Properties

Label 7616.2.a.bm.1.1
Level $7616$
Weight $2$
Character 7616.1
Self dual yes
Analytic conductor $60.814$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7616,2,Mod(1,7616)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7616, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7616.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 7616 = 2^{6} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7616.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,4,0,4,0,-2,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.8140661794\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{20})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 3808)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.90211\) of defining polynomial
Character \(\chi\) \(=\) 7616.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.90211 q^{3} +2.90211 q^{5} +1.00000 q^{7} +0.618034 q^{9} -2.79360 q^{11} +1.95199 q^{13} -5.52015 q^{15} +1.00000 q^{17} +4.42882 q^{19} -1.90211 q^{21} -1.72654 q^{23} +3.42226 q^{25} +4.53077 q^{27} -8.15067 q^{29} -9.64771 q^{31} +5.31375 q^{33} +2.90211 q^{35} +2.61147 q^{37} -3.71290 q^{39} -1.43841 q^{41} -8.99885 q^{43} +1.79360 q^{45} -2.65948 q^{47} +1.00000 q^{49} -1.90211 q^{51} +4.50296 q^{53} -8.10736 q^{55} -8.42412 q^{57} +12.2147 q^{59} +13.8701 q^{61} +0.618034 q^{63} +5.66489 q^{65} -11.8167 q^{67} +3.28408 q^{69} -8.64584 q^{71} +2.37895 q^{73} -6.50953 q^{75} -2.79360 q^{77} -8.59783 q^{79} -10.4721 q^{81} -10.8096 q^{83} +2.90211 q^{85} +15.5035 q^{87} -14.0640 q^{89} +1.95199 q^{91} +18.3510 q^{93} +12.8529 q^{95} +14.0018 q^{97} -1.72654 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{5} + 4 q^{7} - 2 q^{9} - 2 q^{11} + 2 q^{13} - 10 q^{15} + 4 q^{17} - 4 q^{19} - 4 q^{23} - 6 q^{25} - 6 q^{29} - 16 q^{31} + 4 q^{35} + 8 q^{37} + 10 q^{39} - 10 q^{41} - 4 q^{43} - 2 q^{45}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.90211 −1.09819 −0.549093 0.835761i \(-0.685027\pi\)
−0.549093 + 0.835761i \(0.685027\pi\)
\(4\) 0 0
\(5\) 2.90211 1.29786 0.648932 0.760846i \(-0.275216\pi\)
0.648932 + 0.760846i \(0.275216\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) 0.618034 0.206011
\(10\) 0 0
\(11\) −2.79360 −0.842303 −0.421152 0.906990i \(-0.638374\pi\)
−0.421152 + 0.906990i \(0.638374\pi\)
\(12\) 0 0
\(13\) 1.95199 0.541384 0.270692 0.962666i \(-0.412747\pi\)
0.270692 + 0.962666i \(0.412747\pi\)
\(14\) 0 0
\(15\) −5.52015 −1.42530
\(16\) 0 0
\(17\) 1.00000 0.242536
\(18\) 0 0
\(19\) 4.42882 1.01604 0.508021 0.861345i \(-0.330377\pi\)
0.508021 + 0.861345i \(0.330377\pi\)
\(20\) 0 0
\(21\) −1.90211 −0.415075
\(22\) 0 0
\(23\) −1.72654 −0.360009 −0.180005 0.983666i \(-0.557611\pi\)
−0.180005 + 0.983666i \(0.557611\pi\)
\(24\) 0 0
\(25\) 3.42226 0.684452
\(26\) 0 0
\(27\) 4.53077 0.871947
\(28\) 0 0
\(29\) −8.15067 −1.51354 −0.756770 0.653681i \(-0.773224\pi\)
−0.756770 + 0.653681i \(0.773224\pi\)
\(30\) 0 0
\(31\) −9.64771 −1.73278 −0.866390 0.499369i \(-0.833565\pi\)
−0.866390 + 0.499369i \(0.833565\pi\)
\(32\) 0 0
\(33\) 5.31375 0.925005
\(34\) 0 0
\(35\) 2.90211 0.490547
\(36\) 0 0
\(37\) 2.61147 0.429323 0.214661 0.976689i \(-0.431135\pi\)
0.214661 + 0.976689i \(0.431135\pi\)
\(38\) 0 0
\(39\) −3.71290 −0.594540
\(40\) 0 0
\(41\) −1.43841 −0.224641 −0.112321 0.993672i \(-0.535828\pi\)
−0.112321 + 0.993672i \(0.535828\pi\)
\(42\) 0 0
\(43\) −8.99885 −1.37231 −0.686156 0.727455i \(-0.740703\pi\)
−0.686156 + 0.727455i \(0.740703\pi\)
\(44\) 0 0
\(45\) 1.79360 0.267375
\(46\) 0 0
\(47\) −2.65948 −0.387925 −0.193963 0.981009i \(-0.562134\pi\)
−0.193963 + 0.981009i \(0.562134\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −1.90211 −0.266349
\(52\) 0 0
\(53\) 4.50296 0.618529 0.309265 0.950976i \(-0.399917\pi\)
0.309265 + 0.950976i \(0.399917\pi\)
\(54\) 0 0
\(55\) −8.10736 −1.09320
\(56\) 0 0
\(57\) −8.42412 −1.11580
\(58\) 0 0
\(59\) 12.2147 1.59022 0.795110 0.606465i \(-0.207413\pi\)
0.795110 + 0.606465i \(0.207413\pi\)
\(60\) 0 0
\(61\) 13.8701 1.77589 0.887944 0.459951i \(-0.152133\pi\)
0.887944 + 0.459951i \(0.152133\pi\)
\(62\) 0 0
\(63\) 0.618034 0.0778650
\(64\) 0 0
\(65\) 5.66489 0.702643
\(66\) 0 0
