Properties

Label 7616.2.a.bm.1.3
Level $7616$
Weight $2$
Character 7616.1
Self dual yes
Analytic conductor $60.814$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7616,2,Mod(1,7616)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7616, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7616.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 7616 = 2^{6} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7616.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,4,0,4,0,-2,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.8140661794\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{20})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 3808)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.17557\) of defining polynomial
Character \(\chi\) \(=\) 7616.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.17557 q^{3} -0.175571 q^{5} +1.00000 q^{7} -1.61803 q^{9} -1.28408 q^{11} -1.67853 q^{13} -0.206396 q^{15} +1.00000 q^{17} +3.53077 q^{19} +1.17557 q^{21} +2.07768 q^{23} -4.96917 q^{25} -5.42882 q^{27} +8.22835 q^{29} -1.42998 q^{31} -1.50953 q^{33} -0.175571 q^{35} -7.11798 q^{37} -1.97323 q^{39} -10.6150 q^{41} -2.23420 q^{43} +0.284079 q^{45} +3.43945 q^{47} +1.00000 q^{49} +1.17557 q^{51} -3.65833 q^{53} +0.225446 q^{55} +4.15067 q^{57} -4.45089 q^{59} +3.24482 q^{61} -1.61803 q^{63} +0.294701 q^{65} +3.16785 q^{67} +2.44246 q^{69} -4.61147 q^{71} +2.03373 q^{73} -5.84162 q^{75} -1.28408 q^{77} -0.932938 q^{79} -1.52786 q^{81} -5.38301 q^{83} -0.175571 q^{85} +9.67301 q^{87} -13.7775 q^{89} -1.67853 q^{91} -1.68104 q^{93} -0.619899 q^{95} -11.6668 q^{97} +2.07768 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{5} + 4 q^{7} - 2 q^{9} - 2 q^{11} + 2 q^{13} - 10 q^{15} + 4 q^{17} - 4 q^{19} - 4 q^{23} - 6 q^{25} - 6 q^{29} - 16 q^{31} + 4 q^{35} + 8 q^{37} + 10 q^{39} - 10 q^{41} - 4 q^{43} - 2 q^{45}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.17557 0.678716 0.339358 0.940657i \(-0.389790\pi\)
0.339358 + 0.940657i \(0.389790\pi\)
\(4\) 0 0
\(5\) −0.175571 −0.0785175 −0.0392588 0.999229i \(-0.512500\pi\)
−0.0392588 + 0.999229i \(0.512500\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) −1.61803 −0.539345
\(10\) 0 0
\(11\) −1.28408 −0.387164 −0.193582 0.981084i \(-0.562011\pi\)
−0.193582 + 0.981084i \(0.562011\pi\)
\(12\) 0 0
\(13\) −1.67853 −0.465541 −0.232770 0.972532i \(-0.574779\pi\)
−0.232770 + 0.972532i \(0.574779\pi\)
\(14\) 0 0
\(15\) −0.206396 −0.0532911
\(16\) 0 0
\(17\) 1.00000 0.242536
\(18\) 0 0
\(19\) 3.53077 0.810014 0.405007 0.914314i \(-0.367269\pi\)
0.405007 + 0.914314i \(0.367269\pi\)
\(20\) 0 0
\(21\) 1.17557 0.256531
\(22\) 0 0
\(23\) 2.07768 0.433227 0.216613 0.976257i \(-0.430499\pi\)
0.216613 + 0.976257i \(0.430499\pi\)
\(24\) 0 0
\(25\) −4.96917 −0.993835
\(26\) 0 0
\(27\) −5.42882 −1.04478
\(28\) 0 0
\(29\) 8.22835 1.52797 0.763983 0.645236i \(-0.223241\pi\)
0.763983 + 0.645236i \(0.223241\pi\)
\(30\) 0 0
\(31\) −1.42998 −0.256831 −0.128416 0.991720i \(-0.540989\pi\)
−0.128416 + 0.991720i \(0.540989\pi\)
\(32\) 0 0
\(33\) −1.50953 −0.262775
\(34\) 0 0
\(35\) −0.175571 −0.0296768
\(36\) 0 0
\(37\) −7.11798 −1.17019 −0.585094 0.810965i \(-0.698942\pi\)
−0.585094 + 0.810965i \(0.698942\pi\)
\(38\) 0 0
\(39\) −1.97323 −0.315970
\(40\) 0 0
\(41\) −10.6150 −1.65779 −0.828894 0.559406i \(-0.811029\pi\)
−0.828894 + 0.559406i \(0.811029\pi\)
\(42\) 0 0
\(43\) −2.23420 −0.340713 −0.170356 0.985383i \(-0.554492\pi\)
−0.170356 + 0.985383i \(0.554492\pi\)
\(44\) 0 0
\(45\) 0.284079 0.0423480
\(46\) 0 0
\(47\) 3.43945 0.501695 0.250847 0.968027i \(-0.419291\pi\)
0.250847 + 0.968027i \(0.419291\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 1.17557 0.164613
\(52\) 0 0
\(53\) −3.65833 −0.502510 −0.251255 0.967921i \(-0.580843\pi\)
−0.251255 + 0.967921i \(0.580843\pi\)
\(54\) 0 0
\(55\) 0.225446 0.0303992
\(56\) 0 0
\(57\) 4.15067 0.549769
\(58\) 0 0
\(59\) −4.45089 −0.579457 −0.289728 0.957109i \(-0.593565\pi\)
−0.289728 + 0.957109i \(0.593565\pi\)
\(60\) 0 0
\(61\) 3.24482 0.415457 0.207729 0.978186i \(-0.433393\pi\)
0.207729 + 0.978186i \(0.433393\pi\)
\(62\) 0 0
\(63\) −1.61803 −0.203853
\(64\) 0 0
\(65\) 0.294701 0.0365531
\(66\) 0 0
