36.8717 1.86947 0.934734 0.355347i \(-0.115637\pi\)
0.934734 + 0.355347i \(0.115637\pi\)
\(390\) 0 0
\(391\) −6.51772 −0.329615
\(392\) 0 0
\(393\) −34.4807 −1.73932
\(394\) 0 0
\(395\) 0.416257 0.0209442
\(396\) 0 0
\(397\) −18.5024 −0.928611 −0.464305 0.885675i \(-0.653696\pi\)
−0.464305 + 0.885675i \(0.653696\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −24.0294 −1.19997 −0.599986 0.800011i \(-0.704827\pi\)
−0.599986 + 0.800011i \(0.704827\pi\)
\(402\) 0 0
\(403\) −9.69874 −0.483129
\(404\) 0 0
\(405\) −14.6049 −0.725723
\(406\) 0 0
\(407\) −16.4513 −0.815461
\(408\) 0 0
\(409\) −8.43410 −0.417040 −0.208520 0.978018i \(-0.566865\pi\)
−0.208520 + 0.978018i \(0.566865\pi\)
\(410\) 0 0
\(411\) 6.03603 0.297735
\(412\) 0 0
\(413\) −10.3550 −0.509534
\(414\) 0 0
\(415\) 7.68090 0.377040
\(416\) 0 0
\(417\) −57.5488 −2.81818
\(418\) 0 0
\(419\) 5.81038 0.283856 0.141928 0.989877i \(-0.454670\pi\)
0.141928 + 0.989877i \(0.454670\pi\)
\(420\) 0 0
\(421\) −32.6700 −1.59224 −0.796119 0.605140i \(-0.793117\pi\)
−0.796119 + 0.605140i \(0.793117\pi\)
\(422\) 0 0
\(423\) 5.69165 0.276738
\(424\) 0 0
\(425\) −4.68942 −0.227470
\(426\) 0 0
\(427\) −1.25886 −0.0609206
\(428\) 0 0
\(429\) 33.7453 1.62924
\(430\) 0 0
\(431\) −15.3438 −0.739085 −0.369542 0.929214i \(-0.620486\pi\)
−0.369542 + 0.929214i \(0.620486\pi\)
\(432\) 0 0
\(433\) 28.9436 1.39094 0.695469 0.718556i \(-0.255196\pi\)
0.695469 + 0.718556i \(0.255196\pi\)
\(434\) 0 0
\(435\) 6.43857 0.308706
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 11.4430 0.546146 0.273073 0.961993i \(-0.411960\pi\)
0.273073 + 0.961993i \(0.411960\pi\)
\(440\) 0 0
\(441\) 7.62018 0.362866
\(442\) 0 0
\(443\) −4.12575 −0.196020 −0.0980102 0.995185i \(-0.531248\pi\)
−0.0980102 + 0.995185i \(0.531248\pi\)
\(444\) 0 0
\(445\) −1.22879 −0.0582504
\(446\) 0 0
\(447\) −19.0715 −0.902050
\(448\) 0 0
\(449\) −20.3971 −0.962598 −0.481299 0.876556i \(-0.659835\pi\)
−0.481299 + 0.876556i \(0.659835\pi\)
\(450\) 0 0
\(451\) 27.5532 1.29743
\(452\) 0 0
\(453\) −58.2736 −2.73793
\(454\) 0 0
\(455\) −1.11460 −0.0522532
\(456\) 0 0
\(457\) 16.8971 0.790415 0.395208 0.918592i \(-0.370673\pi\)
0.395208 + 0.918592i \(0.370673\pi\)
\(458\) 0 0
\(459\) 15.0565 0.702778
\(460\) 0 0
\(461\) −19.1982 −0.894150 −0.447075 0.894496i \(-0.647534\pi\)
−0.447075 + 0.894496i \(0.647534\pi\)
\(462\) 0 0
\(463\) −20.8462 −0.968803 −0.484401 0.874846i \(-0.660963\pi\)
−0.484401 + 0.874846i \(0.660963\pi\)
\(464\) 0 0
\(465\) −8.80724 −0.408426
\(466\) 0 0
\(467\) 26.6013 1.23096 0.615482 0.788151i \(-0.288962\pi\)
0.615482 + 0.788151i \(0.288962\pi\)
\(468\) 0 0
\(469\) 13.1379 0.606652
\(470\) 0 0
\(471\) −2.35495 −0.108510
