Properties

Label 7616.2.a.bo.1.2
Level $7616$
Weight $2$
Character 7616.1
Self dual yes
Analytic conductor $60.814$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7616,2,Mod(1,7616)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7616, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7616.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7616 = 2^{6} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7616.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.8140661794\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.13448.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 7x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 952)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.546295\) of defining polynomial
Character \(\chi\) \(=\) 7616.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.706585 q^{3} -4.40815 q^{5} -1.00000 q^{7} -2.50074 q^{9} +1.09259 q^{11} -2.00000 q^{13} -3.11473 q^{15} +1.00000 q^{17} -0.706585 q^{21} -1.41317 q^{23} +14.4318 q^{25} -3.88674 q^{27} +5.32206 q^{29} +10.1319 q^{31} +0.772008 q^{33} +4.40815 q^{35} -3.09259 q^{37} -1.41317 q^{39} +11.2023 q^{41} -3.21235 q^{43} +11.0236 q^{45} +11.0458 q^{47} +1.00000 q^{49} +0.706585 q^{51} +6.31703 q^{53} -4.81630 q^{55} -2.18518 q^{59} -1.29341 q^{61} +2.50074 q^{63} +8.81630 q^{65} +2.08757 q^{67} -0.998526 q^{69} -11.8178 q^{71} -7.84346 q^{73} +10.1973 q^{75} -1.09259 q^{77} -11.0458 q^{79} +4.75590 q^{81} -13.8721 q^{83} -4.40815 q^{85} +3.76049 q^{87} -7.82782 q^{89} +2.00000 q^{91} +7.15902 q^{93} +12.9039 q^{97} -2.73228 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 3 q^{3} - 5 q^{5} - 4 q^{7} + 7 q^{9} - 8 q^{13} + 4 q^{17} - 3 q^{21} - 6 q^{23} + 3 q^{25} + 6 q^{27} - 8 q^{29} + 7 q^{31} - 6 q^{33} + 5 q^{35} - 8 q^{37} - 6 q^{39} + 15 q^{41} - 9 q^{43} + 2 q^{45}+ \cdots - 50 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.706585 0.407947 0.203974 0.978976i \(-0.434614\pi\)
0.203974 + 0.978976i \(0.434614\pi\)
\(4\) 0 0
\(5\) −4.40815 −1.97138 −0.985692 0.168558i \(-0.946089\pi\)
−0.985692 + 0.168558i \(0.946089\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) −2.50074 −0.833579
\(10\) 0 0
\(11\) 1.09259 0.329428 0.164714 0.986341i \(-0.447330\pi\)
0.164714 + 0.986341i \(0.447330\pi\)
\(12\) 0 0
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) 0 0
\(15\) −3.11473 −0.804221
\(16\) 0 0
\(17\) 1.00000 0.242536
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) −0.706585 −0.154190
\(22\) 0 0
\(23\) −1.41317 −0.294667 −0.147333 0.989087i \(-0.547069\pi\)
−0.147333 + 0.989087i \(0.547069\pi\)
\(24\) 0 0
\(25\) 14.4318 2.88635
\(26\) 0 0
\(27\) −3.88674 −0.748004
\(28\) 0 0
\(29\) 5.32206 0.988281 0.494140 0.869382i \(-0.335483\pi\)
0.494140 + 0.869382i \(0.335483\pi\)
\(30\) 0 0
\(31\) 10.1319 1.81973 0.909867 0.414899i \(-0.136183\pi\)
0.909867 + 0.414899i \(0.136183\pi\)
\(32\) 0 0
\(33\) 0.772008 0.134389
\(34\) 0 0
\(35\) 4.40815 0.745113
\(36\) 0 0
\(37\) −3.09259 −0.508419 −0.254209 0.967149i \(-0.581815\pi\)
−0.254209 + 0.967149i \(0.581815\pi\)
\(38\) 0 0
\(39\) −1.41317 −0.226288
\(40\) 0 0
\(41\) 11.2023 1.74951 0.874753 0.484570i \(-0.161024\pi\)
0.874753 + 0.484570i \(0.161024\pi\)
\(42\) 0 0
\(43\) −3.21235 −0.489878 −0.244939 0.969538i \(-0.578768\pi\)
−0.244939 + 0.969538i \(0.578768\pi\)
\(44\) 0 0
\(45\) 11.0236 1.64330
\(46\) 0 0
\(47\) 11.0458 1.61119 0.805595 0.592467i \(-0.201846\pi\)
0.805595 + 0.592467i \(0.201846\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0.706585 0.0989418
\(52\) 0 0
\(53\) 6.31703 0.867711 0.433856 0.900982i \(-0.357153\pi\)
0.433856 + 0.900982i \(0.357153\pi\)
\(54\) 0 0
\(55\) −4.81630 −0.649429
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −2.18518 −0.284486 −0.142243 0.989832i \(-0.545431\pi\)
−0.142243 + 0.989832i \(0.545431\pi\)
\(60\) 0 0
\(61\) −1.29341 −0.165605 −0.0828024 0.996566i \(-0.526387\pi\)
−0.0828024 + 0.996566i \(0.526387\pi\)
\(62\) 0 0
\(63\) 2.50074 0.315063
\(64\) 0 0
\(65\) 8.81630 1.09353
\(66\) 0 0
\(67\) 2.08757 0.255037 0.127518 0.991836i \(-0.459299\pi\)
0.127518 + 0.991836i \(0.459299\pi\)
\(68\) 0 0
\(69\) −0.998526 −0.120208
