Properties

Label 7616.2.a.bb.1.3
Level $7616$
Weight $2$
Character 7616.1
Self dual yes
Analytic conductor $60.814$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7616,2,Mod(1,7616)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7616, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7616.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 7616 = 2^{6} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7616.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,-3,0,5,0,-3,0,2,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.8140661794\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.229.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 4x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 952)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.86081\) of defining polynomial
Character \(\chi\) \(=\) 7616.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.860806 q^{3} +2.46260 q^{5} -1.00000 q^{7} -2.25901 q^{9} -3.72161 q^{11} -4.64681 q^{13} +2.11982 q^{15} -1.00000 q^{17} +0.925197 q^{19} -0.860806 q^{21} +6.64681 q^{23} +1.06439 q^{25} -4.52699 q^{27} +4.92520 q^{29} +5.90582 q^{31} -3.20359 q^{33} -2.46260 q^{35} +8.92520 q^{37} -4.00000 q^{39} -3.93561 q^{41} +9.50761 q^{43} -5.56304 q^{45} -3.44322 q^{47} +1.00000 q^{49} -0.860806 q^{51} +4.33382 q^{53} -9.16484 q^{55} +0.796415 q^{57} -13.2936 q^{59} +10.8608 q^{61} +2.25901 q^{63} -11.4432 q^{65} +7.38780 q^{67} +5.72161 q^{69} -15.8116 q^{71} +7.37883 q^{73} +0.916234 q^{75} +3.72161 q^{77} -4.00000 q^{79} +2.88018 q^{81} -3.07480 q^{83} -2.46260 q^{85} +4.23964 q^{87} +6.49720 q^{89} +4.64681 q^{91} +5.08377 q^{93} +2.27839 q^{95} -10.5526 q^{97} +8.40717 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{3} + 5 q^{5} - 3 q^{7} + 2 q^{9} + 2 q^{13} - 8 q^{15} - 3 q^{17} - 2 q^{19} + 3 q^{21} + 4 q^{23} + 4 q^{25} - 12 q^{27} + 10 q^{29} - 7 q^{31} - 16 q^{33} - 5 q^{35} + 22 q^{37} - 12 q^{39}+ \cdots + 38 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.860806 0.496986 0.248493 0.968634i \(-0.420065\pi\)
0.248493 + 0.968634i \(0.420065\pi\)
\(4\) 0 0
\(5\) 2.46260 1.10131 0.550654 0.834734i \(-0.314378\pi\)
0.550654 + 0.834734i \(0.314378\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) −2.25901 −0.753004
\(10\) 0 0
\(11\) −3.72161 −1.12211 −0.561054 0.827779i \(-0.689604\pi\)
−0.561054 + 0.827779i \(0.689604\pi\)
\(12\) 0 0
\(13\) −4.64681 −1.28879 −0.644396 0.764692i \(-0.722891\pi\)
−0.644396 + 0.764692i \(0.722891\pi\)
\(14\) 0 0
\(15\) 2.11982 0.547335
\(16\) 0 0
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) 0.925197 0.212255 0.106127 0.994353i \(-0.466155\pi\)
0.106127 + 0.994353i \(0.466155\pi\)
\(20\) 0 0
\(21\) −0.860806 −0.187843
\(22\) 0 0
\(23\) 6.64681 1.38596 0.692978 0.720959i \(-0.256298\pi\)
0.692978 + 0.720959i \(0.256298\pi\)
