Properties

Label 7616.2.a.bo.1.1
Level $7616$
Weight $2$
Character 7616.1
Self dual yes
Analytic conductor $60.814$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7616,2,Mod(1,7616)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7616, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7616.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7616 = 2^{6} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7616.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.8140661794\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.13448.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 7x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 952)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(0.546295\) of defining polynomial
Character \(\chi\) \(=\) 7616.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.40815 q^{3} -1.29341 q^{5} -1.00000 q^{7} +2.79917 q^{9} -1.09259 q^{11} -2.00000 q^{13} +3.11473 q^{15} +1.00000 q^{17} +2.40815 q^{21} +4.81630 q^{23} -3.32708 q^{25} +0.483617 q^{27} -9.32206 q^{29} +2.97283 q^{31} +2.63112 q^{33} +1.29341 q^{35} -0.907411 q^{37} +4.81630 q^{39} +5.90239 q^{41} +8.31703 q^{43} -3.62049 q^{45} -7.64264 q^{47} +1.00000 q^{49} -2.40815 q^{51} -5.21235 q^{53} +1.41317 q^{55} +2.18518 q^{59} -4.40815 q^{61} -2.79917 q^{63} +2.58683 q^{65} +3.01712 q^{67} -11.5983 q^{69} +5.01152 q^{71} +5.54502 q^{73} +8.01210 q^{75} +1.09259 q^{77} +7.64264 q^{79} -9.56214 q^{81} +17.2752 q^{83} -1.29341 q^{85} +22.4489 q^{87} +15.2309 q^{89} +2.00000 q^{91} -7.15902 q^{93} +7.60395 q^{97} -3.05835 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 3 q^{3} - 5 q^{5} - 4 q^{7} + 7 q^{9} - 8 q^{13} + 4 q^{17} - 3 q^{21} - 6 q^{23} + 3 q^{25} + 6 q^{27} - 8 q^{29} + 7 q^{31} - 6 q^{33} + 5 q^{35} - 8 q^{37} - 6 q^{39} + 15 q^{41} - 9 q^{43} + 2 q^{45}+ \cdots - 50 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.40815 −1.39034 −0.695172 0.718843i \(-0.744672\pi\)
−0.695172 + 0.718843i \(0.744672\pi\)
\(4\) 0 0
\(5\) −1.29341 −0.578433 −0.289216 0.957264i \(-0.593395\pi\)
−0.289216 + 0.957264i \(0.593395\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 2.79917 0.933058
\(10\) 0 0
\(11\) −1.09259 −0.329428 −0.164714 0.986341i \(-0.552670\pi\)
−0.164714 + 0.986341i \(0.552670\pi\)
\(12\) 0 0
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) 0 0
\(15\) 3.11473 0.804221
\(16\) 0 0
\(17\) 1.00000 0.242536
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 2.40815 0.525501
\(22\) 0 0
\(23\) 4.81630 1.00427 0.502133 0.864790i \(-0.332549\pi\)
0.502133 + 0.864790i \(0.332549\pi\)
\(24\) 0 0
\(25\) −3.32708 −0.665416
\(26\) 0 0
\(27\) 0.483617 0.0930721
\(28\) 0 0
\(29\) −9.32206 −1.73106 −0.865531 0.500855i \(-0.833019\pi\)
−0.865531 + 0.500855i \(0.833019\pi\)
\(30\) 0 0
\(31\) 2.97283 0.533937 0.266968 0.963705i \(-0.413978\pi\)
0.266968 + 0.963705i \(0.413978\pi\)
\(32\) 0 0
\(33\) 2.63112 0.458019
\(34\) 0 0
\(35\) 1.29341 0.218627
\(36\) 0 0
\(37\) −0.907411 −0.149177 −0.0745887 0.997214i \(-0.523764\pi\)
−0.0745887 + 0.997214i \(0.523764\pi\)
\(38\) 0 0
\(39\) 4.81630 0.771224
\(40\) 0 0
\(41\) 5.90239 0.921798 0.460899 0.887453i \(-0.347527\pi\)
0.460899 + 0.887453i \(0.347527\pi\)
\(42\) 0 0
\(43\) 8.31703 1.26834 0.634168 0.773195i \(-0.281343\pi\)
0.634168 + 0.773195i \(0.281343\pi\)
\(44\) 0 0
\(45\) −3.62049 −0.539711
\(46\) 0 0
\(47\) −7.64264 −1.11479 −0.557397 0.830246i \(-0.688200\pi\)
−0.557397 + 0.830246i \(0.688200\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −2.40815 −0.337208
\(52\) 0 0
\(53\) −5.21235 −0.715971 −0.357985 0.933727i \(-0.616536\pi\)
−0.357985 + 0.933727i \(0.616536\pi\)
\(54\) 0 0
\(55\) 1.41317 0.190552
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 2.18518 0.284486 0.142243 0.989832i \(-0.454569\pi\)
0.142243 + 0.989832i \(0.454569\pi\)
\(60\) 0 0
\(61\) −4.40815 −0.564405 −0.282203 0.959355i \(-0.591065\pi\)
−0.282203 + 0.959355i \(0.591065\pi\)
\(62\) 0 0
\(63\) −2.79917 −0.352663
\(64\) 0 0
\(65\) 2.58683 0.320857
\(66\) 0 0
\(67\) 3.01712 0.368600 0.184300 0.982870i \(-0.440998\pi\)
0.184300 + 0.982870i \(0.440998\pi\)
\(68\) 0 0
\(69\) −11.5983 −1.39628
