Properties

Label 7616.2.a.bm.1.4
Level $7616$
Weight $2$
Character 7616.1
Self dual yes
Analytic conductor $60.814$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7616,2,Mod(1,7616)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7616, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7616.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 7616 = 2^{6} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7616.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,4,0,4,0,-2,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.8140661794\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{20})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 3808)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(1.90211\) of defining polynomial
Character \(\chi\) \(=\) 7616.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.90211 q^{3} -0.902113 q^{5} +1.00000 q^{7} +0.618034 q^{9} -0.442463 q^{11} +5.75621 q^{13} -1.71592 q^{15} +1.00000 q^{17} -6.42882 q^{19} +1.90211 q^{21} -0.273457 q^{23} -4.18619 q^{25} -4.53077 q^{27} -10.5018 q^{29} -7.29657 q^{31} -0.841616 q^{33} -0.902113 q^{35} +5.86067 q^{37} +10.9490 q^{39} -5.79766 q^{41} -1.94542 q^{43} -0.557537 q^{45} -2.10445 q^{47} +1.00000 q^{49} +1.90211 q^{51} +9.20524 q^{53} +0.399152 q^{55} -12.2284 q^{57} -4.79830 q^{59} -1.68980 q^{61} +0.618034 q^{63} -5.19276 q^{65} -10.3636 q^{67} -0.520147 q^{69} +5.11798 q^{71} -16.0872 q^{73} -7.96261 q^{75} -0.442463 q^{77} +1.36176 q^{79} -10.4721 q^{81} +7.10143 q^{83} -0.902113 q^{85} -19.9756 q^{87} +5.30011 q^{89} +5.75621 q^{91} -13.8789 q^{93} +5.79953 q^{95} -2.11321 q^{97} -0.273457 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{5} + 4 q^{7} - 2 q^{9} - 2 q^{11} + 2 q^{13} - 10 q^{15} + 4 q^{17} - 4 q^{19} - 4 q^{23} - 6 q^{25} - 6 q^{29} - 16 q^{31} + 4 q^{35} + 8 q^{37} + 10 q^{39} - 10 q^{41} - 4 q^{43} - 2 q^{45}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.90211 1.09819 0.549093 0.835761i \(-0.314973\pi\)
0.549093 + 0.835761i \(0.314973\pi\)
\(4\) 0 0
\(5\) −0.902113 −0.403437 −0.201719 0.979444i \(-0.564653\pi\)
−0.201719 + 0.979444i \(0.564653\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) 0.618034 0.206011
\(10\) 0 0
\(11\) −0.442463 −0.133408 −0.0667039 0.997773i \(-0.521248\pi\)
−0.0667039 + 0.997773i \(0.521248\pi\)
\(12\) 0 0
\(13\) 5.75621 1.59649 0.798243 0.602335i \(-0.205763\pi\)
0.798243 + 0.602335i \(0.205763\pi\)
\(14\) 0 0
\(15\) −1.71592 −0.443049
\(16\) 0 0
\(17\) 1.00000 0.242536
\(18\) 0 0
\(19\) −6.42882 −1.47487 −0.737437 0.675416i \(-0.763964\pi\)
−0.737437 + 0.675416i \(0.763964\pi\)
\(20\) 0 0
\(21\) 1.90211 0.415075
\(22\) 0 0
\(23\) −0.273457 −0.0570198 −0.0285099 0.999594i \(-0.509076\pi\)
−0.0285099 + 0.999594i \(0.509076\pi\)
\(24\) 0 0
\(25\) −4.18619 −0.837238
\(26\) 0 0
\(27\) −4.53077 −0.871947
\(28\) 0 0
\(29\) −10.5018 −1.95014 −0.975068 0.221904i \(-0.928773\pi\)
−0.975068 + 0.221904i \(0.928773\pi\)
\(30\) 0 0
\(31\) −7.29657 −1.31050 −0.655251 0.755411i \(-0.727437\pi\)
−0.655251 + 0.755411i \(0.727437\pi\)
\(32\) 0 0
\(33\) −0.841616 −0.146506
\(34\) 0 0
\(35\) −0.902113 −0.152485
\(36\) 0 0
\(37\) 5.86067 0.963488 0.481744 0.876312i \(-0.340004\pi\)
0.481744 + 0.876312i \(0.340004\pi\)
\(38\) 0 0
\(39\) 10.9490 1.75324
\(40\) 0 0
\(41\) −5.79766 −0.905443 −0.452721 0.891652i \(-0.649547\pi\)
−0.452721 + 0.891652i \(0.649547\pi\)
\(42\) 0 0
\(43\) −1.94542 −0.296674 −0.148337 0.988937i \(-0.547392\pi\)
−0.148337 + 0.988937i \(0.547392\pi\)
\(44\) 0 0
\(45\) −0.557537 −0.0831126
\(46\) 0 0
\(47\) −2.10445 −0.306966 −0.153483 0.988151i \(-0.549049\pi\)
−0.153483 + 0.988151i \(0.549049\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 1.90211 0.266349
\(52\) 0 0
\(53\) 9.20524 1.26444 0.632219 0.774790i \(-0.282144\pi\)
0.632219 + 0.774790i \(0.282144\pi\)
\(54\) 0 0
\(55\) 0.399152 0.0538217
\(56\) 0 0
\(57\) −12.2284 −1.61968
\(58\) 0 0
\(59\) −4.79830 −0.624686 −0.312343 0.949969i \(-0.601114\pi\)
−0.312343 + 0.949969i \(0.601114\pi\)
\(60\) 0 0
\(61\) −1.68980 −0.216356 −0.108178 0.994132i \(-0.534502\pi\)
−0.108178 + 0.994132i \(0.534502\pi\)
\(62\) 0 0
\(63\) 0.618034 0.0778650
\(64\) 0 0
\(65\) −5.19276 −0.644082