\(24\) 0 0
\(25\) 1.06439 0.212878
\(26\) 0 0
\(27\) −4.52699 −0.871220
\(28\) 0 0
\(29\) 4.92520 0.914586 0.457293 0.889316i \(-0.348819\pi\)
0.457293 + 0.889316i \(0.348819\pi\)
\(30\) 0 0
\(31\) 5.90582 1.06072 0.530358 0.847773i \(-0.322057\pi\)
0.530358 + 0.847773i \(0.322057\pi\)
\(32\) 0 0
\(33\) −3.20359 −0.557673
\(34\) 0 0
\(35\) −2.46260 −0.416255
\(36\) 0 0
\(37\) 8.92520 1.46729 0.733647 0.679531i \(-0.237817\pi\)
0.733647 + 0.679531i \(0.237817\pi\)
\(38\) 0 0
\(39\) −4.00000 −0.640513
\(40\) 0 0
\(41\) −3.93561 −0.614639 −0.307319 0.951606i \(-0.599432\pi\)
−0.307319 + 0.951606i \(0.599432\pi\)
\(42\) 0 0
\(43\) 9.50761 1.44990 0.724949 0.688803i \(-0.241863\pi\)
0.724949 + 0.688803i \(0.241863\pi\)
\(44\) 0 0
\(45\) −5.56304 −0.829289
\(46\) 0 0
\(47\) −3.44322 −0.502246 −0.251123 0.967955i \(-0.580800\pi\)
−0.251123 + 0.967955i \(0.580800\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −0.860806 −0.120537
\(52\) 0 0
\(53\) 4.33382 0.595295 0.297648 0.954676i \(-0.403798\pi\)
0.297648 + 0.954676i \(0.403798\pi\)
\(54\) 0 0
\(55\) −9.16484 −1.23579
\(56\) 0 0
\(57\) 0.796415 0.105488
\(58\) 0 0
\(59\) −13.2936 −1.73068 −0.865341 0.501184i \(-0.832898\pi\)
−0.865341 + 0.501184i \(0.832898\pi\)
\(60\) 0 0
\(61\) 10.8608 1.39058 0.695292 0.718728i \(-0.255275\pi\)
0.695292 + 0.718728i \(0.255275\pi\)
\(62\) 0 0
\(63\) 2.25901 0.284609
\(64\) 0 0
\(65\) −11.4432 −1.41936
\(66\) 0 0
\(67\) 7.38780 0.902563 0.451281 0.892382i \(-0.350967\pi\)
0.451281 + 0.892382i \(0.350967\pi\)
\(68\) 0 0
\(69\) 5.72161 0.688801
\(70\) 0 0
\(71\) −15.8116 −1.87650 −0.938248 0.345962i \(-0.887553\pi\)
−0.938248 + 0.345962i \(0.887553\pi\)
\(72\) 0 0
\(73\) 7.37883 0.863627 0.431814 0.901963i \(-0.357874\pi\)
0.431814 + 0.901963i \(0.357874\pi\)
\(74\) 0 0
\(75\) 0.916234 0.105798
\(76\) 0 0
\(77\) 3.72161 0.424117
\(78\) 0 0
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) 0 0
\(81\) 2.88018 0.320020
\(82\) 0 0
\(83\) −3.07480 −0.337503 −0.168752 0.985659i \(-0.553974\pi\)
−0.168752 + 0.985659i \(0.553974\pi\)
\(84\) 0 0
\(85\) −2.46260 −0.267106
\(86\) 0 0
\(87\) 4.23964 0.454537
\(88\) 0 0
\(89\) 6.49720 0.688702 0.344351 0.938841i \(-0.388099\pi\)
0.344351 + 0.938841i \(0.388099\pi\)
\(90\) 0 0
\(91\) 4.64681 0.487118
\(92\) 0 0
\(93\) 5.08377 0.527162
\(94\) 0 0
\(95\) 2.27839 0.233758
\(96\) 0 0
\(97\) −10.5526 −1.07146 −0.535729 0.844390i \(-0.679963\pi\)
−0.535729 + 0.844390i \(0.679963\pi\)
\(98\) 0 0
\(99\) 8.40717 0.844952
\(100\) 0 0
\(101\) 17.0152 1.69308 0.846539 0.532326i \(-0.178682\pi\)
0.846539 + 0.532326i \(0.178682\pi\)
\(102\) 0 0
\(103\) −4.92520 −0.485294 −0.242647 0.970115i \(-0.578016\pi\)
−0.242647 + 0.970115i \(0.578016\pi\)
\(104\) 0 0
\(105\) −2.11982 −0.206873
\(106\) 0 0
\(107\) 20.0900 1.94218 0.971088 0.238720i \(-0.0767279\pi\)