\(70\) 0 0
\(71\) 5.01152 0.594758 0.297379 0.954760i \(-0.403888\pi\)
0.297379 + 0.954760i \(0.403888\pi\)
\(72\) 0 0
\(73\) 5.54502 0.648996 0.324498 0.945886i \(-0.394805\pi\)
0.324498 + 0.945886i \(0.394805\pi\)
\(74\) 0 0
\(75\) 8.01210 0.925157
\(76\) 0 0
\(77\) 1.09259 0.124512
\(78\) 0 0
\(79\) 7.64264 0.859864 0.429932 0.902861i \(-0.358538\pi\)
0.429932 + 0.902861i \(0.358538\pi\)
\(80\) 0 0
\(81\) −9.56214 −1.06246
\(82\) 0 0
\(83\) 17.2752 1.89620 0.948101 0.317968i \(-0.103001\pi\)
0.948101 + 0.317968i \(0.103001\pi\)
\(84\) 0 0
\(85\) −1.29341 −0.140291
\(86\) 0 0
\(87\) 22.4489 2.40677
\(88\) 0 0
\(89\) 15.2309 1.61448 0.807238 0.590226i \(-0.200961\pi\)
0.807238 + 0.590226i \(0.200961\pi\)
\(90\) 0 0
\(91\) 2.00000 0.209657
\(92\) 0 0
\(93\) −7.15902 −0.742356
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 7.60395 0.772064 0.386032 0.922485i \(-0.373845\pi\)
0.386032 + 0.922485i \(0.373845\pi\)
\(98\) 0 0
\(99\) −3.05835 −0.307376
\(100\) 0 0
\(101\) 4.22947 0.420848 0.210424 0.977610i \(-0.432516\pi\)
0.210424 + 0.977610i \(0.432516\pi\)
\(102\) 0 0
\(103\) −12.1751 −1.19965 −0.599826 0.800131i \(-0.704763\pi\)
−0.599826 + 0.800131i \(0.704763\pi\)
\(104\) 0 0
\(105\) −3.11473 −0.303967
\(106\) 0 0
\(107\) 3.91893 0.378857 0.189429 0.981894i \(-0.439336\pi\)
0.189429 + 0.981894i \(0.439336\pi\)
\(108\) 0 0
\(109\) 3.13688 0.300458 0.150229 0.988651i \(-0.451999\pi\)
0.150229 + 0.988651i \(0.451999\pi\)
\(110\) 0 0
\(111\) 2.18518 0.207408
\(112\) 0 0
\(113\) −14.8606 −1.39797 −0.698983 0.715138i \(-0.746364\pi\)
−0.698983 + 0.715138i \(0.746364\pi\)
\(114\) 0 0
\(115\) −6.22947 −0.580901
\(116\) 0 0
\(117\) −5.59835 −0.517568
\(118\) 0 0
\(119\) −1.00000 −0.0916698
\(120\) 0 0
\(121\) −9.80625 −0.891477
\(122\) 0 0
\(123\) −14.2138 −1.28162
\(124\) 0 0
\(125\) 10.7704 0.963331
\(126\) 0 0
\(127\) 0.210872 0.0187119 0.00935593 0.999956i \(-0.497022\pi\)
0.00935593 + 0.999956i \(0.497022\pi\)
\(128\) 0 0
\(129\) −20.0286 −1.76342
\(130\) 0 0
\(131\) 6.31053 0.551354 0.275677 0.961250i \(-0.411098\pi\)
0.275677 + 0.961250i \(0.411098\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −0.625517 −0.0538359
\(136\) 0 0
\(137\) −2.67440 −0.228489 −0.114244 0.993453i \(-0.536445\pi\)
−0.114244 + 0.993453i \(0.536445\pi\)
\(138\) 0 0
\(139\) −1.83596 −0.155724 −0.0778619 0.996964i \(-0.524809\pi\)
−0.0778619 + 0.996964i \(0.524809\pi\)
\(140\) 0 0
\(141\) 18.4046 1.54995
\(142\) 0 0
\(143\) 2.18518 0.182734
\(144\) 0 0
\(145\) 12.0573 1.00130
\(146\) 0 0
\(147\) −2.40815 −0.198621
\(148\) 0 0
\(149\) −1.32560 −0.108598 −0.0542989 0.998525i \(-0.517292\pi\)
−0.0542989 + 0.998525i \(0.517292\pi\)
\(150\) 0 0
\(151\) −11.5137 −0.936974 −0.468487 0.883470i \(-0.655201\pi\)
−0.468487 + 0.883470i \(0.655201\pi\)
\(152\) 0 0
\(153\) 2.79917 0.226300
\(154\) 0 0
\(155\) −3.84511 −0.308846
\(156\) 0 0
\(157\) −2.41464 −0.192710 −0.0963548 0.995347i \(-0.530718\pi\)
−0.0963548 + 0.995347i \(0.530718\pi\)
\(158\) 0 0
\(159\) 12.5521 0.995446
\(160\) 0 0
\(161\) −4.81630 −0.379577
\(162\) 0 0
\(163\) −7.96322 −0.623727 −0.311864 0.950127i \(-0.600953\pi\)
−0.311864 + 0.950127i \(0.600953\pi\)
\(164\) 0 0
\(165\) −3.40312 −0.264933
\(166\) 0 0
\(167\) −3.09909 −0.239815 −0.119907 0.992785i \(-0.538260\pi\)
−0.119907 + 0.992785i \(0.538260\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0.603373 0.0458736 0.0229368 0.999737i \(-0.492698\pi\)
0.0229368 + 0.999737i \(0.492698\pi\)
\(174\) 0 0
\(175\) 3.32708 0.251504
\(176\) 0 0
\(177\) −5.26223 −0.395534
\(178\) 0 0
\(179\) 3.50074 0.261657 0.130829 0.991405i \(-0.458236\pi\)
0.130829 + 0.991405i \(0.458236\pi\)
\(180\) 0 0
\(181\) 16.1283 1.19881 0.599404 0.800447i \(-0.295404\pi\)
0.599404 + 0.800447i \(0.295404\pi\)
\(182\) 0 0
\(183\) 10.6155 0.784718
\(184\) 0 0
\(185\) 1.17366 0.0862891
\(186\) 0 0
\(187\) −1.09259 −0.0798980
\(188\) 0 0
\(189\) −0.483617 −0.0351779
\(190\) 0 0
\(191\) 12.8006 0.926222 0.463111 0.886300i \(-0.346733\pi\)
0.463111 + 0.886300i \(0.346733\pi\)
\(192\) 0 0
\(193\) −10.6211 −0.764521 −0.382261 0.924055i \(-0.624854\pi\)
−0.382261 + 0.924055i \(0.624854\pi\)
\(194\) 0 0