\(70\) 0 0
\(71\) −11.8178 −1.40251 −0.701256 0.712910i \(-0.747377\pi\)
−0.701256 + 0.712910i \(0.747377\pi\)
\(72\) 0 0
\(73\) −7.84346 −0.918008 −0.459004 0.888434i \(-0.651794\pi\)
−0.459004 + 0.888434i \(0.651794\pi\)
\(74\) 0 0
\(75\) 10.1973 1.17748
\(76\) 0 0
\(77\) −1.09259 −0.124512
\(78\) 0 0
\(79\) −11.0458 −1.24275 −0.621373 0.783515i \(-0.713425\pi\)
−0.621373 + 0.783515i \(0.713425\pi\)
\(80\) 0 0
\(81\) 4.75590 0.528433
\(82\) 0 0
\(83\) −13.8721 −1.52266 −0.761331 0.648364i \(-0.775454\pi\)
−0.761331 + 0.648364i \(0.775454\pi\)
\(84\) 0 0
\(85\) −4.40815 −0.478131
\(86\) 0 0
\(87\) 3.76049 0.403167
\(88\) 0 0
\(89\) −7.82782 −0.829747 −0.414873 0.909879i \(-0.636174\pi\)
−0.414873 + 0.909879i \(0.636174\pi\)
\(90\) 0 0
\(91\) 2.00000 0.209657
\(92\) 0 0
\(93\) 7.15902 0.742356
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 12.9039 1.31019 0.655094 0.755547i \(-0.272629\pi\)
0.655094 + 0.755547i \(0.272629\pi\)
\(98\) 0 0
\(99\) −2.73228 −0.274604
\(100\) 0 0
\(101\) −8.22947 −0.818862 −0.409431 0.912341i \(-0.634273\pi\)
−0.409431 + 0.912341i \(0.634273\pi\)
\(102\) 0 0
\(103\) −14.0342 −1.38283 −0.691417 0.722456i \(-0.743013\pi\)
−0.691417 + 0.722456i \(0.743013\pi\)
\(104\) 0 0
\(105\) 3.11473 0.303967
\(106\) 0 0
\(107\) −10.7252 −1.03684 −0.518421 0.855125i \(-0.673480\pi\)
−0.518421 + 0.855125i \(0.673480\pi\)
\(108\) 0 0
\(109\) −7.13688 −0.683589 −0.341794 0.939775i \(-0.611035\pi\)
−0.341794 + 0.939775i \(0.611035\pi\)
\(110\) 0 0
\(111\) −2.18518 −0.207408
\(112\) 0 0
\(113\) −0.542542 −0.0510380 −0.0255190 0.999674i \(-0.508124\pi\)
−0.0255190 + 0.999674i \(0.508124\pi\)
\(114\) 0 0
\(115\) 6.22947 0.580901
\(116\) 0 0
\(117\) 5.00147 0.462386
\(118\) 0 0
\(119\) −1.00000 −0.0916698
\(120\) 0 0
\(121\) −9.80625 −0.891477
\(122\) 0 0
\(123\) 7.91538 0.713706
\(124\) 0 0
\(125\) −41.5766 −3.71873
\(126\) 0 0
\(127\) −0.718682 −0.0637728 −0.0318864 0.999492i \(-0.510151\pi\)
−0.0318864 + 0.999492i \(0.510151\pi\)
\(128\) 0 0
\(129\) −2.26980 −0.199844
\(130\) 0 0
\(131\) 8.49571 0.742274 0.371137 0.928578i \(-0.378968\pi\)
0.371137 + 0.928578i \(0.378968\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 17.1333 1.47460
\(136\) 0 0
\(137\) −9.83342 −0.840125 −0.420063 0.907495i \(-0.637992\pi\)
−0.420063 + 0.907495i \(0.637992\pi\)
\(138\) 0 0
\(139\) −19.2687 −1.63435 −0.817176 0.576388i \(-0.804462\pi\)
−0.817176 + 0.576388i \(0.804462\pi\)
\(140\) 0 0
\(141\) 7.80477 0.657281
\(142\) 0 0
\(143\) −2.18518 −0.182734
\(144\) 0 0
\(145\) −23.4604 −1.94828
\(146\) 0 0
\(147\) 0.706585 0.0582782
\(148\) 0 0
\(149\) 5.83342 0.477892 0.238946 0.971033i \(-0.423198\pi\)
0.238946 + 0.971033i \(0.423198\pi\)
\(150\) 0 0
\(151\) 21.2153 1.72648 0.863238 0.504797i \(-0.168433\pi\)
0.863238 + 0.504797i \(0.168433\pi\)
\(152\) 0 0
\(153\) −2.50074 −0.202173
\(154\) 0 0
\(155\) −44.6627 −3.58739
\(156\) 0 0
\(157\) 14.4146 1.15041 0.575207 0.818008i \(-0.304922\pi\)
0.575207 + 0.818008i \(0.304922\pi\)
\(158\) 0 0
\(159\) 4.46352 0.353980
\(160\) 0 0
\(161\) 1.41317 0.111373
\(162\) 0 0
\(163\) 14.7695 1.15683 0.578417 0.815741i \(-0.303671\pi\)
0.578417 + 0.815741i \(0.303671\pi\)
\(164\) 0 0
\(165\) −3.40312 −0.264933
\(166\) 0 0
\(167\) 12.8006 0.990544 0.495272 0.868738i \(-0.335068\pi\)
0.495272 + 0.868738i \(0.335068\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −13.1112 −0.996825 −0.498412 0.866940i \(-0.666083\pi\)
−0.498412 + 0.866940i \(0.666083\pi\)
\(174\) 0 0
\(175\) −14.4318 −1.09094
\(176\) 0 0
\(177\) −1.54402 −0.116055
\(178\) 0 0
\(179\) −1.79917 −0.134477 −0.0672383 0.997737i \(-0.521419\pi\)
−0.0672383 + 0.997737i \(0.521419\pi\)
\(180\) 0 0
\(181\) 1.48419 0.110319 0.0551596 0.998478i \(-0.482433\pi\)
0.0551596 + 0.998478i \(0.482433\pi\)
\(182\) 0 0
\(183\) −0.913908 −0.0675580
\(184\) 0 0
\(185\) 13.6326 1.00229
\(186\) 0 0
\(187\) 1.09259 0.0798980
\(188\) 0 0
\(189\) 3.88674 0.282719
\(190\) 0 0
\(191\) −3.09909 −0.224242 −0.112121 0.993695i \(-0.535764\pi\)
−0.112121 + 0.993695i \(0.535764\pi\)
\(192\) 0 0
\(193\) −14.9914 −1.07911 −0.539553 0.841951i \(-0.681407\pi\)
−0.539553 + 0.841951i \(0.681407\pi\)