\(67\) −11.8167 −1.44364 −0.721821 0.692080i \(-0.756694\pi\)
−0.721821 + 0.692080i \(0.756694\pi\)
\(68\) 0 0
\(69\) 3.28408 0.395357
\(70\) 0 0
\(71\) −8.64584 −1.02607 −0.513036 0.858367i \(-0.671479\pi\)
−0.513036 + 0.858367i \(0.671479\pi\)
\(72\) 0 0
\(73\) 2.37895 0.278435 0.139217 0.990262i \(-0.455541\pi\)
0.139217 + 0.990262i \(0.455541\pi\)
\(74\) 0 0
\(75\) −6.50953 −0.751655
\(76\) 0 0
\(77\) −2.79360 −0.318361
\(78\) 0 0
\(79\) −8.59783 −0.967332 −0.483666 0.875253i \(-0.660695\pi\)
−0.483666 + 0.875253i \(0.660695\pi\)
\(80\) 0 0
\(81\) −10.4721 −1.16357
\(82\) 0 0
\(83\) −10.8096 −1.18651 −0.593256 0.805014i \(-0.702158\pi\)
−0.593256 + 0.805014i \(0.702158\pi\)
\(84\) 0 0
\(85\) 2.90211 0.314778
\(86\) 0 0
\(87\) 15.5035 1.66215
\(88\) 0 0
\(89\) −14.0640 −1.49079 −0.745393 0.666625i \(-0.767738\pi\)
−0.745393 + 0.666625i \(0.767738\pi\)
\(90\) 0 0
\(91\) 1.95199 0.204624
\(92\) 0 0
\(93\) 18.3510 1.90291
\(94\) 0 0
\(95\) 12.8529 1.31868
\(96\) 0 0
\(97\) 14.0018 1.42166 0.710831 0.703363i \(-0.248319\pi\)
0.710831 + 0.703363i \(0.248319\pi\)
\(98\) 0 0
\(99\) −1.72654 −0.173524
\(100\) 0 0
\(101\) 6.74186 0.670841 0.335420 0.942069i \(-0.391122\pi\)
0.335420 + 0.942069i \(0.391122\pi\)
\(102\) 0 0
\(103\) −13.0135 −1.28226 −0.641130 0.767432i \(-0.721534\pi\)
−0.641130 + 0.767432i \(0.721534\pi\)
\(104\) 0 0
\(105\) −5.52015 −0.538711
\(106\) 0 0
\(107\) −6.73716 −0.651306 −0.325653 0.945489i \(-0.605584\pi\)
−0.325653 + 0.945489i \(0.605584\pi\)
\(108\) 0 0
\(109\) −12.7829 −1.22438 −0.612188 0.790712i \(-0.709711\pi\)
−0.612188 + 0.790712i \(0.709711\pi\)
\(110\) 0 0
\(111\) −4.96731 −0.471476
\(112\) 0 0
\(113\) −0.308340 −0.0290061 −0.0145031 0.999895i \(-0.504617\pi\)
−0.0145031 + 0.999895i \(0.504617\pi\)
\(114\) 0 0
\(115\) −5.01062 −0.467243
\(116\) 0 0
\(117\) 1.20640 0.111531
\(118\) 0 0
\(119\) 1.00000 0.0916698
\(120\) 0 0
\(121\) −3.19577 −0.290525
\(122\) 0 0
\(123\) 2.73601 0.246698
\(124\) 0 0
\(125\) −4.57878 −0.409539
\(126\) 0 0
\(127\) −17.5343 −1.55592 −0.777959 0.628314i \(-0.783745\pi\)
−0.777959 + 0.628314i \(0.783745\pi\)
\(128\) 0 0
\(129\) 17.1168 1.50705
\(130\) 0 0
\(131\) 8.02497 0.701145 0.350573 0.936536i \(-0.385987\pi\)
0.350573 + 0.936536i \(0.385987\pi\)
\(132\) 0 0
\(133\) 4.42882 0.384028
\(134\) 0 0
\(135\) 13.1488 1.13167
\(136\) 0 0
\(137\) −9.63336 −0.823033 −0.411517 0.911402i \(-0.635001\pi\)
−0.411517 + 0.911402i \(0.635001\pi\)
\(138\) 0 0
\(139\) 16.5054 1.39997 0.699983 0.714160i \(-0.253191\pi\)
0.699983 + 0.714160i \(0.253191\pi\)
\(140\) 0 0
\(141\) 5.05863 0.426014
\(142\) 0 0
\(143\) −5.45309 −0.456010
\(144\) 0 0
\(145\) −23.6542 −1.96437
\(146\) 0 0
\(147\) −1.90211 −0.156884
\(148\) 0 0
\(149\) 21.7139 1.77888 0.889438 0.457056i \(-0.151096\pi\)
0.889438 + 0.457056i \(0.151096\pi\)
\(150\) 0 0
\(151\) 14.0354 1.14219 0.571093 0.820885i \(-0.306520\pi\)
0.571093 + 0.820885i \(0.306520\pi\)
\(152\) 0 0
\(153\) 0.618034 0.0499651
\(154\) 0 0
\(155\) −27.9987 −2.24891
\(156\) 0 0
\(157\) −16.4958 −1.31651 −0.658253 0.752797i \(-0.728704\pi\)
−0.658253 + 0.752797i \(0.728704\pi\)
\(158\) 0 0
\(159\) −8.56514 −0.679260
\(160\) 0 0
\(161\) −1.72654 −0.136071
\(162\) 0 0
\(163\) −0.946067 −0.0741017 −0.0370508 0.999313i \(-0.511796\pi\)
−0.0370508 + 0.999313i \(0.511796\pi\)
\(164\) 0 0
\(165\) 15.4211 1.20053
\(166\) 0 0
\(167\) 4.29947 0.332703 0.166351 0.986067i \(-0.446801\pi\)
0.166351 + 0.986067i \(0.446801\pi\)
\(168\) 0 0
\(169\) −9.18974 −0.706903
\(170\) 0 0
\(171\) 2.73716 0.209316
\(172\) 0 0
\(173\) 21.1891 1.61098 0.805489 0.592611i \(-0.201903\pi\)
0.805489 + 0.592611i \(0.201903\pi\)
\(174\) 0 0
\(175\) 3.42226 0.258699
\(176\) 0 0
\(177\) −23.2338 −1.74636
\(178\) 0 0
\(179\) 1.43661 0.107377 0.0536887 0.998558i \(-0.482902\pi\)
0.0536887 + 0.998558i \(0.482902\pi\)
\(180\) 0 0
\(181\) −19.2169 −1.42838 −0.714191 0.699951i \(-0.753205\pi\)
−0.714191 + 0.699951i \(0.753205\pi\)
\(182\) 0 0
\(183\) −26.3826 −1.95026
\(184\) 0 0
\(185\) 7.57878 0.557203
\(186\) 0 0
\(187\) −2.79360 −0.204289
\(188\) 0 0
\(189\) 4.53077 0.329565
\(190\) 0 0
\(191\) 20.9376 1.51499 0.757496 0.652840i \(-0.226423\pi\)