\(472\) 0 0
\(473\) 23.8118 1.09487
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −87.6745 −4.01434
\(478\) 0 0
\(479\) −37.2183 −1.70055 −0.850274 0.526341i \(-0.823564\pi\)
−0.850274 + 0.526341i \(0.823564\pi\)
\(480\) 0 0
\(481\) −6.35495 −0.289761
\(482\) 0 0
\(483\) 21.2404 0.966469
\(484\) 0 0
\(485\) 5.58598 0.253646
\(486\) 0 0
\(487\) 27.4625 1.24444 0.622221 0.782841i \(-0.286230\pi\)
0.622221 + 0.782841i \(0.286230\pi\)
\(488\) 0 0
\(489\) 9.90365 0.447859
\(490\) 0 0
\(491\) 26.5040 1.19611 0.598054 0.801455i \(-0.295941\pi\)
0.598054 + 0.801455i \(0.295941\pi\)
\(492\) 0 0
\(493\) −3.54515 −0.159666
\(494\) 0 0
\(495\) 21.9873 0.988254
\(496\) 0 0
\(497\) −16.1258 −0.723339
\(498\) 0 0
\(499\) 0.479134 0.0214490 0.0107245 0.999942i \(-0.496586\pi\)
0.0107245 + 0.999942i \(0.496586\pi\)
\(500\) 0 0
\(501\) −36.3655 −1.62469
\(502\) 0 0
\(503\) 16.8423 0.750960 0.375480 0.926830i \(-0.377478\pi\)
0.375480 + 0.926830i \(0.377478\pi\)
\(504\) 0 0
\(505\) 3.13889 0.139679
\(506\) 0 0
\(507\) −29.3298 −1.30258
\(508\) 0 0
\(509\) −31.2519 −1.38522 −0.692608 0.721314i \(-0.743539\pi\)
−0.692608 + 0.721314i \(0.743539\pi\)
\(510\) 0 0
\(511\) 14.0687 0.622361
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 3.38081 0.148976
\(516\) 0 0
\(517\) −3.86715 −0.170077
\(518\) 0 0
\(519\) 56.6540 2.48684
\(520\) 0 0
\(521\) 42.6573 1.86885 0.934424 0.356161i \(-0.115915\pi\)
0.934424 + 0.356161i \(0.115915\pi\)
\(522\) 0 0
\(523\) 13.0239 0.569495 0.284747 0.958603i \(-0.408090\pi\)
0.284747 + 0.958603i \(0.408090\pi\)
\(524\) 0 0
\(525\) 15.2822 0.666968
\(526\) 0 0
\(527\) 4.84937 0.211242
\(528\) 0 0
\(529\) 19.4807 0.846987
\(530\) 0 0
\(531\) 78.9065 3.42425
\(532\) 0 0
\(533\) 10.6435 0.461020
\(534\) 0 0
\(535\) −6.10147 −0.263789
\(536\) 0 0
\(537\) 6.25250 0.269815
\(538\) 0 0
\(539\) −5.17748 −0.223010
\(540\) 0 0
\(541\) −13.1181 −0.563993 −0.281997 0.959415i \(-0.590997\pi\)
−0.281997 + 0.959415i \(0.590997\pi\)
\(542\) 0 0
\(543\) −49.7338 −2.13428
\(544\) 0 0
\(545\) 6.02429 0.258052
\(546\) 0 0
\(547\) 6.90614 0.295285 0.147643 0.989041i \(-0.452831\pi\)
0.147643 + 0.989041i \(0.452831\pi\)
\(548\) 0 0
\(549\) 9.59274 0.409408
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0.746918 0.0317622
\(554\) 0 0
\(555\) −5.77080 −0.244957
\(556\) 0 0
\(557\) −10.5841 −0.448465 −0.224232 0.974536i \(-0.571987\pi\)
−0.224232 + 0.974536i \(0.571987\pi\)
\(558\) 0 0
\(559\) 9.19822 0.389043
\(560\) 0 0
\(561\) −16.8727 −0.712365
\(562\) 0 0
\(563\) −3.34826 −0.141112 −0.0705562 0.997508i \(-0.522477\pi\)
−0.0705562 + 0.997508i \(0.522477\pi\)
\(564\) 0 0
\(565\) −8.08362 −0.340080
\(566\) 0 0