\(66\) 0 0
\(67\) −10.3636 −1.26612 −0.633059 0.774103i \(-0.718201\pi\)
−0.633059 + 0.774103i \(0.718201\pi\)
\(68\) 0 0
\(69\) −0.520147 −0.0626183
\(70\) 0 0
\(71\) 5.11798 0.607392 0.303696 0.952769i \(-0.401779\pi\)
0.303696 + 0.952769i \(0.401779\pi\)
\(72\) 0 0
\(73\) −16.0872 −1.88286 −0.941429 0.337210i \(-0.890517\pi\)
−0.941429 + 0.337210i \(0.890517\pi\)
\(74\) 0 0
\(75\) −7.96261 −0.919443
\(76\) 0 0
\(77\) −0.442463 −0.0504234
\(78\) 0 0
\(79\) 1.36176 0.153210 0.0766051 0.997062i \(-0.475592\pi\)
0.0766051 + 0.997062i \(0.475592\pi\)
\(80\) 0 0
\(81\) −10.4721 −1.16357
\(82\) 0 0
\(83\) 7.10143 0.779484 0.389742 0.920924i \(-0.372564\pi\)
0.389742 + 0.920924i \(0.372564\pi\)
\(84\) 0 0
\(85\) −0.902113 −0.0978479
\(86\) 0 0
\(87\) −19.9756 −2.14161
\(88\) 0 0
\(89\) 5.30011 0.561811 0.280905 0.959735i \(-0.409365\pi\)
0.280905 + 0.959735i \(0.409365\pi\)
\(90\) 0 0
\(91\) 5.75621 0.603415
\(92\) 0 0
\(93\) −13.8789 −1.43917
\(94\) 0 0
\(95\) 5.79953 0.595019
\(96\) 0 0
\(97\) −2.11321 −0.214564 −0.107282 0.994229i \(-0.534215\pi\)
−0.107282 + 0.994229i \(0.534215\pi\)
\(98\) 0 0
\(99\) −0.273457 −0.0274835
\(100\) 0 0
\(101\) −14.6304 −1.45578 −0.727890 0.685694i \(-0.759499\pi\)
−0.727890 + 0.685694i \(0.759499\pi\)
\(102\) 0 0
\(103\) 1.30532 0.128617 0.0643086 0.997930i \(-0.479516\pi\)
0.0643086 + 0.997930i \(0.479516\pi\)
\(104\) 0 0
\(105\) −1.71592 −0.167457
\(106\) 0 0
\(107\) −0.0267679 −0.00258775 −0.00129388 0.999999i \(-0.500412\pi\)
−0.00129388 + 0.999999i \(0.500412\pi\)
\(108\) 0 0
\(109\) 11.8386 1.13393 0.566966 0.823741i \(-0.308117\pi\)
0.566966 + 0.823741i \(0.308117\pi\)
\(110\) 0 0
\(111\) 11.1477 1.05809
\(112\) 0 0
\(113\) −4.45559 −0.419147 −0.209573 0.977793i \(-0.567208\pi\)
−0.209573 + 0.977793i \(0.567208\pi\)
\(114\) 0 0
\(115\) 0.246690 0.0230039
\(116\) 0 0
\(117\) 3.55754 0.328894
\(118\) 0 0
\(119\) 1.00000 0.0916698
\(120\) 0 0
\(121\) −10.8042 −0.982202
\(122\) 0 0
\(123\) −11.0278 −0.994344
\(124\) 0 0
\(125\) 8.28698 0.741210
\(126\) 0 0
\(127\) 13.2425 1.17508 0.587542 0.809194i \(-0.300096\pi\)
0.587542 + 0.809194i \(0.300096\pi\)
\(128\) 0 0
\(129\) −3.70042 −0.325804
\(130\) 0 0
\(131\) 20.3357 1.77674 0.888369 0.459129i \(-0.151839\pi\)
0.888369 + 0.459129i \(0.151839\pi\)
\(132\) 0 0
\(133\) −6.42882 −0.557450
\(134\) 0 0
\(135\) 4.08727 0.351776
\(136\) 0 0
\(137\) 10.2858 0.878778 0.439389 0.898297i \(-0.355195\pi\)
0.439389 + 0.898297i \(0.355195\pi\)
\(138\) 0 0
\(139\) −7.56108 −0.641323 −0.320661 0.947194i \(-0.603905\pi\)
−0.320661 + 0.947194i \(0.603905\pi\)
\(140\) 0 0
\(141\) −4.00290 −0.337105
\(142\) 0 0
\(143\) −2.54691 −0.212984
\(144\) 0 0
\(145\) 9.47382 0.786758
\(146\) 0 0
\(147\) 1.90211 0.156884
\(148\) 0 0
\(149\) −13.4221 −1.09959 −0.549793 0.835301i \(-0.685293\pi\)
−0.549793 + 0.835301i \(0.685293\pi\)
\(150\) 0 0
\(151\) −23.4518 −1.90848 −0.954241 0.299039i \(-0.903334\pi\)
−0.954241 + 0.299039i \(0.903334\pi\)
\(152\) 0 0
\(153\) 0.618034 0.0499651
\(154\) 0 0
\(155\) 6.58233 0.528705
\(156\) 0 0
\(157\) 22.7876 1.81865 0.909323 0.416091i \(-0.136600\pi\)
0.909323 + 0.416091i \(0.136600\pi\)
\(158\) 0 0
\(159\) 17.5094 1.38859
\(160\) 0 0
\(161\) −0.273457 −0.0215515
\(162\) 0 0
\(163\) 4.65427 0.364551 0.182275 0.983248i \(-0.441654\pi\)
0.182275 + 0.983248i \(0.441654\pi\)
\(164\) 0 0
\(165\) 0.759232 0.0591062
\(166\) 0 0
\(167\) −2.41093 −0.186563 −0.0932815 0.995640i \(-0.529736\pi\)
−0.0932815 + 0.995640i \(0.529736\pi\)
\(168\) 0 0
\(169\) 20.1340 1.54877
\(170\) 0 0
\(171\) −3.97323 −0.303841
\(172\) 0 0
\(173\) 4.51911 0.343581 0.171791 0.985133i \(-0.445045\pi\)
0.171791 + 0.985133i \(0.445045\pi\)
\(174\) 0 0
\(175\) −4.18619 −0.316446
\(176\) 0 0
\(177\) −9.12692 −0.686021
\(178\) 0 0
\(179\) 11.3962 0.851792 0.425896 0.904772i \(-0.359959\pi\)
0.425896 + 0.904772i \(0.359959\pi\)
\(180\) 0 0
\(181\) 11.2169 0.833746 0.416873 0.908965i \(-0.363126\pi\)
0.416873 + 0.908965i \(0.363126\pi\)
\(182\) 0 0
\(183\) −3.21418 −0.237599
\(184\) 0 0
\(185\) −5.28698 −0.388707
\(186\) 0 0
\(187\) −0.442463 −0.0323561
\(188\) 0 0
\(189\) −4.53077 −0.329565
\(190\) 0 0
\(191\) −3.34085 −0.241735 −0.120868 0.992669i \(-0.538568\pi\)
