Properties

Label 7616.2.a.bo.1.3
Level $7616$
Weight $2$
Character 7616.1
Self dual yes
Analytic conductor $60.814$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7616,2,Mod(1,7616)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7616, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7616.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7616 = 2^{6} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7616.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.8140661794\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.13448.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 7x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 952)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-2.58874\) of defining polynomial
Character \(\chi\) \(=\) 7616.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.44270 q^{3} +1.25886 q^{5} -1.00000 q^{7} -0.918614 q^{9} +5.17748 q^{11} -2.00000 q^{13} +1.81616 q^{15} +1.00000 q^{17} -1.44270 q^{21} -2.88540 q^{23} -3.41527 q^{25} -5.65339 q^{27} -0.454845 q^{29} -10.9541 q^{31} +7.46955 q^{33} -1.25886 q^{35} -7.17748 q^{37} -2.88540 q^{39} +3.21705 q^{41} -9.50558 q^{43} -1.15641 q^{45} -10.1500 q^{47} +1.00000 q^{49} +1.44270 q^{51} -6.59911 q^{53} +6.51772 q^{55} -10.3550 q^{59} -0.557299 q^{61} +0.918614 q^{63} -2.51772 q^{65} -0.966788 q^{67} -4.16277 q^{69} +2.68049 q^{71} +5.36709 q^{73} -4.92721 q^{75} -5.17748 q^{77} +10.1500 q^{79} -5.40031 q^{81} +4.37924 q^{83} +1.25886 q^{85} -0.656206 q^{87} -7.60803 q^{89} +2.00000 q^{91} -15.8034 q^{93} -1.48451 q^{97} -4.75610 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 3 q^{3} - 5 q^{5} - 4 q^{7} + 7 q^{9} - 8 q^{13} + 4 q^{17} - 3 q^{21} - 6 q^{23} + 3 q^{25} + 6 q^{27} - 8 q^{29} + 7 q^{31} - 6 q^{33} + 5 q^{35} - 8 q^{37} - 6 q^{39} + 15 q^{41} - 9 q^{43} + 2 q^{45}+ \cdots - 50 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.44270 0.832944 0.416472 0.909149i \(-0.363266\pi\)
0.416472 + 0.909149i \(0.363266\pi\)
\(4\) 0 0
\(5\) 1.25886 0.562980 0.281490 0.959564i \(-0.409171\pi\)
0.281490 + 0.959564i \(0.409171\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) −0.918614 −0.306205
\(10\) 0 0
\(11\) 5.17748 1.56107 0.780534 0.625114i \(-0.214947\pi\)
0.780534 + 0.625114i \(0.214947\pi\)
\(12\) 0 0
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) 0 0
\(15\) 1.81616 0.468931
\(16\) 0 0
\(17\) 1.00000 0.242536
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) −1.44270 −0.314823
\(22\) 0 0
\(23\) −2.88540 −0.601648 −0.300824 0.953680i \(-0.597262\pi\)
−0.300824 + 0.953680i \(0.597262\pi\)
\(24\) 0 0
\(25\) −3.41527 −0.683054
\(26\) 0 0
\(27\) −5.65339 −1.08800
\(28\) 0 0
\(29\) −0.454845 −0.0844627 −0.0422313 0.999108i \(-0.513447\pi\)
−0.0422313 + 0.999108i \(0.513447\pi\)
\(30\) 0 0
\(31\) −10.9541 −1.96741 −0.983704 0.179798i \(-0.942455\pi\)
−0.983704 + 0.179798i \(0.942455\pi\)
\(32\) 0 0
\(33\) 7.46955 1.30028
\(34\) 0 0
\(35\) −1.25886 −0.212786
\(36\) 0 0
\(37\) −7.17748 −1.17997 −0.589985 0.807414i \(-0.700866\pi\)
−0.589985 + 0.807414i \(0.700866\pi\)
\(38\) 0 0
\(39\) −2.88540 −0.462034
\(40\) 0 0
\(41\) 3.21705 0.502419 0.251210 0.967933i \(-0.419172\pi\)
0.251210 + 0.967933i \(0.419172\pi\)
\(42\) 0 0
\(43\) −9.50558 −1.44959 −0.724794 0.688966i \(-0.758065\pi\)
−0.724794 + 0.688966i \(0.758065\pi\)
\(44\) 0 0
\(45\) −1.15641 −0.172387
\(46\) 0 0
\(47\) −10.1500 −1.48054 −0.740268 0.672312i \(-0.765301\pi\)
−0.740268 + 0.672312i \(0.765301\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 1.44270 0.202019
\(52\) 0 0
\(53\) −6.59911 −0.906457 −0.453229 0.891394i \(-0.649728\pi\)
−0.453229 + 0.891394i \(0.649728\pi\)
\(54\) 0 0
\(55\) 6.51772 0.878849
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −10.3550 −1.34810 −0.674050 0.738686i \(-0.735447\pi\)
−0.674050 + 0.738686i \(0.735447\pi\)
\(60\) 0 0
\(61\) −0.557299 −0.0713548 −0.0356774 0.999363i \(-0.511359\pi\)
−0.0356774 + 0.999363i \(0.511359\pi\)
\(62\) 0 0
\(63\) 0.918614 0.115734
\(64\) 0 0
\(65\) −2.51772 −0.312285
\(66\) 0 0
\(67\) −0.966788 −0.118112 −0.0590560 0.998255i \(-0.518809\pi\)
−0.0590560 + 0.998255i \(0.518809\pi\)
\(68\) 0 0