\(567\) −26.2066 −1.10057
\(568\) 0 0
\(569\) −14.8832 −0.623935 −0.311967 0.950093i \(-0.600988\pi\)
−0.311967 + 0.950093i \(0.600988\pi\)
\(570\) 0 0
\(571\) 3.61604 0.151327 0.0756634 0.997133i \(-0.475893\pi\)
0.0756634 + 0.997133i \(0.475893\pi\)
\(572\) 0 0
\(573\) 47.1147 1.96824
\(574\) 0 0
\(575\) 30.5643 1.27462
\(576\) 0 0
\(577\) 2.99331 0.124613 0.0623065 0.998057i \(-0.480154\pi\)
0.0623065 + 0.998057i \(0.480154\pi\)
\(578\) 0 0
\(579\) 75.4791 3.13681
\(580\) 0 0
\(581\) 13.7824 0.571789
\(582\) 0 0
\(583\) 59.5698 2.46713
\(584\) 0 0
\(585\) 8.49343 0.351160
\(586\) 0 0
\(587\) 9.28893 0.383395 0.191698 0.981454i \(-0.438601\pi\)
0.191698 + 0.981454i \(0.438601\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) −6.05486 −0.249064
\(592\) 0 0
\(593\) 22.0421 0.905162 0.452581 0.891723i \(-0.350503\pi\)
0.452581 + 0.891723i \(0.350503\pi\)
\(594\) 0 0
\(595\) 0.557299 0.0228470
\(596\) 0 0
\(597\) −19.0300 −0.778846
\(598\) 0 0
\(599\) −3.97348 −0.162352 −0.0811760 0.996700i \(-0.525868\pi\)
−0.0811760 + 0.996700i \(0.525868\pi\)
\(600\) 0 0
\(601\) 18.4513 0.752644 0.376322 0.926489i \(-0.377189\pi\)
0.376322 + 0.926489i \(0.377189\pi\)
\(602\) 0 0
\(603\) −100.113 −4.07692
\(604\) 0 0
\(605\) −8.80881 −0.358129
\(606\) 0 0
\(607\) 6.11518 0.248208 0.124104 0.992269i \(-0.460394\pi\)
0.124104 + 0.992269i \(0.460394\pi\)
\(608\) 0 0
\(609\) 11.5532 0.468158
\(610\) 0 0
\(611\) −1.49384 −0.0604342
\(612\) 0 0
\(613\) 1.65562 0.0668699 0.0334349 0.999441i \(-0.489355\pi\)
0.0334349 + 0.999441i \(0.489355\pi\)
\(614\) 0 0
\(615\) 9.66513 0.389736
\(616\) 0 0
\(617\) 9.09740 0.366248 0.183124 0.983090i \(-0.441379\pi\)
0.183124 + 0.983090i \(0.441379\pi\)
\(618\) 0 0
\(619\) 12.2002 0.490367 0.245184 0.969477i \(-0.421152\pi\)
0.245184 + 0.969477i \(0.421152\pi\)
\(620\) 0 0
\(621\) −98.1342 −3.93799
\(622\) 0 0
\(623\) −2.20491 −0.0883378
\(624\) 0 0
\(625\) 20.4377 0.817509
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 3.17748 0.126694
\(630\) 0 0
\(631\) 39.7698 1.58321 0.791606 0.611032i \(-0.209245\pi\)
0.791606 + 0.611032i \(0.209245\pi\)
\(632\) 0 0
\(633\) −42.2758 −1.68031
\(634\) 0 0
\(635\) −5.38816 −0.213823
\(636\) 0 0
\(637\) −2.00000 −0.0792429
\(638\) 0 0
\(639\) 122.881 4.86110
\(640\) 0 0
\(641\) 21.5532 0.851299 0.425649 0.904888i \(-0.360046\pi\)
0.425649 + 0.904888i \(0.360046\pi\)
\(642\) 0 0
\(643\) −28.6970 −1.13170 −0.565850 0.824508i \(-0.691452\pi\)
−0.565850 + 0.824508i \(0.691452\pi\)
\(644\) 0 0
\(645\) 8.35272 0.328888
\(646\) 0 0
\(647\) 40.0582 1.57485 0.787424 0.616411i \(-0.211414\pi\)
0.787424 + 0.616411i \(0.211414\pi\)
\(648\) 0 0
\(649\) −53.6125 −2.10447
\(650\) 0 0