0.757496 + 0.652840i \(0.226423\pi\)
\(192\) 0 0
\(193\) −6.42412 −0.462419 −0.231209 0.972904i \(-0.574268\pi\)
−0.231209 + 0.972904i \(0.574268\pi\)
\(194\) 0 0
\(195\) −10.7753 −0.771633
\(196\) 0 0
\(197\) 11.2710 0.803022 0.401511 0.915854i \(-0.368485\pi\)
0.401511 + 0.915854i \(0.368485\pi\)
\(198\) 0 0
\(199\) 10.6506 0.755002 0.377501 0.926009i \(-0.376784\pi\)
0.377501 + 0.926009i \(0.376784\pi\)
\(200\) 0 0
\(201\) 22.4767 1.58539
\(202\) 0 0
\(203\) −8.15067 −0.572065
\(204\) 0 0
\(205\) −4.17442 −0.291554
\(206\) 0 0
\(207\) −1.06706 −0.0741659
\(208\) 0 0
\(209\) −12.3724 −0.855816
\(210\) 0 0
\(211\) 6.18974 0.426119 0.213060 0.977039i \(-0.431657\pi\)
0.213060 + 0.977039i \(0.431657\pi\)
\(212\) 0 0
\(213\) 16.4454 1.12682
\(214\) 0 0
\(215\) −26.1157 −1.78107
\(216\) 0 0
\(217\) −9.64771 −0.654929
\(218\) 0 0
\(219\) −4.52503 −0.305773
\(220\) 0 0
\(221\) 1.95199 0.131305
\(222\) 0 0
\(223\) 6.60543 0.442333 0.221166 0.975236i \(-0.429014\pi\)
0.221166 + 0.975236i \(0.429014\pi\)
\(224\) 0 0
\(225\) 2.11507 0.141005
\(226\) 0 0
\(227\) 4.86253 0.322738 0.161369 0.986894i \(-0.448409\pi\)
0.161369 + 0.986894i \(0.448409\pi\)
\(228\) 0 0
\(229\) −7.02748 −0.464389 −0.232194 0.972669i \(-0.574591\pi\)
−0.232194 + 0.972669i \(0.574591\pi\)
\(230\) 0 0
\(231\) 5.31375 0.349619
\(232\) 0 0
\(233\) −14.9010 −0.976194 −0.488097 0.872789i \(-0.662309\pi\)
−0.488097 + 0.872789i \(0.662309\pi\)
\(234\) 0 0
\(235\) −7.71811 −0.503474
\(236\) 0 0
\(237\) 16.3540 1.06231
\(238\) 0 0
\(239\) −15.2775 −0.988220 −0.494110 0.869399i \(-0.664506\pi\)
−0.494110 + 0.869399i \(0.664506\pi\)
\(240\) 0 0
\(241\) −9.20473 −0.592929 −0.296464 0.955044i \(-0.595808\pi\)
−0.296464 + 0.955044i \(0.595808\pi\)
\(242\) 0 0
\(243\) 6.32688 0.405870
\(244\) 0 0
\(245\) 2.90211 0.185409
\(246\) 0 0
\(247\) 8.64502 0.550069
\(248\) 0 0
\(249\) 20.5612 1.30301
\(250\) 0 0
\(251\) −3.33499 −0.210503 −0.105251 0.994446i \(-0.533565\pi\)
−0.105251 + 0.994446i \(0.533565\pi\)
\(252\) 0 0
\(253\) 4.82328 0.303237
\(254\) 0 0
\(255\) −5.52015 −0.345685
\(256\) 0 0
\(257\) −25.2390 −1.57436 −0.787182 0.616721i \(-0.788461\pi\)
−0.787182 + 0.616721i \(0.788461\pi\)
\(258\) 0 0
\(259\) 2.61147 0.162269
\(260\) 0 0
\(261\) −5.03739 −0.311807
\(262\) 0 0
\(263\) −3.67383 −0.226538 −0.113269 0.993564i \(-0.536132\pi\)
−0.113269 + 0.993564i \(0.536132\pi\)
\(264\) 0 0
\(265\) 13.0681 0.802767
\(266\) 0 0
\(267\) 26.7514 1.63716
\(268\) 0 0
\(269\) 29.0167 1.76918 0.884591 0.466367i \(-0.154438\pi\)
0.884591 + 0.466367i \(0.154438\pi\)
\(270\) 0 0
\(271\) −10.6364 −0.646118 −0.323059 0.946379i \(-0.604711\pi\)
−0.323059 + 0.946379i \(0.604711\pi\)
\(272\) 0 0
\(273\) −3.71290 −0.224715
\(274\) 0 0
\(275\) −9.56044 −0.576516
\(276\) 0 0
\(277\) 7.38623 0.443795 0.221898 0.975070i \(-0.428775\pi\)
0.221898 + 0.975070i \(0.428775\pi\)
\(278\) 0 0
\(279\) −5.96261 −0.356972
\(280\) 0 0
\(281\) 15.8802 0.947336 0.473668 0.880703i \(-0.342930\pi\)
0.473668 + 0.880703i \(0.342930\pi\)
\(282\) 0 0
\(283\) −7.20054 −0.428028 −0.214014 0.976831i \(-0.568654\pi\)
−0.214014 + 0.976831i \(0.568654\pi\)
\(284\) 0 0
\(285\) −24.4478 −1.44816
\(286\) 0 0
\(287\) −1.43841 −0.0849064
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) −26.6329 −1.56125
\(292\) 0 0
\(293\) 3.54993 0.207389 0.103695 0.994609i \(-0.466934\pi\)
0.103695 + 0.994609i \(0.466934\pi\)
\(294\) 0 0
\(295\) 35.4485 2.06389
\(296\) 0 0
\(297\) −12.6572 −0.734444
\(298\) 0 0
\(299\) −3.37019 −0.194903
\(300\) 0 0
\(301\) −8.99885 −0.518685
\(302\) 0 0
\(303\) −12.8238 −0.736707
\(304\) 0 0
\(305\) 40.2527 2.30486
\(306\) 0 0
\(307\) −8.41809 −0.480446 −0.240223 0.970718i \(-0.577221\pi\)
−0.240223 + 0.970718i \(0.577221\pi\)
\(308\) 0 0
\(309\) 24.7532 1.40816
\(310\) 0 0
\(311\) 8.25835 0.468288 0.234144 0.972202i \(-0.424771\pi\)
0.234144 + 0.972202i \(0.424771\pi\)
\(312\) 0 0
\(313\) 26.8938 1.52013 0.760063 0.649849i \(-0.225168\pi\)
0.760063 + 0.649849i \(0.225168\pi\)
\(314\) 0 0
\(315\) 1.79360 0.101058
\(316\) 0 0
\(317\) −18.6789 −1.04911 −0.524557 0.851376i \(-0.675769\pi\)
−0.524557 + 0.851376i \(0.675769\pi\)
\(318\) 0 0
\(319\) 22.7697 1.27486
\(320\) 0 0