\(195\) −6.22947 −0.446101
\(196\) 0 0
\(197\) 16.7252 1.19162 0.595810 0.803126i \(-0.296831\pi\)
0.595810 + 0.803126i \(0.296831\pi\)
\(198\) 0 0
\(199\) 16.7187 1.18516 0.592578 0.805513i \(-0.298110\pi\)
0.592578 + 0.805513i \(0.298110\pi\)
\(200\) 0 0
\(201\) −7.26567 −0.512481
\(202\) 0 0
\(203\) 9.32206 0.654280
\(204\) 0 0
\(205\) −7.63423 −0.533198
\(206\) 0 0
\(207\) 13.4817 0.937040
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 4.13835 0.284896 0.142448 0.989802i \(-0.454503\pi\)
0.142448 + 0.989802i \(0.454503\pi\)
\(212\) 0 0
\(213\) −12.0685 −0.826919
\(214\) 0 0
\(215\) −10.7574 −0.733647
\(216\) 0 0
\(217\) −2.97283 −0.201809
\(218\) 0 0
\(219\) −13.3532 −0.902328
\(220\) 0 0
\(221\) −2.00000 −0.134535
\(222\) 0 0
\(223\) 15.3588 1.02850 0.514252 0.857639i \(-0.328070\pi\)
0.514252 + 0.857639i \(0.328070\pi\)
\(224\) 0 0
\(225\) −9.31308 −0.620872
\(226\) 0 0
\(227\) −10.7538 −0.713756 −0.356878 0.934151i \(-0.616159\pi\)
−0.356878 + 0.934151i \(0.616159\pi\)
\(228\) 0 0
\(229\) 5.44741 0.359975 0.179988 0.983669i \(-0.442394\pi\)
0.179988 + 0.983669i \(0.442394\pi\)
\(230\) 0 0
\(231\) −2.63112 −0.173115
\(232\) 0 0
\(233\) 26.4388 1.73207 0.866033 0.499987i \(-0.166662\pi\)
0.866033 + 0.499987i \(0.166662\pi\)
\(234\) 0 0
\(235\) 9.88510 0.644833
\(236\) 0 0
\(237\) −18.4046 −1.19551
\(238\) 0 0
\(239\) −19.7644 −1.27846 −0.639228 0.769017i \(-0.720746\pi\)
−0.639228 + 0.769017i \(0.720746\pi\)
\(240\) 0 0
\(241\) −10.8319 −0.697747 −0.348873 0.937170i \(-0.613436\pi\)
−0.348873 + 0.937170i \(0.613436\pi\)
\(242\) 0 0
\(243\) 21.5762 1.38411
\(244\) 0 0
\(245\) −1.29341 −0.0826332
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −41.6013 −2.63638
\(250\) 0 0
\(251\) −5.10010 −0.321915 −0.160958 0.986961i \(-0.551458\pi\)
−0.160958 + 0.986961i \(0.551458\pi\)
\(252\) 0 0
\(253\) −5.26223 −0.330834
\(254\) 0 0
\(255\) 3.11473 0.195052
\(256\) 0 0
\(257\) −20.2867 −1.26545 −0.632726 0.774376i \(-0.718064\pi\)
−0.632726 + 0.774376i \(0.718064\pi\)
\(258\) 0 0
\(259\) 0.907411 0.0563838
\(260\) 0 0
\(261\) −26.0941 −1.61518
\(262\) 0 0
\(263\) −25.0800 −1.54650 −0.773250 0.634102i \(-0.781370\pi\)
−0.773250 + 0.634102i \(0.781370\pi\)
\(264\) 0 0
\(265\) 6.74172 0.414141
\(266\) 0 0
\(267\) −36.6784 −2.24468
\(268\) 0 0
\(269\) −22.1513 −1.35059 −0.675296 0.737547i \(-0.735984\pi\)
−0.675296 + 0.737547i \(0.735984\pi\)
\(270\) 0 0
\(271\) −5.61960 −0.341366 −0.170683 0.985326i \(-0.554597\pi\)
−0.170683 + 0.985326i \(0.554597\pi\)
\(272\) 0 0
\(273\) −4.81630 −0.291495
\(274\) 0 0
\(275\) 3.63513 0.219207
\(276\) 0 0
\(277\) 2.27629 0.136769 0.0683846 0.997659i \(-0.478215\pi\)
0.0683846 + 0.997659i \(0.478215\pi\)
\(278\) 0 0
\(279\) 8.32148 0.498194
\(280\) 0 0
\(281\) 13.8021 0.823366 0.411683 0.911327i \(-0.364941\pi\)
0.411683 + 0.911327i \(0.364941\pi\)
\(282\) 0 0
\(283\) 1.92453 0.114401 0.0572007 0.998363i \(-0.481782\pi\)
0.0572007 + 0.998363i \(0.481782\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −5.90239 −0.348407
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) −18.3114 −1.07344
\(292\) 0 0
\(293\) −14.0130 −0.818648 −0.409324 0.912389i \(-0.634235\pi\)
−0.409324 + 0.912389i \(0.634235\pi\)
\(294\) 0 0
\(295\) −2.82634 −0.164556
\(296\) 0 0
\(297\) −0.528394 −0.0306606
\(298\) 0 0
\(299\) −9.63259 −0.557067
\(300\) 0 0
\(301\) −8.31703 −0.479386
\(302\) 0 0
\(303\) −10.1852 −0.585123
\(304\) 0 0
\(305\) 5.70156 0.326470
\(306\) 0 0
\(307\) 16.8606 0.962284 0.481142 0.876643i \(-0.340222\pi\)
0.481142 + 0.876643i \(0.340222\pi\)
\(308\) 0 0
\(309\) 29.3195 1.66793
\(310\) 0 0
\(311\) −21.7992 −1.23612 −0.618059 0.786132i \(-0.712081\pi\)
−0.618059 + 0.786132i \(0.712081\pi\)
\(312\) 0 0
\(313\) 6.80065 0.384395 0.192198 0.981356i \(-0.438439\pi\)
0.192198 + 0.981356i \(0.438439\pi\)
\(314\) 0 0
\(315\) 3.62049 0.203992
\(316\) 0 0
\(317\) −8.96469 −0.503507 −0.251754 0.967791i \(-0.581007\pi\)
−0.251754 + 0.967791i \(0.581007\pi\)
\(318\) 0 0
\(319\) 10.1852 0.570261
\(320\) 0 0
\(321\) −9.43736 −0.526742
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 6.65416 0.369106
\(326\) 0 0