\(194\) 0 0
\(195\) 6.22947 0.446101
\(196\) 0 0
\(197\) 2.08107 0.148270 0.0741350 0.997248i \(-0.476380\pi\)
0.0741350 + 0.997248i \(0.476380\pi\)
\(198\) 0 0
\(199\) 15.7891 1.11926 0.559631 0.828742i \(-0.310943\pi\)
0.559631 + 0.828742i \(0.310943\pi\)
\(200\) 0 0
\(201\) 1.47504 0.104042
\(202\) 0 0
\(203\) −5.32206 −0.373535
\(204\) 0 0
\(205\) −49.3814 −3.44895
\(206\) 0 0
\(207\) 3.53397 0.245628
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −16.7352 −1.15210 −0.576050 0.817414i \(-0.695407\pi\)
−0.576050 + 0.817414i \(0.695407\pi\)
\(212\) 0 0
\(213\) −8.35026 −0.572151
\(214\) 0 0
\(215\) 14.1605 0.965738
\(216\) 0 0
\(217\) −10.1319 −0.687795
\(218\) 0 0
\(219\) −5.54208 −0.374499
\(220\) 0 0
\(221\) −2.00000 −0.134535
\(222\) 0 0
\(223\) 23.4474 1.57015 0.785077 0.619398i \(-0.212623\pi\)
0.785077 + 0.619398i \(0.212623\pi\)
\(224\) 0 0
\(225\) −36.0900 −2.40600
\(226\) 0 0
\(227\) 21.6491 1.43690 0.718452 0.695577i \(-0.244851\pi\)
0.718452 + 0.695577i \(0.244851\pi\)
\(228\) 0 0
\(229\) −2.64116 −0.174533 −0.0872665 0.996185i \(-0.527813\pi\)
−0.0872665 + 0.996185i \(0.527813\pi\)
\(230\) 0 0
\(231\) −0.772008 −0.0507944
\(232\) 0 0
\(233\) 13.9799 0.915854 0.457927 0.888990i \(-0.348592\pi\)
0.457927 + 0.888990i \(0.348592\pi\)
\(234\) 0 0
\(235\) −48.6913 −3.17627
\(236\) 0 0
\(237\) −7.80477 −0.506975
\(238\) 0 0
\(239\) −0.146491 −0.00947572 −0.00473786 0.999989i \(-0.501508\pi\)
−0.00473786 + 0.999989i \(0.501508\pi\)
\(240\) 0 0
\(241\) −14.2727 −0.919388 −0.459694 0.888077i \(-0.652041\pi\)
−0.459694 + 0.888077i \(0.652041\pi\)
\(242\) 0 0
\(243\) 15.0207 0.963576
\(244\) 0 0
\(245\) −4.40815 −0.281626
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −9.80183 −0.621166
\(250\) 0 0
\(251\) 27.9063 1.76143 0.880716 0.473644i \(-0.157062\pi\)
0.880716 + 0.473644i \(0.157062\pi\)
\(252\) 0 0
\(253\) −1.54402 −0.0970714
\(254\) 0 0
\(255\) −3.11473 −0.195052
\(256\) 0 0
\(257\) 27.6899 1.72725 0.863623 0.504138i \(-0.168190\pi\)
0.863623 + 0.504138i \(0.168190\pi\)
\(258\) 0 0
\(259\) 3.09259 0.192164
\(260\) 0 0
\(261\) −13.3091 −0.823810
\(262\) 0 0
\(263\) −4.53249 −0.279486 −0.139743 0.990188i \(-0.544628\pi\)
−0.139743 + 0.990188i \(0.544628\pi\)
\(264\) 0 0
\(265\) −27.8464 −1.71059
\(266\) 0 0
\(267\) −5.53102 −0.338493
\(268\) 0 0
\(269\) 26.1513 1.59448 0.797238 0.603665i \(-0.206294\pi\)
0.797238 + 0.603665i \(0.206294\pi\)
\(270\) 0 0
\(271\) −20.5898 −1.25074 −0.625370 0.780328i \(-0.715052\pi\)
−0.625370 + 0.780328i \(0.715052\pi\)
\(272\) 0 0
\(273\) 1.41317 0.0855290
\(274\) 0 0
\(275\) 15.7680 0.950846
\(276\) 0 0
\(277\) 6.32058 0.379767 0.189883 0.981807i \(-0.439189\pi\)
0.189883 + 0.981807i \(0.439189\pi\)
\(278\) 0 0
\(279\) −25.3371 −1.51689
\(280\) 0 0
\(281\) −12.6974 −0.757466 −0.378733 0.925506i \(-0.623640\pi\)
−0.378733 + 0.925506i \(0.623640\pi\)
\(282\) 0 0
\(283\) 3.18016 0.189041 0.0945203 0.995523i \(-0.469868\pi\)
0.0945203 + 0.995523i \(0.469868\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −11.2023 −0.661251
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 9.11768 0.534488
\(292\) 0 0
\(293\) 13.4161 0.783778 0.391889 0.920012i \(-0.371822\pi\)
0.391889 + 0.920012i \(0.371822\pi\)
\(294\) 0 0
\(295\) 9.63259 0.560831
\(296\) 0 0
\(297\) −4.24661 −0.246413
\(298\) 0 0
\(299\) 2.82634 0.163452
\(300\) 0 0
\(301\) 3.21235 0.185157
\(302\) 0 0
\(303\) −5.81482 −0.334053
\(304\) 0 0
\(305\) 5.70156 0.326470
\(306\) 0 0
\(307\) 2.54254 0.145111 0.0725553 0.997364i \(-0.476885\pi\)
0.0725553 + 0.997364i \(0.476885\pi\)
\(308\) 0 0
\(309\) −9.91639 −0.564124
\(310\) 0 0
\(311\) −16.4993 −0.935587 −0.467794 0.883838i \(-0.654951\pi\)
−0.467794 + 0.883838i \(0.654951\pi\)
\(312\) 0 0
\(313\) −9.09909 −0.514311 −0.257155 0.966370i \(-0.582785\pi\)
−0.257155 + 0.966370i \(0.582785\pi\)
\(314\) 0 0
\(315\) −11.0236 −0.621110
\(316\) 0 0
\(317\) 24.3678 1.36863 0.684316 0.729185i \(-0.260101\pi\)
0.684316 + 0.729185i \(0.260101\pi\)
\(318\) 0 0
\(319\) 5.81482 0.325567
\(320\) 0 0
\(321\) −7.57826 −0.422977
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −28.8635 −1.60106
\(326\) 0 0