\(69\) −4.16277 −0.501139
\(70\) 0 0
\(71\) 2.68049 0.318116 0.159058 0.987269i \(-0.449154\pi\)
0.159058 + 0.987269i \(0.449154\pi\)
\(72\) 0 0
\(73\) 5.36709 0.628171 0.314085 0.949395i \(-0.398302\pi\)
0.314085 + 0.949395i \(0.398302\pi\)
\(74\) 0 0
\(75\) −4.92721 −0.568945
\(76\) 0 0
\(77\) −5.17748 −0.590028
\(78\) 0 0
\(79\) 10.1500 1.14197 0.570985 0.820961i \(-0.306562\pi\)
0.570985 + 0.820961i \(0.306562\pi\)
\(80\) 0 0
\(81\) −5.40031 −0.600034
\(82\) 0 0
\(83\) 4.37924 0.480684 0.240342 0.970688i \(-0.422740\pi\)
0.240342 + 0.970688i \(0.422740\pi\)
\(84\) 0 0
\(85\) 1.25886 0.136543
\(86\) 0 0
\(87\) −0.656206 −0.0703526
\(88\) 0 0
\(89\) −7.60803 −0.806450 −0.403225 0.915101i \(-0.632111\pi\)
−0.403225 + 0.915101i \(0.632111\pi\)
\(90\) 0 0
\(91\) 2.00000 0.209657
\(92\) 0 0
\(93\) −15.8034 −1.63874
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −1.48451 −0.150729 −0.0753646 0.997156i \(-0.524012\pi\)
−0.0753646 + 0.997156i \(0.524012\pi\)
\(98\) 0 0
\(99\) −4.75610 −0.478006
\(100\) 0 0
\(101\) 1.63232 0.162422 0.0812110 0.996697i \(-0.474121\pi\)
0.0812110 + 0.996697i \(0.474121\pi\)
\(102\) 0 0
\(103\) 18.2758 1.80077 0.900384 0.435096i \(-0.143286\pi\)
0.900384 + 0.435096i \(0.143286\pi\)
\(104\) 0 0
\(105\) −1.81616 −0.177239
\(106\) 0 0
\(107\) 7.85797 0.759659 0.379829 0.925057i \(-0.375983\pi\)
0.379829 + 0.925057i \(0.375983\pi\)
\(108\) 0 0
\(109\) 6.80980 0.652260 0.326130 0.945325i \(-0.394255\pi\)
0.326130 + 0.945325i \(0.394255\pi\)
\(110\) 0 0
\(111\) −10.3550 −0.982848
\(112\) 0 0
\(113\) −17.1019 −1.60881 −0.804404 0.594082i \(-0.797515\pi\)
−0.804404 + 0.594082i \(0.797515\pi\)
\(114\) 0 0
\(115\) −3.63232 −0.338716
\(116\) 0 0
\(117\) 1.83723 0.169852
\(118\) 0 0
\(119\) −1.00000 −0.0916698
\(120\) 0 0
\(121\) 15.8062 1.43693
\(122\) 0 0
\(123\) 4.64124 0.418487
\(124\) 0 0
\(125\) −10.5937 −0.947525
\(126\) 0 0
\(127\) 21.8395 1.93794 0.968969 0.247181i \(-0.0795042\pi\)
0.968969 + 0.247181i \(0.0795042\pi\)
\(128\) 0 0
\(129\) −13.7137 −1.20742
\(130\) 0 0
\(131\) −0.225649 −0.0197151 −0.00985753 0.999951i \(-0.503138\pi\)
−0.00985753 + 0.999951i \(0.503138\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −7.11683 −0.612519
\(136\) 0 0
\(137\) 17.6556 1.50842 0.754211 0.656632i \(-0.228020\pi\)
0.754211 + 0.656632i \(0.228020\pi\)
\(138\) 0 0
\(139\) 15.7639 1.33707 0.668536 0.743679i \(-0.266921\pi\)
0.668536 + 0.743679i \(0.266921\pi\)
\(140\) 0 0
\(141\) −14.6435 −1.23320
\(142\) 0 0
\(143\) −10.3550 −0.865924
\(144\) 0 0
\(145\) −0.572587 −0.0475508
\(146\) 0 0
\(147\) 1.44270 0.118992
\(148\) 0 0
\(149\) −21.6556 −1.77410 −0.887049 0.461676i \(-0.847248\pi\)
−0.887049 + 0.461676i \(0.847248\pi\)
\(150\) 0 0
\(151\) 21.1800 1.72361 0.861803 0.507243i \(-0.169335\pi\)
0.861803 + 0.507243i \(0.169335\pi\)
\(152\) 0 0
\(153\) −0.918614 −0.0742655
\(154\) 0 0
\(155\) −13.7896 −1.10761
\(156\) 0 0
\(157\) 12.7226 1.01538 0.507688 0.861541i \(-0.330500\pi\)
0.507688 + 0.861541i \(0.330500\pi\)
\(158\) 0 0
\(159\) −9.52054 −0.755028
\(160\) 0 0
\(161\) 2.88540 0.227402
\(162\) 0 0
\(163\) −21.8452 −1.71105 −0.855526 0.517760i \(-0.826766\pi\)
−0.855526 + 0.517760i \(0.826766\pi\)
\(164\) 0 0
\(165\) 9.40312 0.732032
\(166\) 0 0
\(167\) 14.4574 1.11875 0.559374 0.828916i \(-0.311042\pi\)
0.559374 + 0.828916i \(0.311042\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2.12320 0.161424 0.0807118 0.996737i \(-0.474281\pi\)
0.0807118 + 0.996737i \(0.474281\pi\)
\(174\) 0 0
\(175\) 3.41527 0.258170
\(176\) 0 0
\(177\) −14.9391 −1.12289
\(178\) 0 0
\(179\) −6.62018 −0.494815 −0.247408 0.968911i \(-0.579579\pi\)
−0.247408 + 0.968911i \(0.579579\pi\)
\(180\) 0 0
\(181\) −18.3514 −1.36405 −0.682025 0.731329i \(-0.738900\pi\)
−0.682025 + 0.731329i \(0.738900\pi\)
\(182\) 0 0
\(183\) −0.804016 −0.0594346
\(184\) 0 0
\(185\) −9.03544 −0.664299
\(186\) 0 0
\(187\) 5.17748 0.378614
\(188\) 0 0
\(189\) 5.65339 0.411223
\(190\) 0 0
\(191\) −11.1590 −0.807434 −0.403717 0.914884i \(-0.632282\pi\)
−0.403717 + 0.914884i \(0.632282\pi\)
\(192\) 0 0
\(193\) 2.45130 0.176448 0.0882242 0.996101i \(-0.471881\pi\)
0.0882242 + 0.996101i \(0.471881\pi\)