\(327\) −7.55406 −0.417741
\(328\) 0 0
\(329\) 7.64264 0.421352
\(330\) 0 0
\(331\) −11.0171 −0.605556 −0.302778 0.953061i \(-0.597914\pi\)
−0.302778 + 0.953061i \(0.597914\pi\)
\(332\) 0 0
\(333\) −2.54000 −0.139191
\(334\) 0 0
\(335\) −3.90239 −0.213210
\(336\) 0 0
\(337\) −10.5969 −0.577249 −0.288624 0.957442i \(-0.593198\pi\)
−0.288624 + 0.957442i \(0.593198\pi\)
\(338\) 0 0
\(339\) 35.7865 1.94365
\(340\) 0 0
\(341\) −3.24809 −0.175894
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 15.0015 0.807652
\(346\) 0 0
\(347\) 9.09259 0.488116 0.244058 0.969761i \(-0.421521\pi\)
0.244058 + 0.969761i \(0.421521\pi\)
\(348\) 0 0
\(349\) −25.0900 −1.34304 −0.671520 0.740987i \(-0.734358\pi\)
−0.671520 + 0.740987i \(0.734358\pi\)
\(350\) 0 0
\(351\) −0.967233 −0.0516271
\(352\) 0 0
\(353\) −9.97991 −0.531177 −0.265588 0.964087i \(-0.585566\pi\)
−0.265588 + 0.964087i \(0.585566\pi\)
\(354\) 0 0
\(355\) −6.48197 −0.344027
\(356\) 0 0
\(357\) 2.40815 0.127453
\(358\) 0 0
\(359\) 25.2909 1.33480 0.667401 0.744699i \(-0.267407\pi\)
0.667401 + 0.744699i \(0.267407\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) 23.6149 1.23946
\(364\) 0 0
\(365\) −7.17202 −0.375400
\(366\) 0 0
\(367\) 23.9154 1.24837 0.624186 0.781275i \(-0.285431\pi\)
0.624186 + 0.781275i \(0.285431\pi\)
\(368\) 0 0
\(369\) 16.5218 0.860091
\(370\) 0 0
\(371\) 5.21235 0.270612
\(372\) 0 0
\(373\) −33.3185 −1.72517 −0.862583 0.505915i \(-0.831155\pi\)
−0.862583 + 0.505915i \(0.831155\pi\)
\(374\) 0 0
\(375\) −25.9366 −1.33936
\(376\) 0 0
\(377\) 18.6441 0.960221
\(378\) 0 0
\(379\) −31.9874 −1.64308 −0.821542 0.570149i \(-0.806886\pi\)
−0.821542 + 0.570149i \(0.806886\pi\)
\(380\) 0 0
\(381\) −0.507811 −0.0260159
\(382\) 0 0
\(383\) −17.7705 −0.908032 −0.454016 0.890994i \(-0.650009\pi\)
−0.454016 + 0.890994i \(0.650009\pi\)
\(384\) 0 0
\(385\) −1.41317 −0.0720219
\(386\) 0 0
\(387\) 23.2808 1.18343
\(388\) 0 0
\(389\) 9.82222 0.498006 0.249003 0.968503i \(-0.419897\pi\)
0.249003 + 0.968503i \(0.419897\pi\)
\(390\) 0 0
\(391\) 4.81630 0.243571
\(392\) 0 0
\(393\) −15.1967 −0.766572
\(394\) 0 0
\(395\) −9.88510 −0.497373
\(396\) 0 0
\(397\) 14.9833 0.751990 0.375995 0.926622i \(-0.377301\pi\)
0.375995 + 0.926622i \(0.377301\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −22.1881 −1.10802 −0.554011 0.832509i \(-0.686903\pi\)
−0.554011 + 0.832509i \(0.686903\pi\)
\(402\) 0 0
\(403\) −5.94567 −0.296175
\(404\) 0 0
\(405\) 12.3678 0.614562
\(406\) 0 0
\(407\) 0.991427 0.0491432
\(408\) 0 0
\(409\) −24.4046 −1.20673 −0.603365 0.797465i \(-0.706174\pi\)
−0.603365 + 0.797465i \(0.706174\pi\)
\(410\) 0 0
\(411\) 6.44034 0.317678
\(412\) 0 0
\(413\) −2.18518 −0.107526
\(414\) 0 0
\(415\) −22.3440 −1.09683
\(416\) 0 0
\(417\) 4.42125 0.216510
\(418\) 0 0
\(419\) 14.9361 0.729674 0.364837 0.931071i \(-0.381125\pi\)
0.364837 + 0.931071i \(0.381125\pi\)
\(420\) 0 0
\(421\) 25.5822 1.24680 0.623400 0.781903i \(-0.285751\pi\)
0.623400 + 0.781903i \(0.285751\pi\)
\(422\) 0 0
\(423\) −21.3931 −1.04017
\(424\) 0 0
\(425\) −3.32708 −0.161387
\(426\) 0 0
\(427\) 4.40815 0.213325
\(428\) 0 0
\(429\) −5.26223 −0.254063
\(430\) 0 0
\(431\) −19.7605 −0.951829 −0.475915 0.879492i \(-0.657883\pi\)
−0.475915 + 0.879492i \(0.657883\pi\)
\(432\) 0 0
\(433\) −35.8963 −1.72507 −0.862533 0.506001i \(-0.831123\pi\)
−0.862533 + 0.506001i \(0.831123\pi\)
\(434\) 0 0
\(435\) −29.0357 −1.39216
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 40.5494 1.93532 0.967660 0.252259i \(-0.0811735\pi\)
0.967660 + 0.252259i \(0.0811735\pi\)
\(440\) 0 0
\(441\) 2.79917 0.133294
\(442\) 0 0
\(443\) 6.98848 0.332033 0.166016 0.986123i \(-0.446910\pi\)
0.166016 + 0.986123i \(0.446910\pi\)
\(444\) 0 0
\(445\) −19.6999 −0.933866
\(446\) 0 0
\(447\) 3.19225 0.150988
\(448\) 0 0
\(449\) −28.4176 −1.34111 −0.670555 0.741860i \(-0.733944\pi\)
−0.670555 + 0.741860i \(0.733944\pi\)
\(450\) 0 0
\(451\) −6.44889 −0.303666
\(452\) 0 0
\(453\) 27.7268 1.30272
\(454\) 0 0
\(455\) −2.58683 −0.121272
\(456\) 0 0
\(457\) 25.9108 1.21206 0.606028 0.795443i \(-0.292762\pi\)
0.606028 + 0.795443i \(0.292762\pi\)
\(458\) 0 0
\(459\) 0.483617 0.0225733
\(460\) 0 0