\(327\) −5.04281 −0.278868
\(328\) 0 0
\(329\) −11.0458 −0.608973
\(330\) 0 0
\(331\) −10.0876 −0.554463 −0.277231 0.960803i \(-0.589417\pi\)
−0.277231 + 0.960803i \(0.589417\pi\)
\(332\) 0 0
\(333\) 7.73375 0.423807
\(334\) 0 0
\(335\) −9.20230 −0.502775
\(336\) 0 0
\(337\) −10.5969 −0.577249 −0.288624 0.957442i \(-0.593198\pi\)
−0.288624 + 0.957442i \(0.593198\pi\)
\(338\) 0 0
\(339\) −0.383352 −0.0208208
\(340\) 0 0
\(341\) 11.0700 0.599472
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 4.40165 0.236977
\(346\) 0 0
\(347\) 6.90741 0.370809 0.185405 0.982662i \(-0.440640\pi\)
0.185405 + 0.982662i \(0.440640\pi\)
\(348\) 0 0
\(349\) 1.68692 0.0902990 0.0451495 0.998980i \(-0.485624\pi\)
0.0451495 + 0.998980i \(0.485624\pi\)
\(350\) 0 0
\(351\) 7.77348 0.414918
\(352\) 0 0
\(353\) −22.4388 −1.19430 −0.597149 0.802130i \(-0.703700\pi\)
−0.597149 + 0.802130i \(0.703700\pi\)
\(354\) 0 0
\(355\) 52.0945 2.76489
\(356\) 0 0
\(357\) −0.706585 −0.0373965
\(358\) 0 0
\(359\) 3.81381 0.201285 0.100643 0.994923i \(-0.467910\pi\)
0.100643 + 0.994923i \(0.467910\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) −6.92895 −0.363676
\(364\) 0 0
\(365\) 34.5751 1.80975
\(366\) 0 0
\(367\) 1.78618 0.0932379 0.0466189 0.998913i \(-0.485155\pi\)
0.0466189 + 0.998913i \(0.485155\pi\)
\(368\) 0 0
\(369\) −28.0140 −1.45835
\(370\) 0 0
\(371\) −6.31703 −0.327964
\(372\) 0 0
\(373\) −11.1893 −0.579360 −0.289680 0.957124i \(-0.593549\pi\)
−0.289680 + 0.957124i \(0.593549\pi\)
\(374\) 0 0
\(375\) −29.3774 −1.51704
\(376\) 0 0
\(377\) −10.6441 −0.548200
\(378\) 0 0
\(379\) −13.6251 −0.699874 −0.349937 0.936773i \(-0.613797\pi\)
−0.349937 + 0.936773i \(0.613797\pi\)
\(380\) 0 0
\(381\) −0.507811 −0.0260159
\(382\) 0 0
\(383\) −30.2295 −1.54465 −0.772327 0.635225i \(-0.780907\pi\)
−0.772327 + 0.635225i \(0.780907\pi\)
\(384\) 0 0
\(385\) 4.81630 0.245461
\(386\) 0 0
\(387\) 8.03323 0.408352
\(388\) 0 0
\(389\) −29.1363 −1.47727 −0.738634 0.674107i \(-0.764529\pi\)
−0.738634 + 0.674107i \(0.764529\pi\)
\(390\) 0 0
\(391\) −1.41317 −0.0714671
\(392\) 0 0
\(393\) 6.00295 0.302809
\(394\) 0 0
\(395\) 48.6913 2.44993
\(396\) 0 0
\(397\) −29.8786 −1.49956 −0.749782 0.661685i \(-0.769842\pi\)
−0.749782 + 0.661685i \(0.769842\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 3.38188 0.168883 0.0844415 0.996428i \(-0.473089\pi\)
0.0844415 + 0.996428i \(0.473089\pi\)
\(402\) 0 0
\(403\) −20.2637 −1.00941
\(404\) 0 0
\(405\) −20.9647 −1.04174
\(406\) 0 0
\(407\) −3.37893 −0.167487
\(408\) 0 0
\(409\) −13.8048 −0.682602 −0.341301 0.939954i \(-0.610868\pi\)
−0.341301 + 0.939954i \(0.610868\pi\)
\(410\) 0 0
\(411\) −6.94815 −0.342727
\(412\) 0 0
\(413\) 2.18518 0.107526
\(414\) 0 0
\(415\) 61.1503 3.00175
\(416\) 0 0
\(417\) −13.6150 −0.666730
\(418\) 0 0
\(419\) −0.637614 −0.0311495 −0.0155747 0.999879i \(-0.504958\pi\)
−0.0155747 + 0.999879i \(0.504958\pi\)
\(420\) 0 0
\(421\) −10.8650 −0.529529 −0.264765 0.964313i \(-0.585294\pi\)
−0.264765 + 0.964313i \(0.585294\pi\)
\(422\) 0 0
\(423\) −27.6225 −1.34305
\(424\) 0 0
\(425\) 14.4318 0.700043
\(426\) 0 0
\(427\) 1.29341 0.0625927
\(428\) 0 0
\(429\) −1.54402 −0.0745458
\(430\) 0 0
\(431\) −38.4489 −1.85202 −0.926009 0.377502i \(-0.876783\pi\)
−0.926009 + 0.377502i \(0.876783\pi\)
\(432\) 0 0
\(433\) −9.11932 −0.438247 −0.219123 0.975697i \(-0.570320\pi\)
−0.219123 + 0.975697i \(0.570320\pi\)
\(434\) 0 0
\(435\) −16.5768 −0.794796
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −4.63851 −0.221384 −0.110692 0.993855i \(-0.535307\pi\)
−0.110692 + 0.993855i \(0.535307\pi\)
\(440\) 0 0
\(441\) −2.50074 −0.119083
\(442\) 0 0
\(443\) 23.8178 1.13162 0.565808 0.824537i \(-0.308564\pi\)
0.565808 + 0.824537i \(0.308564\pi\)
\(444\) 0 0
\(445\) 34.5062 1.63575
\(446\) 0 0
\(447\) 4.12181 0.194955
\(448\) 0 0
\(449\) 9.61134 0.453587 0.226794 0.973943i \(-0.427176\pi\)
0.226794 + 0.973943i \(0.427176\pi\)
\(450\) 0 0
\(451\) 12.2395 0.576336
\(452\) 0 0
\(453\) 14.9904 0.704311
\(454\) 0 0
\(455\) −8.81630 −0.413314
\(456\) 0 0
\(457\) −29.2249 −1.36708 −0.683540 0.729913i \(-0.739561\pi\)
−0.683540 + 0.729913i \(0.739561\pi\)
\(458\) 0 0