\(194\) 0 0
\(195\) −3.63232 −0.260116
\(196\) 0 0
\(197\) −4.94828 −0.352550 −0.176275 0.984341i \(-0.556405\pi\)
−0.176275 + 0.984341i \(0.556405\pi\)
\(198\) 0 0
\(199\) 6.33165 0.448839 0.224419 0.974493i \(-0.427951\pi\)
0.224419 + 0.974493i \(0.427951\pi\)
\(200\) 0 0
\(201\) −1.39479 −0.0983806
\(202\) 0 0
\(203\) 0.454845 0.0319239
\(204\) 0 0
\(205\) 4.04982 0.282852
\(206\) 0 0
\(207\) 2.65057 0.184227
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −12.4306 −0.855755 −0.427877 0.903837i \(-0.640739\pi\)
−0.427877 + 0.903837i \(0.640739\pi\)
\(212\) 0 0
\(213\) 3.86715 0.264973
\(214\) 0 0
\(215\) −11.9662 −0.816088
\(216\) 0 0
\(217\) 10.9541 0.743610
\(218\) 0 0
\(219\) 7.74311 0.523231
\(220\) 0 0
\(221\) −2.00000 −0.134535
\(222\) 0 0
\(223\) −7.39039 −0.494897 −0.247449 0.968901i \(-0.579592\pi\)
−0.247449 + 0.968901i \(0.579592\pi\)
\(224\) 0 0
\(225\) 3.13731 0.209154
\(226\) 0 0
\(227\) 17.2346 1.14390 0.571949 0.820289i \(-0.306187\pi\)
0.571949 + 0.820289i \(0.306187\pi\)
\(228\) 0 0
\(229\) 2.58415 0.170765 0.0853826 0.996348i \(-0.472789\pi\)
0.0853826 + 0.996348i \(0.472789\pi\)
\(230\) 0 0
\(231\) −7.46955 −0.491460
\(232\) 0 0
\(233\) −14.5771 −0.954974 −0.477487 0.878639i \(-0.658452\pi\)
−0.477487 + 0.878639i \(0.658452\pi\)
\(234\) 0 0
\(235\) −12.7775 −0.833512
\(236\) 0 0
\(237\) 14.6435 0.951196
\(238\) 0 0
\(239\) 0.921432 0.0596025 0.0298012 0.999556i \(-0.490513\pi\)
0.0298012 + 0.999556i \(0.490513\pi\)
\(240\) 0 0
\(241\) −19.3882 −1.24890 −0.624451 0.781064i \(-0.714677\pi\)
−0.624451 + 0.781064i \(0.714677\pi\)
\(242\) 0 0
\(243\) 9.16914 0.588200
\(244\) 0 0
\(245\) 1.25886 0.0804257
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 6.31793 0.400383
\(250\) 0 0
\(251\) −22.6550 −1.42997 −0.714987 0.699138i \(-0.753567\pi\)
−0.714987 + 0.699138i \(0.753567\pi\)
\(252\) 0 0
\(253\) −14.9391 −0.939213
\(254\) 0 0
\(255\) 1.81616 0.113732
\(256\) 0 0
\(257\) −5.05973 −0.315617 −0.157809 0.987470i \(-0.550443\pi\)
−0.157809 + 0.987470i \(0.550443\pi\)
\(258\) 0 0
\(259\) 7.17748 0.445987
\(260\) 0 0
\(261\) 0.417827 0.0258629
\(262\) 0 0
\(263\) −6.81334 −0.420129 −0.210064 0.977688i \(-0.567367\pi\)
−0.210064 + 0.977688i \(0.567367\pi\)
\(264\) 0 0
\(265\) −8.30736 −0.510317
\(266\) 0 0
\(267\) −10.9761 −0.671727
\(268\) 0 0
\(269\) 16.9904 1.03592 0.517962 0.855404i \(-0.326691\pi\)
0.517962 + 0.855404i \(0.326691\pi\)
\(270\) 0 0
\(271\) −12.7891 −0.776880 −0.388440 0.921474i \(-0.626986\pi\)
−0.388440 + 0.921474i \(0.626986\pi\)
\(272\) 0 0
\(273\) 2.88540 0.174632
\(274\) 0 0
\(275\) −17.6825 −1.06629
\(276\) 0 0
\(277\) 3.70793 0.222788 0.111394 0.993776i \(-0.464468\pi\)
0.111394 + 0.993776i \(0.464468\pi\)
\(278\) 0 0
\(279\) 10.0626 0.602429
\(280\) 0 0
\(281\) −30.3993 −1.81347 −0.906736 0.421700i \(-0.861434\pi\)
−0.906736 + 0.421700i \(0.861434\pi\)
\(282\) 0 0
\(283\) 4.21069 0.250299 0.125150 0.992138i \(-0.460059\pi\)
0.125150 + 0.992138i \(0.460059\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −3.21705 −0.189897
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) −2.14170 −0.125549
\(292\) 0 0
\(293\) 8.55986 0.500072 0.250036 0.968237i \(-0.419558\pi\)
0.250036 + 0.968237i \(0.419558\pi\)
\(294\) 0 0
\(295\) −13.0354 −0.758953
\(296\) 0 0
\(297\) −29.2703 −1.69843
\(298\) 0 0
\(299\) 5.77080 0.333734
\(300\) 0 0
\(301\) 9.50558 0.547892
\(302\) 0 0
\(303\) 2.35495 0.135288
\(304\) 0 0
\(305\) −0.701562 −0.0401713
\(306\) 0 0
\(307\) 19.1019 1.09020 0.545101 0.838371i \(-0.316491\pi\)
0.545101 + 0.838371i \(0.316491\pi\)
\(308\) 0 0
\(309\) 26.3665 1.49994
\(310\) 0 0
\(311\) −18.0814 −1.02530 −0.512651 0.858597i \(-0.671336\pi\)
−0.512651 + 0.858597i \(0.671336\pi\)
\(312\) 0 0
\(313\) −17.1590 −0.969882 −0.484941 0.874547i \(-0.661159\pi\)
−0.484941 + 0.874547i \(0.661159\pi\)
\(314\) 0 0
\(315\) 1.15641 0.0651562
\(316\) 0 0
\(317\) −2.60489 −0.146305 −0.0731525 0.997321i \(-0.523306\pi\)
−0.0731525 + 0.997321i \(0.523306\pi\)
\(318\) 0 0
\(319\) −2.35495 −0.131852
\(320\) 0 0
\(321\) 11.3367 0.632753
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 6.83054 0.378890
\(326\) 0 0