\(651\) −15.8034 −0.619385
\(652\) 0 0
\(653\) 11.5522 0.452074 0.226037 0.974119i \(-0.427423\pi\)
0.226037 + 0.974119i \(0.427423\pi\)
\(654\) 0 0
\(655\) 5.89656 0.230398
\(656\) 0 0
\(657\) −107.206 −4.18249
\(658\) 0 0
\(659\) −7.65116 −0.298047 −0.149023 0.988834i \(-0.547613\pi\)
−0.149023 + 0.988834i \(0.547613\pi\)
\(660\) 0 0
\(661\) −44.0709 −1.71416 −0.857079 0.515184i \(-0.827723\pi\)
−0.857079 + 0.515184i \(0.827723\pi\)
\(662\) 0 0
\(663\) −6.51772 −0.253127
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 23.1063 0.894681
\(668\) 0 0
\(669\) 67.0809 2.59350
\(670\) 0 0
\(671\) −6.51772 −0.251614
\(672\) 0 0
\(673\) 14.6983 0.566579 0.283290 0.959034i \(-0.408574\pi\)
0.283290 + 0.959034i \(0.408574\pi\)
\(674\) 0 0
\(675\) −70.6063 −2.71764
\(676\) 0 0
\(677\) 29.1233 1.11930 0.559649 0.828730i \(-0.310936\pi\)
0.559649 + 0.828730i \(0.310936\pi\)
\(678\) 0 0
\(679\) 10.0233 0.384659
\(680\) 0 0
\(681\) 41.9419 1.60722
\(682\) 0 0
\(683\) −30.0967 −1.15162 −0.575810 0.817584i \(-0.695313\pi\)
−0.575810 + 0.817584i \(0.695313\pi\)
\(684\) 0 0
\(685\) −1.03222 −0.0394392
\(686\) 0 0
\(687\) −82.7438 −3.15687
\(688\) 0 0
\(689\) 23.0112 0.876655
\(690\) 0 0
\(691\) 39.6432 1.50810 0.754050 0.656818i \(-0.228098\pi\)
0.754050 + 0.656818i \(0.228098\pi\)
\(692\) 0 0
\(693\) 39.4533 1.49871
\(694\) 0 0
\(695\) 9.84144 0.373307
\(696\) 0 0
\(697\) −5.32174 −0.201575
\(698\) 0 0
\(699\) −71.1790 −2.69224
\(700\) 0 0
\(701\) 13.2575 0.500731 0.250365 0.968151i \(-0.419449\pi\)
0.250365 + 0.968151i \(0.419449\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) −1.35652 −0.0510896
\(706\) 0 0
\(707\) 5.63232 0.211825
\(708\) 0 0
\(709\) −24.9904 −0.938535 −0.469267 0.883056i \(-0.655482\pi\)
−0.469267 + 0.883056i \(0.655482\pi\)
\(710\) 0 0
\(711\) −5.69165 −0.213454
\(712\) 0 0
\(713\) −31.6069 −1.18369
\(714\) 0 0
\(715\) −5.77080 −0.215816
\(716\) 0 0
\(717\) 78.1785 2.91963
\(718\) 0 0
\(719\) −41.9723 −1.56530 −0.782651 0.622460i \(-0.786133\pi\)
−0.782651 + 0.622460i \(0.786133\pi\)
\(720\) 0 0
\(721\) 6.06642 0.225925
\(722\) 0 0
\(723\) 43.9713 1.63531
\(724\) 0 0
\(725\) 16.6247 0.617426
\(726\) 0 0
\(727\) −13.1989 −0.489519 −0.244759 0.969584i \(-0.578709\pi\)
−0.244759 + 0.969584i \(0.578709\pi\)
\(728\) 0 0
\(729\) 52.4973 1.94434
\(730\) 0 0
\(731\) −4.59911 −0.170104
\(732\) 0 0
\(733\) −8.39197 −0.309964 −0.154982 0.987917i \(-0.549532\pi\)
−0.154982 + 0.987917i \(0.549532\pi\)
\(734\) 0 0
\(735\) −1.81616 −0.0669901
\(736\) 0 0
\(737\) 68.0211 2.50559
\(738\) 0 0
\(739\) −16.3106 −0.599994 −0.299997 0.953940i \(-0.596986\pi\)
−0.299997 + 0.953940i \(0.596986\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −54.1661 −1.98716 −0.993580 0.113130i \(-0.963912\pi\)