\(321\) 12.8148 0.715255
\(322\) 0 0
\(323\) 4.42882 0.246426
\(324\) 0 0
\(325\) 6.68021 0.370552
\(326\) 0 0
\(327\) 24.3145 1.34459
\(328\) 0 0
\(329\) −2.65948 −0.146622
\(330\) 0 0
\(331\) −25.9640 −1.42711 −0.713554 0.700600i \(-0.752916\pi\)
−0.713554 + 0.700600i \(0.752916\pi\)
\(332\) 0 0
\(333\) 1.61398 0.0884454
\(334\) 0 0
\(335\) −34.2934 −1.87365
\(336\) 0 0
\(337\) −19.6405 −1.06989 −0.534944 0.844888i \(-0.679667\pi\)
−0.534944 + 0.844888i \(0.679667\pi\)
\(338\) 0 0
\(339\) 0.586497 0.0318541
\(340\) 0 0
\(341\) 26.9519 1.45953
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) 9.53077 0.513119
\(346\) 0 0
\(347\) −6.39155 −0.343116 −0.171558 0.985174i \(-0.554880\pi\)
−0.171558 + 0.985174i \(0.554880\pi\)
\(348\) 0 0
\(349\) −26.4474 −1.41570 −0.707850 0.706363i \(-0.750335\pi\)
−0.707850 + 0.706363i \(0.750335\pi\)
\(350\) 0 0
\(351\) 8.84401 0.472058
\(352\) 0 0
\(353\) 17.8801 0.951662 0.475831 0.879537i \(-0.342147\pi\)
0.475831 + 0.879537i \(0.342147\pi\)
\(354\) 0 0
\(355\) −25.0912 −1.33170
\(356\) 0 0
\(357\) −1.90211 −0.100670
\(358\) 0 0
\(359\) 11.7038 0.617705 0.308852 0.951110i \(-0.400055\pi\)
0.308852 + 0.951110i \(0.400055\pi\)
\(360\) 0 0
\(361\) 0.614487 0.0323414
\(362\) 0 0
\(363\) 6.07872 0.319050
\(364\) 0 0
\(365\) 6.90398 0.361371
\(366\) 0 0
\(367\) −16.8345 −0.878756 −0.439378 0.898302i \(-0.644801\pi\)
−0.439378 + 0.898302i \(0.644801\pi\)
\(368\) 0 0
\(369\) −0.888984 −0.0462787
\(370\) 0 0
\(371\) 4.50296 0.233782
\(372\) 0 0
\(373\) −14.6561 −0.758866 −0.379433 0.925219i \(-0.623881\pi\)
−0.379433 + 0.925219i \(0.623881\pi\)
\(374\) 0 0
\(375\) 8.70936 0.449749
\(376\) 0 0
\(377\) −15.9100 −0.819407
\(378\) 0 0
\(379\) −27.8491 −1.43051 −0.715256 0.698862i \(-0.753690\pi\)
−0.715256 + 0.698862i \(0.753690\pi\)
\(380\) 0 0
\(381\) 33.3523 1.70869
\(382\) 0 0
\(383\) 33.5267 1.71313 0.856566 0.516037i \(-0.172593\pi\)
0.856566 + 0.516037i \(0.172593\pi\)
\(384\) 0 0
\(385\) −8.10736 −0.413189
\(386\) 0 0
\(387\) −5.56159 −0.282712
\(388\) 0 0
\(389\) −33.6009 −1.70364 −0.851818 0.523838i \(-0.824500\pi\)
−0.851818 + 0.523838i \(0.824500\pi\)
\(390\) 0 0
\(391\) −1.72654 −0.0873150
\(392\) 0 0
\(393\) −15.2644 −0.769987
\(394\) 0 0
\(395\) −24.9519 −1.25547
\(396\) 0 0
\(397\) −31.0575 −1.55873 −0.779365 0.626570i \(-0.784458\pi\)
−0.779365 + 0.626570i \(0.784458\pi\)
\(398\) 0 0
\(399\) −8.42412 −0.421734
\(400\) 0 0
\(401\) −18.5519 −0.926438 −0.463219 0.886244i \(-0.653306\pi\)
−0.463219 + 0.886244i \(0.653306\pi\)
\(402\) 0 0
\(403\) −18.8322 −0.938100
\(404\) 0 0
\(405\) −30.3913 −1.51016
\(406\) 0 0
\(407\) −7.29541 −0.361620
\(408\) 0 0
\(409\) 9.75571 0.482389 0.241194 0.970477i \(-0.422461\pi\)
0.241194 + 0.970477i \(0.422461\pi\)
\(410\) 0 0
\(411\) 18.3237 0.903843
\(412\) 0 0
\(413\) 12.2147 0.601047
\(414\) 0 0
\(415\) −31.3708 −1.53993
\(416\) 0 0
\(417\) −31.3951 −1.53742
\(418\) 0 0
\(419\) 18.9350 0.925036 0.462518 0.886610i \(-0.346946\pi\)
0.462518 + 0.886610i \(0.346946\pi\)
\(420\) 0 0
\(421\) −6.43539 −0.313642 −0.156821 0.987627i \(-0.550125\pi\)
−0.156821 + 0.987627i \(0.550125\pi\)
\(422\) 0 0
\(423\) −1.64365 −0.0799170
\(424\) 0 0
\(425\) 3.42226 0.166004
\(426\) 0 0
\(427\) 13.8701 0.671223
\(428\) 0 0
\(429\) 10.3724 0.500783
\(430\) 0 0
\(431\) −10.8690 −0.523540 −0.261770 0.965130i \(-0.584306\pi\)
−0.261770 + 0.965130i \(0.584306\pi\)
\(432\) 0 0
\(433\) −7.15286 −0.343744 −0.171872 0.985119i \(-0.554982\pi\)
−0.171872 + 0.985119i \(0.554982\pi\)
\(434\) 0 0
\(435\) 44.9929 2.15724
\(436\) 0 0
\(437\) −7.64655 −0.365784
\(438\) 0 0
\(439\) 18.3032 0.873564 0.436782 0.899567i \(-0.356118\pi\)
0.436782 + 0.899567i \(0.356118\pi\)
\(440\) 0 0
\(441\) 0.618034 0.0294302
\(442\) 0 0
\(443\) 17.5064 0.831754 0.415877 0.909421i \(-0.363475\pi\)
0.415877 + 0.909421i \(0.363475\pi\)
\(444\) 0 0
\(445\) −40.8154 −1.93484
\(446\) 0 0
\(447\) −41.3024 −1.95354
\(448\) 0 0
\(449\) −27.0075 −1.27456 −0.637281 0.770631i \(-0.719941\pi\)
−0.637281 + 0.770631i \(0.719941\pi\)
\(450\) 0 0
\(451\) 4.01834 0.189216
\(452\) 0 0
\(453\) −26.6969 −1.25433
\(454\) 0 0
\(455\) 5.66489 0.265574
\(456\) 0 0