\(459\) −3.88674 −0.181418
\(460\) 0 0
\(461\) −16.4247 −0.764974 −0.382487 0.923961i \(-0.624932\pi\)
−0.382487 + 0.923961i \(0.624932\pi\)
\(462\) 0 0
\(463\) 8.04164 0.373726 0.186863 0.982386i \(-0.440168\pi\)
0.186863 + 0.982386i \(0.440168\pi\)
\(464\) 0 0
\(465\) −31.5580 −1.46347
\(466\) 0 0
\(467\) 11.0216 0.510017 0.255009 0.966939i \(-0.417922\pi\)
0.255009 + 0.966939i \(0.417922\pi\)
\(468\) 0 0
\(469\) −2.08757 −0.0963948
\(470\) 0 0
\(471\) 10.1852 0.469308
\(472\) 0 0
\(473\) −3.50977 −0.161380
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −15.7972 −0.723306
\(478\) 0 0
\(479\) 22.6527 1.03503 0.517513 0.855675i \(-0.326858\pi\)
0.517513 + 0.855675i \(0.326858\pi\)
\(480\) 0 0
\(481\) 6.18518 0.282020
\(482\) 0 0
\(483\) 0.998526 0.0454345
\(484\) 0 0
\(485\) −56.8821 −2.58288
\(486\) 0 0
\(487\) −21.2551 −0.963162 −0.481581 0.876402i \(-0.659937\pi\)
−0.481581 + 0.876402i \(0.659937\pi\)
\(488\) 0 0
\(489\) 10.4359 0.471927
\(490\) 0 0
\(491\) −36.9068 −1.66558 −0.832790 0.553588i \(-0.813258\pi\)
−0.832790 + 0.553588i \(0.813258\pi\)
\(492\) 0 0
\(493\) 5.32206 0.239693
\(494\) 0 0
\(495\) 12.0443 0.541350
\(496\) 0 0
\(497\) 11.8178 0.530099
\(498\) 0 0
\(499\) 34.7825 1.55708 0.778538 0.627597i \(-0.215961\pi\)
0.778538 + 0.627597i \(0.215961\pi\)
\(500\) 0 0
\(501\) 9.04475 0.404090
\(502\) 0 0
\(503\) −21.7544 −0.969981 −0.484990 0.874520i \(-0.661177\pi\)
−0.484990 + 0.874520i \(0.661177\pi\)
\(504\) 0 0
\(505\) 36.2767 1.61429
\(506\) 0 0
\(507\) −6.35927 −0.282425
\(508\) 0 0
\(509\) −26.5032 −1.17473 −0.587367 0.809321i \(-0.699836\pi\)
−0.587367 + 0.809321i \(0.699836\pi\)
\(510\) 0 0
\(511\) 7.84346 0.346974
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 61.8650 2.72610
\(516\) 0 0
\(517\) 12.0685 0.530771
\(518\) 0 0
\(519\) −9.26417 −0.406652
\(520\) 0 0
\(521\) 10.9093 0.477946 0.238973 0.971026i \(-0.423189\pi\)
0.238973 + 0.971026i \(0.423189\pi\)
\(522\) 0 0
\(523\) −12.6784 −0.554386 −0.277193 0.960814i \(-0.589404\pi\)
−0.277193 + 0.960814i \(0.589404\pi\)
\(524\) 0 0
\(525\) −10.1973 −0.445046
\(526\) 0 0
\(527\) 10.1319 0.441350
\(528\) 0 0
\(529\) −21.0029 −0.913172
\(530\) 0 0
\(531\) 5.46456 0.237142
\(532\) 0 0
\(533\) −22.4046 −0.970451
\(534\) 0 0
\(535\) 47.2782 2.04401
\(536\) 0 0
\(537\) −1.27127 −0.0548594
\(538\) 0 0
\(539\) 1.09259 0.0470612
\(540\) 0 0
\(541\) −42.7594 −1.83837 −0.919186 0.393825i \(-0.871152\pi\)
−0.919186 + 0.393825i \(0.871152\pi\)
\(542\) 0 0
\(543\) 1.04871 0.0450044
\(544\) 0 0
\(545\) 31.4604 1.34762
\(546\) 0 0
\(547\) 2.70099 0.115486 0.0577429 0.998331i \(-0.481610\pi\)
0.0577429 + 0.998331i \(0.481610\pi\)
\(548\) 0 0
\(549\) 3.23449 0.138045
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 11.0458 0.469714
\(554\) 0 0
\(555\) 9.63259 0.408881
\(556\) 0 0
\(557\) −13.4474 −0.569785 −0.284893 0.958559i \(-0.591958\pi\)
−0.284893 + 0.958559i \(0.591958\pi\)
\(558\) 0 0
\(559\) 6.42469 0.271736
\(560\) 0 0
\(561\) 0.772008 0.0325942
\(562\) 0 0
\(563\) 1.93267 0.0814524 0.0407262 0.999170i \(-0.487033\pi\)
0.0407262 + 0.999170i \(0.487033\pi\)
\(564\) 0 0
\(565\) 2.39160 0.100616
\(566\) 0 0
\(567\) −4.75590 −0.199729
\(568\) 0 0
\(569\) −21.3745 −0.896065 −0.448032 0.894017i \(-0.647875\pi\)
−0.448032 + 0.894017i \(0.647875\pi\)
\(570\) 0 0
\(571\) −25.6694 −1.07423 −0.537115 0.843509i \(-0.680486\pi\)
−0.537115 + 0.843509i \(0.680486\pi\)
\(572\) 0 0
\(573\) −2.18977 −0.0914789
\(574\) 0 0
\(575\) −20.3946 −0.850512
\(576\) 0 0
\(577\) 10.2525 0.426817 0.213409 0.976963i \(-0.431543\pi\)
0.213409 + 0.976963i \(0.431543\pi\)
\(578\) 0 0
\(579\) −10.5927 −0.440219
\(580\) 0 0
\(581\) 13.8721 0.575512
\(582\) 0 0
\(583\) 6.90192 0.285848
\(584\) 0 0
\(585\) −22.0472 −0.911541
\(586\) 0 0
\(587\) 39.9193 1.64765 0.823824 0.566846i \(-0.191837\pi\)
0.823824 + 0.566846i \(0.191837\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 1.47045 0.0604864
\(592\) 0 0
\(593\) 4.57383 0.187825 0.0939124 0.995580i \(-0.470063\pi\)
0.0939124 + 0.995580i \(0.470063\pi\)
\(594\) 0 0
\(595\) 4.40815 0.180716
\(596\) 0 0
\(597\) 11.1564 0.456600
\(598\) 0 0