−0.993580 + 0.113130i \(0.963912\pi\)
\(744\) 0 0
\(745\) 3.26142 0.119489
\(746\) 0 0
\(747\) −105.024 −3.84263
\(748\) 0 0
\(749\) −10.9483 −0.400041
\(750\) 0 0
\(751\) −10.7648 −0.392812 −0.196406 0.980523i \(-0.562927\pi\)
−0.196406 + 0.980523i \(0.562927\pi\)
\(752\) 0 0
\(753\) 64.6844 2.35723
\(754\) 0 0
\(755\) 9.96540 0.362678
\(756\) 0 0
\(757\) −12.6540 −0.459916 −0.229958 0.973200i \(-0.573859\pi\)
−0.229958 + 0.973200i \(0.573859\pi\)
\(758\) 0 0
\(759\) 109.971 3.99171
\(760\) 0 0
\(761\) −23.4497 −0.850052 −0.425026 0.905181i \(-0.639735\pi\)
−0.425026 + 0.905181i \(0.639735\pi\)
\(762\) 0 0
\(763\) 10.8098 0.391341
\(764\) 0 0
\(765\) −4.24672 −0.153540
\(766\) 0 0
\(767\) −20.7099 −0.747791
\(768\) 0 0
\(769\) −54.3422 −1.95963 −0.979815 0.199905i \(-0.935937\pi\)
−0.979815 + 0.199905i \(0.935937\pi\)
\(770\) 0 0
\(771\) −1.11906 −0.0403021
\(772\) 0 0
\(773\) 34.7891 1.25128 0.625638 0.780114i \(-0.284839\pi\)
0.625638 + 0.780114i \(0.284839\pi\)
\(774\) 0 0
\(775\) −22.7407 −0.816871
\(776\) 0 0
\(777\) −10.3550 −0.371482
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −83.4907 −2.98753
\(782\) 0 0
\(783\) −53.3777 −1.90756
\(784\) 0 0
\(785\) 0.402721 0.0143737
\(786\) 0 0
\(787\) 19.9487 0.711094 0.355547 0.934658i \(-0.384295\pi\)
0.355547 + 0.934658i \(0.384295\pi\)
\(788\) 0 0
\(789\) 92.6359 3.29792
\(790\) 0 0
\(791\) −14.5050 −0.515738
\(792\) 0 0
\(793\) −2.51772 −0.0894069
\(794\) 0 0
\(795\) 20.8960 0.741104
\(796\) 0 0
\(797\) −14.5050 −0.513793 −0.256897 0.966439i \(-0.582700\pi\)
−0.256897 + 0.966439i \(0.582700\pi\)
\(798\) 0 0
\(799\) 0.746918 0.0264241
\(800\) 0 0
\(801\) 16.8018 0.593662
\(802\) 0 0
\(803\) 72.8401 2.57047
\(804\) 0 0
\(805\) −3.63232 −0.128022
\(806\) 0 0
\(807\) −42.3340 −1.49023
\(808\) 0 0
\(809\) 29.4325 1.03479 0.517396 0.855746i \(-0.326901\pi\)
0.517396 + 0.855746i \(0.326901\pi\)
\(810\) 0 0
\(811\) 7.67314 0.269440 0.134720 0.990884i \(-0.456986\pi\)
0.134720 + 0.990884i \(0.456986\pi\)
\(812\) 0 0
\(813\) 81.4664 2.85715
\(814\) 0 0
\(815\) −1.69363 −0.0593252
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 15.2404 0.532541
\(820\) 0 0
\(821\) 9.86506 0.344293 0.172147 0.985071i \(-0.444930\pi\)
0.172147 + 0.985071i \(0.444930\pi\)
\(822\) 0 0
\(823\) 21.7759 0.759061 0.379530 0.925179i \(-0.376086\pi\)
0.379530 + 0.925179i \(0.376086\pi\)
\(824\) 0 0
\(825\) 79.1230 2.75471
\(826\) 0 0
\(827\) −14.5340 −0.505397 −0.252698 0.967545i \(-0.581318\pi\)
−0.252698 + 0.967545i \(0.581318\pi\)
\(828\) 0 0
\(829\) −0.222102 −0.00771392 −0.00385696 0.999993i \(-0.501228\pi\)