0.971088 + 0.238720i \(0.0767279\pi\)
\(108\) 0 0
\(109\) 12.4972 1.19701 0.598507 0.801117i \(-0.295761\pi\)
0.598507 + 0.801117i \(0.295761\pi\)
\(110\) 0 0
\(111\) 7.68286 0.729225
\(112\) 0 0
\(113\) 19.5333 1.83753 0.918767 0.394800i \(-0.129186\pi\)
0.918767 + 0.394800i \(0.129186\pi\)
\(114\) 0 0
\(115\) 16.3684 1.52636
\(116\) 0 0
\(117\) 10.4972 0.970467
\(118\) 0 0
\(119\) 1.00000 0.0916698
\(120\) 0 0
\(121\) 2.85039 0.259127
\(122\) 0 0
\(123\) −3.38780 −0.305467
\(124\) 0 0
\(125\) −9.69182 −0.866863
\(126\) 0 0
\(127\) 2.83102 0.251212 0.125606 0.992080i \(-0.459912\pi\)
0.125606 + 0.992080i \(0.459912\pi\)
\(128\) 0 0
\(129\) 8.18421 0.720580
\(130\) 0 0
\(131\) −10.7964 −0.943287 −0.471644 0.881789i \(-0.656339\pi\)
−0.471644 + 0.881789i \(0.656339\pi\)
\(132\) 0 0
\(133\) −0.925197 −0.0802247
\(134\) 0 0
\(135\) −11.1482 −0.959481
\(136\) 0 0
\(137\) 13.6572 1.16682 0.583408 0.812180i \(-0.301719\pi\)
0.583408 + 0.812180i \(0.301719\pi\)
\(138\) 0 0
\(139\) −5.51658 −0.467910 −0.233955 0.972247i \(-0.575167\pi\)
−0.233955 + 0.972247i \(0.575167\pi\)
\(140\) 0 0
\(141\) −2.96395 −0.249609
\(142\) 0 0
\(143\) 17.2936 1.44616
\(144\) 0 0
\(145\) 12.1288 1.00724
\(146\) 0 0
\(147\) 0.860806 0.0709981
\(148\) 0 0
\(149\) 2.34278 0.191928 0.0959640 0.995385i \(-0.469407\pi\)
0.0959640 + 0.995385i \(0.469407\pi\)
\(150\) 0 0
\(151\) 5.63640 0.458683 0.229342 0.973346i \(-0.426343\pi\)
0.229342 + 0.973346i \(0.426343\pi\)
\(152\) 0 0
\(153\) 2.25901 0.182630
\(154\) 0 0
\(155\) 14.5437 1.16818
\(156\) 0 0
\(157\) 0.518027 0.0413430 0.0206715 0.999786i \(-0.493420\pi\)
0.0206715 + 0.999786i \(0.493420\pi\)
\(158\) 0 0
\(159\) 3.73057 0.295854
\(160\) 0 0
\(161\) −6.64681 −0.523842
\(162\) 0 0
\(163\) −0.149606 −0.0117181 −0.00585904 0.999983i \(-0.501865\pi\)
−0.00585904 + 0.999983i \(0.501865\pi\)
\(164\) 0 0
\(165\) −7.88914 −0.614169
\(166\) 0 0
\(167\) −12.9508 −1.00217 −0.501083 0.865399i \(-0.667065\pi\)
−0.501083 + 0.865399i \(0.667065\pi\)
\(168\) 0 0
\(169\) 8.59283 0.660987
\(170\) 0 0
\(171\) −2.09003 −0.159829
\(172\) 0 0
\(173\) 3.41758 0.259834 0.129917 0.991525i \(-0.458529\pi\)
0.129917 + 0.991525i \(0.458529\pi\)
\(174\) 0 0
\(175\) −1.06439 −0.0804604
\(176\) 0 0
\(177\) −11.4432 −0.860125
\(178\) 0 0
\(179\) −0.471561 −0.0352461 −0.0176231 0.999845i \(-0.505610\pi\)
−0.0176231 + 0.999845i \(0.505610\pi\)
\(180\) 0 0
\(181\) 16.2396 1.20708 0.603541 0.797332i \(-0.293756\pi\)
0.603541 + 0.797332i \(0.293756\pi\)
\(182\) 0 0
\(183\) 9.34905 0.691101
\(184\) 0 0
\(185\) 21.9792 1.61594
\(186\) 0 0
\(187\) 3.72161 0.272151
\(188\) 0 0
\(189\) 4.52699 0.329290
\(190\) 0 0
\(191\) 14.1634 1.02483 0.512413 0.858739i \(-0.328752\pi\)
0.512413 + 0.858739i \(0.328752\pi\)
\(192\) 0 0
\(193\) 4.94602 0.356022 0.178011 0.984028i \(-0.443034\pi\)