\(67\) 3.16785 0.387015 0.193507 0.981099i \(-0.438014\pi\)
0.193507 + 0.981099i \(0.438014\pi\)
\(68\) 0 0
\(69\) 2.44246 0.294038
\(70\) 0 0
\(71\) −4.61147 −0.547281 −0.273640 0.961832i \(-0.588228\pi\)
−0.273640 + 0.961832i \(0.588228\pi\)
\(72\) 0 0
\(73\) 2.03373 0.238030 0.119015 0.992892i \(-0.462026\pi\)
0.119015 + 0.992892i \(0.462026\pi\)
\(74\) 0 0
\(75\) −5.84162 −0.674532
\(76\) 0 0
\(77\) −1.28408 −0.146334
\(78\) 0 0
\(79\) −0.932938 −0.104964 −0.0524819 0.998622i \(-0.516713\pi\)
−0.0524819 + 0.998622i \(0.516713\pi\)
\(80\) 0 0
\(81\) −1.52786 −0.169763
\(82\) 0 0
\(83\) −5.38301 −0.590862 −0.295431 0.955364i \(-0.595463\pi\)
−0.295431 + 0.955364i \(0.595463\pi\)
\(84\) 0 0
\(85\) −0.175571 −0.0190433
\(86\) 0 0
\(87\) 9.67301 1.03706
\(88\) 0 0
\(89\) −13.7775 −1.46041 −0.730204 0.683229i \(-0.760575\pi\)
−0.730204 + 0.683229i \(0.760575\pi\)
\(90\) 0 0
\(91\) −1.67853 −0.175958
\(92\) 0 0
\(93\) −1.68104 −0.174316
\(94\) 0 0
\(95\) −0.619899 −0.0636003
\(96\) 0 0
\(97\) −11.6668 −1.18458 −0.592290 0.805725i \(-0.701776\pi\)
−0.592290 + 0.805725i \(0.701776\pi\)
\(98\) 0 0
\(99\) 2.07768 0.208815
\(100\) 0 0
\(101\) 9.96853 0.991906 0.495953 0.868349i \(-0.334819\pi\)
0.495953 + 0.868349i \(0.334819\pi\)
\(102\) 0 0
\(103\) 10.5362 1.03816 0.519080 0.854725i \(-0.326275\pi\)
0.519080 + 0.854725i \(0.326275\pi\)
\(104\) 0 0
\(105\) −0.206396 −0.0201421
\(106\) 0 0
\(107\) 1.71290 0.165593 0.0827963 0.996566i \(-0.473615\pi\)
0.0827963 + 0.996566i \(0.473615\pi\)
\(108\) 0 0
\(109\) 5.56597 0.533123 0.266561 0.963818i \(-0.414112\pi\)
0.266561 + 0.963818i \(0.414112\pi\)
\(110\) 0 0
\(111\) −8.36768 −0.794225
\(112\) 0 0
\(113\) 7.24367 0.681427 0.340714 0.940167i \(-0.389331\pi\)
0.340714 + 0.940167i \(0.389331\pi\)
\(114\) 0 0
\(115\) −0.364780 −0.0340159
\(116\) 0 0
\(117\) 2.71592 0.251087
\(118\) 0 0
\(119\) 1.00000 0.0916698
\(120\) 0 0
\(121\) −9.35114 −0.850104
\(122\) 0 0
\(123\) −12.4787 −1.12517
\(124\) 0 0
\(125\) 1.75029 0.156551
\(126\) 0 0
\(127\) −12.4868 −1.10803 −0.554013 0.832508i \(-0.686904\pi\)
−0.554013 + 0.832508i \(0.686904\pi\)
\(128\) 0 0
\(129\) −2.62646 −0.231247
\(130\) 0 0
\(131\) −9.63342 −0.841676 −0.420838 0.907136i \(-0.638264\pi\)
−0.420838 + 0.907136i \(0.638264\pi\)
\(132\) 0 0
\(133\) 3.53077 0.306156
\(134\) 0 0
\(135\) 0.953141 0.0820334
\(136\) 0 0
\(137\) −14.4282 −1.23268 −0.616341 0.787479i \(-0.711386\pi\)
−0.616341 + 0.787479i \(0.711386\pi\)
\(138\) 0 0
\(139\) 6.49151 0.550603 0.275302 0.961358i \(-0.411222\pi\)
0.275302 + 0.961358i \(0.411222\pi\)
\(140\) 0 0
\(141\) 4.04331 0.340508
\(142\) 0 0
\(143\) 2.15537 0.180241
\(144\) 0 0
\(145\) −1.44466 −0.119972
\(146\) 0 0
\(147\) 1.17557 0.0969594
\(148\) 0 0
\(149\) 5.25376 0.430405 0.215203 0.976569i \(-0.430959\pi\)
0.215203 + 0.976569i \(0.430959\pi\)
\(150\) 0 0
\(151\) 5.00998 0.407706 0.203853 0.979001i \(-0.434653\pi\)
0.203853 + 0.979001i \(0.434653\pi\)
\(152\) 0 0
\(153\) −1.61803 −0.130810
\(154\) 0 0
\(155\) 0.251062 0.0201658
\(156\) 0 0
\(157\) 3.59273 0.286731 0.143366 0.989670i \(-0.454207\pi\)
0.143366 + 0.989670i \(0.454207\pi\)
\(158\) 0 0
\(159\) −4.30062 −0.341062
\(160\) 0 0
\(161\) 2.07768 0.163744
\(162\) 0 0
\(163\) −13.6381 −1.06822 −0.534110 0.845415i \(-0.679353\pi\)
−0.534110 + 0.845415i \(0.679353\pi\)
\(164\) 0 0
\(165\) 0.265028 0.0206324
\(166\) 0 0
\(167\) −24.2752 −1.87847 −0.939236 0.343272i \(-0.888465\pi\)
−0.939236 + 0.343272i \(0.888465\pi\)
\(168\) 0 0
\(169\) −10.1825 −0.783272
\(170\) 0 0
\(171\) −5.71290 −0.436877
\(172\) 0 0
\(173\) −1.63407 −0.124236 −0.0621179 0.998069i \(-0.519785\pi\)
−0.0621179 + 0.998069i \(0.519785\pi\)
\(174\) 0 0
\(175\) −4.96917 −0.375634
\(176\) 0 0
\(177\) −5.23234 −0.393287
\(178\) 0 0
\(179\) −19.9674 −1.49243 −0.746216 0.665704i \(-0.768131\pi\)
−0.746216 + 0.665704i \(0.768131\pi\)
\(180\) 0 0
\(181\) 5.40456 0.401718 0.200859 0.979620i \(-0.435627\pi\)
0.200859 + 0.979620i \(0.435627\pi\)
\(182\) 0 0
\(183\) 3.81452 0.281977
\(184\) 0 0
\(185\) 1.24971 0.0918803
\(186\) 0 0
\(187\) −1.28408 −0.0939012
\(188\) 0 0
\(189\) −5.42882 −0.394889
\(190\) 0 0
\(191\) −25.9295 −1.87619 −0.938096 0.346376i \(-0.887412\pi\)