\(461\) 6.63406 0.308979 0.154490 0.987994i \(-0.450627\pi\)
0.154490 + 0.987994i \(0.450627\pi\)
\(462\) 0 0
\(463\) −37.1463 −1.72634 −0.863168 0.504917i \(-0.831523\pi\)
−0.863168 + 0.504917i \(0.831523\pi\)
\(464\) 0 0
\(465\) 9.25958 0.429403
\(466\) 0 0
\(467\) −12.0372 −0.557015 −0.278507 0.960434i \(-0.589840\pi\)
−0.278507 + 0.960434i \(0.589840\pi\)
\(468\) 0 0
\(469\) −3.01712 −0.139318
\(470\) 0 0
\(471\) 5.81482 0.267933
\(472\) 0 0
\(473\) −9.08710 −0.417825
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −14.5903 −0.668042
\(478\) 0 0
\(479\) −11.9355 −0.545346 −0.272673 0.962107i \(-0.587908\pi\)
−0.272673 + 0.962107i \(0.587908\pi\)
\(480\) 0 0
\(481\) 1.81482 0.0827487
\(482\) 0 0
\(483\) 11.5983 0.527743
\(484\) 0 0
\(485\) −9.83506 −0.446587
\(486\) 0 0
\(487\) −2.56674 −0.116310 −0.0581549 0.998308i \(-0.518522\pi\)
−0.0581549 + 0.998308i \(0.518522\pi\)
\(488\) 0 0
\(489\) 19.1766 0.867196
\(490\) 0 0
\(491\) −10.4073 −0.469673 −0.234836 0.972035i \(-0.575455\pi\)
−0.234836 + 0.972035i \(0.575455\pi\)
\(492\) 0 0
\(493\) −9.32206 −0.419844
\(494\) 0 0
\(495\) 3.95571 0.177796
\(496\) 0 0
\(497\) −5.01152 −0.224797
\(498\) 0 0
\(499\) −15.3793 −0.688474 −0.344237 0.938883i \(-0.611862\pi\)
−0.344237 + 0.938883i \(0.611862\pi\)
\(500\) 0 0
\(501\) 7.46306 0.333425
\(502\) 0 0
\(503\) −8.36591 −0.373018 −0.186509 0.982453i \(-0.559717\pi\)
−0.186509 + 0.982453i \(0.559717\pi\)
\(504\) 0 0
\(505\) −5.47045 −0.243432
\(506\) 0 0
\(507\) 21.6733 0.962546
\(508\) 0 0
\(509\) 6.50322 0.288250 0.144125 0.989559i \(-0.453963\pi\)
0.144125 + 0.989559i \(0.453963\pi\)
\(510\) 0 0
\(511\) −5.54502 −0.245297
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 15.7475 0.693917
\(516\) 0 0
\(517\) 8.35026 0.367244
\(518\) 0 0
\(519\) −1.45301 −0.0637801
\(520\) 0 0
\(521\) −33.6265 −1.47320 −0.736602 0.676327i \(-0.763571\pi\)
−0.736602 + 0.676327i \(0.763571\pi\)
\(522\) 0 0
\(523\) 18.4690 0.807592 0.403796 0.914849i \(-0.367691\pi\)
0.403796 + 0.914849i \(0.367691\pi\)
\(524\) 0 0
\(525\) −8.01210 −0.349677
\(526\) 0 0
\(527\) 2.97283 0.129499
\(528\) 0 0
\(529\) 0.196699 0.00855215
\(530\) 0 0
\(531\) 6.11670 0.265442
\(532\) 0 0
\(533\) −11.8048 −0.511322
\(534\) 0 0
\(535\) −5.06880 −0.219143
\(536\) 0 0
\(537\) −8.43029 −0.363794
\(538\) 0 0
\(539\) −1.09259 −0.0470612
\(540\) 0 0
\(541\) −26.2562 −1.12884 −0.564421 0.825487i \(-0.690901\pi\)
−0.564421 + 0.825487i \(0.690901\pi\)
\(542\) 0 0
\(543\) −38.8393 −1.66676
\(544\) 0 0
\(545\) −4.05728 −0.173795
\(546\) 0 0
\(547\) −16.3135 −0.697514 −0.348757 0.937213i \(-0.613396\pi\)
−0.348757 + 0.937213i \(0.613396\pi\)
\(548\) 0 0
\(549\) −12.3392 −0.526623
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −7.64264 −0.324998
\(554\) 0 0
\(555\) −2.82634 −0.119972
\(556\) 0 0
\(557\) −5.35884 −0.227061 −0.113531 0.993534i \(-0.536216\pi\)
−0.113531 + 0.993534i \(0.536216\pi\)
\(558\) 0 0
\(559\) −16.6341 −0.703546
\(560\) 0 0
\(561\) 2.63112 0.111086
\(562\) 0 0
\(563\) 43.6798 1.84089 0.920443 0.390878i \(-0.127828\pi\)
0.920443 + 0.390878i \(0.127828\pi\)
\(564\) 0 0
\(565\) 19.2209 0.808629
\(566\) 0 0
\(567\) 9.56214 0.401572
\(568\) 0 0
\(569\) −39.1333 −1.64055 −0.820277 0.571966i \(-0.806181\pi\)
−0.820277 + 0.571966i \(0.806181\pi\)
\(570\) 0 0
\(571\) −35.9431 −1.50417 −0.752086 0.659064i \(-0.770952\pi\)
−0.752086 + 0.659064i \(0.770952\pi\)
\(572\) 0 0
\(573\) −30.8259 −1.28777
\(574\) 0 0
\(575\) −16.0242 −0.668255
\(576\) 0 0
\(577\) −35.8650 −1.49308 −0.746540 0.665341i \(-0.768286\pi\)
−0.746540 + 0.665341i \(0.768286\pi\)
\(578\) 0 0
\(579\) 25.5771 1.06295
\(580\) 0 0
\(581\) −17.2752 −0.716697
\(582\) 0 0
\(583\) 5.69495 0.235861
\(584\) 0 0
\(585\) 7.24099 0.299378
\(586\) 0 0
\(587\) −20.5162 −0.846795 −0.423397 0.905944i \(-0.639163\pi\)
−0.423397 + 0.905944i \(0.639163\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) −40.2767 −1.65676
\(592\) 0 0
\(593\) 38.2324 1.57002 0.785009 0.619485i \(-0.212659\pi\)
0.785009 + 0.619485i \(0.212659\pi\)
\(594\) 0 0
\(595\) 1.29341 0.0530248
\(596\) 0 0
\(597\) −40.2611 −1.64778
\(598\) 0 0