\(327\) 9.82450 0.543296
\(328\) 0 0
\(329\) 10.1500 0.559590
\(330\) 0 0
\(331\) −7.03321 −0.386580 −0.193290 0.981142i \(-0.561916\pi\)
−0.193290 + 0.981142i \(0.561916\pi\)
\(332\) 0 0
\(333\) 6.59333 0.361312
\(334\) 0 0
\(335\) −1.21705 −0.0664946
\(336\) 0 0
\(337\) −23.4031 −1.27485 −0.637425 0.770513i \(-0.720000\pi\)
−0.637425 + 0.770513i \(0.720000\pi\)
\(338\) 0 0
\(339\) −24.6729 −1.34005
\(340\) 0 0
\(341\) −56.7144 −3.07126
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) −5.24035 −0.282131
\(346\) 0 0
\(347\) 2.82252 0.151521 0.0757605 0.997126i \(-0.475862\pi\)
0.0757605 + 0.997126i \(0.475862\pi\)
\(348\) 0 0
\(349\) −24.7342 −1.32399 −0.661995 0.749508i \(-0.730290\pi\)
−0.661995 + 0.749508i \(0.730290\pi\)
\(350\) 0 0
\(351\) 11.3068 0.603511
\(352\) 0 0
\(353\) 25.8417 1.37541 0.687707 0.725988i \(-0.258617\pi\)
0.687707 + 0.725988i \(0.258617\pi\)
\(354\) 0 0
\(355\) 3.37437 0.179093
\(356\) 0 0
\(357\) −1.44270 −0.0763558
\(358\) 0 0
\(359\) 28.6528 1.51224 0.756119 0.654435i \(-0.227093\pi\)
0.756119 + 0.654435i \(0.227093\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) 22.8037 1.19688
\(364\) 0 0
\(365\) 6.75643 0.353648
\(366\) 0 0
\(367\) −1.34281 −0.0700939 −0.0350469 0.999386i \(-0.511158\pi\)
−0.0350469 + 0.999386i \(0.511158\pi\)
\(368\) 0 0
\(369\) −2.95523 −0.153843
\(370\) 0 0
\(371\) 6.59911 0.342609
\(372\) 0 0
\(373\) 4.74593 0.245735 0.122867 0.992423i \(-0.460791\pi\)
0.122867 + 0.992423i \(0.460791\pi\)
\(374\) 0 0
\(375\) −15.2835 −0.789235
\(376\) 0 0
\(377\) 0.909691 0.0468514
\(378\) 0 0
\(379\) −19.9908 −1.02686 −0.513430 0.858132i \(-0.671625\pi\)
−0.513430 + 0.858132i \(0.671625\pi\)
\(380\) 0 0
\(381\) 31.5078 1.61419
\(382\) 0 0
\(383\) −20.3677 −1.04074 −0.520370 0.853941i \(-0.674206\pi\)
−0.520370 + 0.853941i \(0.674206\pi\)
\(384\) 0 0
\(385\) −6.51772 −0.332174
\(386\) 0 0
\(387\) 8.73196 0.443870
\(388\) 0 0
\(389\) 1.44237 0.0731313 0.0365657 0.999331i \(-0.488358\pi\)
0.0365657 + 0.999331i \(0.488358\pi\)
\(390\) 0 0
\(391\) −2.88540 −0.145921
\(392\) 0 0
\(393\) −0.325544 −0.0164215
\(394\) 0 0
\(395\) 12.7775 0.642906
\(396\) 0 0
\(397\) −15.6023 −0.783055 −0.391527 0.920166i \(-0.628053\pi\)
−0.391527 + 0.920166i \(0.628053\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 30.8357 1.53986 0.769930 0.638129i \(-0.220291\pi\)
0.769930 + 0.638129i \(0.220291\pi\)
\(402\) 0 0
\(403\) 21.9081 1.09132
\(404\) 0 0
\(405\) −6.79824 −0.337807
\(406\) 0 0
\(407\) −37.1612 −1.84201
\(408\) 0 0
\(409\) 8.64348 0.427392 0.213696 0.976900i \(-0.431450\pi\)
0.213696 + 0.976900i \(0.431450\pi\)
\(410\) 0 0
\(411\) 25.4718 1.25643
\(412\) 0 0
\(413\) 10.3550 0.509534
\(414\) 0 0
\(415\) 5.51285 0.270615
\(416\) 0 0
\(417\) 22.7425 1.11371
\(418\) 0 0
\(419\) 14.8912 0.727482 0.363741 0.931500i \(-0.381499\pi\)
0.363741 + 0.931500i \(0.381499\pi\)
\(420\) 0 0
\(421\) −23.0472 −1.12325 −0.561626 0.827392i \(-0.689824\pi\)
−0.561626 + 0.827392i \(0.689824\pi\)
\(422\) 0 0
\(423\) 9.32397 0.453347
\(424\) 0 0
\(425\) −3.41527 −0.165665
\(426\) 0 0
\(427\) 0.557299 0.0269696
\(428\) 0 0
\(429\) −14.9391 −0.721266
\(430\) 0 0
\(431\) −4.44683 −0.214196 −0.107098 0.994248i \(-0.534156\pi\)
−0.107098 + 0.994248i \(0.534156\pi\)
\(432\) 0 0
\(433\) −9.92794 −0.477106 −0.238553 0.971129i \(-0.576673\pi\)
−0.238553 + 0.971129i \(0.576673\pi\)
\(434\) 0 0
\(435\) −0.826072 −0.0396071
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −20.3540 −0.971442 −0.485721 0.874114i \(-0.661443\pi\)
−0.485721 + 0.874114i \(0.661443\pi\)
\(440\) 0 0
\(441\) −0.918614 −0.0437435
\(442\) 0 0
\(443\) 9.31951 0.442783 0.221392 0.975185i \(-0.428940\pi\)
0.221392 + 0.975185i \(0.428940\pi\)
\(444\) 0 0
\(445\) −9.57746 −0.454015
\(446\) 0 0
\(447\) −31.2426 −1.47772
\(448\) 0 0
\(449\) 27.2033 1.28380 0.641902 0.766786i \(-0.278145\pi\)
0.641902 + 0.766786i \(0.278145\pi\)
\(450\) 0 0
\(451\) 16.6562 0.784310
\(452\) 0 0
\(453\) 30.5565 1.43567
\(454\) 0 0
\(455\) 2.51772 0.118033
\(456\) 0 0
\(457\) 37.4169 1.75029 0.875145 0.483861i \(-0.160766\pi\)
0.875145 + 0.483861i \(0.160766\pi\)
\(458\) 0 0
\(459\) −5.65339 −0.263878