\(457\) 24.9609 1.16762 0.583812 0.811889i \(-0.301561\pi\)
0.583812 + 0.811889i \(0.301561\pi\)
\(458\) 0 0
\(459\) 4.53077 0.211478
\(460\) 0 0
\(461\) −28.5207 −1.32834 −0.664172 0.747580i \(-0.731216\pi\)
−0.664172 + 0.747580i \(0.731216\pi\)
\(462\) 0 0
\(463\) −11.6455 −0.541213 −0.270606 0.962690i \(-0.587224\pi\)
−0.270606 + 0.962690i \(0.587224\pi\)
\(464\) 0 0
\(465\) 53.2568 2.46972
\(466\) 0 0
\(467\) −19.2776 −0.892060 −0.446030 0.895018i \(-0.647163\pi\)
−0.446030 + 0.895018i \(0.647163\pi\)
\(468\) 0 0
\(469\) −11.8167 −0.545645
\(470\) 0 0
\(471\) 31.3768 1.44577
\(472\) 0 0
\(473\) 25.1392 1.15590
\(474\) 0 0
\(475\) 15.1566 0.695432
\(476\) 0 0
\(477\) 2.78298 0.127424
\(478\) 0 0
\(479\) −2.94471 −0.134547 −0.0672737 0.997735i \(-0.521430\pi\)
−0.0672737 + 0.997735i \(0.521430\pi\)
\(480\) 0 0
\(481\) 5.09756 0.232429
\(482\) 0 0
\(483\) 3.28408 0.149431
\(484\) 0 0
\(485\) 40.6347 1.84513
\(486\) 0 0
\(487\) 35.1535 1.59296 0.796478 0.604668i \(-0.206694\pi\)
0.796478 + 0.604668i \(0.206694\pi\)
\(488\) 0 0
\(489\) 1.79953 0.0813774
\(490\) 0 0
\(491\) 4.50715 0.203405 0.101702 0.994815i \(-0.467571\pi\)
0.101702 + 0.994815i \(0.467571\pi\)
\(492\) 0 0
\(493\) −8.15067 −0.367088
\(494\) 0 0
\(495\) −5.01062 −0.225211
\(496\) 0 0
\(497\) −8.64584 −0.387819
\(498\) 0 0
\(499\) 4.35373 0.194900 0.0974499 0.995240i \(-0.468931\pi\)
0.0974499 + 0.995240i \(0.468931\pi\)
\(500\) 0 0
\(501\) −8.17808 −0.365370
\(502\) 0 0
\(503\) −2.24687 −0.100183 −0.0500915 0.998745i \(-0.515951\pi\)
−0.0500915 + 0.998745i \(0.515951\pi\)
\(504\) 0 0
\(505\) 19.5657 0.870660
\(506\) 0 0
\(507\) 17.4799 0.776311
\(508\) 0 0
\(509\) −13.9732 −0.619353 −0.309676 0.950842i \(-0.600221\pi\)
−0.309676 + 0.950842i \(0.600221\pi\)
\(510\) 0 0
\(511\) 2.37895 0.105238
\(512\) 0 0
\(513\) 20.0660 0.885935
\(514\) 0 0
\(515\) −37.7667 −1.66420
\(516\) 0 0
\(517\) 7.42954 0.326751
\(518\) 0 0
\(519\) −40.3041 −1.76915
\(520\) 0 0
\(521\) −17.7337 −0.776928 −0.388464 0.921464i \(-0.626994\pi\)
−0.388464 + 0.921464i \(0.626994\pi\)
\(522\) 0 0
\(523\) −3.32546 −0.145412 −0.0727060 0.997353i \(-0.523163\pi\)
−0.0727060 + 0.997353i \(0.523163\pi\)
\(524\) 0 0
\(525\) −6.50953 −0.284099
\(526\) 0 0
\(527\) −9.64771 −0.420261
\(528\) 0 0
\(529\) −20.0191 −0.870394
\(530\) 0 0
\(531\) 7.54911 0.327603
\(532\) 0 0
\(533\) −2.80775 −0.121617
\(534\) 0 0
\(535\) −19.5520 −0.845307
\(536\) 0 0
\(537\) −2.73260 −0.117920
\(538\) 0 0
\(539\) −2.79360 −0.120329
\(540\) 0 0
\(541\) 1.65988 0.0713637 0.0356819 0.999363i \(-0.488640\pi\)
0.0356819 + 0.999363i \(0.488640\pi\)
\(542\) 0 0
\(543\) 36.5527 1.56863
\(544\) 0 0
\(545\) −37.0973 −1.58908
\(546\) 0 0
\(547\) −2.19817 −0.0939869 −0.0469934 0.998895i \(-0.514964\pi\)
−0.0469934 + 0.998895i \(0.514964\pi\)
\(548\) 0 0
\(549\) 8.57222 0.365853
\(550\) 0 0
\(551\) −36.0979 −1.53782
\(552\) 0 0
\(553\) −8.59783 −0.365617
\(554\) 0 0
\(555\) −14.4157 −0.611912
\(556\) 0 0
\(557\) 17.5410 0.743236 0.371618 0.928386i \(-0.378803\pi\)
0.371618 + 0.928386i \(0.378803\pi\)
\(558\) 0 0
\(559\) −17.5657 −0.742948
\(560\) 0 0
\(561\) 5.31375 0.224347
\(562\) 0 0
\(563\) 2.69385 0.113532 0.0567662 0.998388i \(-0.481921\pi\)
0.0567662 + 0.998388i \(0.481921\pi\)
\(564\) 0 0
\(565\) −0.894836 −0.0376460
\(566\) 0 0
\(567\) −10.4721 −0.439788
\(568\) 0 0
\(569\) −31.1304 −1.30505 −0.652526 0.757766i \(-0.726291\pi\)
−0.652526 + 0.757766i \(0.726291\pi\)
\(570\) 0 0
\(571\) 18.6992 0.782535 0.391268 0.920277i \(-0.372037\pi\)
0.391268 + 0.920277i \(0.372037\pi\)
\(572\) 0 0
\(573\) −39.8257 −1.66374
\(574\) 0 0
\(575\) −5.90868 −0.246409
\(576\) 0 0
\(577\) −13.5891 −0.565723 −0.282862 0.959161i \(-0.591284\pi\)
−0.282862 + 0.959161i \(0.591284\pi\)
\(578\) 0 0
\(579\) 12.2194 0.507821
\(580\) 0 0
\(581\) −10.8096 −0.448459
\(582\) 0 0
\(583\) −12.5795 −0.520989
\(584\) 0 0
\(585\) 3.50110 0.144753
\(586\) 0 0
\(587\) −32.6212 −1.34642 −0.673210 0.739452i \(-0.735085\pi\)
−0.673210 + 0.739452i \(0.735085\pi\)
\(588\) 0 0
\(589\) −42.7280 −1.76058
\(590\) 0 0
\(591\) −21.4386 −0.881867
\(592\) 0 0
\(593\) −31.4668 −1.29219 −0.646094 0.763258i \(-0.723598\pi\)
−0.646094 + 0.763258i \(0.723598\pi\)