−0.00385696 + 0.999993i \(0.501228\pi\)
\(830\) 0 0
\(831\) 57.6662 2.00042
\(832\) 0 0
\(833\) 1.00000 0.0346479
\(834\) 0 0
\(835\) 6.21888 0.215213
\(836\) 0 0
\(837\) 73.0146 2.52375
\(838\) 0 0
\(839\) 42.4807 1.46660 0.733298 0.679907i \(-0.237980\pi\)
0.733298 + 0.679907i \(0.237980\pi\)
\(840\) 0 0
\(841\) −16.4319 −0.566616
\(842\) 0 0
\(843\) 40.0665 1.37996
\(844\) 0 0
\(845\) 5.01569 0.172545
\(846\) 0 0
\(847\) −15.8062 −0.543109
\(848\) 0 0
\(849\) −59.6873 −2.04846
\(850\) 0 0
\(851\) −20.7099 −0.709926
\(852\) 0 0
\(853\) 8.27342 0.283276 0.141638 0.989918i \(-0.454763\pi\)
0.141638 + 0.989918i \(0.454763\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 51.3103 1.75272 0.876362 0.481652i \(-0.159963\pi\)
0.876362 + 0.481652i \(0.159963\pi\)
\(858\) 0 0
\(859\) 19.1434 0.653163 0.326581 0.945169i \(-0.394103\pi\)
0.326581 + 0.945169i \(0.394103\pi\)
\(860\) 0 0
\(861\) 17.3428 0.591041
\(862\) 0 0
\(863\) 7.43915 0.253232 0.126616 0.991952i \(-0.459588\pi\)
0.126616 + 0.991952i \(0.459588\pi\)
\(864\) 0 0
\(865\) −9.68843 −0.329416
\(866\) 0 0
\(867\) 3.25886 0.110677
\(868\) 0 0
\(869\) 3.86715 0.131184
\(870\) 0 0
\(871\) 26.2758 0.890321
\(872\) 0 0
\(873\) −76.3793 −2.58505
\(874\) 0 0
\(875\) −5.39990 −0.182550
\(876\) 0 0
\(877\) 20.2058 0.682302 0.341151 0.940008i \(-0.389183\pi\)
0.341151 + 0.940008i \(0.389183\pi\)
\(878\) 0 0
\(879\) −71.5743 −2.41414
\(880\) 0 0
\(881\) −22.8124 −0.768568 −0.384284 0.923215i \(-0.625552\pi\)
−0.384284 + 0.923215i \(0.625552\pi\)
\(882\) 0 0
\(883\) 1.51202 0.0508835 0.0254418 0.999676i \(-0.491901\pi\)
0.0254418 + 0.999676i \(0.491901\pi\)
\(884\) 0 0
\(885\) −18.8062 −0.632165
\(886\) 0 0
\(887\) 47.4558 1.59341 0.796705 0.604368i \(-0.206574\pi\)
0.796705 + 0.604368i \(0.206574\pi\)
\(888\) 0 0
\(889\) −9.66835 −0.324266
\(890\) 0 0
\(891\) −135.684 −4.54558
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −1.06924 −0.0357408
\(896\) 0 0
\(897\) 42.4807 1.41839
\(898\) 0 0
\(899\) −17.1918 −0.573378
\(900\) 0 0
\(901\) −11.5056 −0.383306
\(902\) 0 0
\(903\) 14.9879 0.498765
\(904\) 0 0
\(905\) 8.50499 0.282716
\(906\) 0 0
\(907\) −8.90051 −0.295537 −0.147768 0.989022i \(-0.547209\pi\)
−0.147768 + 0.989022i \(0.547209\pi\)
\(908\) 0 0
\(909\) −42.9193 −1.42354
\(910\) 0 0
\(911\) 14.8484 0.491949 0.245974 0.969276i \(-0.420892\pi\)
0.245974 + 0.969276i \(0.420892\pi\)
\(912\) 0 0
\(913\) 71.3578 2.36160
\(914\) 0 0
\(915\) −2.28629 −0.0755825
\(916\) 0 0
\(917\) 10.5806 0.349402
\(918\) 0 0
\(919\) −34.4702 −1.13707 −0.568534 0.822660i \(-0.692489\pi\)
−0.568534 + 0.822660i \(0.692489\pi\)
\(920\) 0 0
\(921\) −40.7520 −1.34283
\(922\) 0 0
\(923\) −32.2515 −1.06157
\(924\) 0 0