\(599\) 7.26963 0.297029 0.148514 0.988910i \(-0.452551\pi\)
0.148514 + 0.988910i \(0.452551\pi\)
\(600\) 0 0
\(601\) 5.37893 0.219411 0.109706 0.993964i \(-0.465009\pi\)
0.109706 + 0.993964i \(0.465009\pi\)
\(602\) 0 0
\(603\) −5.22045 −0.212593
\(604\) 0 0
\(605\) 43.2274 1.75744
\(606\) 0 0
\(607\) 11.0418 0.448173 0.224087 0.974569i \(-0.428060\pi\)
0.224087 + 0.974569i \(0.428060\pi\)
\(608\) 0 0
\(609\) −3.76049 −0.152383
\(610\) 0 0
\(611\) −22.0915 −0.893727
\(612\) 0 0
\(613\) −18.6744 −0.754252 −0.377126 0.926162i \(-0.623088\pi\)
−0.377126 + 0.926162i \(0.623088\pi\)
\(614\) 0 0
\(615\) −34.8922 −1.40699
\(616\) 0 0
\(617\) 35.2421 1.41880 0.709398 0.704809i \(-0.248967\pi\)
0.709398 + 0.704809i \(0.248967\pi\)
\(618\) 0 0
\(619\) −14.2220 −0.571629 −0.285814 0.958285i \(-0.592264\pi\)
−0.285814 + 0.958285i \(0.592264\pi\)
\(620\) 0 0
\(621\) 5.49263 0.220412
\(622\) 0 0
\(623\) 7.82782 0.313615
\(624\) 0 0
\(625\) 111.117 4.44468
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −3.09259 −0.123310
\(630\) 0 0
\(631\) −23.9969 −0.955300 −0.477650 0.878550i \(-0.658511\pi\)
−0.477650 + 0.878550i \(0.658511\pi\)
\(632\) 0 0
\(633\) −11.8249 −0.469996
\(634\) 0 0
\(635\) 3.16806 0.125721
\(636\) 0 0
\(637\) −2.00000 −0.0792429
\(638\) 0 0
\(639\) 29.5531 1.16910
\(640\) 0 0
\(641\) 6.23951 0.246446 0.123223 0.992379i \(-0.460677\pi\)
0.123223 + 0.992379i \(0.460677\pi\)
\(642\) 0 0
\(643\) 48.0090 1.89329 0.946644 0.322281i \(-0.104449\pi\)
0.946644 + 0.322281i \(0.104449\pi\)
\(644\) 0 0
\(645\) 10.0056 0.393970
\(646\) 0 0
\(647\) 9.69697 0.381227 0.190614 0.981665i \(-0.438952\pi\)
0.190614 + 0.981665i \(0.438952\pi\)
\(648\) 0 0
\(649\) −2.38750 −0.0937177
\(650\) 0 0
\(651\) −7.15902 −0.280584
\(652\) 0 0
\(653\) 46.5642 1.82220 0.911099 0.412188i \(-0.135235\pi\)
0.911099 + 0.412188i \(0.135235\pi\)
\(654\) 0 0
\(655\) −37.4504 −1.46331
\(656\) 0 0
\(657\) 19.6144 0.765232
\(658\) 0 0
\(659\) −15.7072 −0.611864 −0.305932 0.952053i \(-0.598968\pi\)
−0.305932 + 0.952053i \(0.598968\pi\)
\(660\) 0 0
\(661\) −23.6527 −0.919983 −0.459991 0.887923i \(-0.652148\pi\)
−0.459991 + 0.887923i \(0.652148\pi\)
\(662\) 0 0
\(663\) −1.41317 −0.0548830
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −7.52097 −0.291213
\(668\) 0 0
\(669\) 16.5676 0.640540
\(670\) 0 0
\(671\) −1.41317 −0.0545549
\(672\) 0 0
\(673\) −25.8751 −0.997410 −0.498705 0.866772i \(-0.666191\pi\)
−0.498705 + 0.866772i \(0.666191\pi\)
\(674\) 0 0
\(675\) −56.0925 −2.15900
\(676\) 0 0
\(677\) 5.91714 0.227414 0.113707 0.993514i \(-0.463727\pi\)
0.113707 + 0.993514i \(0.463727\pi\)
\(678\) 0 0
\(679\) −12.9039 −0.495205
\(680\) 0 0
\(681\) 15.2970 0.586181
\(682\) 0 0
\(683\) 39.6723 1.51802 0.759010 0.651079i \(-0.225684\pi\)
0.759010 + 0.651079i \(0.225684\pi\)
\(684\) 0 0
\(685\) 43.3471 1.65621
\(686\) 0 0
\(687\) −1.86621 −0.0712003
\(688\) 0 0
\(689\) −12.6341 −0.481320
\(690\) 0 0
\(691\) −2.86047 −0.108817 −0.0544087 0.998519i \(-0.517327\pi\)
−0.0544087 + 0.998519i \(0.517327\pi\)
\(692\) 0 0
\(693\) 2.73228 0.103791
\(694\) 0 0
\(695\) 84.9394 3.22194
\(696\) 0 0
\(697\) 11.2023 0.424317
\(698\) 0 0
\(699\) 9.87800 0.373620
\(700\) 0 0
\(701\) −25.4273 −0.960377 −0.480188 0.877165i \(-0.659432\pi\)
−0.480188 + 0.877165i \(0.659432\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) −34.4046 −1.29575
\(706\) 0 0
\(707\) 8.22947 0.309501
\(708\) 0 0
\(709\) 14.1513 0.531465 0.265732 0.964047i \(-0.414386\pi\)
0.265732 + 0.964047i \(0.414386\pi\)
\(710\) 0 0
\(711\) 27.6225 1.03593
\(712\) 0 0
\(713\) −14.3180 −0.536215
\(714\) 0 0
\(715\) 9.63259 0.360238
\(716\) 0 0
\(717\) −0.103508 −0.00386559
\(718\) 0 0
\(719\) −36.2794 −1.35299 −0.676496 0.736447i \(-0.736502\pi\)
−0.676496 + 0.736447i \(0.736502\pi\)
\(720\) 0 0
\(721\) 14.0342 0.522662
\(722\) 0 0
\(723\) −10.0849 −0.375062
\(724\) 0 0
\(725\) 76.8067 2.85253
\(726\) 0 0
\(727\) 14.0360 0.520568 0.260284 0.965532i \(-0.416184\pi\)
0.260284 + 0.965532i \(0.416184\pi\)
\(728\) 0 0
\(729\) −3.65430 −0.135345
\(730\) 0 0
\(731\) −3.21235 −0.118813
\(732\) 0 0
\(733\) −31.2309 −1.15354 −0.576771 0.816906i \(-0.695687\pi\)
−0.576771 + 0.816906i \(0.695687\pi\)