\(460\) 0 0
\(461\) −29.0112 −1.35118 −0.675592 0.737276i \(-0.736112\pi\)
−0.675592 + 0.737276i \(0.736112\pi\)
\(462\) 0 0
\(463\) 10.9508 0.508929 0.254464 0.967082i \(-0.418101\pi\)
0.254464 + 0.967082i \(0.418101\pi\)
\(464\) 0 0
\(465\) −19.8943 −0.922577
\(466\) 0 0
\(467\) 36.4143 1.68505 0.842526 0.538656i \(-0.181068\pi\)
0.842526 + 0.538656i \(0.181068\pi\)
\(468\) 0 0
\(469\) 0.966788 0.0446421
\(470\) 0 0
\(471\) 18.3550 0.845751
\(472\) 0 0
\(473\) −49.2149 −2.26290
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 6.06203 0.277561
\(478\) 0 0
\(479\) −22.4989 −1.02800 −0.514000 0.857790i \(-0.671837\pi\)
−0.514000 + 0.857790i \(0.671837\pi\)
\(480\) 0 0
\(481\) 14.3550 0.654529
\(482\) 0 0
\(483\) 4.16277 0.189413
\(484\) 0 0
\(485\) −1.86879 −0.0848575
\(486\) 0 0
\(487\) 38.3594 1.73823 0.869116 0.494609i \(-0.164689\pi\)
0.869116 + 0.494609i \(0.164689\pi\)
\(488\) 0 0
\(489\) −31.5161 −1.42521
\(490\) 0 0
\(491\) −16.1899 −0.730642 −0.365321 0.930882i \(-0.619041\pi\)
−0.365321 + 0.930882i \(0.619041\pi\)
\(492\) 0 0
\(493\) −0.454845 −0.0204852
\(494\) 0 0
\(495\) −5.98727 −0.269108
\(496\) 0 0
\(497\) −2.68049 −0.120237
\(498\) 0 0
\(499\) 6.11774 0.273868 0.136934 0.990580i \(-0.456275\pi\)
0.136934 + 0.990580i \(0.456275\pi\)
\(500\) 0 0
\(501\) 20.8577 0.931854
\(502\) 0 0
\(503\) 36.2780 1.61756 0.808779 0.588113i \(-0.200129\pi\)
0.808779 + 0.588113i \(0.200129\pi\)
\(504\) 0 0
\(505\) 2.05486 0.0914403
\(506\) 0 0
\(507\) −12.9843 −0.576653
\(508\) 0 0
\(509\) 11.2519 0.498732 0.249366 0.968409i \(-0.419778\pi\)
0.249366 + 0.968409i \(0.419778\pi\)
\(510\) 0 0
\(511\) −5.36709 −0.237426
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 23.0067 1.01380
\(516\) 0 0
\(517\) −52.5516 −2.31122
\(518\) 0 0
\(519\) 3.06314 0.134457
\(520\) 0 0
\(521\) 5.05992 0.221679 0.110839 0.993838i \(-0.464646\pi\)
0.110839 + 0.993838i \(0.464646\pi\)
\(522\) 0 0
\(523\) 31.1855 1.36365 0.681823 0.731517i \(-0.261187\pi\)
0.681823 + 0.731517i \(0.261187\pi\)
\(524\) 0 0
\(525\) 4.92721 0.215041
\(526\) 0 0
\(527\) −10.9541 −0.477166
\(528\) 0 0
\(529\) −14.6745 −0.638020
\(530\) 0 0
\(531\) 9.51220 0.412794
\(532\) 0 0
\(533\) −6.43410 −0.278692
\(534\) 0 0
\(535\) 9.89209 0.427672
\(536\) 0 0
\(537\) −9.55093 −0.412153
\(538\) 0 0
\(539\) 5.17748 0.223010
\(540\) 0 0
\(541\) 8.13377 0.349698 0.174849 0.984595i \(-0.444056\pi\)
0.174849 + 0.984595i \(0.444056\pi\)
\(542\) 0 0
\(543\) −26.4756 −1.13618
\(544\) 0 0
\(545\) 8.57259 0.367209
\(546\) 0 0
\(547\) 30.7064 1.31291 0.656454 0.754366i \(-0.272055\pi\)
0.656454 + 0.754366i \(0.272055\pi\)
\(548\) 0 0
\(549\) 0.511943 0.0218492
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −10.1500 −0.431624
\(554\) 0 0
\(555\) −13.0354 −0.553324
\(556\) 0 0
\(557\) 17.3904 0.736855 0.368427 0.929657i \(-0.379896\pi\)
0.368427 + 0.929657i \(0.379896\pi\)
\(558\) 0 0
\(559\) 19.0112 0.804086
\(560\) 0 0
\(561\) 7.46955 0.315365
\(562\) 0 0
\(563\) −2.26424 −0.0954262 −0.0477131 0.998861i \(-0.515193\pi\)
−0.0477131 + 0.998861i \(0.515193\pi\)
\(564\) 0 0
\(565\) −21.5289 −0.905727
\(566\) 0 0
\(567\) 5.40031 0.226792
\(568\) 0 0
\(569\) −13.6090 −0.570520 −0.285260 0.958450i \(-0.592080\pi\)
−0.285260 + 0.958450i \(0.592080\pi\)
\(570\) 0 0
\(571\) −14.0035 −0.586030 −0.293015 0.956108i \(-0.594659\pi\)
−0.293015 + 0.956108i \(0.594659\pi\)
\(572\) 0 0
\(573\) −16.0991 −0.672548
\(574\) 0 0
\(575\) 9.85442 0.410958
\(576\) 0 0
\(577\) 22.6192 0.941649 0.470825 0.882227i \(-0.343956\pi\)
0.470825 + 0.882227i \(0.343956\pi\)
\(578\) 0 0
\(579\) 3.53649 0.146972
\(580\) 0 0
\(581\) −4.37924 −0.181681
\(582\) 0 0
\(583\) −34.1667 −1.41504
\(584\) 0 0
\(585\) 2.31281 0.0956231
\(586\) 0 0
\(587\) −2.69205 −0.111113 −0.0555565 0.998456i \(-0.517693\pi\)
−0.0555565 + 0.998456i \(0.517693\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) −7.13889 −0.293655
\(592\) 0 0
\(593\) −4.84838 −0.199099 −0.0995496 0.995033i \(-0.531740\pi\)
−0.0995496 + 0.995033i \(0.531740\pi\)
\(594\) 0 0
\(595\) −1.25886 −0.0516083
\(596\) 0 0
\(597\) 9.13468 0.373857
\(598\) 0 0
\(599\) 3.48129 0.142242 0.0711208 0.997468i \(-0.477342\pi\)