−0.938096 + 0.346376i \(0.887412\pi\)
\(192\) 0 0
\(193\) 6.15067 0.442735 0.221367 0.975190i \(-0.428948\pi\)
0.221367 + 0.975190i \(0.428948\pi\)
\(194\) 0 0
\(195\) 0.346441 0.0248092
\(196\) 0 0
\(197\) −4.55742 −0.324703 −0.162351 0.986733i \(-0.551908\pi\)
−0.162351 + 0.986733i \(0.551908\pi\)
\(198\) 0 0
\(199\) −16.4710 −1.16760 −0.583799 0.811899i \(-0.698434\pi\)
−0.583799 + 0.811899i \(0.698434\pi\)
\(200\) 0 0
\(201\) 3.72404 0.262673
\(202\) 0 0
\(203\) 8.22835 0.577517
\(204\) 0 0
\(205\) 1.86368 0.130165
\(206\) 0 0
\(207\) −3.36176 −0.233659
\(208\) 0 0
\(209\) −4.53379 −0.313609
\(210\) 0 0
\(211\) 7.18253 0.494466 0.247233 0.968956i \(-0.420479\pi\)
0.247233 + 0.968956i \(0.420479\pi\)
\(212\) 0 0
\(213\) −5.42111 −0.371448
\(214\) 0 0
\(215\) 0.392260 0.0267519
\(216\) 0 0
\(217\) −1.42998 −0.0970732
\(218\) 0 0
\(219\) 2.39079 0.161555
\(220\) 0 0
\(221\) −1.67853 −0.112910
\(222\) 0 0
\(223\) −8.28659 −0.554911 −0.277455 0.960739i \(-0.589491\pi\)
−0.277455 + 0.960739i \(0.589491\pi\)
\(224\) 0 0
\(225\) 8.04029 0.536020
\(226\) 0 0
\(227\) 1.46435 0.0971923 0.0485961 0.998819i \(-0.484525\pi\)
0.0485961 + 0.998819i \(0.484525\pi\)
\(228\) 0 0
\(229\) −9.00168 −0.594848 −0.297424 0.954746i \(-0.596127\pi\)
−0.297424 + 0.954746i \(0.596127\pi\)
\(230\) 0 0
\(231\) −1.50953 −0.0993195
\(232\) 0 0
\(233\) −5.05863 −0.331402 −0.165701 0.986176i \(-0.552989\pi\)
−0.165701 + 0.986176i \(0.552989\pi\)
\(234\) 0 0
\(235\) −0.603865 −0.0393918
\(236\) 0 0
\(237\) −1.09673 −0.0712406
\(238\) 0 0
\(239\) −6.94252 −0.449074 −0.224537 0.974466i \(-0.572087\pi\)
−0.224537 + 0.974466i \(0.572087\pi\)
\(240\) 0 0
\(241\) −21.0009 −1.35279 −0.676394 0.736540i \(-0.736458\pi\)
−0.676394 + 0.736540i \(0.736458\pi\)
\(242\) 0 0
\(243\) 14.4904 0.929557
\(244\) 0 0
\(245\) −0.175571 −0.0112168
\(246\) 0 0
\(247\) −5.92651 −0.377095
\(248\) 0 0
\(249\) −6.32810 −0.401027
\(250\) 0 0
\(251\) 12.7800 0.806664 0.403332 0.915054i \(-0.367852\pi\)
0.403332 + 0.915054i \(0.367852\pi\)
\(252\) 0 0
\(253\) −2.66791 −0.167730
\(254\) 0 0
\(255\) −0.206396 −0.0129250
\(256\) 0 0
\(257\) −1.86297 −0.116209 −0.0581045 0.998311i \(-0.518506\pi\)
−0.0581045 + 0.998311i \(0.518506\pi\)
\(258\) 0 0
\(259\) −7.11798 −0.442290
\(260\) 0 0
\(261\) −13.3138 −0.824101
\(262\) 0 0
\(263\) 15.4377 0.951926 0.475963 0.879465i \(-0.342100\pi\)
0.475963 + 0.879465i \(0.342100\pi\)
\(264\) 0 0
\(265\) 0.642294 0.0394558
\(266\) 0 0
\(267\) −16.1964 −0.991202
\(268\) 0 0
\(269\) 14.1516 0.862841 0.431420 0.902151i \(-0.358013\pi\)
0.431420 + 0.902151i \(0.358013\pi\)
\(270\) 0 0
\(271\) 16.7514 1.01758 0.508788 0.860892i \(-0.330094\pi\)
0.508788 + 0.860892i \(0.330094\pi\)
\(272\) 0 0
\(273\) −1.97323 −0.119425
\(274\) 0 0
\(275\) 6.38081 0.384778
\(276\) 0 0
\(277\) 3.58638 0.215485 0.107742 0.994179i \(-0.465638\pi\)
0.107742 + 0.994179i \(0.465638\pi\)
\(278\) 0 0
\(279\) 2.31375 0.138521
\(280\) 0 0
\(281\) 17.6604 1.05353 0.526766 0.850010i \(-0.323404\pi\)
0.526766 + 0.850010i \(0.323404\pi\)
\(282\) 0 0
\(283\) 9.73131 0.578466 0.289233 0.957259i \(-0.406600\pi\)
0.289233 + 0.957259i \(0.406600\pi\)
\(284\) 0 0
\(285\) −0.728735 −0.0431665
\(286\) 0 0
\(287\) −10.6150 −0.626585
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) −13.7151 −0.803993
\(292\) 0 0
\(293\) 13.7397 0.802680 0.401340 0.915929i \(-0.368545\pi\)
0.401340 + 0.915929i \(0.368545\pi\)
\(294\) 0 0
\(295\) 0.781445 0.0454975
\(296\) 0 0
\(297\) 6.97104 0.404501
\(298\) 0 0
\(299\) −3.48746 −0.201685
\(300\) 0 0
\(301\) −2.23420 −0.128777
\(302\) 0 0
\(303\) 11.7187 0.673222
\(304\) 0 0
\(305\) −0.569696 −0.0326207
\(306\) 0 0
\(307\) 9.31928 0.531879 0.265940 0.963990i \(-0.414318\pi\)
0.265940 + 0.963990i \(0.414318\pi\)
\(308\) 0 0
\(309\) 12.3860 0.704616
\(310\) 0 0
\(311\) −20.2260 −1.14691 −0.573455 0.819237i \(-0.694397\pi\)
−0.573455 + 0.819237i \(0.694397\pi\)
\(312\) 0 0
\(313\) 5.12423 0.289638 0.144819 0.989458i \(-0.453740\pi\)
0.144819 + 0.989458i \(0.453740\pi\)
\(314\) 0 0
\(315\) 0.284079 0.0160060
\(316\) 0 0
\(317\) 27.2923 1.53289 0.766444 0.642312i \(-0.222024\pi\)
0.766444 + 0.642312i \(0.222024\pi\)
\(318\) 0 0