\(734\) 0 0
\(735\) −3.11473 −0.114889
\(736\) 0 0
\(737\) 2.28085 0.0840163
\(738\) 0 0
\(739\) −35.4318 −1.30338 −0.651689 0.758486i \(-0.725939\pi\)
−0.651689 + 0.758486i \(0.725939\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −38.7658 −1.42218 −0.711089 0.703102i \(-0.751798\pi\)
−0.711089 + 0.703102i \(0.751798\pi\)
\(744\) 0 0
\(745\) −25.7146 −0.942108
\(746\) 0 0
\(747\) 34.6905 1.26926
\(748\) 0 0
\(749\) 10.7252 0.391890
\(750\) 0 0
\(751\) 21.8408 0.796982 0.398491 0.917172i \(-0.369534\pi\)
0.398491 + 0.917172i \(0.369534\pi\)
\(752\) 0 0
\(753\) 19.7182 0.718572
\(754\) 0 0
\(755\) −93.5201 −3.40355
\(756\) 0 0
\(757\) −3.74189 −0.136001 −0.0680007 0.997685i \(-0.521662\pi\)
−0.0680007 + 0.997685i \(0.521662\pi\)
\(758\) 0 0
\(759\) −1.09098 −0.0396000
\(760\) 0 0
\(761\) 35.2108 1.27639 0.638196 0.769874i \(-0.279681\pi\)
0.638196 + 0.769874i \(0.279681\pi\)
\(762\) 0 0
\(763\) 7.13688 0.258372
\(764\) 0 0
\(765\) 11.0236 0.398560
\(766\) 0 0
\(767\) 4.37036 0.157804
\(768\) 0 0
\(769\) −31.8591 −1.14887 −0.574434 0.818551i \(-0.694778\pi\)
−0.574434 + 0.818551i \(0.694778\pi\)
\(770\) 0 0
\(771\) 19.5653 0.704626
\(772\) 0 0
\(773\) 27.6196 0.993408 0.496704 0.867920i \(-0.334543\pi\)
0.496704 + 0.867920i \(0.334543\pi\)
\(774\) 0 0
\(775\) 146.221 5.25240
\(776\) 0 0
\(777\) 2.18518 0.0783929
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −12.9120 −0.462027
\(782\) 0 0
\(783\) −20.6855 −0.739238
\(784\) 0 0
\(785\) −63.5419 −2.26791
\(786\) 0 0
\(787\) 49.4136 1.76140 0.880702 0.473671i \(-0.157071\pi\)
0.880702 + 0.473671i \(0.157071\pi\)
\(788\) 0 0
\(789\) −3.20260 −0.114015
\(790\) 0 0
\(791\) 0.542542 0.0192906
\(792\) 0 0
\(793\) 2.58683 0.0918610
\(794\) 0 0
\(795\) −19.6759 −0.697831
\(796\) 0 0
\(797\) 0.542542 0.0192178 0.00960891 0.999954i \(-0.496941\pi\)
0.00960891 + 0.999954i \(0.496941\pi\)
\(798\) 0 0
\(799\) 11.0458 0.390771
\(800\) 0 0
\(801\) 19.5753 0.691660
\(802\) 0 0
\(803\) −8.56968 −0.302418
\(804\) 0 0
\(805\) −6.22947 −0.219560
\(806\) 0 0
\(807\) 18.4782 0.650462
\(808\) 0 0
\(809\) −10.7850 −0.379180 −0.189590 0.981863i \(-0.560716\pi\)
−0.189590 + 0.981863i \(0.560716\pi\)
\(810\) 0 0
\(811\) −43.3306 −1.52154 −0.760772 0.649020i \(-0.775179\pi\)
−0.760772 + 0.649020i \(0.775179\pi\)
\(812\) 0 0
\(813\) −14.5484 −0.510236
\(814\) 0 0
\(815\) −65.1060 −2.28056
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) −5.00147 −0.174766
\(820\) 0 0
\(821\) 49.8052 1.73821 0.869106 0.494625i \(-0.164695\pi\)
0.869106 + 0.494625i \(0.164695\pi\)
\(822\) 0 0
\(823\) −46.4749 −1.62001 −0.810006 0.586421i \(-0.800536\pi\)
−0.810006 + 0.586421i \(0.800536\pi\)
\(824\) 0 0
\(825\) 11.1414 0.387895
\(826\) 0 0
\(827\) −41.3120 −1.43656 −0.718280 0.695755i \(-0.755070\pi\)
−0.718280 + 0.695755i \(0.755070\pi\)
\(828\) 0 0
\(829\) 28.2537 0.981290 0.490645 0.871360i \(-0.336761\pi\)
0.490645 + 0.871360i \(0.336761\pi\)
\(830\) 0 0
\(831\) 4.46603 0.154925
\(832\) 0 0
\(833\) 1.00000 0.0346479
\(834\) 0 0
\(835\) −56.4271 −1.95274
\(836\) 0 0
\(837\) −39.3799 −1.36117
\(838\) 0 0
\(839\) 1.99705 0.0689459 0.0344729 0.999406i \(-0.489025\pi\)
0.0344729 + 0.999406i \(0.489025\pi\)
\(840\) 0 0
\(841\) −0.675725 −0.0233009
\(842\) 0 0
\(843\) −8.97182 −0.309006
\(844\) 0 0
\(845\) 39.6733 1.36480
\(846\) 0 0
\(847\) 9.80625 0.336947
\(848\) 0 0
\(849\) 2.24705 0.0771186
\(850\) 0 0
\(851\) 4.37036 0.149814
\(852\) 0 0
\(853\) −49.6672 −1.70057 −0.850287 0.526319i \(-0.823572\pi\)
−0.850287 + 0.526319i \(0.823572\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −37.7131 −1.28825 −0.644127 0.764919i \(-0.722779\pi\)
−0.644127 + 0.764919i \(0.722779\pi\)
\(858\) 0 0
\(859\) 23.8951 0.815292 0.407646 0.913140i \(-0.366350\pi\)
0.407646 + 0.913140i \(0.366350\pi\)
\(860\) 0 0
\(861\) −7.91538 −0.269755
\(862\) 0 0
\(863\) −18.3513 −0.624685 −0.312342 0.949970i \(-0.601114\pi\)
−0.312342 + 0.949970i \(0.601114\pi\)
\(864\) 0 0
\(865\) 57.7960 1.96512
\(866\) 0 0
\(867\) 0.706585 0.0239969
\(868\) 0 0
\(869\) −12.0685 −0.409395
\(870\) 0 0
\(871\) −4.17513 −0.141469
\(872\) 0 0
\(873\) −32.2692 −1.09215