0.178011 + 0.984028i \(0.443034\pi\)
\(194\) 0 0
\(195\) −9.85039 −0.705401
\(196\) 0 0
\(197\) 21.5333 1.53418 0.767090 0.641539i \(-0.221704\pi\)
0.767090 + 0.641539i \(0.221704\pi\)
\(198\) 0 0
\(199\) −15.3580 −1.08870 −0.544350 0.838858i \(-0.683224\pi\)
−0.544350 + 0.838858i \(0.683224\pi\)
\(200\) 0 0
\(201\) 6.35946 0.448562
\(202\) 0 0
\(203\) −4.92520 −0.345681
\(204\) 0 0
\(205\) −9.69182 −0.676906
\(206\) 0 0
\(207\) −15.0152 −1.04363
\(208\) 0 0
\(209\) −3.44322 −0.238173
\(210\) 0 0
\(211\) 16.5180 1.13715 0.568574 0.822632i \(-0.307495\pi\)
0.568574 + 0.822632i \(0.307495\pi\)
\(212\) 0 0
\(213\) −13.6108 −0.932594
\(214\) 0 0
\(215\) 23.4134 1.59678
\(216\) 0 0
\(217\) −5.90582 −0.400913
\(218\) 0 0
\(219\) 6.35174 0.429211
\(220\) 0 0
\(221\) 4.64681 0.312578
\(222\) 0 0
\(223\) 7.63158 0.511048 0.255524 0.966803i \(-0.417752\pi\)
0.255524 + 0.966803i \(0.417752\pi\)
\(224\) 0 0
\(225\) −2.40447 −0.160298
\(226\) 0 0
\(227\) 17.8850 1.18707 0.593534 0.804809i \(-0.297732\pi\)
0.593534 + 0.804809i \(0.297732\pi\)
\(228\) 0 0
\(229\) 4.27839 0.282724 0.141362 0.989958i \(-0.454852\pi\)
0.141362 + 0.989958i \(0.454852\pi\)
\(230\) 0 0
\(231\) 3.20359 0.210780
\(232\) 0 0
\(233\) −18.0692 −1.18375 −0.591877 0.806029i \(-0.701613\pi\)
−0.591877 + 0.806029i \(0.701613\pi\)
\(234\) 0 0
\(235\) −8.47928 −0.553127
\(236\) 0 0
\(237\) −3.44322 −0.223661
\(238\) 0 0
\(239\) −0.770774 −0.0498572 −0.0249286 0.999689i \(-0.507936\pi\)
−0.0249286 + 0.999689i \(0.507936\pi\)
\(240\) 0 0
\(241\) −13.9959 −0.901552 −0.450776 0.892637i \(-0.648853\pi\)
−0.450776 + 0.892637i \(0.648853\pi\)
\(242\) 0 0
\(243\) 16.0602 1.03027
\(244\) 0 0
\(245\) 2.46260 0.157330
\(246\) 0 0
\(247\) −4.29921 −0.273552
\(248\) 0 0
\(249\) −2.64681 −0.167735
\(250\) 0 0
\(251\) 4.92520 0.310876 0.155438 0.987846i \(-0.450321\pi\)
0.155438 + 0.987846i \(0.450321\pi\)
\(252\) 0 0
\(253\) −24.7368 −1.55519
\(254\) 0 0
\(255\) −2.11982 −0.132748
\(256\) 0 0
\(257\) 26.9765 1.68275 0.841373 0.540454i \(-0.181748\pi\)
0.841373 + 0.540454i \(0.181748\pi\)
\(258\) 0 0
\(259\) −8.92520 −0.554585
\(260\) 0 0
\(261\) −11.1261 −0.688687
\(262\) 0 0
\(263\) −10.5872 −0.652837 −0.326418 0.945225i \(-0.605842\pi\)
−0.326418 + 0.945225i \(0.605842\pi\)
\(264\) 0 0
\(265\) 10.6724 0.655603
\(266\) 0 0
\(267\) 5.59283 0.342276
\(268\) 0 0
\(269\) −23.9404 −1.45967 −0.729837 0.683621i \(-0.760404\pi\)
−0.729837 + 0.683621i \(0.760404\pi\)
\(270\) 0 0
\(271\) −1.90997 −0.116022 −0.0580111 0.998316i \(-0.518476\pi\)
−0.0580111 + 0.998316i \(0.518476\pi\)
\(272\) 0 0
\(273\) 4.00000 0.242091
\(274\) 0 0
\(275\) −3.96125 −0.238872
\(276\) 0 0
\(277\) −14.3476 −0.862063 −0.431032 0.902337i \(-0.641850\pi\)
−0.431032 + 0.902337i \(0.641850\pi\)
\(278\) 0 0
\(279\) −13.3413 −0.798725