−0.120868 + 0.992669i \(0.538568\pi\)
\(192\) 0 0
\(193\) −10.2284 −0.736253 −0.368126 0.929776i \(-0.620001\pi\)
−0.368126 + 0.929776i \(0.620001\pi\)
\(194\) 0 0
\(195\) −9.87721 −0.707322
\(196\) 0 0
\(197\) 13.9651 0.994973 0.497487 0.867472i \(-0.334256\pi\)
0.497487 + 0.867472i \(0.334256\pi\)
\(198\) 0 0
\(199\) −0.762067 −0.0540215 −0.0270108 0.999635i \(-0.508599\pi\)
−0.0270108 + 0.999635i \(0.508599\pi\)
\(200\) 0 0
\(201\) −19.7128 −1.39043
\(202\) 0 0
\(203\) −10.5018 −0.737082
\(204\) 0 0
\(205\) 5.23015 0.365289
\(206\) 0 0
\(207\) −0.169006 −0.0117467
\(208\) 0 0
\(209\) 2.84452 0.196760
\(210\) 0 0
\(211\) −23.1340 −1.59261 −0.796306 0.604895i \(-0.793215\pi\)
−0.796306 + 0.604895i \(0.793215\pi\)
\(212\) 0 0
\(213\) 9.73497 0.667029
\(214\) 0 0
\(215\) 1.75499 0.119690
\(216\) 0 0
\(217\) −7.29657 −0.495323
\(218\) 0 0
\(219\) −30.5996 −2.06773
\(220\) 0 0
\(221\) 5.75621 0.387205
\(222\) 0 0
\(223\) −27.0776 −1.81325 −0.906624 0.421939i \(-0.861350\pi\)
−0.906624 + 0.421939i \(0.861350\pi\)
\(224\) 0 0
\(225\) −2.58721 −0.172481
\(226\) 0 0
\(227\) 13.0260 0.864567 0.432283 0.901738i \(-0.357708\pi\)
0.432283 + 0.901738i \(0.357708\pi\)
\(228\) 0 0
\(229\) −18.0971 −1.19589 −0.597946 0.801536i \(-0.704016\pi\)
−0.597946 + 0.801536i \(0.704016\pi\)
\(230\) 0 0
\(231\) −0.841616 −0.0553742
\(232\) 0 0
\(233\) −4.04331 −0.264886 −0.132443 0.991191i \(-0.542282\pi\)
−0.132443 + 0.991191i \(0.542282\pi\)
\(234\) 0 0
\(235\) 1.89845 0.123841
\(236\) 0 0
\(237\) 2.59023 0.168253
\(238\) 0 0
\(239\) −14.7225 −0.952318 −0.476159 0.879359i \(-0.657971\pi\)
−0.476159 + 0.879359i \(0.657971\pi\)
\(240\) 0 0
\(241\) 15.2047 0.979423 0.489711 0.871885i \(-0.337102\pi\)
0.489711 + 0.871885i \(0.337102\pi\)
\(242\) 0 0
\(243\) −6.32688 −0.405870
\(244\) 0 0
\(245\) −0.902113 −0.0576339
\(246\) 0 0
\(247\) −37.0057 −2.35462
\(248\) 0 0
\(249\) 13.5077 0.856018
\(250\) 0 0
\(251\) 13.3350 0.841697 0.420849 0.907131i \(-0.361732\pi\)
0.420849 + 0.907131i \(0.361732\pi\)
\(252\) 0 0
\(253\) 0.120995 0.00760689
\(254\) 0 0
\(255\) −1.71592 −0.107455
\(256\) 0 0
\(257\) −16.1774 −1.00912 −0.504560 0.863376i \(-0.668345\pi\)
−0.504560 + 0.863376i \(0.668345\pi\)
\(258\) 0 0
\(259\) 5.86067 0.364164
\(260\) 0 0
\(261\) −6.49047 −0.401750
\(262\) 0 0
\(263\) −20.6868 −1.27561 −0.637803 0.770200i \(-0.720157\pi\)
−0.637803 + 0.770200i \(0.720157\pi\)
\(264\) 0 0
\(265\) −8.30417 −0.510121
\(266\) 0 0
\(267\) 10.0814 0.616972
\(268\) 0 0
\(269\) 17.8161 1.08626 0.543132 0.839647i \(-0.317238\pi\)
0.543132 + 0.839647i \(0.317238\pi\)
\(270\) 0 0
\(271\) −26.1964 −1.59132 −0.795658 0.605746i \(-0.792875\pi\)
−0.795658 + 0.605746i \(0.792875\pi\)
\(272\) 0 0
\(273\) 10.9490 0.662662
\(274\) 0 0
\(275\) 1.85224 0.111694
\(276\) 0 0
\(277\) −9.96982 −0.599028 −0.299514 0.954092i \(-0.596825\pi\)
−0.299514 + 0.954092i \(0.596825\pi\)
\(278\) 0 0
\(279\) −4.50953 −0.269978
\(280\) 0 0
\(281\) −24.6442 −1.47015 −0.735074 0.677987i \(-0.762853\pi\)
−0.735074 + 0.677987i \(0.762853\pi\)
\(282\) 0 0
\(283\) −17.1601 −1.02006 −0.510032 0.860155i \(-0.670366\pi\)
−0.510032 + 0.860155i \(0.670366\pi\)
\(284\) 0 0
\(285\) 11.0314 0.653441
\(286\) 0 0
\(287\) −5.79766 −0.342225
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) −4.01956 −0.235631
\(292\) 0 0
\(293\) 24.9222 1.45597 0.727985 0.685593i \(-0.240457\pi\)
0.727985 + 0.685593i \(0.240457\pi\)
\(294\) 0 0
\(295\) 4.32861 0.252022
\(296\) 0 0
\(297\) 2.00470 0.116324
\(298\) 0 0
\(299\) −1.57408 −0.0910314
\(300\) 0 0
\(301\) −1.94542 −0.112132
\(302\) 0 0
\(303\) −27.8287 −1.59872
\(304\) 0 0
\(305\) 1.52439 0.0872861
\(306\) 0 0
\(307\) 24.7099 1.41027 0.705134 0.709074i \(-0.250887\pi\)
0.705134 + 0.709074i \(0.250887\pi\)
\(308\) 0 0
\(309\) 2.48287 0.141246
\(310\) 0 0
\(311\) −22.7305 −1.28893 −0.644464 0.764635i \(-0.722919\pi\)
−0.644464 + 0.764635i \(0.722919\pi\)
\(312\) 0 0
\(313\) −27.9495 −1.57980 −0.789900 0.613236i \(-0.789867\pi\)
−0.789900 + 0.613236i \(0.789867\pi\)
\(314\) 0 0
\(315\) −0.557537 −0.0314136
\(316\) 0 0
\(317\) −13.2096 −0.741926 −0.370963 0.928648i \(-0.620972\pi\)
−0.370963 + 0.928648i \(0.620972\pi\)