\(319\) −10.5659 −0.591574
\(320\) 0 0
\(321\) 2.01364 0.112390
\(322\) 0 0
\(323\) 3.53077 0.196457
\(324\) 0 0
\(325\) 8.34092 0.462671
\(326\) 0 0
\(327\) 6.54319 0.361839
\(328\) 0 0
\(329\) 3.43945 0.189623
\(330\) 0 0
\(331\) −30.5556 −1.67949 −0.839743 0.542985i \(-0.817294\pi\)
−0.839743 + 0.542985i \(0.817294\pi\)
\(332\) 0 0
\(333\) 11.5171 0.631135
\(334\) 0 0
\(335\) −0.556182 −0.0303874
\(336\) 0 0
\(337\) 0.504429 0.0274780 0.0137390 0.999906i \(-0.495627\pi\)
0.0137390 + 0.999906i \(0.495627\pi\)
\(338\) 0 0
\(339\) 8.51545 0.462496
\(340\) 0 0
\(341\) 1.83620 0.0994360
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) −0.428825 −0.0230871
\(346\) 0 0
\(347\) −18.7023 −1.00399 −0.501996 0.864870i \(-0.667401\pi\)
−0.501996 + 0.864870i \(0.667401\pi\)
\(348\) 0 0
\(349\) 24.8600 1.33073 0.665364 0.746519i \(-0.268276\pi\)
0.665364 + 0.746519i \(0.268276\pi\)
\(350\) 0 0
\(351\) 9.11245 0.486387
\(352\) 0 0
\(353\) −21.2070 −1.12873 −0.564367 0.825524i \(-0.690880\pi\)
−0.564367 + 0.825524i \(0.690880\pi\)
\(354\) 0 0
\(355\) 0.809638 0.0429711
\(356\) 0 0
\(357\) 1.17557 0.0622178
\(358\) 0 0
\(359\) −17.1618 −0.905766 −0.452883 0.891570i \(-0.649605\pi\)
−0.452883 + 0.891570i \(0.649605\pi\)
\(360\) 0 0
\(361\) −6.53367 −0.343878
\(362\) 0 0
\(363\) −10.9929 −0.576979
\(364\) 0 0
\(365\) −0.357063 −0.0186895
\(366\) 0 0
\(367\) −28.5135 −1.48839 −0.744196 0.667962i \(-0.767167\pi\)
−0.744196 + 0.667962i \(0.767167\pi\)
\(368\) 0 0
\(369\) 17.1755 0.894119
\(370\) 0 0
\(371\) −3.65833 −0.189931
\(372\) 0 0
\(373\) −9.74843 −0.504754 −0.252377 0.967629i \(-0.581212\pi\)
−0.252377 + 0.967629i \(0.581212\pi\)
\(374\) 0 0
\(375\) 2.05759 0.106254
\(376\) 0 0
\(377\) −13.8115 −0.711331
\(378\) 0 0
\(379\) −1.25782 −0.0646099 −0.0323050 0.999478i \(-0.510285\pi\)
−0.0323050 + 0.999478i \(0.510285\pi\)
\(380\) 0 0
\(381\) −14.6791 −0.752035
\(382\) 0 0
\(383\) −20.5428 −1.04969 −0.524844 0.851198i \(-0.675876\pi\)
−0.524844 + 0.851198i \(0.675876\pi\)
\(384\) 0 0
\(385\) 0.225446 0.0114898
\(386\) 0 0
\(387\) 3.61502 0.183762
\(388\) 0 0
\(389\) 18.2255 0.924068 0.462034 0.886862i \(-0.347120\pi\)
0.462034 + 0.886862i \(0.347120\pi\)
\(390\) 0 0
\(391\) 2.07768 0.105073
\(392\) 0 0
\(393\) −11.3248 −0.571259
\(394\) 0 0
\(395\) 0.163796 0.00824149
\(396\) 0 0
\(397\) −23.2775 −1.16826 −0.584132 0.811658i \(-0.698565\pi\)
−0.584132 + 0.811658i \(0.698565\pi\)
\(398\) 0 0
\(399\) 4.15067 0.207793
\(400\) 0 0
\(401\) 22.1845 1.10784 0.553921 0.832569i \(-0.313131\pi\)
0.553921 + 0.832569i \(0.313131\pi\)
\(402\) 0 0
\(403\) 2.40026 0.119566
\(404\) 0 0
\(405\) 0.268248 0.0133293
\(406\) 0 0
\(407\) 9.14005 0.453055
\(408\) 0 0
\(409\) 17.0211 0.841641 0.420820 0.907144i \(-0.361742\pi\)
0.420820 + 0.907144i \(0.361742\pi\)
\(410\) 0 0
\(411\) −16.9613 −0.836641
\(412\) 0 0
\(413\) −4.45089 −0.219014
\(414\) 0 0
\(415\) 0.945097 0.0463930
\(416\) 0 0
\(417\) 7.63123 0.373703
\(418\) 0 0
\(419\) 18.5603 0.906728 0.453364 0.891325i \(-0.350224\pi\)
0.453364 + 0.891325i \(0.350224\pi\)
\(420\) 0 0
\(421\) −13.0307 −0.635078 −0.317539 0.948245i \(-0.602856\pi\)
−0.317539 + 0.948245i \(0.602856\pi\)
\(422\) 0 0
\(423\) −5.56514 −0.270586
\(424\) 0 0
\(425\) −4.96917 −0.241040
\(426\) 0 0
\(427\) 3.24482 0.157028
\(428\) 0 0
\(429\) 2.53379 0.122332
\(430\) 0 0
\(431\) 6.52097 0.314104 0.157052 0.987590i \(-0.449801\pi\)
0.157052 + 0.987590i \(0.449801\pi\)
\(432\) 0 0
\(433\) 17.1820 0.825715 0.412858 0.910796i \(-0.364531\pi\)
0.412858 + 0.910796i \(0.364531\pi\)
\(434\) 0 0
\(435\) −1.69829 −0.0814270
\(436\) 0 0
\(437\) 7.33582 0.350920
\(438\) 0 0
\(439\) −18.6382 −0.889552 −0.444776 0.895642i \(-0.646717\pi\)
−0.444776 + 0.895642i \(0.646717\pi\)
\(440\) 0 0
\(441\) −1.61803 −0.0770492
\(442\) 0 0
\(443\) −7.22795 −0.343410 −0.171705 0.985148i \(-0.554928\pi\)
−0.171705 + 0.985148i \(0.554928\pi\)
\(444\) 0 0
\(445\) 2.41892 0.114668
\(446\) 0 0
\(447\) 6.17617 0.292123
\(448\) 0 0
\(449\) 1.70479 0.0804540 0.0402270 0.999191i \(-0.487192\pi\)
0.0402270 + 0.999191i \(0.487192\pi\)
\(450\) 0 0
\(451\) 13.6305 0.641836
\(452\) 0 0
\(453\) 5.88958 0.276717
\(454\) 0 0
\(455\) 0.294701 0.0138158
\(456\) 0 0