\(599\) −39.7774 −1.62526 −0.812631 0.582779i \(-0.801966\pi\)
−0.812631 + 0.582779i \(0.801966\pi\)
\(600\) 0 0
\(601\) 1.00857 0.0411405 0.0205703 0.999788i \(-0.493452\pi\)
0.0205703 + 0.999788i \(0.493452\pi\)
\(602\) 0 0
\(603\) 8.44545 0.343925
\(604\) 0 0
\(605\) 12.6835 0.515659
\(606\) 0 0
\(607\) 30.6598 1.24444 0.622221 0.782842i \(-0.286231\pi\)
0.622221 + 0.782842i \(0.286231\pi\)
\(608\) 0 0
\(609\) −22.4489 −0.909675
\(610\) 0 0
\(611\) 15.2853 0.618376
\(612\) 0 0
\(613\) −25.8334 −1.04340 −0.521701 0.853128i \(-0.674702\pi\)
−0.521701 + 0.853128i \(0.674702\pi\)
\(614\) 0 0
\(615\) 18.3844 0.741329
\(616\) 0 0
\(617\) 43.9829 1.77068 0.885342 0.464941i \(-0.153925\pi\)
0.885342 + 0.464941i \(0.153925\pi\)
\(618\) 0 0
\(619\) −32.5843 −1.30967 −0.654837 0.755771i \(-0.727263\pi\)
−0.654837 + 0.755771i \(0.727263\pi\)
\(620\) 0 0
\(621\) 2.32924 0.0934692
\(622\) 0 0
\(623\) −15.2309 −0.610215
\(624\) 0 0
\(625\) 2.70485 0.108194
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −0.907411 −0.0361808
\(630\) 0 0
\(631\) 29.2797 1.16561 0.582803 0.812614i \(-0.301956\pi\)
0.582803 + 0.812614i \(0.301956\pi\)
\(632\) 0 0
\(633\) −9.96576 −0.396103
\(634\) 0 0
\(635\) −0.272745 −0.0108235
\(636\) 0 0
\(637\) −2.00000 −0.0792429
\(638\) 0 0
\(639\) 14.0281 0.554944
\(640\) 0 0
\(641\) −12.4489 −0.491701 −0.245851 0.969308i \(-0.579067\pi\)
−0.245851 + 0.969308i \(0.579067\pi\)
\(642\) 0 0
\(643\) −3.08240 −0.121558 −0.0607790 0.998151i \(-0.519358\pi\)
−0.0607790 + 0.998151i \(0.519358\pi\)
\(644\) 0 0
\(645\) 25.9053 1.02002
\(646\) 0 0
\(647\) −23.3095 −0.916390 −0.458195 0.888852i \(-0.651504\pi\)
−0.458195 + 0.888852i \(0.651504\pi\)
\(648\) 0 0
\(649\) −2.38750 −0.0937177
\(650\) 0 0
\(651\) 7.15902 0.280584
\(652\) 0 0
\(653\) 40.6608 1.59118 0.795590 0.605835i \(-0.207161\pi\)
0.795590 + 0.605835i \(0.207161\pi\)
\(654\) 0 0
\(655\) −8.16214 −0.318921
\(656\) 0 0
\(657\) 15.5215 0.605551
\(658\) 0 0
\(659\) −31.6069 −1.23123 −0.615615 0.788047i \(-0.711092\pi\)
−0.615615 + 0.788047i \(0.711092\pi\)
\(660\) 0 0
\(661\) 1.26518 0.0492098 0.0246049 0.999697i \(-0.492167\pi\)
0.0246049 + 0.999697i \(0.492167\pi\)
\(662\) 0 0
\(663\) 4.81630 0.187049
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −44.8978 −1.73845
\(668\) 0 0
\(669\) −36.9863 −1.42997
\(670\) 0 0
\(671\) 4.81630 0.185931
\(672\) 0 0
\(673\) 26.4719 1.02042 0.510209 0.860051i \(-0.329568\pi\)
0.510209 + 0.860051i \(0.329568\pi\)
\(674\) 0 0
\(675\) −1.60903 −0.0619316
\(676\) 0 0
\(677\) 50.5016 1.94093 0.970467 0.241233i \(-0.0775518\pi\)
0.970467 + 0.241233i \(0.0775518\pi\)
\(678\) 0 0
\(679\) −7.60395 −0.291813
\(680\) 0 0
\(681\) 25.8968 0.992367
\(682\) 0 0
\(683\) 28.7464 1.09995 0.549976 0.835181i \(-0.314637\pi\)
0.549976 + 0.835181i \(0.314637\pi\)
\(684\) 0 0
\(685\) 3.45910 0.132165
\(686\) 0 0
\(687\) −13.1182 −0.500489
\(688\) 0 0
\(689\) 10.4247 0.397149
\(690\) 0 0
\(691\) 23.9652 0.911678 0.455839 0.890062i \(-0.349339\pi\)
0.455839 + 0.890062i \(0.349339\pi\)
\(692\) 0 0
\(693\) 3.05835 0.116177
\(694\) 0 0
\(695\) 2.37465 0.0900757
\(696\) 0 0
\(697\) 5.90239 0.223569
\(698\) 0 0
\(699\) −63.6686 −2.40817
\(700\) 0 0
\(701\) −29.7977 −1.12544 −0.562721 0.826647i \(-0.690246\pi\)
−0.562721 + 0.826647i \(0.690246\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) −23.8048 −0.896540
\(706\) 0 0
\(707\) −4.22947 −0.159065
\(708\) 0 0
\(709\) −34.1513 −1.28258 −0.641290 0.767298i \(-0.721601\pi\)
−0.641290 + 0.767298i \(0.721601\pi\)
\(710\) 0 0
\(711\) 21.3931 0.802303
\(712\) 0 0
\(713\) 14.3180 0.536215
\(714\) 0 0
\(715\) −2.82634 −0.105699
\(716\) 0 0
\(717\) 47.5957 1.77749
\(718\) 0 0
\(719\) −31.6316 −1.17966 −0.589829 0.807528i \(-0.700805\pi\)
−0.589829 + 0.807528i \(0.700805\pi\)
\(720\) 0 0
\(721\) 12.1751 0.453426
\(722\) 0 0
\(723\) 26.0849 0.970108
\(724\) 0 0
\(725\) 31.0152 1.15188
\(726\) 0 0
\(727\) −47.0517 −1.74505 −0.872525 0.488570i \(-0.837519\pi\)
−0.872525 + 0.488570i \(0.837519\pi\)
\(728\) 0 0
\(729\) −23.2723 −0.861935
\(730\) 0 0
\(731\) 8.31703 0.307617
\(732\) 0 0
\(733\) −8.17218 −0.301847 −0.150923 0.988545i \(-0.548225\pi\)
−0.150923 + 0.988545i \(0.548225\pi\)