\(594\) 0 0
\(595\) 2.90211 0.118975
\(596\) 0 0
\(597\) −20.2587 −0.829132
\(598\) 0 0
\(599\) −6.11264 −0.249756 −0.124878 0.992172i \(-0.539854\pi\)
−0.124878 + 0.992172i \(0.539854\pi\)
\(600\) 0 0
\(601\) 22.5146 0.918391 0.459195 0.888335i \(-0.348138\pi\)
0.459195 + 0.888335i \(0.348138\pi\)
\(602\) 0 0
\(603\) −7.30313 −0.297406
\(604\) 0 0
\(605\) −9.27450 −0.377062
\(606\) 0 0
\(607\) −39.8932 −1.61922 −0.809608 0.586972i \(-0.800320\pi\)
−0.809608 + 0.586972i \(0.800320\pi\)
\(608\) 0 0
\(609\) 15.5035 0.628233
\(610\) 0 0
\(611\) −5.19128 −0.210017
\(612\) 0 0
\(613\) 3.86002 0.155905 0.0779524 0.996957i \(-0.475162\pi\)
0.0779524 + 0.996957i \(0.475162\pi\)
\(614\) 0 0
\(615\) 7.94021 0.320180
\(616\) 0 0
\(617\) −12.1932 −0.490878 −0.245439 0.969412i \(-0.578932\pi\)
−0.245439 + 0.969412i \(0.578932\pi\)
\(618\) 0 0
\(619\) 25.8738 1.03995 0.519977 0.854180i \(-0.325940\pi\)
0.519977 + 0.854180i \(0.325940\pi\)
\(620\) 0 0
\(621\) −7.82256 −0.313909
\(622\) 0 0
\(623\) −14.0640 −0.563464
\(624\) 0 0
\(625\) −30.3994 −1.21598
\(626\) 0 0
\(627\) 23.5337 0.939844
\(628\) 0 0
\(629\) 2.61147 0.104126
\(630\) 0 0
\(631\) 3.12254 0.124307 0.0621533 0.998067i \(-0.480203\pi\)
0.0621533 + 0.998067i \(0.480203\pi\)
\(632\) 0 0
\(633\) −11.7736 −0.467958
\(634\) 0 0
\(635\) −50.8866 −2.01937
\(636\) 0 0
\(637\) 1.95199 0.0773406
\(638\) 0 0
\(639\) −5.34342 −0.211383
\(640\) 0 0
\(641\) −34.7538 −1.37269 −0.686346 0.727275i \(-0.740787\pi\)
−0.686346 + 0.727275i \(0.740787\pi\)
\(642\) 0 0
\(643\) −15.6588 −0.617524 −0.308762 0.951139i \(-0.599915\pi\)
−0.308762 + 0.951139i \(0.599915\pi\)
\(644\) 0 0
\(645\) 49.6750 1.95595
\(646\) 0 0
\(647\) −0.281062 −0.0110497 −0.00552484 0.999985i \(-0.501759\pi\)
−0.00552484 + 0.999985i \(0.501759\pi\)
\(648\) 0 0
\(649\) −34.1231 −1.33945
\(650\) 0 0
\(651\) 18.3510 0.719234
\(652\) 0 0
\(653\) −25.4043 −0.994149 −0.497074 0.867708i \(-0.665592\pi\)
−0.497074 + 0.867708i \(0.665592\pi\)
\(654\) 0 0
\(655\) 23.2894 0.909991
\(656\) 0 0
\(657\) 1.47027 0.0573607
\(658\) 0 0
\(659\) −23.5745 −0.918332 −0.459166 0.888350i \(-0.651852\pi\)
−0.459166 + 0.888350i \(0.651852\pi\)
\(660\) 0 0
\(661\) −19.6922 −0.765937 −0.382968 0.923761i \(-0.625098\pi\)
−0.382968 + 0.923761i \(0.625098\pi\)
\(662\) 0 0
\(663\) −3.71290 −0.144197
\(664\) 0 0
\(665\) 12.8529 0.498416
\(666\) 0 0
\(667\) 14.0725 0.544888
\(668\) 0 0
\(669\) −12.5643 −0.485763
\(670\) 0 0
\(671\) −38.7477 −1.49584
\(672\) 0 0
\(673\) 19.9387 0.768579 0.384290 0.923213i \(-0.374446\pi\)
0.384290 + 0.923213i \(0.374446\pi\)
\(674\) 0 0
\(675\) 15.5055 0.596806
\(676\) 0 0
\(677\) 37.5264 1.44225 0.721127 0.692802i \(-0.243624\pi\)
0.721127 + 0.692802i \(0.243624\pi\)
\(678\) 0 0
\(679\) 14.0018 0.537338
\(680\) 0 0
\(681\) −9.24908 −0.354426
\(682\) 0 0
\(683\) −10.2394 −0.391800 −0.195900 0.980624i \(-0.562763\pi\)
−0.195900 + 0.980624i \(0.562763\pi\)
\(684\) 0 0
\(685\) −27.9571 −1.06819
\(686\) 0 0
\(687\) 13.3671 0.509985
\(688\) 0 0
\(689\) 8.78973 0.334862
\(690\) 0 0
\(691\) −45.0051 −1.71208 −0.856038 0.516913i \(-0.827081\pi\)
−0.856038 + 0.516913i \(0.827081\pi\)
\(692\) 0 0
\(693\) −1.72654 −0.0655859
\(694\) 0 0
\(695\) 47.9004 1.81697
\(696\) 0 0
\(697\) −1.43841 −0.0544835
\(698\) 0 0
\(699\) 28.3433 1.07204
\(700\) 0 0
\(701\) −10.2087 −0.385576 −0.192788 0.981240i \(-0.561753\pi\)
−0.192788 + 0.981240i \(0.561753\pi\)
\(702\) 0 0
\(703\) 11.5657 0.436210
\(704\) 0 0
\(705\) 14.6807 0.552908
\(706\) 0 0
\(707\) 6.74186 0.253554
\(708\) 0 0
\(709\) 14.1455 0.531244 0.265622 0.964077i \(-0.414423\pi\)
0.265622 + 0.964077i \(0.414423\pi\)
\(710\) 0 0
\(711\) −5.31375 −0.199281
\(712\) 0 0
\(713\) 16.6572 0.623816
\(714\) 0 0
\(715\) −15.8255 −0.591839
\(716\) 0 0
\(717\) 29.0596 1.08525
\(718\) 0 0
\(719\) −23.6932 −0.883608 −0.441804 0.897112i \(-0.645661\pi\)
−0.441804 + 0.897112i \(0.645661\pi\)
\(720\) 0 0
\(721\) −13.0135 −0.484649
\(722\) 0 0
\(723\) 17.5084 0.651146
\(724\) 0 0
\(725\) −27.8937 −1.03595
\(726\) 0 0
\(727\) 37.2401 1.38116 0.690579 0.723257i \(-0.257356\pi\)
0.690579 + 0.723257i \(0.257356\pi\)
\(728\) 0 0
\(729\) 19.3820 0.717851