\(457\) 26.9713 1.26166 0.630831 0.775920i \(-0.282714\pi\)
0.630831 + 0.775920i \(0.282714\pi\)
\(458\) 0 0
\(459\) −5.42882 −0.253396
\(460\) 0 0
\(461\) 9.22616 0.429705 0.214853 0.976647i \(-0.431073\pi\)
0.214853 + 0.976647i \(0.431073\pi\)
\(462\) 0 0
\(463\) −11.3836 −0.529043 −0.264522 0.964380i \(-0.585214\pi\)
−0.264522 + 0.964380i \(0.585214\pi\)
\(464\) 0 0
\(465\) 0.295141 0.0136868
\(466\) 0 0
\(467\) 23.8214 1.10232 0.551161 0.834399i \(-0.314185\pi\)
0.551161 + 0.834399i \(0.314185\pi\)
\(468\) 0 0
\(469\) 3.16785 0.146278
\(470\) 0 0
\(471\) 4.22351 0.194609
\(472\) 0 0
\(473\) 2.86889 0.131912
\(474\) 0 0
\(475\) −17.5450 −0.805020
\(476\) 0 0
\(477\) 5.91930 0.271026
\(478\) 0 0
\(479\) −2.76881 −0.126510 −0.0632552 0.997997i \(-0.520148\pi\)
−0.0632552 + 0.997997i \(0.520148\pi\)
\(480\) 0 0
\(481\) 11.9477 0.544770
\(482\) 0 0
\(483\) 2.44246 0.111136
\(484\) 0 0
\(485\) 2.04834 0.0930103
\(486\) 0 0
\(487\) −21.6146 −0.979450 −0.489725 0.871877i \(-0.662903\pi\)
−0.489725 + 0.871877i \(0.662903\pi\)
\(488\) 0 0
\(489\) −16.0326 −0.725018
\(490\) 0 0
\(491\) 25.0739 1.13157 0.565785 0.824553i \(-0.308573\pi\)
0.565785 + 0.824553i \(0.308573\pi\)
\(492\) 0 0
\(493\) 8.22835 0.370586
\(494\) 0 0
\(495\) −0.364780 −0.0163956
\(496\) 0 0
\(497\) −4.61147 −0.206853
\(498\) 0 0
\(499\) −40.6855 −1.82133 −0.910667 0.413141i \(-0.864431\pi\)
−0.910667 + 0.413141i \(0.864431\pi\)
\(500\) 0 0
\(501\) −28.5372 −1.27495
\(502\) 0 0
\(503\) 20.1499 0.898440 0.449220 0.893421i \(-0.351702\pi\)
0.449220 + 0.893421i \(0.351702\pi\)
\(504\) 0 0
\(505\) −1.75018 −0.0778820
\(506\) 0 0
\(507\) −11.9703 −0.531619
\(508\) 0 0
\(509\) −1.05103 −0.0465860 −0.0232930 0.999729i \(-0.507415\pi\)
−0.0232930 + 0.999729i \(0.507415\pi\)
\(510\) 0 0
\(511\) 2.03373 0.0899669
\(512\) 0 0
\(513\) −19.1679 −0.846284
\(514\) 0 0
\(515\) −1.84984 −0.0815138
\(516\) 0 0
\(517\) −4.41652 −0.194238
\(518\) 0 0
\(519\) −1.92096 −0.0843209
\(520\) 0 0
\(521\) 11.0103 0.482370 0.241185 0.970479i \(-0.422464\pi\)
0.241185 + 0.970479i \(0.422464\pi\)
\(522\) 0 0
\(523\) −33.3849 −1.45982 −0.729911 0.683542i \(-0.760438\pi\)
−0.729911 + 0.683542i \(0.760438\pi\)
\(524\) 0 0
\(525\) −5.84162 −0.254949
\(526\) 0 0
\(527\) −1.42998 −0.0622908
\(528\) 0 0
\(529\) −18.6832 −0.812314
\(530\) 0 0
\(531\) 7.20170 0.312527
\(532\) 0 0
\(533\) 17.8176 0.771768
\(534\) 0 0
\(535\) −0.300735 −0.0130019
\(536\) 0 0
\(537\) −23.4731 −1.01294
\(538\) 0 0
\(539\) −1.28408 −0.0553092
\(540\) 0 0
\(541\) −42.9755 −1.84766 −0.923831 0.382801i \(-0.874959\pi\)
−0.923831 + 0.382801i \(0.874959\pi\)
\(542\) 0 0
\(543\) 6.35345 0.272652
\(544\) 0 0
\(545\) −0.977219 −0.0418595
\(546\) 0 0
\(547\) −6.50098 −0.277962 −0.138981 0.990295i \(-0.544383\pi\)
−0.138981 + 0.990295i \(0.544383\pi\)
\(548\) 0 0
\(549\) −5.25024 −0.224075
\(550\) 0 0
\(551\) 29.0524 1.23767
\(552\) 0 0
\(553\) −0.932938 −0.0396726
\(554\) 0 0
\(555\) 1.46912 0.0623606
\(556\) 0 0
\(557\) 41.4720 1.75723 0.878613 0.477534i \(-0.158469\pi\)
0.878613 + 0.477534i \(0.158469\pi\)
\(558\) 0 0
\(559\) 3.75018 0.158616
\(560\) 0 0
\(561\) −1.50953 −0.0637322
\(562\) 0 0
\(563\) 2.29000 0.0965120 0.0482560 0.998835i \(-0.484634\pi\)
0.0482560 + 0.998835i \(0.484634\pi\)
\(564\) 0 0
\(565\) −1.27178 −0.0535040
\(566\) 0 0
\(567\) −1.52786 −0.0641643
\(568\) 0 0
\(569\) 12.1626 0.509885 0.254942 0.966956i \(-0.417944\pi\)
0.254942 + 0.966956i \(0.417944\pi\)
\(570\) 0 0
\(571\) −2.46112 −0.102995 −0.0514973 0.998673i \(-0.516399\pi\)
−0.0514973 + 0.998673i \(0.516399\pi\)
\(572\) 0 0
\(573\) −30.4819 −1.27340
\(574\) 0 0
\(575\) −10.3244 −0.430556
\(576\) 0 0
\(577\) 28.3772 1.18136 0.590680 0.806906i \(-0.298860\pi\)
0.590680 + 0.806906i \(0.298860\pi\)
\(578\) 0 0
\(579\) 7.23054 0.300491
\(580\) 0 0
\(581\) −5.38301 −0.223325
\(582\) 0 0
\(583\) 4.69758 0.194554
\(584\) 0 0
\(585\) −0.476836 −0.0197147
\(586\) 0 0
\(587\) 13.7764 0.568614 0.284307 0.958733i \(-0.408236\pi\)
0.284307 + 0.958733i \(0.408236\pi\)
\(588\) 0 0
\(589\) −5.04892 −0.208037
\(590\) 0 0
\(591\) −5.35757 −0.220381
\(592\) 0 0
\(593\) −6.41197 −0.263308 −0.131654 0.991296i \(-0.542029\pi\)