\(734\) 0 0
\(735\) 3.11473 0.114889
\(736\) 0 0
\(737\) −3.29647 −0.121427
\(738\) 0 0
\(739\) −17.6729 −0.650109 −0.325054 0.945695i \(-0.605383\pi\)
−0.325054 + 0.945695i \(0.605383\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 46.5876 1.70913 0.854567 0.519340i \(-0.173822\pi\)
0.854567 + 0.519340i \(0.173822\pi\)
\(744\) 0 0
\(745\) 1.71456 0.0628165
\(746\) 0 0
\(747\) 48.3564 1.76927
\(748\) 0 0
\(749\) −3.91893 −0.143195
\(750\) 0 0
\(751\) −28.6471 −1.04535 −0.522673 0.852533i \(-0.675065\pi\)
−0.522673 + 0.852533i \(0.675065\pi\)
\(752\) 0 0
\(753\) 12.2818 0.447573
\(754\) 0 0
\(755\) 14.8920 0.541976
\(756\) 0 0
\(757\) −33.9597 −1.23429 −0.617143 0.786851i \(-0.711710\pi\)
−0.617143 + 0.786851i \(0.711710\pi\)
\(758\) 0 0
\(759\) 12.6722 0.459973
\(760\) 0 0
\(761\) 24.6110 0.892149 0.446074 0.894996i \(-0.352822\pi\)
0.446074 + 0.894996i \(0.352822\pi\)
\(762\) 0 0
\(763\) −3.13688 −0.113563
\(764\) 0 0
\(765\) −3.62049 −0.130899
\(766\) 0 0
\(767\) −4.37036 −0.157804
\(768\) 0 0
\(769\) −28.1409 −1.01479 −0.507393 0.861715i \(-0.669391\pi\)
−0.507393 + 0.861715i \(0.669391\pi\)
\(770\) 0 0
\(771\) 48.8535 1.75942
\(772\) 0 0
\(773\) 42.5898 1.53185 0.765924 0.642931i \(-0.222282\pi\)
0.765924 + 0.642931i \(0.222282\pi\)
\(774\) 0 0
\(775\) −9.89085 −0.355290
\(776\) 0 0
\(777\) −2.18518 −0.0783929
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −5.47553 −0.195930
\(782\) 0 0
\(783\) −4.50830 −0.161114
\(784\) 0 0
\(785\) 3.12314 0.111470
\(786\) 0 0
\(787\) −2.60733 −0.0929413 −0.0464706 0.998920i \(-0.514797\pi\)
−0.0464706 + 0.998920i \(0.514797\pi\)
\(788\) 0 0
\(789\) 60.3963 2.15017
\(790\) 0 0
\(791\) 14.8606 0.528381
\(792\) 0 0
\(793\) 8.81630 0.313076
\(794\) 0 0
\(795\) −16.2351 −0.575798
\(796\) 0 0
\(797\) 14.8606 0.526389 0.263194 0.964743i \(-0.415224\pi\)
0.263194 + 0.964743i \(0.415224\pi\)
\(798\) 0 0
\(799\) −7.64264 −0.270377
\(800\) 0 0
\(801\) 42.6341 1.50640
\(802\) 0 0
\(803\) −6.05843 −0.213798
\(804\) 0 0
\(805\) 6.22947 0.219560
\(806\) 0 0
\(807\) 53.3437 1.87779
\(808\) 0 0
\(809\) 14.7850 0.519813 0.259907 0.965634i \(-0.416308\pi\)
0.259907 + 0.965634i \(0.416308\pi\)
\(810\) 0 0
\(811\) −23.3866 −0.821214 −0.410607 0.911812i \(-0.634683\pi\)
−0.410607 + 0.911812i \(0.634683\pi\)
\(812\) 0 0
\(813\) 13.5328 0.474617
\(814\) 0 0
\(815\) 10.2997 0.360784
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 5.59835 0.195622
\(820\) 0 0
\(821\) 14.6136 0.510017 0.255008 0.966939i \(-0.417922\pi\)
0.255008 + 0.966939i \(0.417922\pi\)
\(822\) 0 0
\(823\) 27.0718 0.943662 0.471831 0.881689i \(-0.343593\pi\)
0.471831 + 0.881689i \(0.343593\pi\)
\(824\) 0 0
\(825\) −8.75393 −0.304773
\(826\) 0 0
\(827\) −32.8974 −1.14395 −0.571977 0.820270i \(-0.693823\pi\)
−0.571977 + 0.820270i \(0.693823\pi\)
\(828\) 0 0
\(829\) 20.1651 0.700362 0.350181 0.936682i \(-0.386120\pi\)
0.350181 + 0.936682i \(0.386120\pi\)
\(830\) 0 0
\(831\) −5.48165 −0.190156
\(832\) 0 0
\(833\) 1.00000 0.0346479
\(834\) 0 0
\(835\) 4.00840 0.138717
\(836\) 0 0
\(837\) 1.43771 0.0496946
\(838\) 0 0
\(839\) 23.1967 0.800839 0.400419 0.916332i \(-0.368864\pi\)
0.400419 + 0.916332i \(0.368864\pi\)
\(840\) 0 0
\(841\) 57.9007 1.99658
\(842\) 0 0
\(843\) −33.2375 −1.14476
\(844\) 0 0
\(845\) 11.6407 0.400453
\(846\) 0 0
\(847\) 9.80625 0.336947
\(848\) 0 0
\(849\) −4.63455 −0.159058
\(850\) 0 0
\(851\) −4.37036 −0.149814
\(852\) 0 0
\(853\) 10.4422 0.357536 0.178768 0.983891i \(-0.442789\pi\)
0.178768 + 0.983891i \(0.442789\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −11.2135 −0.383046 −0.191523 0.981488i \(-0.561343\pi\)
−0.191523 + 0.981488i \(0.561343\pi\)
\(858\) 0 0
\(859\) −40.9108 −1.39586 −0.697929 0.716167i \(-0.745895\pi\)
−0.697929 + 0.716167i \(0.745895\pi\)
\(860\) 0 0
\(861\) 14.2138 0.484406
\(862\) 0 0
\(863\) −4.96279 −0.168935 −0.0844676 0.996426i \(-0.526919\pi\)
−0.0844676 + 0.996426i \(0.526919\pi\)
\(864\) 0 0
\(865\) −0.780411 −0.0265348
\(866\) 0 0
\(867\) −2.40815 −0.0817850
\(868\) 0 0
\(869\) −8.35026 −0.283263
\(870\) 0 0
\(871\) −6.03424 −0.204462
\(872\) 0 0
\(873\) 21.2848 0.720381
\(874\) 0 0