0.0711208 + 0.997468i \(0.477342\pi\)
\(600\) 0 0
\(601\) 39.1612 1.59742 0.798709 0.601717i \(-0.205517\pi\)
0.798709 + 0.601717i \(0.205517\pi\)
\(602\) 0 0
\(603\) 0.888105 0.0361664
\(604\) 0 0
\(605\) 19.8979 0.808964
\(606\) 0 0
\(607\) 29.1833 1.18451 0.592256 0.805750i \(-0.298237\pi\)
0.592256 + 0.805750i \(0.298237\pi\)
\(608\) 0 0
\(609\) 0.656206 0.0265908
\(610\) 0 0
\(611\) 20.3001 0.821254
\(612\) 0 0
\(613\) −14.1478 −0.571425 −0.285712 0.958315i \(-0.592230\pi\)
−0.285712 + 0.958315i \(0.592230\pi\)
\(614\) 0 0
\(615\) 5.84268 0.235600
\(616\) 0 0
\(617\) −32.3224 −1.30125 −0.650625 0.759399i \(-0.725493\pi\)
−0.650625 + 0.759399i \(0.725493\pi\)
\(618\) 0 0
\(619\) −33.3939 −1.34222 −0.671108 0.741360i \(-0.734181\pi\)
−0.671108 + 0.741360i \(0.734181\pi\)
\(620\) 0 0
\(621\) 16.3123 0.654590
\(622\) 0 0
\(623\) 7.60803 0.304809
\(624\) 0 0
\(625\) 3.74040 0.149616
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −7.17748 −0.286185
\(630\) 0 0
\(631\) 35.9474 1.43104 0.715521 0.698591i \(-0.246189\pi\)
0.715521 + 0.698591i \(0.246189\pi\)
\(632\) 0 0
\(633\) −17.9336 −0.712796
\(634\) 0 0
\(635\) 27.4928 1.09102
\(636\) 0 0
\(637\) −2.00000 −0.0792429
\(638\) 0 0
\(639\) −2.46234 −0.0974086
\(640\) 0 0
\(641\) 10.6562 0.420895 0.210447 0.977605i \(-0.432508\pi\)
0.210447 + 0.977605i \(0.432508\pi\)
\(642\) 0 0
\(643\) −35.2295 −1.38932 −0.694659 0.719340i \(-0.744445\pi\)
−0.694659 + 0.719340i \(0.744445\pi\)
\(644\) 0 0
\(645\) −17.2637 −0.679756
\(646\) 0 0
\(647\) −2.44566 −0.0961489 −0.0480745 0.998844i \(-0.515308\pi\)
−0.0480745 + 0.998844i \(0.515308\pi\)
\(648\) 0 0
\(649\) −53.6125 −2.10447
\(650\) 0 0
\(651\) 15.8034 0.619385
\(652\) 0 0
\(653\) −26.7772 −1.04787 −0.523937 0.851757i \(-0.675537\pi\)
−0.523937 + 0.851757i \(0.675537\pi\)
\(654\) 0 0
\(655\) −0.284061 −0.0110992
\(656\) 0 0
\(657\) −4.93029 −0.192349
\(658\) 0 0
\(659\) 17.9652 0.699825 0.349913 0.936782i \(-0.386211\pi\)
0.349913 + 0.936782i \(0.386211\pi\)
\(660\) 0 0
\(661\) −29.5416 −1.14904 −0.574518 0.818492i \(-0.694810\pi\)
−0.574518 + 0.818492i \(0.694810\pi\)
\(662\) 0 0
\(663\) −2.88540 −0.112060
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 1.31241 0.0508168
\(668\) 0 0
\(669\) −10.6621 −0.412222
\(670\) 0 0
\(671\) −2.88540 −0.111390
\(672\) 0 0
\(673\) −1.29522 −0.0499269 −0.0249635 0.999688i \(-0.507947\pi\)
−0.0249635 + 0.999688i \(0.507947\pi\)
\(674\) 0 0
\(675\) 19.3078 0.743159
\(676\) 0 0
\(677\) −49.5420 −1.90405 −0.952027 0.306014i \(-0.901005\pi\)
−0.952027 + 0.306014i \(0.901005\pi\)
\(678\) 0 0
\(679\) 1.48451 0.0569703
\(680\) 0 0
\(681\) 24.8643 0.952803
\(682\) 0 0
\(683\) 21.6780 0.829486 0.414743 0.909939i \(-0.363872\pi\)
0.414743 + 0.909939i \(0.363872\pi\)
\(684\) 0 0
\(685\) 22.2260 0.849211
\(686\) 0 0
\(687\) 3.72815 0.142238
\(688\) 0 0
\(689\) 13.1982 0.502812
\(690\) 0 0
\(691\) −37.7479 −1.43600 −0.717999 0.696044i \(-0.754942\pi\)
−0.717999 + 0.696044i \(0.754942\pi\)
\(692\) 0 0
\(693\) 4.75610 0.180669
\(694\) 0 0
\(695\) 19.8445 0.752745
\(696\) 0 0
\(697\) 3.21705 0.121855
\(698\) 0 0
\(699\) −21.0303 −0.795440
\(700\) 0 0
\(701\) 33.9674 1.28293 0.641466 0.767151i \(-0.278326\pi\)
0.641466 + 0.767151i \(0.278326\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) −18.4341 −0.694269
\(706\) 0 0
\(707\) −1.63232 −0.0613897
\(708\) 0 0
\(709\) 4.99041 0.187419 0.0937095 0.995600i \(-0.470128\pi\)
0.0937095 + 0.995600i \(0.470128\pi\)
\(710\) 0 0
\(711\) −9.32397 −0.349676
\(712\) 0 0
\(713\) 31.6069 1.18369
\(714\) 0 0
\(715\) −13.0354 −0.487498
\(716\) 0 0
\(717\) 1.32935 0.0496455
\(718\) 0 0
\(719\) 18.8832 0.704226 0.352113 0.935957i \(-0.385463\pi\)
0.352113 + 0.935957i \(0.385463\pi\)
\(720\) 0 0
\(721\) −18.2758 −0.680626
\(722\) 0 0
\(723\) −27.9713 −1.04026
\(724\) 0 0
\(725\) 1.55342 0.0576925
\(726\) 0 0
\(727\) 44.2145 1.63982 0.819912 0.572489i \(-0.194022\pi\)
0.819912 + 0.572489i \(0.194022\pi\)
\(728\) 0 0
\(729\) 29.4292 1.08997
\(730\) 0 0
\(731\) −9.50558 −0.351577
\(732\) 0 0
\(733\) −18.2049 −0.672414 −0.336207 0.941788i \(-0.609144\pi\)
−0.336207 + 0.941788i \(0.609144\pi\)
\(734\) 0 0