−0.131654 + 0.991296i \(0.542029\pi\)
\(594\) 0 0
\(595\) −0.175571 −0.00719769
\(596\) 0 0
\(597\) −19.3628 −0.792467
\(598\) 0 0
\(599\) 42.3587 1.73073 0.865365 0.501142i \(-0.167087\pi\)
0.865365 + 0.501142i \(0.167087\pi\)
\(600\) 0 0
\(601\) −5.01302 −0.204485 −0.102243 0.994759i \(-0.532602\pi\)
−0.102243 + 0.994759i \(0.532602\pi\)
\(602\) 0 0
\(603\) −5.12569 −0.208734
\(604\) 0 0
\(605\) 1.64178 0.0667480
\(606\) 0 0
\(607\) 40.4563 1.64207 0.821035 0.570879i \(-0.193397\pi\)
0.821035 + 0.570879i \(0.193397\pi\)
\(608\) 0 0
\(609\) 9.67301 0.391970
\(610\) 0 0
\(611\) −5.77322 −0.233559
\(612\) 0 0
\(613\) −19.1708 −0.774300 −0.387150 0.922017i \(-0.626540\pi\)
−0.387150 + 0.922017i \(0.626540\pi\)
\(614\) 0 0
\(615\) 2.19089 0.0883453
\(616\) 0 0
\(617\) 22.7692 0.916655 0.458327 0.888783i \(-0.348449\pi\)
0.458327 + 0.888783i \(0.348449\pi\)
\(618\) 0 0
\(619\) −45.9644 −1.84746 −0.923732 0.383039i \(-0.874878\pi\)
−0.923732 + 0.383039i \(0.874878\pi\)
\(620\) 0 0
\(621\) −11.2794 −0.452626
\(622\) 0 0
\(623\) −13.7775 −0.551982
\(624\) 0 0
\(625\) 24.5386 0.981543
\(626\) 0 0
\(627\) −5.32979 −0.212851
\(628\) 0 0
\(629\) −7.11798 −0.283812
\(630\) 0 0
\(631\) −39.0466 −1.55442 −0.777211 0.629240i \(-0.783366\pi\)
−0.777211 + 0.629240i \(0.783366\pi\)
\(632\) 0 0
\(633\) 8.44357 0.335602
\(634\) 0 0
\(635\) 2.19232 0.0869994
\(636\) 0 0
\(637\) −1.67853 −0.0665058
\(638\) 0 0
\(639\) 7.46151 0.295173
\(640\) 0 0
\(641\) 10.0465 0.396814 0.198407 0.980120i \(-0.436423\pi\)
0.198407 + 0.980120i \(0.436423\pi\)
\(642\) 0 0
\(643\) 14.2560 0.562204 0.281102 0.959678i \(-0.409300\pi\)
0.281102 + 0.959678i \(0.409300\pi\)
\(644\) 0 0
\(645\) 0.461129 0.0181570
\(646\) 0 0
\(647\) 3.14184 0.123519 0.0617593 0.998091i \(-0.480329\pi\)
0.0617593 + 0.998091i \(0.480329\pi\)
\(648\) 0 0
\(649\) 5.71530 0.224345
\(650\) 0 0
\(651\) −1.68104 −0.0658851
\(652\) 0 0
\(653\) 11.7536 0.459955 0.229977 0.973196i \(-0.426135\pi\)
0.229977 + 0.973196i \(0.426135\pi\)
\(654\) 0 0
\(655\) 1.69135 0.0660863
\(656\) 0 0
\(657\) −3.29064 −0.128380
\(658\) 0 0
\(659\) 13.5857 0.529222 0.264611 0.964355i \(-0.414756\pi\)
0.264611 + 0.964355i \(0.414756\pi\)
\(660\) 0 0
\(661\) −10.1929 −0.396457 −0.198228 0.980156i \(-0.563519\pi\)
−0.198228 + 0.980156i \(0.563519\pi\)
\(662\) 0 0
\(663\) −1.97323 −0.0766340
\(664\) 0 0
\(665\) −0.619899 −0.0240386
\(666\) 0 0
\(667\) 17.0959 0.661956
\(668\) 0 0
\(669\) −9.74147 −0.376627
\(670\) 0 0
\(671\) −4.16661 −0.160850
\(672\) 0 0
\(673\) 45.9612 1.77167 0.885836 0.463998i \(-0.153585\pi\)
0.885836 + 0.463998i \(0.153585\pi\)
\(674\) 0 0
\(675\) 26.9768 1.03834
\(676\) 0 0
\(677\) −44.1316 −1.69611 −0.848057 0.529904i \(-0.822228\pi\)
−0.848057 + 0.529904i \(0.822228\pi\)
\(678\) 0 0
\(679\) −11.6668 −0.447729
\(680\) 0 0
\(681\) 1.72145 0.0659659
\(682\) 0 0
\(683\) −35.9370 −1.37509 −0.687546 0.726141i \(-0.741312\pi\)
−0.687546 + 0.726141i \(0.741312\pi\)
\(684\) 0 0
\(685\) 2.53316 0.0967872
\(686\) 0 0
\(687\) −10.5821 −0.403733
\(688\) 0 0
\(689\) 6.14062 0.233939
\(690\) 0 0
\(691\) −37.5275 −1.42761 −0.713807 0.700343i \(-0.753031\pi\)
−0.713807 + 0.700343i \(0.753031\pi\)
\(692\) 0 0
\(693\) 2.07768 0.0789247
\(694\) 0 0
\(695\) −1.13972 −0.0432320
\(696\) 0 0
\(697\) −10.6150 −0.402072
\(698\) 0 0
\(699\) −5.94678 −0.224928
\(700\) 0 0
\(701\) 11.6195 0.438863 0.219431 0.975628i \(-0.429580\pi\)
0.219431 + 0.975628i \(0.429580\pi\)
\(702\) 0 0
\(703\) −25.1319 −0.947869
\(704\) 0 0
\(705\) −0.709886 −0.0267359
\(706\) 0 0
\(707\) 9.96853 0.374905
\(708\) 0 0
\(709\) 3.14102 0.117963 0.0589817 0.998259i \(-0.481215\pi\)
0.0589817 + 0.998259i \(0.481215\pi\)
\(710\) 0 0
\(711\) 1.50953 0.0566116
\(712\) 0 0
\(713\) −2.97104 −0.111266
\(714\) 0 0
\(715\) −0.378419 −0.0141521
\(716\) 0 0
\(717\) −8.16142 −0.304794
\(718\) 0 0
\(719\) 0.526599 0.0196388 0.00981941 0.999952i \(-0.496874\pi\)
0.00981941 + 0.999952i \(0.496874\pi\)
\(720\) 0 0
\(721\) 10.5362 0.392388
\(722\) 0 0
\(723\) −24.6881 −0.918159
\(724\) 0 0
\(725\) −40.8881 −1.51855
\(726\) 0 0
\(727\) −35.6204 −1.32109 −0.660543 0.750788i \(-0.729674\pi\)
−0.660543 + 0.750788i \(0.729674\pi\)
\(728\) 0 0
\(729\) 21.6180 0.800668