\(318\) 0 0
\(319\) 4.64667 0.260163
\(320\) 0 0
\(321\) −0.0509156 −0.00284183
\(322\) 0 0
\(323\) −6.42882 −0.357709
\(324\) 0 0
\(325\) −24.0966 −1.33664
\(326\) 0 0
\(327\) 22.5184 1.24527
\(328\) 0 0
\(329\) −2.10445 −0.116022
\(330\) 0 0
\(331\) −16.2164 −0.891333 −0.445666 0.895199i \(-0.647033\pi\)
−0.445666 + 0.895199i \(0.647033\pi\)
\(332\) 0 0
\(333\) 3.62209 0.198489
\(334\) 0 0
\(335\) 9.34916 0.510799
\(336\) 0 0
\(337\) 26.6962 1.45424 0.727119 0.686512i \(-0.240859\pi\)
0.727119 + 0.686512i \(0.240859\pi\)
\(338\) 0 0
\(339\) −8.47504 −0.460301
\(340\) 0 0
\(341\) 3.22846 0.174831
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) 0.469231 0.0252626
\(346\) 0 0
\(347\) −21.6085 −1.16000 −0.580001 0.814616i \(-0.696948\pi\)
−0.580001 + 0.814616i \(0.696948\pi\)
\(348\) 0 0
\(349\) 21.2114 1.13542 0.567710 0.823229i \(-0.307830\pi\)
0.567710 + 0.823229i \(0.307830\pi\)
\(350\) 0 0
\(351\) −26.0801 −1.39205
\(352\) 0 0
\(353\) 9.71663 0.517164 0.258582 0.965989i \(-0.416745\pi\)
0.258582 + 0.965989i \(0.416745\pi\)
\(354\) 0 0
\(355\) −4.61699 −0.245045
\(356\) 0 0
\(357\) 1.90211 0.100670
\(358\) 0 0
\(359\) 1.53224 0.0808683 0.0404342 0.999182i \(-0.487126\pi\)
0.0404342 + 0.999182i \(0.487126\pi\)
\(360\) 0 0
\(361\) 22.3298 1.17525
\(362\) 0 0
\(363\) −20.5509 −1.07864
\(364\) 0 0
\(365\) 14.5124 0.759615
\(366\) 0 0
\(367\) 5.77881 0.301652 0.150826 0.988560i \(-0.451807\pi\)
0.150826 + 0.988560i \(0.451807\pi\)
\(368\) 0 0
\(369\) −3.58315 −0.186531
\(370\) 0 0
\(371\) 9.20524 0.477912
\(372\) 0 0
\(373\) −20.4685 −1.05982 −0.529909 0.848055i \(-0.677774\pi\)
−0.529909 + 0.848055i \(0.677774\pi\)
\(374\) 0 0
\(375\) 15.7628 0.813986
\(376\) 0 0
\(377\) −60.4507 −3.11337
\(378\) 0 0
\(379\) 29.5573 1.51826 0.759129 0.650941i \(-0.225625\pi\)
0.759129 + 0.650941i \(0.225625\pi\)
\(380\) 0 0
\(381\) 25.1888 1.29046
\(382\) 0 0
\(383\) 15.9586 0.815448 0.407724 0.913105i \(-0.366323\pi\)
0.407724 + 0.913105i \(0.366323\pi\)
\(384\) 0 0
\(385\) 0.399152 0.0203427
\(386\) 0 0
\(387\) −1.20234 −0.0611183
\(388\) 0 0
\(389\) 37.7813 1.91559 0.957794 0.287456i \(-0.0928097\pi\)
0.957794 + 0.287456i \(0.0928097\pi\)
\(390\) 0 0
\(391\) −0.273457 −0.0138293
\(392\) 0 0
\(393\) 38.6808 1.95119
\(394\) 0 0
\(395\) −1.22846 −0.0618107
\(396\) 0 0
\(397\) −14.9425 −0.749944 −0.374972 0.927036i \(-0.622348\pi\)
−0.374972 + 0.927036i \(0.622348\pi\)
\(398\) 0 0
\(399\) −12.2284 −0.612183
\(400\) 0 0
\(401\) 28.5519 1.42581 0.712907 0.701259i \(-0.247378\pi\)
0.712907 + 0.701259i \(0.247378\pi\)
\(402\) 0 0
\(403\) −42.0006 −2.09220
\(404\) 0 0
\(405\) 9.44705 0.469428
\(406\) 0 0
\(407\) −2.59313 −0.128537
\(408\) 0 0
\(409\) −13.7557 −0.680176 −0.340088 0.940394i \(-0.610457\pi\)
−0.340088 + 0.940394i \(0.610457\pi\)
\(410\) 0 0
\(411\) 19.5648 0.965061
\(412\) 0 0
\(413\) −4.79830 −0.236109
\(414\) 0 0
\(415\) −6.40630 −0.314473
\(416\) 0 0
\(417\) −14.3820 −0.704291
\(418\) 0 0
\(419\) 15.8978 0.776659 0.388329 0.921521i \(-0.373052\pi\)
0.388329 + 0.921521i \(0.373052\pi\)
\(420\) 0 0
\(421\) 7.67146 0.373884 0.186942 0.982371i \(-0.440142\pi\)
0.186942 + 0.982371i \(0.440142\pi\)
\(422\) 0 0
\(423\) −1.30062 −0.0632384
\(424\) 0 0
\(425\) −4.18619 −0.203060
\(426\) 0 0
\(427\) −1.68980 −0.0817749
\(428\) 0 0
\(429\) −4.84452 −0.233896
\(430\) 0 0
\(431\) 11.7444 0.565706 0.282853 0.959163i \(-0.408719\pi\)
0.282853 + 0.959163i \(0.408719\pi\)
\(432\) 0 0
\(433\) 3.91679 0.188229 0.0941145 0.995561i \(-0.469998\pi\)
0.0941145 + 0.995561i \(0.469998\pi\)
\(434\) 0 0
\(435\) 18.0203 0.864006
\(436\) 0 0
\(437\) 1.75801 0.0840970
\(438\) 0 0
\(439\) 34.4182 1.64269 0.821345 0.570432i \(-0.193224\pi\)
0.821345 + 0.570432i \(0.193224\pi\)
\(440\) 0 0
\(441\) 0.618034 0.0294302
\(442\) 0 0
\(443\) −27.0343 −1.28444 −0.642218 0.766522i \(-0.721986\pi\)
−0.642218 + 0.766522i \(0.721986\pi\)
\(444\) 0 0
\(445\) −4.78130 −0.226655
\(446\) 0 0
\(447\) −25.5304 −1.20755
\(448\) 0 0
\(449\) 24.2436 1.14412 0.572062 0.820210i \(-0.306144\pi\)
0.572062 + 0.820210i \(0.306144\pi\)
\(450\) 0 0
\(451\) 2.56525 0.120793
\(452\) 0 0
\(453\) −44.6080 −2.09587
\(454\) 0 0
\(455\) −5.19276 −0.243440