\(735\) 1.81616 0.0669901
\(736\) 0 0
\(737\) −5.00552 −0.184381
\(738\) 0 0
\(739\) −17.5847 −0.646865 −0.323432 0.946251i \(-0.604837\pi\)
−0.323432 + 0.946251i \(0.604837\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −27.6558 −1.01459 −0.507296 0.861772i \(-0.669355\pi\)
−0.507296 + 0.861772i \(0.669355\pi\)
\(744\) 0 0
\(745\) −27.2614 −0.998781
\(746\) 0 0
\(747\) −4.02283 −0.147188
\(748\) 0 0
\(749\) −7.85797 −0.287124
\(750\) 0 0
\(751\) 29.5710 1.07906 0.539531 0.841966i \(-0.318602\pi\)
0.539531 + 0.841966i \(0.318602\pi\)
\(752\) 0 0
\(753\) −32.6844 −1.19109
\(754\) 0 0
\(755\) 26.6627 0.970356
\(756\) 0 0
\(757\) −18.6445 −0.677645 −0.338822 0.940850i \(-0.610029\pi\)
−0.338822 + 0.940850i \(0.610029\pi\)
\(758\) 0 0
\(759\) −21.5526 −0.782312
\(760\) 0 0
\(761\) −6.37214 −0.230990 −0.115495 0.993308i \(-0.536845\pi\)
−0.115495 + 0.993308i \(0.536845\pi\)
\(762\) 0 0
\(763\) −6.80980 −0.246531
\(764\) 0 0
\(765\) −1.15641 −0.0418100
\(766\) 0 0
\(767\) 20.7099 0.747791
\(768\) 0 0
\(769\) −5.65778 −0.204025 −0.102012 0.994783i \(-0.532528\pi\)
−0.102012 + 0.994783i \(0.532528\pi\)
\(770\) 0 0
\(771\) −7.29968 −0.262892
\(772\) 0 0
\(773\) −2.99843 −0.107846 −0.0539230 0.998545i \(-0.517173\pi\)
−0.0539230 + 0.998545i \(0.517173\pi\)
\(774\) 0 0
\(775\) 37.4111 1.34384
\(776\) 0 0
\(777\) 10.3550 0.371482
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 13.8782 0.496601
\(782\) 0 0
\(783\) 2.57142 0.0918949
\(784\) 0 0
\(785\) 16.0160 0.571636
\(786\) 0 0
\(787\) 1.24507 0.0443819 0.0221910 0.999754i \(-0.492936\pi\)
0.0221910 + 0.999754i \(0.492936\pi\)
\(788\) 0 0
\(789\) −9.82962 −0.349944
\(790\) 0 0
\(791\) 17.1019 0.608072
\(792\) 0 0
\(793\) 1.11460 0.0395805
\(794\) 0 0
\(795\) −11.9850 −0.425065
\(796\) 0 0
\(797\) 17.1019 0.605779 0.302890 0.953026i \(-0.402049\pi\)
0.302890 + 0.953026i \(0.402049\pi\)
\(798\) 0 0
\(799\) −10.1500 −0.359083
\(800\) 0 0
\(801\) 6.98884 0.246939
\(802\) 0 0
\(803\) 27.7880 0.980617
\(804\) 0 0
\(805\) 3.63232 0.128022
\(806\) 0 0
\(807\) 24.5121 0.862866
\(808\) 0 0
\(809\) −25.4325 −0.894160 −0.447080 0.894494i \(-0.647536\pi\)
−0.447080 + 0.894494i \(0.647536\pi\)
\(810\) 0 0
\(811\) −3.95596 −0.138912 −0.0694562 0.997585i \(-0.522126\pi\)
−0.0694562 + 0.997585i \(0.522126\pi\)
\(812\) 0 0
\(813\) −18.4508 −0.647097
\(814\) 0 0
\(815\) −27.5001 −0.963287
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) −1.83723 −0.0641979
\(820\) 0 0
\(821\) −22.2838 −0.777710 −0.388855 0.921299i \(-0.627129\pi\)
−0.388855 + 0.921299i \(0.627129\pi\)
\(822\) 0 0
\(823\) −28.3728 −0.989014 −0.494507 0.869174i \(-0.664651\pi\)
−0.494507 + 0.869174i \(0.664651\pi\)
\(824\) 0 0
\(825\) −25.5105 −0.888162
\(826\) 0 0
\(827\) −21.2566 −0.739165 −0.369583 0.929198i \(-0.620499\pi\)
−0.369583 + 0.929198i \(0.620499\pi\)
\(828\) 0 0
\(829\) −28.1966 −0.979310 −0.489655 0.871916i \(-0.662877\pi\)
−0.489655 + 0.871916i \(0.662877\pi\)
\(830\) 0 0
\(831\) 5.34943 0.185570
\(832\) 0 0
\(833\) 1.00000 0.0346479
\(834\) 0 0
\(835\) 18.1999 0.629832
\(836\) 0 0
\(837\) 61.9275 2.14053
\(838\) 0 0
\(839\) 8.32554 0.287430 0.143715 0.989619i \(-0.454095\pi\)
0.143715 + 0.989619i \(0.454095\pi\)
\(840\) 0 0
\(841\) −28.7931 −0.992866
\(842\) 0 0
\(843\) −43.8571 −1.51052
\(844\) 0 0
\(845\) −11.3298 −0.389755
\(846\) 0 0
\(847\) −15.8062 −0.543109
\(848\) 0 0
\(849\) 6.07476 0.208485
\(850\) 0 0
\(851\) 20.7099 0.709926
\(852\) 0 0
\(853\) 54.9516 1.88151 0.940753 0.339093i \(-0.110120\pi\)
0.940753 + 0.339093i \(0.110120\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 8.61630 0.294327 0.147164 0.989112i \(-0.452986\pi\)
0.147164 + 0.989112i \(0.452986\pi\)
\(858\) 0 0
\(859\) 27.8723 0.950990 0.475495 0.879719i \(-0.342269\pi\)
0.475495 + 0.879719i \(0.342269\pi\)
\(860\) 0 0
\(861\) −4.64124 −0.158173
\(862\) 0 0
\(863\) 26.8749 0.914832 0.457416 0.889253i \(-0.348775\pi\)
0.457416 + 0.889253i \(0.348775\pi\)
\(864\) 0 0
\(865\) 2.67281 0.0908782
\(866\) 0 0
\(867\) 1.44270 0.0489967
\(868\) 0 0
\(869\) 52.5516 1.78269
\(870\) 0 0
\(871\) 1.93358 0.0655167
\(872\) 0 0
\(873\) 1.36369 0.0461540
\(874\) 0 0