\(730\) 0 0
\(731\) −8.99885 −0.332834
\(732\) 0 0
\(733\) 32.7721 1.21047 0.605233 0.796048i \(-0.293080\pi\)
0.605233 + 0.796048i \(0.293080\pi\)
\(734\) 0 0
\(735\) −5.52015 −0.203614
\(736\) 0 0
\(737\) 33.0112 1.21598
\(738\) 0 0
\(739\) 36.2193 1.33235 0.666173 0.745797i \(-0.267931\pi\)
0.666173 + 0.745797i \(0.267931\pi\)
\(740\) 0 0
\(741\) −16.4438 −0.604078
\(742\) 0 0
\(743\) −15.8313 −0.580793 −0.290397 0.956906i \(-0.593787\pi\)
−0.290397 + 0.956906i \(0.593787\pi\)
\(744\) 0 0
\(745\) 63.0163 2.30874
\(746\) 0 0
\(747\) −6.68072 −0.244435
\(748\) 0 0
\(749\) −6.73716 −0.246171
\(750\) 0 0
\(751\) 16.6958 0.609238 0.304619 0.952474i \(-0.401471\pi\)
0.304619 + 0.952474i \(0.401471\pi\)
\(752\) 0 0
\(753\) 6.34354 0.231171
\(754\) 0 0
\(755\) 40.7324 1.48240
\(756\) 0 0
\(757\) 1.51840 0.0551870 0.0275935 0.999619i \(-0.491216\pi\)
0.0275935 + 0.999619i \(0.491216\pi\)
\(758\) 0 0
\(759\) −9.17442 −0.333010
\(760\) 0 0
\(761\) 30.7816 1.11583 0.557916 0.829898i \(-0.311601\pi\)
0.557916 + 0.829898i \(0.311601\pi\)
\(762\) 0 0
\(763\) −12.7829 −0.462771
\(764\) 0 0
\(765\) 1.79360 0.0648479
\(766\) 0 0
\(767\) 23.8430 0.860920
\(768\) 0 0
\(769\) −29.7281 −1.07202 −0.536012 0.844211i \(-0.680070\pi\)
−0.536012 + 0.844211i \(0.680070\pi\)
\(770\) 0 0
\(771\) 48.0074 1.72894
\(772\) 0 0
\(773\) 21.8814 0.787019 0.393510 0.919320i \(-0.371261\pi\)
0.393510 + 0.919320i \(0.371261\pi\)
\(774\) 0 0
\(775\) −33.0170 −1.18600
\(776\) 0 0
\(777\) −4.96731 −0.178201
\(778\) 0 0
\(779\) −6.37045 −0.228245
\(780\) 0 0
\(781\) 24.1531 0.864265
\(782\) 0 0
\(783\) −36.9288 −1.31973
\(784\) 0 0
\(785\) −47.8726 −1.70865
\(786\) 0 0
\(787\) −42.6904 −1.52175 −0.760873 0.648900i \(-0.775229\pi\)
−0.760873 + 0.648900i \(0.775229\pi\)
\(788\) 0 0
\(789\) 6.98804 0.248781
\(790\) 0 0
\(791\) −0.308340 −0.0109633
\(792\) 0 0
\(793\) 27.0744 0.961438
\(794\) 0 0
\(795\) −24.8570 −0.881587
\(796\) 0 0
\(797\) −26.3412 −0.933054 −0.466527 0.884507i \(-0.654495\pi\)
−0.466527 + 0.884507i \(0.654495\pi\)
\(798\) 0 0
\(799\) −2.65948 −0.0940857
\(800\) 0 0
\(801\) −8.69206 −0.307119
\(802\) 0 0
\(803\) −6.64584 −0.234527
\(804\) 0 0
\(805\) −5.01062 −0.176601
\(806\) 0 0
\(807\) −55.1931 −1.94289
\(808\) 0 0
\(809\) 8.65929 0.304444 0.152222 0.988346i \(-0.451357\pi\)
0.152222 + 0.988346i \(0.451357\pi\)
\(810\) 0 0
\(811\) −39.4372 −1.38483 −0.692414 0.721501i \(-0.743453\pi\)
−0.692414 + 0.721501i \(0.743453\pi\)
\(812\) 0 0
\(813\) 20.2317 0.709557
\(814\) 0 0
\(815\) −2.74559 −0.0961739
\(816\) 0 0
\(817\) −39.8543 −1.39433
\(818\) 0 0
\(819\) 1.20640 0.0421549
\(820\) 0 0
\(821\) −4.95450 −0.172913 −0.0864566 0.996256i \(-0.527554\pi\)
−0.0864566 + 0.996256i \(0.527554\pi\)
\(822\) 0 0
\(823\) 10.1166 0.352643 0.176321 0.984333i \(-0.443580\pi\)
0.176321 + 0.984333i \(0.443580\pi\)
\(824\) 0 0
\(825\) 18.1850 0.633122
\(826\) 0 0
\(827\) 2.43956 0.0848318 0.0424159 0.999100i \(-0.486495\pi\)
0.0424159 + 0.999100i \(0.486495\pi\)
\(828\) 0 0
\(829\) 33.3853 1.15952 0.579759 0.814788i \(-0.303147\pi\)
0.579759 + 0.814788i \(0.303147\pi\)
\(830\) 0 0
\(831\) −14.0494 −0.487370
\(832\) 0 0
\(833\) 1.00000 0.0346479
\(834\) 0 0
\(835\) 12.4775 0.431803
\(836\) 0 0
\(837\) −43.7115 −1.51089
\(838\) 0 0
\(839\) −30.9726 −1.06929 −0.534647 0.845076i \(-0.679555\pi\)
−0.534647 + 0.845076i \(0.679555\pi\)
\(840\) 0 0
\(841\) 37.4334 1.29081
\(842\) 0 0
\(843\) −30.2060 −1.04035
\(844\) 0 0
\(845\) −26.6697 −0.917464
\(846\) 0 0
\(847\) −3.19577 −0.109808
\(848\) 0 0
\(849\) 13.6962 0.470054
\(850\) 0 0
\(851\) −4.50881 −0.154560
\(852\) 0 0
\(853\) 3.38771 0.115993 0.0579964 0.998317i \(-0.481529\pi\)
0.0579964 + 0.998317i \(0.481529\pi\)
\(854\) 0 0
\(855\) 7.94356 0.271664
\(856\) 0 0
\(857\) 35.6814 1.21885 0.609427 0.792843i \(-0.291400\pi\)
0.609427 + 0.792843i \(0.291400\pi\)
\(858\) 0 0
\(859\) −55.8516 −1.90563 −0.952815 0.303551i \(-0.901828\pi\)
−0.952815 + 0.303551i \(0.901828\pi\)
\(860\) 0 0
\(861\) 2.73601 0.0932430
\(862\) 0 0
\(863\) 28.3101 0.963687 0.481843 0.876257i \(-0.339967\pi\)
0.481843 + 0.876257i \(0.339967\pi\)
\(864\) 0 0
\(865\) 61.4932 2.09083
\(866\) 0 0
\(867\) −1.90211 −0.0645991