\(456\) 0 0
\(457\) −3.25274 −0.152157 −0.0760785 0.997102i \(-0.524240\pi\)
−0.0760785 + 0.997102i \(0.524240\pi\)
\(458\) 0 0
\(459\) −4.53077 −0.211478
\(460\) 0 0
\(461\) −1.54814 −0.0721039 −0.0360520 0.999350i \(-0.511478\pi\)
−0.0360520 + 0.999350i \(0.511478\pi\)
\(462\) 0 0
\(463\) −22.7152 −1.05566 −0.527832 0.849349i \(-0.676995\pi\)
−0.527832 + 0.849349i \(0.676995\pi\)
\(464\) 0 0
\(465\) 12.5203 0.580616
\(466\) 0 0
\(467\) −35.7356 −1.65365 −0.826823 0.562463i \(-0.809854\pi\)
−0.826823 + 0.562463i \(0.809854\pi\)
\(468\) 0 0
\(469\) −10.3636 −0.478548
\(470\) 0 0
\(471\) 43.3445 1.99721
\(472\) 0 0
\(473\) 0.860779 0.0395787
\(474\) 0 0
\(475\) 26.9123 1.23482
\(476\) 0 0
\(477\) 5.68915 0.260488
\(478\) 0 0
\(479\) −5.63888 −0.257647 −0.128824 0.991668i \(-0.541120\pi\)
−0.128824 + 0.991668i \(0.541120\pi\)
\(480\) 0 0
\(481\) 33.7353 1.53820
\(482\) 0 0
\(483\) −0.520147 −0.0236675
\(484\) 0 0
\(485\) 1.90635 0.0865630
\(486\) 0 0
\(487\) 0.915425 0.0414818 0.0207409 0.999785i \(-0.493397\pi\)
0.0207409 + 0.999785i \(0.493397\pi\)
\(488\) 0 0
\(489\) 8.85295 0.400344
\(490\) 0 0
\(491\) −25.1596 −1.13544 −0.567719 0.823222i \(-0.692174\pi\)
−0.567719 + 0.823222i \(0.692174\pi\)
\(492\) 0 0
\(493\) −10.5018 −0.472978
\(494\) 0 0
\(495\) 0.246690 0.0110879
\(496\) 0 0
\(497\) 5.11798 0.229573
\(498\) 0 0
\(499\) −21.5898 −0.966492 −0.483246 0.875485i \(-0.660542\pi\)
−0.483246 + 0.875485i \(0.660542\pi\)
\(500\) 0 0
\(501\) −4.58585 −0.204881
\(502\) 0 0
\(503\) −41.5302 −1.85174 −0.925870 0.377841i \(-0.876667\pi\)
−0.925870 + 0.377841i \(0.876667\pi\)
\(504\) 0 0
\(505\) 13.1983 0.587316
\(506\) 0 0
\(507\) 38.2972 1.70084
\(508\) 0 0
\(509\) −7.26284 −0.321920 −0.160960 0.986961i \(-0.551459\pi\)
−0.160960 + 0.986961i \(0.551459\pi\)
\(510\) 0 0
\(511\) −16.0872 −0.711654
\(512\) 0 0
\(513\) 29.1275 1.28601
\(514\) 0 0
\(515\) −1.17755 −0.0518890
\(516\) 0 0
\(517\) 0.931143 0.0409516
\(518\) 0 0
\(519\) 8.59585 0.377316
\(520\) 0 0
\(521\) 10.1370 0.444108 0.222054 0.975034i \(-0.428724\pi\)
0.222054 + 0.975034i \(0.428724\pi\)
\(522\) 0 0
\(523\) 18.0468 0.789132 0.394566 0.918868i \(-0.370895\pi\)
0.394566 + 0.918868i \(0.370895\pi\)
\(524\) 0 0
\(525\) −7.96261 −0.347517
\(526\) 0 0
\(527\) −7.29657 −0.317843
\(528\) 0 0
\(529\) −22.9252 −0.996749
\(530\) 0 0
\(531\) −2.96552 −0.128692
\(532\) 0 0
\(533\) −33.3726 −1.44553
\(534\) 0 0
\(535\) 0.0241477 0.00104400
\(536\) 0 0
\(537\) 21.6769 0.935426
\(538\) 0 0
\(539\) −0.442463 −0.0190583
\(540\) 0 0
\(541\) −6.71561 −0.288726 −0.144363 0.989525i \(-0.546113\pi\)
−0.144363 + 0.989525i \(0.546113\pi\)
\(542\) 0 0
\(543\) 21.3358 0.915608
\(544\) 0 0
\(545\) −10.6798 −0.457470
\(546\) 0 0
\(547\) 18.9621 0.810761 0.405380 0.914148i \(-0.367139\pi\)
0.405380 + 0.914148i \(0.367139\pi\)
\(548\) 0 0
\(549\) −1.04435 −0.0445718
\(550\) 0 0
\(551\) 67.5143 2.87621
\(552\) 0 0
\(553\) 1.36176 0.0579080
\(554\) 0 0
\(555\) −10.0564 −0.426872
\(556\) 0 0
\(557\) 11.0426 0.467890 0.233945 0.972250i \(-0.424836\pi\)
0.233945 + 0.972250i \(0.424836\pi\)
\(558\) 0 0
\(559\) −11.1983 −0.473637
\(560\) 0 0
\(561\) −0.841616 −0.0355330
\(562\) 0 0
\(563\) −14.8742 −0.626872 −0.313436 0.949609i \(-0.601480\pi\)
−0.313436 + 0.949609i \(0.601480\pi\)
\(564\) 0 0
\(565\) 4.01945 0.169099
\(566\) 0 0
\(567\) −10.4721 −0.439788
\(568\) 0 0
\(569\) 4.00574 0.167929 0.0839647 0.996469i \(-0.473242\pi\)
0.0839647 + 0.996469i \(0.473242\pi\)
\(570\) 0 0
\(571\) −36.6992 −1.53581 −0.767906 0.640563i \(-0.778701\pi\)
−0.767906 + 0.640563i \(0.778701\pi\)
\(572\) 0 0
\(573\) −6.35467 −0.265470
\(574\) 0 0
\(575\) 1.14475 0.0477392
\(576\) 0 0
\(577\) −37.3126 −1.55334 −0.776671 0.629906i \(-0.783093\pi\)
−0.776671 + 0.629906i \(0.783093\pi\)
\(578\) 0 0
\(579\) −19.4555 −0.808542
\(580\) 0 0
\(581\) 7.10143 0.294617
\(582\) 0 0
\(583\) −4.07298 −0.168686
\(584\) 0 0
\(585\) −3.20930 −0.132688
\(586\) 0 0
\(587\) 28.8015 1.18876 0.594382 0.804183i \(-0.297397\pi\)
0.594382 + 0.804183i \(0.297397\pi\)
\(588\) 0 0
\(589\) 46.9083 1.93282
\(590\) 0 0
\(591\) 26.5632 1.09267
\(592\) 0 0
\(593\) 1.10613 0.0454235 0.0227117 0.999742i \(-0.492770\pi\)