\(730\) 0 0
\(731\) −2.23420 −0.0826350
\(732\) 0 0
\(733\) −2.41601 −0.0892374 −0.0446187 0.999004i \(-0.514207\pi\)
−0.0446187 + 0.999004i \(0.514207\pi\)
\(734\) 0 0
\(735\) −0.206396 −0.00761301
\(736\) 0 0
\(737\) −4.06777 −0.149838
\(738\) 0 0
\(739\) −46.5039 −1.71067 −0.855336 0.518073i \(-0.826650\pi\)
−0.855336 + 0.518073i \(0.826650\pi\)
\(740\) 0 0
\(741\) −6.96703 −0.255940
\(742\) 0 0
\(743\) 37.4235 1.37294 0.686468 0.727160i \(-0.259160\pi\)
0.686468 + 0.727160i \(0.259160\pi\)
\(744\) 0 0
\(745\) −0.922406 −0.0337943
\(746\) 0 0
\(747\) 8.70989 0.318678
\(748\) 0 0
\(749\) 1.71290 0.0625881
\(750\) 0 0
\(751\) −22.6554 −0.826707 −0.413353 0.910571i \(-0.635643\pi\)
−0.413353 + 0.910571i \(0.635643\pi\)
\(752\) 0 0
\(753\) 15.0238 0.547496
\(754\) 0 0
\(755\) −0.879605 −0.0320121
\(756\) 0 0
\(757\) 21.8732 0.794993 0.397497 0.917604i \(-0.369879\pi\)
0.397497 + 0.917604i \(0.369879\pi\)
\(758\) 0 0
\(759\) −3.13632 −0.113841
\(760\) 0 0
\(761\) −35.1992 −1.27597 −0.637984 0.770049i \(-0.720232\pi\)
−0.637984 + 0.770049i \(0.720232\pi\)
\(762\) 0 0
\(763\) 5.56597 0.201501
\(764\) 0 0
\(765\) 0.284079 0.0102709
\(766\) 0 0
\(767\) 7.47096 0.269761
\(768\) 0 0
\(769\) −13.5342 −0.488055 −0.244028 0.969768i \(-0.578469\pi\)
−0.244028 + 0.969768i \(0.578469\pi\)
\(770\) 0 0
\(771\) −2.19005 −0.0788729
\(772\) 0 0
\(773\) 30.4262 1.09435 0.547177 0.837017i \(-0.315702\pi\)
0.547177 + 0.837017i \(0.315702\pi\)
\(774\) 0 0
\(775\) 7.10581 0.255248
\(776\) 0 0
\(777\) −8.36768 −0.300189
\(778\) 0 0
\(779\) −37.4792 −1.34283
\(780\) 0 0
\(781\) 5.92149 0.211888
\(782\) 0 0
\(783\) −44.6703 −1.59639
\(784\) 0 0
\(785\) −0.630778 −0.0225134
\(786\) 0 0
\(787\) 34.2565 1.22111 0.610557 0.791972i \(-0.290946\pi\)
0.610557 + 0.791972i \(0.290946\pi\)
\(788\) 0 0
\(789\) 18.1480 0.646088
\(790\) 0 0
\(791\) 7.24367 0.257555
\(792\) 0 0
\(793\) −5.44654 −0.193412
\(794\) 0 0
\(795\) 0.755062 0.0267793
\(796\) 0 0
\(797\) −21.4922 −0.761291 −0.380646 0.924721i \(-0.624298\pi\)
−0.380646 + 0.924721i \(0.624298\pi\)
\(798\) 0 0
\(799\) 3.43945 0.121679
\(800\) 0 0
\(801\) 22.2924 0.787663
\(802\) 0 0
\(803\) −2.61147 −0.0921568
\(804\) 0 0
\(805\) −0.364780 −0.0128568
\(806\) 0 0
\(807\) 16.6362 0.585624
\(808\) 0 0
\(809\) 47.2001 1.65947 0.829734 0.558159i \(-0.188492\pi\)
0.829734 + 0.558159i \(0.188492\pi\)
\(810\) 0 0
\(811\) 14.3999 0.505650 0.252825 0.967512i \(-0.418640\pi\)
0.252825 + 0.967512i \(0.418640\pi\)
\(812\) 0 0
\(813\) 19.6925 0.690645
\(814\) 0 0
\(815\) 2.39445 0.0838740
\(816\) 0 0
\(817\) −7.88845 −0.275982
\(818\) 0 0
\(819\) 2.71592 0.0949020
\(820\) 0 0
\(821\) −20.9566 −0.731390 −0.365695 0.930735i \(-0.619169\pi\)
−0.365695 + 0.930735i \(0.619169\pi\)
\(822\) 0 0
\(823\) 15.6310 0.544862 0.272431 0.962175i \(-0.412172\pi\)
0.272431 + 0.962175i \(0.412172\pi\)
\(824\) 0 0
\(825\) 7.50110 0.261155
\(826\) 0 0
\(827\) 18.3808 0.639164 0.319582 0.947559i \(-0.396458\pi\)
0.319582 + 0.947559i \(0.396458\pi\)
\(828\) 0 0
\(829\) 9.54196 0.331406 0.165703 0.986176i \(-0.447011\pi\)
0.165703 + 0.986176i \(0.447011\pi\)
\(830\) 0 0
\(831\) 4.21605 0.146253
\(832\) 0 0
\(833\) 1.00000 0.0346479
\(834\) 0 0
\(835\) 4.26201 0.147493
\(836\) 0 0
\(837\) 7.76309 0.268332
\(838\) 0 0
\(839\) −13.6166 −0.470096 −0.235048 0.971984i \(-0.575525\pi\)
−0.235048 + 0.971984i \(0.575525\pi\)
\(840\) 0 0
\(841\) 38.7058 1.33468
\(842\) 0 0
\(843\) 20.7611 0.715049
\(844\) 0 0
\(845\) 1.78775 0.0615005
\(846\) 0 0
\(847\) −9.35114 −0.321309
\(848\) 0 0
\(849\) 11.4398 0.392614
\(850\) 0 0
\(851\) −14.7889 −0.506957
\(852\) 0 0
\(853\) 2.58000 0.0883376 0.0441688 0.999024i \(-0.485936\pi\)
0.0441688 + 0.999024i \(0.485936\pi\)
\(854\) 0 0
\(855\) 1.00302 0.0343025
\(856\) 0 0
\(857\) −46.9063 −1.60229 −0.801145 0.598470i \(-0.795775\pi\)
−0.801145 + 0.598470i \(0.795775\pi\)
\(858\) 0 0
\(859\) 26.7384 0.912301 0.456151 0.889903i \(-0.349228\pi\)
0.456151 + 0.889903i \(0.349228\pi\)
\(860\) 0 0
\(861\) −12.4787 −0.425273
\(862\) 0 0
\(863\) −4.91043 −0.167153 −0.0835765 0.996501i \(-0.526634\pi\)
−0.0835765 + 0.996501i \(0.526634\pi\)
\(864\) 0 0
\(865\) 0.286894 0.00975469
\(866\) 0 0