\(874\) 0 0
\(875\) 41.5766 1.40555
\(876\) 0 0
\(877\) −40.1525 −1.35585 −0.677927 0.735129i \(-0.737121\pi\)
−0.677927 + 0.735129i \(0.737121\pi\)
\(878\) 0 0
\(879\) 9.47963 0.319740
\(880\) 0 0
\(881\) 7.28427 0.245413 0.122707 0.992443i \(-0.460843\pi\)
0.122707 + 0.992443i \(0.460843\pi\)
\(882\) 0 0
\(883\) 52.0299 1.75095 0.875474 0.483266i \(-0.160550\pi\)
0.875474 + 0.483266i \(0.160550\pi\)
\(884\) 0 0
\(885\) 6.80625 0.228790
\(886\) 0 0
\(887\) −15.6889 −0.526780 −0.263390 0.964689i \(-0.584841\pi\)
−0.263390 + 0.964689i \(0.584841\pi\)
\(888\) 0 0
\(889\) 0.718682 0.0241038
\(890\) 0 0
\(891\) 5.19624 0.174081
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 7.93103 0.265105
\(896\) 0 0
\(897\) 1.99705 0.0666796
\(898\) 0 0
\(899\) 53.9223 1.79841
\(900\) 0 0
\(901\) 6.31703 0.210451
\(902\) 0 0
\(903\) 2.26980 0.0755341
\(904\) 0 0
\(905\) −6.54254 −0.217481
\(906\) 0 0
\(907\) −38.6315 −1.28274 −0.641369 0.767232i \(-0.721633\pi\)
−0.641369 + 0.767232i \(0.721633\pi\)
\(908\) 0 0
\(909\) 20.5797 0.682587
\(910\) 0 0
\(911\) −28.2324 −0.935382 −0.467691 0.883892i \(-0.654914\pi\)
−0.467691 + 0.883892i \(0.654914\pi\)
\(912\) 0 0
\(913\) −15.1565 −0.501607
\(914\) 0 0
\(915\) 4.02864 0.133183
\(916\) 0 0
\(917\) −8.49571 −0.280553
\(918\) 0 0
\(919\) 30.1494 0.994538 0.497269 0.867596i \(-0.334336\pi\)
0.497269 + 0.867596i \(0.334336\pi\)
\(920\) 0 0
\(921\) 1.79652 0.0591974
\(922\) 0 0
\(923\) 23.6355 0.777973
\(924\) 0 0
\(925\) −44.6315 −1.46748
\(926\) 0 0
\(927\) 35.0959 1.15270
\(928\) 0 0
\(929\) −44.5595 −1.46195 −0.730975 0.682404i \(-0.760934\pi\)
−0.730975 + 0.682404i \(0.760934\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −11.6581 −0.381670
\(934\) 0 0
\(935\) −4.81630 −0.157510
\(936\) 0 0
\(937\) −7.05581 −0.230503 −0.115252 0.993336i \(-0.536767\pi\)
−0.115252 + 0.993336i \(0.536767\pi\)
\(938\) 0 0
\(939\) −6.42928 −0.209812
\(940\) 0 0
\(941\) 37.6274 1.22662 0.613309 0.789843i \(-0.289838\pi\)
0.613309 + 0.789843i \(0.289838\pi\)
\(942\) 0 0
\(943\) −15.8308 −0.515521
\(944\) 0 0
\(945\) −17.1333 −0.557347
\(946\) 0 0
\(947\) 41.5464 1.35008 0.675039 0.737782i \(-0.264127\pi\)
0.675039 + 0.737782i \(0.264127\pi\)
\(948\) 0 0
\(949\) 15.6869 0.509219
\(950\) 0 0
\(951\) 17.2179 0.558330
\(952\) 0 0
\(953\) 19.7595 0.640072 0.320036 0.947405i \(-0.396305\pi\)
0.320036 + 0.947405i \(0.396305\pi\)
\(954\) 0 0
\(955\) 13.6612 0.442067
\(956\) 0 0
\(957\) 4.10867 0.132814
\(958\) 0 0
\(959\) 9.83342 0.317538
\(960\) 0 0
\(961\) 71.6545 2.31143
\(962\) 0 0
\(963\) 26.8209 0.864290
\(964\) 0 0
\(965\) 66.0844 2.12733
\(966\) 0 0
\(967\) −26.2581 −0.844404 −0.422202 0.906502i \(-0.638743\pi\)
−0.422202 + 0.906502i \(0.638743\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 6.48018 0.207959 0.103979 0.994579i \(-0.466842\pi\)
0.103979 + 0.994579i \(0.466842\pi\)
\(972\) 0 0
\(973\) 19.2687 0.617727
\(974\) 0 0
\(975\) −20.3946 −0.653148
\(976\) 0 0
\(977\) −13.5893 −0.434761 −0.217380 0.976087i \(-0.569751\pi\)
−0.217380 + 0.976087i \(0.569751\pi\)
\(978\) 0 0
\(979\) −8.55259 −0.273342
\(980\) 0 0
\(981\) 17.8475 0.569825
\(982\) 0 0
\(983\) 0.296939 0.00947087 0.00473544 0.999989i \(-0.498493\pi\)
0.00473544 + 0.999989i \(0.498493\pi\)
\(984\) 0 0
\(985\) −9.17366 −0.292297
\(986\) 0 0
\(987\) −7.80477 −0.248429
\(988\) 0 0
\(989\) 4.53959 0.144351
\(990\) 0 0
\(991\) −24.0502 −0.763979 −0.381990 0.924167i \(-0.624761\pi\)
−0.381990 + 0.924167i \(0.624761\pi\)
\(992\) 0 0
\(993\) −7.12773 −0.226192
\(994\) 0 0
\(995\) −69.6008 −2.20649
\(996\) 0 0
\(997\) −9.29341 −0.294325 −0.147163 0.989112i \(-0.547014\pi\)
−0.147163 + 0.989112i \(0.547014\pi\)
\(998\) 0 0
\(999\) 12.0201 0.380299
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7616.2.a.bo.1.2 4
4.3 odd 2 7616.2.a.bi.1.3 4
8.3 odd 2 952.2.a.h.1.2 4
8.5 even 2 1904.2.a.r.1.3 4
24.11 even 2 8568.2.a.bg.1.1 4
56.27 even 2 6664.2.a.n.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
952.2.a.h.1.2 4 8.3 odd 2
1904.2.a.r.1.3 4 8.5 even 2
6664.2.a.n.1.3 4 56.27 even 2
7616.2.a.bi.1.3 4 4.3 odd 2
7616.2.a.bo.1.2 4 1.1 even 1 trivial
8568.2.a.bg.1.1 4 24.11 even 2