0.0227117 + 0.999742i \(0.492770\pi\)
\(594\) 0 0
\(595\) −0.902113 −0.0369830
\(596\) 0 0
\(597\) −1.44954 −0.0593256
\(598\) 0 0
\(599\) −19.6645 −0.803468 −0.401734 0.915756i \(-0.631592\pi\)
−0.401734 + 0.915756i \(0.631592\pi\)
\(600\) 0 0
\(601\) 1.48538 0.0605898 0.0302949 0.999541i \(-0.490355\pi\)
0.0302949 + 0.999541i \(0.490355\pi\)
\(602\) 0 0
\(603\) −6.40507 −0.260835
\(604\) 0 0
\(605\) 9.74663 0.396257
\(606\) 0 0
\(607\) −14.7167 −0.597333 −0.298666 0.954358i \(-0.596542\pi\)
−0.298666 + 0.954358i \(0.596542\pi\)
\(608\) 0 0
\(609\) −19.9756 −0.809453
\(610\) 0 0
\(611\) −12.1137 −0.490067
\(612\) 0 0
\(613\) 13.2646 0.535752 0.267876 0.963453i \(-0.413678\pi\)
0.267876 + 0.963453i \(0.413678\pi\)
\(614\) 0 0
\(615\) 9.94833 0.401155
\(616\) 0 0
\(617\) 6.48495 0.261074 0.130537 0.991443i \(-0.458330\pi\)
0.130537 + 0.991443i \(0.458330\pi\)
\(618\) 0 0
\(619\) −31.4016 −1.26214 −0.631069 0.775727i \(-0.717384\pi\)
−0.631069 + 0.775727i \(0.717384\pi\)
\(620\) 0 0
\(621\) 1.23897 0.0497183
\(622\) 0 0
\(623\) 5.30011 0.212345
\(624\) 0 0
\(625\) 13.4552 0.538207
\(626\) 0 0
\(627\) 5.41060 0.216079
\(628\) 0 0
\(629\) 5.86067 0.233680
\(630\) 0 0
\(631\) 7.05780 0.280966 0.140483 0.990083i \(-0.455134\pi\)
0.140483 + 0.990083i \(0.455134\pi\)
\(632\) 0 0
\(633\) −44.0035 −1.74898
\(634\) 0 0
\(635\) −11.9462 −0.474072
\(636\) 0 0
\(637\) 5.75621 0.228070
\(638\) 0 0
\(639\) 3.16308 0.125130
\(640\) 0 0
\(641\) 10.6849 0.422029 0.211014 0.977483i \(-0.432323\pi\)
0.211014 + 0.977483i \(0.432323\pi\)
\(642\) 0 0
\(643\) −27.7576 −1.09465 −0.547326 0.836920i \(-0.684354\pi\)
−0.547326 + 0.836920i \(0.684354\pi\)
\(644\) 0 0
\(645\) 3.33819 0.131441
\(646\) 0 0
\(647\) 21.9893 0.864487 0.432244 0.901757i \(-0.357722\pi\)
0.432244 + 0.901757i \(0.357722\pi\)
\(648\) 0 0
\(649\) 2.12307 0.0833380
\(650\) 0 0
\(651\) −13.8789 −0.543957
\(652\) 0 0
\(653\) 48.4601 1.89639 0.948194 0.317690i \(-0.102907\pi\)
0.948194 + 0.317690i \(0.102907\pi\)
\(654\) 0 0
\(655\) −18.3451 −0.716803
\(656\) 0 0
\(657\) −9.94241 −0.387890
\(658\) 0 0
\(659\) 42.3384 1.64927 0.824636 0.565664i \(-0.191380\pi\)
0.824636 + 0.565664i \(0.191380\pi\)
\(660\) 0 0
\(661\) −35.2521 −1.37115 −0.685574 0.728003i \(-0.740449\pi\)
−0.685574 + 0.728003i \(0.740449\pi\)
\(662\) 0 0
\(663\) 10.9490 0.425223
\(664\) 0 0
\(665\) 5.79953 0.224896
\(666\) 0 0
\(667\) 2.87180 0.111196
\(668\) 0 0
\(669\) −51.5046 −1.99128
\(670\) 0 0
\(671\) 0.747673 0.0288636
\(672\) 0 0
\(673\) 22.7138 0.875553 0.437777 0.899084i \(-0.355766\pi\)
0.437777 + 0.899084i \(0.355766\pi\)
\(674\) 0 0
\(675\) 18.9667 0.730027
\(676\) 0 0
\(677\) 7.77860 0.298956 0.149478 0.988765i \(-0.452241\pi\)
0.149478 + 0.988765i \(0.452241\pi\)
\(678\) 0 0
\(679\) −2.11321 −0.0810975
\(680\) 0 0
\(681\) 24.7769 0.949455
\(682\) 0 0
\(683\) −40.8852 −1.56443 −0.782215 0.623009i \(-0.785910\pi\)
−0.782215 + 0.623009i \(0.785910\pi\)
\(684\) 0 0
\(685\) −9.27898 −0.354532
\(686\) 0 0
\(687\) −34.4228 −1.31331
\(688\) 0 0
\(689\) 52.9874 2.01866
\(690\) 0 0
\(691\) 37.3658 1.42146 0.710731 0.703464i \(-0.248364\pi\)
0.710731 + 0.703464i \(0.248364\pi\)
\(692\) 0 0
\(693\) −0.273457 −0.0103878
\(694\) 0 0
\(695\) 6.82095 0.258733
\(696\) 0 0
\(697\) −5.79766 −0.219602
\(698\) 0 0
\(699\) −7.69084 −0.290894
\(700\) 0 0
\(701\) 43.7365 1.65191 0.825953 0.563739i \(-0.190638\pi\)
0.825953 + 0.563739i \(0.190638\pi\)
\(702\) 0 0
\(703\) −37.6772 −1.42102
\(704\) 0 0
\(705\) 3.61107 0.136001
\(706\) 0 0
\(707\) −14.6304 −0.550233
\(708\) 0 0
\(709\) 11.4513 0.430062 0.215031 0.976607i \(-0.431015\pi\)
0.215031 + 0.976607i \(0.431015\pi\)
\(710\) 0 0
\(711\) 0.841616 0.0315630
\(712\) 0 0
\(713\) 1.99530 0.0747246
\(714\) 0 0
\(715\) 2.29761 0.0859256
\(716\) 0 0
\(717\) −28.0038 −1.04582
\(718\) 0 0
\(719\) −18.7789 −0.700336 −0.350168 0.936687i \(-0.613875\pi\)
−0.350168 + 0.936687i \(0.613875\pi\)
\(720\) 0 0
\(721\) 1.30532 0.0486127
\(722\) 0 0
\(723\) 28.9211 1.07559
\(724\) 0 0
\(725\) 43.9626 1.63273
\(726\) 0 0
\(727\) 24.7173 0.916716 0.458358 0.888768i \(-0.348438\pi\)
0.458358 + 0.888768i \(0.348438\pi\)
\(728\) 0 0
\(729\) 19.3820 0.717851
\(730\) 0 0