\(875\) 10.5937 0.358131
\(876\) 0 0
\(877\) 37.8254 1.27727 0.638637 0.769508i \(-0.279499\pi\)
0.638637 + 0.769508i \(0.279499\pi\)
\(878\) 0 0
\(879\) 12.3493 0.416532
\(880\) 0 0
\(881\) 23.5139 0.792204 0.396102 0.918207i \(-0.370363\pi\)
0.396102 + 0.918207i \(0.370363\pi\)
\(882\) 0 0
\(883\) 28.5927 0.962220 0.481110 0.876660i \(-0.340234\pi\)
0.481110 + 0.876660i \(0.340234\pi\)
\(884\) 0 0
\(885\) −18.8062 −0.632165
\(886\) 0 0
\(887\) −15.9480 −0.535482 −0.267741 0.963491i \(-0.586277\pi\)
−0.267741 + 0.963491i \(0.586277\pi\)
\(888\) 0 0
\(889\) −21.8395 −0.732472
\(890\) 0 0
\(891\) −27.9600 −0.936694
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −8.33388 −0.278571
\(896\) 0 0
\(897\) 8.32554 0.277982
\(898\) 0 0
\(899\) 4.98240 0.166172
\(900\) 0 0
\(901\) −6.59911 −0.219848
\(902\) 0 0
\(903\) 13.7137 0.456364
\(904\) 0 0
\(905\) −23.1019 −0.767932
\(906\) 0 0
\(907\) 30.5130 1.01317 0.506584 0.862191i \(-0.330908\pi\)
0.506584 + 0.862191i \(0.330908\pi\)
\(908\) 0 0
\(909\) −1.49947 −0.0497344
\(910\) 0 0
\(911\) −12.0421 −0.398974 −0.199487 0.979900i \(-0.563928\pi\)
−0.199487 + 0.979900i \(0.563928\pi\)
\(912\) 0 0
\(913\) 22.6734 0.750380
\(914\) 0 0
\(915\) −1.01214 −0.0334605
\(916\) 0 0
\(917\) 0.225649 0.00745159
\(918\) 0 0
\(919\) 22.7530 0.750553 0.375277 0.926913i \(-0.377548\pi\)
0.375277 + 0.926913i \(0.377548\pi\)
\(920\) 0 0
\(921\) 27.5583 0.908076
\(922\) 0 0
\(923\) −5.36099 −0.176459
\(924\) 0 0
\(925\) 24.5130 0.805983
\(926\) 0 0
\(927\) −16.7884 −0.551403
\(928\) 0 0
\(929\) −29.7316 −0.975461 −0.487730 0.872994i \(-0.662175\pi\)
−0.487730 + 0.872994i \(0.662175\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −26.0860 −0.854018
\(934\) 0 0
\(935\) 6.51772 0.213152
\(936\) 0 0
\(937\) −0.138483 −0.00452406 −0.00226203 0.999997i \(-0.500720\pi\)
−0.00226203 + 0.999997i \(0.500720\pi\)
\(938\) 0 0
\(939\) −24.7553 −0.807857
\(940\) 0 0
\(941\) −7.41212 −0.241628 −0.120814 0.992675i \(-0.538551\pi\)
−0.120814 + 0.992675i \(0.538551\pi\)
\(942\) 0 0
\(943\) −9.28249 −0.302279
\(944\) 0 0
\(945\) 7.11683 0.231511
\(946\) 0 0
\(947\) −60.7167 −1.97303 −0.986515 0.163674i \(-0.947666\pi\)
−0.986515 + 0.163674i \(0.947666\pi\)
\(948\) 0 0
\(949\) −10.7342 −0.348447
\(950\) 0 0
\(951\) −3.75807 −0.121864
\(952\) 0 0
\(953\) 48.3515 1.56626 0.783130 0.621858i \(-0.213622\pi\)
0.783130 + 0.621858i \(0.213622\pi\)
\(954\) 0 0
\(955\) −14.0476 −0.454569
\(956\) 0 0
\(957\) −3.39749 −0.109825
\(958\) 0 0
\(959\) −17.6556 −0.570130
\(960\) 0 0
\(961\) 88.9914 2.87069
\(962\) 0 0
\(963\) −7.21844 −0.232611
\(964\) 0 0
\(965\) 3.08584 0.0993368
\(966\) 0 0
\(967\) −11.3555 −0.365169 −0.182585 0.983190i \(-0.558446\pi\)
−0.182585 + 0.983190i \(0.558446\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −53.5034 −1.71701 −0.858503 0.512808i \(-0.828605\pi\)
−0.858503 + 0.512808i \(0.828605\pi\)
\(972\) 0 0
\(973\) −15.7639 −0.505366
\(974\) 0 0
\(975\) 9.85442 0.315594
\(976\) 0 0
\(977\) 24.0559 0.769617 0.384809 0.922996i \(-0.374267\pi\)
0.384809 + 0.922996i \(0.374267\pi\)
\(978\) 0 0
\(979\) −39.3904 −1.25892
\(980\) 0 0
\(981\) −6.25557 −0.199725
\(982\) 0 0
\(983\) −41.1762 −1.31332 −0.656658 0.754189i \(-0.728030\pi\)
−0.656658 + 0.754189i \(0.728030\pi\)
\(984\) 0 0
\(985\) −6.22920 −0.198479
\(986\) 0 0
\(987\) 14.6435 0.466107
\(988\) 0 0
\(989\) 27.4274 0.872141
\(990\) 0 0
\(991\) 6.63836 0.210874 0.105437 0.994426i \(-0.466376\pi\)
0.105437 + 0.994426i \(0.466376\pi\)
\(992\) 0 0
\(993\) −10.1468 −0.322000
\(994\) 0 0
\(995\) 7.97067 0.252687
\(996\) 0 0
\(997\) −8.55730 −0.271012 −0.135506 0.990776i \(-0.543266\pi\)
−0.135506 + 0.990776i \(0.543266\pi\)
\(998\) 0 0
\(999\) 40.5771 1.28380
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7616.2.a.bo.1.3 4
4.3 odd 2 7616.2.a.bi.1.2 4
8.3 odd 2 952.2.a.h.1.3 4
8.5 even 2 1904.2.a.r.1.2 4
24.11 even 2 8568.2.a.bg.1.4 4
56.27 even 2 6664.2.a.n.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
952.2.a.h.1.3 4 8.3 odd 2
1904.2.a.r.1.2 4 8.5 even 2
6664.2.a.n.1.2 4 56.27 even 2
7616.2.a.bi.1.2 4 4.3 odd 2
7616.2.a.bo.1.3 4 1.1 even 1 trivial
8568.2.a.bg.1.4 4 24.11 even 2