\(867\) 1.17557 0.0399245
\(868\) 0 0
\(869\) 1.19797 0.0406382
\(870\) 0 0
\(871\) −5.31734 −0.180171
\(872\) 0 0
\(873\) 18.8772 0.638897
\(874\) 0 0
\(875\) 1.75029 0.0591707
\(876\) 0 0
\(877\) 5.58086 0.188452 0.0942261 0.995551i \(-0.469962\pi\)
0.0942261 + 0.995551i \(0.469962\pi\)
\(878\) 0 0
\(879\) 16.1520 0.544792
\(880\) 0 0
\(881\) 20.6060 0.694234 0.347117 0.937822i \(-0.387161\pi\)
0.347117 + 0.937822i \(0.387161\pi\)
\(882\) 0 0
\(883\) 33.0088 1.11083 0.555417 0.831572i \(-0.312559\pi\)
0.555417 + 0.831572i \(0.312559\pi\)
\(884\) 0 0
\(885\) 0.918644 0.0308799
\(886\) 0 0
\(887\) 34.4323 1.15612 0.578062 0.815993i \(-0.303809\pi\)
0.578062 + 0.815993i \(0.303809\pi\)
\(888\) 0 0
\(889\) −12.4868 −0.418794
\(890\) 0 0
\(891\) 1.96190 0.0657261
\(892\) 0 0
\(893\) 12.1439 0.406380
\(894\) 0 0
\(895\) 3.50568 0.117182
\(896\) 0 0
\(897\) −4.09975 −0.136887
\(898\) 0 0
\(899\) −11.7664 −0.392430
\(900\) 0 0
\(901\) −3.65833 −0.121877
\(902\) 0 0
\(903\) −2.62646 −0.0874032
\(904\) 0 0
\(905\) −0.948882 −0.0315419
\(906\) 0 0
\(907\) −47.0094 −1.56092 −0.780461 0.625204i \(-0.785016\pi\)
−0.780461 + 0.625204i \(0.785016\pi\)
\(908\) 0 0
\(909\) −16.1294 −0.534979
\(910\) 0 0
\(911\) 24.4595 0.810378 0.405189 0.914233i \(-0.367206\pi\)
0.405189 + 0.914233i \(0.367206\pi\)
\(912\) 0 0
\(913\) 6.91220 0.228761
\(914\) 0 0
\(915\) −0.669717 −0.0221402
\(916\) 0 0
\(917\) −9.63342 −0.318124
\(918\) 0 0
\(919\) 27.3622 0.902595 0.451298 0.892374i \(-0.350961\pi\)
0.451298 + 0.892374i \(0.350961\pi\)
\(920\) 0 0
\(921\) 10.9555 0.360995
\(922\) 0 0
\(923\) 7.74050 0.254782
\(924\) 0 0
\(925\) 35.3705 1.16297
\(926\) 0 0
\(927\) −17.0479 −0.559926
\(928\) 0 0
\(929\) 21.0522 0.690699 0.345349 0.938474i \(-0.387760\pi\)
0.345349 + 0.938474i \(0.387760\pi\)
\(930\) 0 0
\(931\) 3.53077 0.115716
\(932\) 0 0
\(933\) −23.7771 −0.778426
\(934\) 0 0
\(935\) 0.225446 0.00737289
\(936\) 0 0
\(937\) 25.8171 0.843409 0.421704 0.906733i \(-0.361432\pi\)
0.421704 + 0.906733i \(0.361432\pi\)
\(938\) 0 0
\(939\) 6.02389 0.196582
\(940\) 0 0
\(941\) −40.2603 −1.31245 −0.656224 0.754566i \(-0.727847\pi\)
−0.656224 + 0.754566i \(0.727847\pi\)
\(942\) 0 0
\(943\) −22.0546 −0.718198
\(944\) 0 0
\(945\) 0.953141 0.0310057
\(946\) 0 0
\(947\) 52.0040 1.68990 0.844952 0.534843i \(-0.179629\pi\)
0.844952 + 0.534843i \(0.179629\pi\)
\(948\) 0 0
\(949\) −3.41368 −0.110813
\(950\) 0 0
\(951\) 32.0840 1.04040
\(952\) 0 0
\(953\) 16.6751 0.540159 0.270079 0.962838i \(-0.412950\pi\)
0.270079 + 0.962838i \(0.412950\pi\)
\(954\) 0 0
\(955\) 4.55245 0.147314
\(956\) 0 0
\(957\) −12.4209 −0.401511
\(958\) 0 0
\(959\) −14.4282 −0.465910
\(960\) 0 0
\(961\) −28.9552 −0.934038
\(962\) 0 0
\(963\) −2.77154 −0.0893115
\(964\) 0 0
\(965\) −1.07988 −0.0347624
\(966\) 0 0
\(967\) 10.9615 0.352497 0.176248 0.984346i \(-0.443604\pi\)
0.176248 + 0.984346i \(0.443604\pi\)
\(968\) 0 0
\(969\) 4.15067 0.133339
\(970\) 0 0
\(971\) 33.2272 1.06631 0.533156 0.846017i \(-0.321006\pi\)
0.533156 + 0.846017i \(0.321006\pi\)
\(972\) 0 0
\(973\) 6.49151 0.208108
\(974\) 0 0
\(975\) 9.80534 0.314022
\(976\) 0 0
\(977\) −19.8481 −0.634996 −0.317498 0.948259i \(-0.602843\pi\)
−0.317498 + 0.948259i \(0.602843\pi\)
\(978\) 0 0
\(979\) 17.6913 0.565418
\(980\) 0 0
\(981\) −9.00592 −0.287537
\(982\) 0 0
\(983\) −34.8380 −1.11116 −0.555581 0.831463i \(-0.687504\pi\)
−0.555581 + 0.831463i \(0.687504\pi\)
\(984\) 0 0
\(985\) 0.800149 0.0254949
\(986\) 0 0
\(987\) 4.04331 0.128700
\(988\) 0 0
\(989\) −4.64197 −0.147606
\(990\) 0 0
\(991\) 32.8254 1.04273 0.521366 0.853333i \(-0.325423\pi\)
0.521366 + 0.853333i \(0.325423\pi\)
\(992\) 0 0
\(993\) −35.9202 −1.13989
\(994\) 0 0
\(995\) 2.89182 0.0916768
\(996\) 0 0
\(997\) −4.47716 −0.141793 −0.0708966 0.997484i \(-0.522586\pi\)
−0.0708966 + 0.997484i \(0.522586\pi\)
\(998\) 0 0
\(999\) 38.6423 1.22259
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7616.2.a.bm.1.3 4
4.3 odd 2 7616.2.a.bl.1.2 4
8.3 odd 2 3808.2.a.c.1.3 4
8.5 even 2 3808.2.a.d.1.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3808.2.a.c.1.3 4 8.3 odd 2
3808.2.a.d.1.2 yes 4 8.5 even 2
7616.2.a.bl.1.2 4 4.3 odd 2
7616.2.a.bm.1.3 4 1.1 even 1 trivial