\(731\) −1.94542 −0.0719541
\(732\) 0 0
\(733\) −14.1197 −0.521522 −0.260761 0.965403i \(-0.583973\pi\)
−0.260761 + 0.965403i \(0.583973\pi\)
\(734\) 0 0
\(735\) −1.71592 −0.0632927
\(736\) 0 0
\(737\) 4.58553 0.168910
\(738\) 0 0
\(739\) −33.4979 −1.23224 −0.616120 0.787652i \(-0.711296\pi\)
−0.616120 + 0.787652i \(0.711296\pi\)
\(740\) 0 0
\(741\) −70.3890 −2.58581
\(742\) 0 0
\(743\) 20.4149 0.748949 0.374474 0.927237i \(-0.377823\pi\)
0.374474 + 0.927237i \(0.377823\pi\)
\(744\) 0 0
\(745\) 12.1083 0.443614
\(746\) 0 0
\(747\) 4.38893 0.160582
\(748\) 0 0
\(749\) −0.0267679 −0.000978079 0
\(750\) 0 0
\(751\) 27.5534 1.00544 0.502720 0.864450i \(-0.332333\pi\)
0.502720 + 0.864450i \(0.332333\pi\)
\(752\) 0 0
\(753\) 25.3647 0.924340
\(754\) 0 0
\(755\) 21.1562 0.769953
\(756\) 0 0
\(757\) 13.8291 0.502628 0.251314 0.967906i \(-0.419137\pi\)
0.251314 + 0.967906i \(0.419137\pi\)
\(758\) 0 0
\(759\) 0.230146 0.00835377
\(760\) 0 0
\(761\) 31.4676 1.14070 0.570351 0.821401i \(-0.306807\pi\)
0.570351 + 0.821401i \(0.306807\pi\)
\(762\) 0 0
\(763\) 11.8386 0.428586
\(764\) 0 0
\(765\) −0.557537 −0.0201578
\(766\) 0 0
\(767\) −27.6201 −0.997303
\(768\) 0 0
\(769\) 32.3806 1.16767 0.583837 0.811871i \(-0.301551\pi\)
0.583837 + 0.811871i \(0.301551\pi\)
\(770\) 0 0
\(771\) −30.7713 −1.10820
\(772\) 0 0
\(773\) −11.5896 −0.416849 −0.208425 0.978038i \(-0.566834\pi\)
−0.208425 + 0.978038i \(0.566834\pi\)
\(774\) 0 0
\(775\) 30.5448 1.09720
\(776\) 0 0
\(777\) 11.1477 0.399920
\(778\) 0 0
\(779\) 37.2721 1.33541
\(780\) 0 0
\(781\) −2.26452 −0.0810308
\(782\) 0 0
\(783\) 47.5813 1.70042
\(784\) 0 0
\(785\) −20.5570 −0.733709
\(786\) 0 0
\(787\) 6.55258 0.233574 0.116787 0.993157i \(-0.462740\pi\)
0.116787 + 0.993157i \(0.462740\pi\)
\(788\) 0 0
\(789\) −39.3487 −1.40085
\(790\) 0 0
\(791\) −4.45559 −0.158423
\(792\) 0 0
\(793\) −9.72683 −0.345410
\(794\) 0 0
\(795\) −15.7955 −0.560208
\(796\) 0 0
\(797\) −31.2555 −1.10713 −0.553564 0.832807i \(-0.686732\pi\)
−0.553564 + 0.832807i \(0.686732\pi\)
\(798\) 0 0
\(799\) −2.10445 −0.0744501
\(800\) 0 0
\(801\) 3.27565 0.115739
\(802\) 0 0
\(803\) 7.11798 0.251188
\(804\) 0 0
\(805\) 0.246690 0.00869466
\(806\) 0 0
\(807\) 33.8882 1.19292
\(808\) 0 0
\(809\) 0.576782 0.0202786 0.0101393 0.999949i \(-0.496773\pi\)
0.0101393 + 0.999949i \(0.496773\pi\)
\(810\) 0 0
\(811\) −26.2284 −0.921004 −0.460502 0.887659i \(-0.652331\pi\)
−0.460502 + 0.887659i \(0.652331\pi\)
\(812\) 0 0
\(813\) −49.8285 −1.74756
\(814\) 0 0
\(815\) −4.19868 −0.147073
\(816\) 0 0
\(817\) 12.5068 0.437557
\(818\) 0 0
\(819\) 3.55754 0.124310
\(820\) 0 0
\(821\) −7.51764 −0.262367 −0.131184 0.991358i \(-0.541878\pi\)
−0.131184 + 0.991358i \(0.541878\pi\)
\(822\) 0 0
\(823\) 41.6605 1.45219 0.726096 0.687593i \(-0.241333\pi\)
0.726096 + 0.687593i \(0.241333\pi\)
\(824\) 0 0
\(825\) 3.52316 0.122661
\(826\) 0 0
\(827\) 13.8522 0.481689 0.240845 0.970564i \(-0.422576\pi\)
0.240845 + 0.970564i \(0.422576\pi\)
\(828\) 0 0
\(829\) 53.5164 1.85870 0.929351 0.369196i \(-0.120367\pi\)
0.929351 + 0.369196i \(0.120367\pi\)
\(830\) 0 0
\(831\) −18.9637 −0.657844
\(832\) 0 0
\(833\) 1.00000 0.0346479
\(834\) 0 0
\(835\) 2.17493 0.0752665
\(836\) 0 0
\(837\) 33.0590 1.14269
\(838\) 0 0
\(839\) 22.9726 0.793103 0.396551 0.918013i \(-0.370207\pi\)
0.396551 + 0.918013i \(0.370207\pi\)
\(840\) 0 0
\(841\) 81.2880 2.80303
\(842\) 0 0
\(843\) −46.8760 −1.61450
\(844\) 0 0
\(845\) −18.1632 −0.624831
\(846\) 0 0
\(847\) −10.8042 −0.371238
\(848\) 0 0
\(849\) −32.6405 −1.12022
\(850\) 0 0
\(851\) −1.60264 −0.0549379
\(852\) 0 0
\(853\) −31.7484 −1.08704 −0.543522 0.839395i \(-0.682910\pi\)
−0.543522 + 0.839395i \(0.682910\pi\)
\(854\) 0 0
\(855\) 3.58430 0.122581
\(856\) 0 0
\(857\) 18.4564 0.630458 0.315229 0.949016i \(-0.397919\pi\)
0.315229 + 0.949016i \(0.397919\pi\)
\(858\) 0 0
\(859\) −46.5780 −1.58922 −0.794611 0.607119i \(-0.792325\pi\)
−0.794611 + 0.607119i \(0.792325\pi\)
\(860\) 0 0
\(861\) −11.0278 −0.375827
\(862\) 0 0
\(863\) 16.3424 0.556301 0.278151 0.960537i \(-0.410279\pi\)
0.278151 + 0.960537i \(0.410279\pi\)
\(864\) 0 0
\(865\) −4.07675 −0.138614
\(866\) 0 0
\(867\) 1.90211 0.0645991
\(868\) 0 0