\(868\) 0 0
\(869\) 24.0189 0.814787
\(870\) 0 0
\(871\) −23.0661 −0.781565
\(872\) 0 0
\(873\) 8.65356 0.292879
\(874\) 0 0
\(875\) −4.57878 −0.154791
\(876\) 0 0
\(877\) 18.8417 0.636239 0.318120 0.948051i \(-0.396949\pi\)
0.318120 + 0.948051i \(0.396949\pi\)
\(878\) 0 0
\(879\) −6.75237 −0.227752
\(880\) 0 0
\(881\) 9.85205 0.331924 0.165962 0.986132i \(-0.446927\pi\)
0.165962 + 0.986132i \(0.446927\pi\)
\(882\) 0 0
\(883\) 48.1062 1.61890 0.809451 0.587187i \(-0.199765\pi\)
0.809451 + 0.587187i \(0.199765\pi\)
\(884\) 0 0
\(885\) −67.4270 −2.26653
\(886\) 0 0
\(887\) 15.5193 0.521085 0.260543 0.965462i \(-0.416099\pi\)
0.260543 + 0.965462i \(0.416099\pi\)
\(888\) 0 0
\(889\) −17.5343 −0.588082
\(890\) 0 0
\(891\) 29.2550 0.980080
\(892\) 0 0
\(893\) −11.7784 −0.394148
\(894\) 0 0
\(895\) 4.16921 0.139361
\(896\) 0 0
\(897\) 6.41049 0.214040
\(898\) 0 0
\(899\) 78.6352 2.62263
\(900\) 0 0
\(901\) 4.50296 0.150015
\(902\) 0 0
\(903\) 17.1168 0.569612
\(904\) 0 0
\(905\) −55.7696 −1.85385
\(906\) 0 0
\(907\) 6.54332 0.217268 0.108634 0.994082i \(-0.465352\pi\)
0.108634 + 0.994082i \(0.465352\pi\)
\(908\) 0 0
\(909\) 4.16670 0.138201
\(910\) 0 0
\(911\) 32.1539 1.06531 0.532653 0.846334i \(-0.321195\pi\)
0.532653 + 0.846334i \(0.321195\pi\)
\(912\) 0 0
\(913\) 30.1979 0.999403
\(914\) 0 0
\(915\) −76.5652 −2.53117
\(916\) 0 0
\(917\) 8.02497 0.265008
\(918\) 0 0
\(919\) −10.0708 −0.332205 −0.166103 0.986108i \(-0.553118\pi\)
−0.166103 + 0.986108i \(0.553118\pi\)
\(920\) 0 0
\(921\) 16.0122 0.527619
\(922\) 0 0
\(923\) −16.8766 −0.555500
\(924\) 0 0
\(925\) 8.93713 0.293851
\(926\) 0 0
\(927\) −8.04280 −0.264160
\(928\) 0 0
\(929\) −30.5780 −1.00323 −0.501616 0.865090i \(-0.667261\pi\)
−0.501616 + 0.865090i \(0.667261\pi\)
\(930\) 0 0
\(931\) 4.42882 0.145149
\(932\) 0 0
\(933\) −15.7083 −0.514267
\(934\) 0 0
\(935\) −8.10736 −0.265139
\(936\) 0 0
\(937\) −18.1504 −0.592946 −0.296473 0.955041i \(-0.595811\pi\)
−0.296473 + 0.955041i \(0.595811\pi\)
\(938\) 0 0
\(939\) −51.1550 −1.66938
\(940\) 0 0
\(941\) −11.2139 −0.365564 −0.182782 0.983153i \(-0.558510\pi\)
−0.182782 + 0.983153i \(0.558510\pi\)
\(942\) 0 0
\(943\) 2.48347 0.0808729
\(944\) 0 0
\(945\) 13.1488 0.427731
\(946\) 0 0
\(947\) 22.8990 0.744118 0.372059 0.928209i \(-0.378652\pi\)
0.372059 + 0.928209i \(0.378652\pi\)
\(948\) 0 0
\(949\) 4.64368 0.150740
\(950\) 0 0
\(951\) 35.5294 1.15212
\(952\) 0 0
\(953\) −41.4874 −1.34391 −0.671955 0.740592i \(-0.734545\pi\)
−0.671955 + 0.740592i \(0.734545\pi\)
\(954\) 0 0
\(955\) 60.7633 1.96625
\(956\) 0 0
\(957\) −43.3106 −1.40003
\(958\) 0 0
\(959\) −9.63336 −0.311077
\(960\) 0 0
\(961\) 62.0782 2.00252
\(962\) 0 0
\(963\) −4.16380 −0.134176
\(964\) 0 0
\(965\) −18.6435 −0.600157
\(966\) 0 0
\(967\) −9.33686 −0.300253 −0.150127 0.988667i \(-0.547968\pi\)
−0.150127 + 0.988667i \(0.547968\pi\)
\(968\) 0 0
\(969\) −8.42412 −0.270622
\(970\) 0 0
\(971\) −44.8227 −1.43843 −0.719215 0.694788i \(-0.755498\pi\)
−0.719215 + 0.694788i \(0.755498\pi\)
\(972\) 0 0
\(973\) 16.5054 0.529137
\(974\) 0 0
\(975\) −12.7065 −0.406934
\(976\) 0 0
\(977\) 0.741221 0.0237138 0.0118569 0.999930i \(-0.496226\pi\)
0.0118569 + 0.999930i \(0.496226\pi\)
\(978\) 0 0
\(979\) 39.2894 1.25569
\(980\) 0 0
\(981\) −7.90025 −0.252236
\(982\) 0 0
\(983\) 34.0128 1.08484 0.542419 0.840108i \(-0.317508\pi\)
0.542419 + 0.840108i \(0.317508\pi\)
\(984\) 0 0
\(985\) 32.7096 1.04221
\(986\) 0 0
\(987\) 5.05863 0.161018
\(988\) 0 0
\(989\) 15.5369 0.494044
\(990\) 0 0
\(991\) 24.1068 0.765779 0.382890 0.923794i \(-0.374929\pi\)
0.382890 + 0.923794i \(0.374929\pi\)
\(992\) 0 0
\(993\) 49.3864 1.56723
\(994\) 0 0
\(995\) 30.9093 0.979890
\(996\) 0 0
\(997\) −33.1039 −1.04841 −0.524205 0.851592i \(-0.675638\pi\)
−0.524205 + 0.851592i \(0.675638\pi\)
\(998\) 0 0
\(999\) 11.8320 0.374347
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7616.2.a.bm.1.1 4
4.3 odd 2 7616.2.a.bl.1.4 4
8.3 odd 2 3808.2.a.c.1.1 4
8.5 even 2 3808.2.a.d.1.4 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3808.2.a.c.1.1 4 8.3 odd 2
3808.2.a.d.1.4 yes 4 8.5 even 2
7616.2.a.bl.1.4 4 4.3 odd 2
7616.2.a.bm.1.1 4 1.1 even 1 trivial