\(875\) −10.7704 −0.364105
\(876\) 0 0
\(877\) −29.8787 −1.00893 −0.504467 0.863431i \(-0.668311\pi\)
−0.504467 + 0.863431i \(0.668311\pi\)
\(878\) 0 0
\(879\) 33.7454 1.13820
\(880\) 0 0
\(881\) −12.9858 −0.437504 −0.218752 0.975781i \(-0.570199\pi\)
−0.218752 + 0.975781i \(0.570199\pi\)
\(882\) 0 0
\(883\) −41.1346 −1.38429 −0.692145 0.721758i \(-0.743334\pi\)
−0.692145 + 0.721758i \(0.743334\pi\)
\(884\) 0 0
\(885\) 6.80625 0.228790
\(886\) 0 0
\(887\) 15.1811 0.509730 0.254865 0.966977i \(-0.417969\pi\)
0.254865 + 0.966977i \(0.417969\pi\)
\(888\) 0 0
\(889\) −0.210872 −0.00707242
\(890\) 0 0
\(891\) 10.4475 0.350004
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −4.52790 −0.151351
\(896\) 0 0
\(897\) 23.1967 0.774515
\(898\) 0 0
\(899\) −27.7129 −0.924277
\(900\) 0 0
\(901\) −5.21235 −0.173648
\(902\) 0 0
\(903\) 20.0286 0.666511
\(904\) 0 0
\(905\) −20.8606 −0.693429
\(906\) 0 0
\(907\) 9.01903 0.299472 0.149736 0.988726i \(-0.452158\pi\)
0.149736 + 0.988726i \(0.452158\pi\)
\(908\) 0 0
\(909\) 11.8390 0.392675
\(910\) 0 0
\(911\) 5.42617 0.179777 0.0898884 0.995952i \(-0.471349\pi\)
0.0898884 + 0.995952i \(0.471349\pi\)
\(912\) 0 0
\(913\) −18.8747 −0.624662
\(914\) 0 0
\(915\) −13.7302 −0.453907
\(916\) 0 0
\(917\) −6.31053 −0.208392
\(918\) 0 0
\(919\) 28.5677 0.942363 0.471181 0.882036i \(-0.343828\pi\)
0.471181 + 0.882036i \(0.343828\pi\)
\(920\) 0 0
\(921\) −40.6028 −1.33791
\(922\) 0 0
\(923\) −10.0230 −0.329912
\(924\) 0 0
\(925\) 3.01903 0.0992650
\(926\) 0 0
\(927\) −34.0803 −1.11934
\(928\) 0 0
\(929\) 6.85793 0.225001 0.112501 0.993652i \(-0.464114\pi\)
0.112501 + 0.993652i \(0.464114\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 52.4956 1.71863
\(934\) 0 0
\(935\) 1.41317 0.0462156
\(936\) 0 0
\(937\) 17.8621 0.583528 0.291764 0.956490i \(-0.405758\pi\)
0.291764 + 0.956490i \(0.405758\pi\)
\(938\) 0 0
\(939\) −16.3770 −0.534442
\(940\) 0 0
\(941\) −36.5227 −1.19061 −0.595303 0.803501i \(-0.702968\pi\)
−0.595303 + 0.803501i \(0.702968\pi\)
\(942\) 0 0
\(943\) 28.4276 0.925731
\(944\) 0 0
\(945\) 0.625517 0.0203481
\(946\) 0 0
\(947\) −34.7402 −1.12890 −0.564452 0.825466i \(-0.690913\pi\)
−0.564452 + 0.825466i \(0.690913\pi\)
\(948\) 0 0
\(949\) −11.0900 −0.359998
\(950\) 0 0
\(951\) 21.5883 0.700049
\(952\) 0 0
\(953\) 55.5546 1.79959 0.899795 0.436314i \(-0.143716\pi\)
0.899795 + 0.436314i \(0.143716\pi\)
\(954\) 0 0
\(955\) −16.5565 −0.535757
\(956\) 0 0
\(957\) −24.5274 −0.792859
\(958\) 0 0
\(959\) 2.67440 0.0863607
\(960\) 0 0
\(961\) −22.1623 −0.714912
\(962\) 0 0
\(963\) 10.9698 0.353496
\(964\) 0 0
\(965\) 13.7374 0.442224
\(966\) 0 0
\(967\) 3.95967 0.127334 0.0636672 0.997971i \(-0.479720\pi\)
0.0636672 + 0.997971i \(0.479720\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 7.13232 0.228887 0.114443 0.993430i \(-0.463492\pi\)
0.114443 + 0.993430i \(0.463492\pi\)
\(972\) 0 0
\(973\) 1.83596 0.0588581
\(974\) 0 0
\(975\) −16.0242 −0.513185
\(976\) 0 0
\(977\) 7.88775 0.252351 0.126176 0.992008i \(-0.459730\pi\)
0.126176 + 0.992008i \(0.459730\pi\)
\(978\) 0 0
\(979\) −16.6412 −0.531854
\(980\) 0 0
\(981\) 8.78067 0.280345
\(982\) 0 0
\(983\) 1.22649 0.0391191 0.0195595 0.999809i \(-0.493774\pi\)
0.0195595 + 0.999809i \(0.493774\pi\)
\(984\) 0 0
\(985\) −21.6326 −0.689272
\(986\) 0 0
\(987\) −18.4046 −0.585825
\(988\) 0 0
\(989\) 40.0573 1.27375
\(990\) 0 0
\(991\) 26.4377 0.839821 0.419910 0.907566i \(-0.362061\pi\)
0.419910 + 0.907566i \(0.362061\pi\)
\(992\) 0 0
\(993\) 26.5309 0.841931
\(994\) 0 0
\(995\) −21.6242 −0.685533
\(996\) 0 0
\(997\) −12.4081 −0.392970 −0.196485 0.980507i \(-0.562953\pi\)
−0.196485 + 0.980507i \(0.562953\pi\)
\(998\) 0 0
\(999\) −0.438839 −0.0138842
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7616.2.a.bo.1.1 4
4.3 odd 2 7616.2.a.bi.1.4 4
8.3 odd 2 952.2.a.h.1.1 4
8.5 even 2 1904.2.a.r.1.4 4
24.11 even 2 8568.2.a.bg.1.2 4
56.27 even 2 6664.2.a.n.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
952.2.a.h.1.1 4 8.3 odd 2
1904.2.a.r.1.4 4 8.5 even 2
6664.2.a.n.1.4 4 56.27 even 2
7616.2.a.bi.1.4 4 4.3 odd 2
7616.2.a.bo.1.1 4 1.1 even 1 trivial
8568.2.a.bg.1.2 4 24.11 even 2