\(869\) −0.602530 −0.0204394
\(870\) 0 0
\(871\) −59.6553 −2.02134
\(872\) 0 0
\(873\) −1.30603 −0.0442026
\(874\) 0 0
\(875\) 8.28698 0.280151
\(876\) 0 0
\(877\) −30.1892 −1.01942 −0.509709 0.860347i \(-0.670247\pi\)
−0.509709 + 0.860347i \(0.670247\pi\)
\(878\) 0 0
\(879\) 47.4048 1.59893
\(880\) 0 0
\(881\) −46.1013 −1.55319 −0.776596 0.629999i \(-0.783055\pi\)
−0.776596 + 0.629999i \(0.783055\pi\)
\(882\) 0 0
\(883\) 32.5463 1.09527 0.547635 0.836718i \(-0.315528\pi\)
0.547635 + 0.836718i \(0.315528\pi\)
\(884\) 0 0
\(885\) 8.23351 0.276766
\(886\) 0 0
\(887\) −37.1849 −1.24855 −0.624273 0.781206i \(-0.714605\pi\)
−0.624273 + 0.781206i \(0.714605\pi\)
\(888\) 0 0
\(889\) 13.2425 0.444140
\(890\) 0 0
\(891\) 4.63354 0.155229
\(892\) 0 0
\(893\) 13.5291 0.452736
\(894\) 0 0
\(895\) −10.2807 −0.343645
\(896\) 0 0
\(897\) −2.99408 −0.0999694
\(898\) 0 0
\(899\) 76.6271 2.55566
\(900\) 0 0
\(901\) 9.20524 0.306671
\(902\) 0 0
\(903\) −3.70042 −0.123142
\(904\) 0 0
\(905\) −10.1189 −0.336364
\(906\) 0 0
\(907\) 20.6502 0.685678 0.342839 0.939394i \(-0.388612\pi\)
0.342839 + 0.939394i \(0.388612\pi\)
\(908\) 0 0
\(909\) −9.04209 −0.299907
\(910\) 0 0
\(911\) 37.6232 1.24651 0.623256 0.782018i \(-0.285809\pi\)
0.623256 + 0.782018i \(0.285809\pi\)
\(912\) 0 0
\(913\) −3.14213 −0.103989
\(914\) 0 0
\(915\) 2.89956 0.0958564
\(916\) 0 0
\(917\) 20.3357 0.671544
\(918\) 0 0
\(919\) 5.01508 0.165432 0.0827160 0.996573i \(-0.473641\pi\)
0.0827160 + 0.996573i \(0.473641\pi\)
\(920\) 0 0
\(921\) 47.0010 1.54874
\(922\) 0 0
\(923\) 29.4602 0.969694
\(924\) 0 0
\(925\) −24.5339 −0.806669
\(926\) 0 0
\(927\) 0.806733 0.0264966
\(928\) 0 0
\(929\) −2.83838 −0.0931243 −0.0465622 0.998915i \(-0.514827\pi\)
−0.0465622 + 0.998915i \(0.514827\pi\)
\(930\) 0 0
\(931\) −6.42882 −0.210696
\(932\) 0 0
\(933\) −43.2360 −1.41548
\(934\) 0 0
\(935\) 0.399152 0.0130537
\(936\) 0 0
\(937\) −8.32178 −0.271861 −0.135930 0.990718i \(-0.543402\pi\)
−0.135930 + 0.990718i \(0.543402\pi\)
\(938\) 0 0
\(939\) −53.1631 −1.73491
\(940\) 0 0
\(941\) 27.1714 0.885761 0.442880 0.896581i \(-0.353957\pi\)
0.442880 + 0.896581i \(0.353957\pi\)
\(942\) 0 0
\(943\) 1.58541 0.0516282
\(944\) 0 0
\(945\) 4.08727 0.132959
\(946\) 0 0
\(947\) −16.3843 −0.532419 −0.266209 0.963915i \(-0.585771\pi\)
−0.266209 + 0.963915i \(0.585771\pi\)
\(948\) 0 0
\(949\) −92.6011 −3.00596
\(950\) 0 0
\(951\) −25.1262 −0.814772
\(952\) 0 0
\(953\) −11.0536 −0.358061 −0.179031 0.983843i \(-0.557296\pi\)
−0.179031 + 0.983843i \(0.557296\pi\)
\(954\) 0 0
\(955\) 3.01382 0.0975250
\(956\) 0 0
\(957\) 8.83849 0.285708
\(958\) 0 0
\(959\) 10.2858 0.332147
\(960\) 0 0
\(961\) 22.2399 0.717415
\(962\) 0 0
\(963\) −0.0165435 −0.000533106 0
\(964\) 0 0
\(965\) 9.22713 0.297032
\(966\) 0 0
\(967\) −4.07955 −0.131189 −0.0655947 0.997846i \(-0.520894\pi\)
−0.0655947 + 0.997846i \(0.520894\pi\)
\(968\) 0 0
\(969\) −12.2284 −0.392831
\(970\) 0 0
\(971\) 27.1145 0.870147 0.435073 0.900395i \(-0.356722\pi\)
0.435073 + 0.900395i \(0.356722\pi\)
\(972\) 0 0
\(973\) −7.56108 −0.242397
\(974\) 0 0
\(975\) −45.8345 −1.46788
\(976\) 0 0
\(977\) −7.97729 −0.255216 −0.127608 0.991825i \(-0.540730\pi\)
−0.127608 + 0.991825i \(0.540730\pi\)
\(978\) 0 0
\(979\) −2.34511 −0.0749499
\(980\) 0 0
\(981\) 7.31666 0.233603
\(982\) 0 0
\(983\) 4.82005 0.153736 0.0768678 0.997041i \(-0.475508\pi\)
0.0768678 + 0.997041i \(0.475508\pi\)
\(984\) 0 0
\(985\) −12.5981 −0.401409
\(986\) 0 0
\(987\) −4.00290 −0.127414
\(988\) 0 0
\(989\) 0.531991 0.0169163
\(990\) 0 0
\(991\) −4.10685 −0.130458 −0.0652291 0.997870i \(-0.520778\pi\)
−0.0652291 + 0.997870i \(0.520778\pi\)
\(992\) 0 0
\(993\) −30.8454 −0.978848
\(994\) 0 0
\(995\) 0.687471 0.0217943
\(996\) 0 0
\(997\) −3.43712 −0.108855 −0.0544274 0.998518i \(-0.517333\pi\)
−0.0544274 + 0.998518i \(0.517333\pi\)
\(998\) 0 0
\(999\) −26.5533 −0.840110
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7616.2.a.bm.1.4 4
4.3 odd 2 7616.2.a.bl.1.1 4
8.3 odd 2 3808.2.a.c.1.4 4
8.5 even 2 3808.2.a.d.1.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3808.2.a.c.1.4 4 8.3 odd 2
3808.2.a.d.1.1 yes 4 8.5 even 2
7616.2.a.bl.1.1 4 4.3 odd 2
7616.2.a.bm.1.4 4 1.1 even 1 trivial