\(925\) −14.9005 −0.489926
\(926\) 0 0
\(927\) −46.2272 −1.51830
\(928\) 0 0
\(929\) −1.56688 −0.0514078 −0.0257039 0.999670i \(-0.508183\pi\)
−0.0257039 + 0.999670i \(0.508183\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −86.7515 −2.84012
\(934\) 0 0
\(935\) 2.88540 0.0943627
\(936\) 0 0
\(937\) −14.6678 −0.479175 −0.239587 0.970875i \(-0.577012\pi\)
−0.239587 + 0.970875i \(0.577012\pi\)
\(938\) 0 0
\(939\) 27.5615 0.899436
\(940\) 0 0
\(941\) −10.6926 −0.348568 −0.174284 0.984695i \(-0.555761\pi\)
−0.174284 + 0.984695i \(0.555761\pi\)
\(942\) 0 0
\(943\) 34.6856 1.12952
\(944\) 0 0
\(945\) 8.39098 0.272959
\(946\) 0 0
\(947\) 41.9105 1.36191 0.680954 0.732326i \(-0.261565\pi\)
0.680954 + 0.732326i \(0.261565\pi\)
\(948\) 0 0
\(949\) 28.1373 0.913376
\(950\) 0 0
\(951\) 16.9518 0.549701
\(952\) 0 0
\(953\) −30.6656 −0.993356 −0.496678 0.867935i \(-0.665447\pi\)
−0.496678 + 0.867935i \(0.665447\pi\)
\(954\) 0 0
\(955\) −8.05710 −0.260722
\(956\) 0 0
\(957\) 59.8162 1.93358
\(958\) 0 0
\(959\) −1.85219 −0.0598103
\(960\) 0 0
\(961\) −7.48359 −0.241406
\(962\) 0 0
\(963\) 83.4278 2.68842
\(964\) 0 0
\(965\) −12.9077 −0.415514
\(966\) 0 0
\(967\) −17.3460 −0.557811 −0.278905 0.960319i \(-0.589972\pi\)
−0.278905 + 0.960319i \(0.589972\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 15.8909 0.509964 0.254982 0.966946i \(-0.417930\pi\)
0.254982 + 0.966946i \(0.417930\pi\)
\(972\) 0 0
\(973\) 17.6592 0.566127
\(974\) 0 0
\(975\) 30.5643 0.978842
\(976\) 0 0
\(977\) −23.3544 −0.747172 −0.373586 0.927595i \(-0.621872\pi\)
−0.373586 + 0.927595i \(0.621872\pi\)
\(978\) 0 0
\(979\) −11.4159 −0.364852
\(980\) 0 0
\(981\) −82.3725 −2.62995
\(982\) 0 0
\(983\) −53.3473 −1.70151 −0.850757 0.525559i \(-0.823856\pi\)
−0.850757 + 0.525559i \(0.823856\pi\)
\(984\) 0 0
\(985\) 1.03544 0.0329920
\(986\) 0 0
\(987\) −2.43410 −0.0774784
\(988\) 0 0
\(989\) 29.9757 0.953172
\(990\) 0 0
\(991\) 46.9741 1.49218 0.746091 0.665844i \(-0.231928\pi\)
0.746091 + 0.665844i \(0.231928\pi\)
\(992\) 0 0
\(993\) 16.7437 0.531345
\(994\) 0 0
\(995\) 3.25433 0.103169
\(996\) 0 0
\(997\) −6.74114 −0.213494 −0.106747 0.994286i \(-0.534043\pi\)
−0.106747 + 0.994286i \(0.534043\pi\)
\(998\) 0 0
\(999\) 47.8417 1.51364
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7616.2.a.bo.1.4 4
4.3 odd 2 7616.2.a.bi.1.1 4
8.3 odd 2 952.2.a.h.1.4 4
8.5 even 2 1904.2.a.r.1.1 4
24.11 even 2 8568.2.a.bg.1.3 4
56.27 even 2 6664.2.a.n.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
952.2.a.h.1.4 4 8.3 odd 2
1904.2.a.r.1.1 4 8.5 even 2
6664.2.a.n.1.1 4 56.27 even 2
7616.2.a.bi.1.1 4 4.3 odd 2
7616.2.a.bo.1.4 4 1.1 even 1 trivial
8568.2.a.bg.1.3 4 24.11 even 2