\(280\) 0 0
\(281\) −2.55263 −0.152277 −0.0761386 0.997097i \(-0.524259\pi\)
−0.0761386 + 0.997097i \(0.524259\pi\)
\(282\) 0 0
\(283\) 20.1455 1.19752 0.598762 0.800927i \(-0.295660\pi\)
0.598762 + 0.800927i \(0.295660\pi\)
\(284\) 0 0
\(285\) 1.96125 0.116174
\(286\) 0 0
\(287\) 3.93561 0.232312
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) −9.08377 −0.532500
\(292\) 0 0
\(293\) 10.7964 0.630733 0.315367 0.948970i \(-0.397873\pi\)
0.315367 + 0.948970i \(0.397873\pi\)
\(294\) 0 0
\(295\) −32.7368 −1.90601
\(296\) 0 0
\(297\) 16.8477 0.977603
\(298\) 0 0
\(299\) −30.8864 −1.78621
\(300\) 0 0
\(301\) −9.50761 −0.548010
\(302\) 0 0
\(303\) 14.6468 0.841437
\(304\) 0 0
\(305\) 26.7458 1.53146
\(306\) 0 0
\(307\) −11.8296 −0.675149 −0.337575 0.941299i \(-0.609607\pi\)
−0.337575 + 0.941299i \(0.609607\pi\)
\(308\) 0 0
\(309\) −4.23964 −0.241185
\(310\) 0 0
\(311\) 9.23819 0.523850 0.261925 0.965088i \(-0.415643\pi\)
0.261925 + 0.965088i \(0.415643\pi\)
\(312\) 0 0
\(313\) −13.5166 −0.764002 −0.382001 0.924162i \(-0.624765\pi\)
−0.382001 + 0.924162i \(0.624765\pi\)
\(314\) 0 0
\(315\) 5.56304 0.313442
\(316\) 0 0
\(317\) 6.70638 0.376668 0.188334 0.982105i \(-0.439691\pi\)
0.188334 + 0.982105i \(0.439691\pi\)
\(318\) 0 0
\(319\) −18.3297 −1.02626
\(320\) 0 0
\(321\) 17.2936 0.965236
\(322\) 0 0
\(323\) −0.925197 −0.0514793
\(324\) 0 0
\(325\) −4.94602 −0.274356
\(326\) 0 0
\(327\) 10.7577 0.594900
\(328\) 0 0
\(329\) 3.44322 0.189831
\(330\) 0 0
\(331\) 9.60661 0.528027 0.264013 0.964519i \(-0.414954\pi\)
0.264013 + 0.964519i \(0.414954\pi\)
\(332\) 0 0
\(333\) −20.1621 −1.10488
\(334\) 0 0
\(335\) 18.1932 0.993999
\(336\) 0 0
\(337\) −35.2340 −1.91932 −0.959660 0.281162i \(-0.909280\pi\)
−0.959660 + 0.281162i \(0.909280\pi\)
\(338\) 0 0
\(339\) 16.8143 0.913230
\(340\) 0 0
\(341\) −21.9792 −1.19024
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 14.0900 0.758582
\(346\) 0 0
\(347\) −33.6233 −1.80499 −0.902496 0.430698i \(-0.858268\pi\)
−0.902496 + 0.430698i \(0.858268\pi\)
\(348\) 0 0
\(349\) 12.7756 0.683862 0.341931 0.939725i \(-0.388919\pi\)
0.341931 + 0.939725i \(0.388919\pi\)
\(350\) 0 0
\(351\) 21.0361 1.12282
\(352\) 0 0
\(353\) 28.2009 1.50098 0.750491 0.660881i \(-0.229817\pi\)
0.750491 + 0.660881i \(0.229817\pi\)
\(354\) 0 0
\(355\) −38.9377 −2.06660
\(356\) 0 0
\(357\) 0.860806 0.0455587
\(358\) 0 0
\(359\) −17.6066 −0.929241 −0.464621 0.885510i \(-0.653809\pi\)
−0.464621 + 0.885510i \(0.653809\pi\)
\(360\) 0 0
\(361\) −18.1440 −0.954948
\(362\) 0 0
\(363\) 2.45364 0.128782
\(364\) 0 0
\(365\) 18.1711 0.951119
\(366\) 0 0
\(367\) 25.3788 1.32476 0.662382 0.749166i \(-0.269546\pi\)
0.662382 + 0.749166i \(0.269546\pi\)
\(368\) 0 0
\(369\) 8.89059 0.462826
\(370\) 0 0
\(371\) −4.33382 −0.225001
\(372\) 0 0
\(373\) 30.1365 1.56041 0.780204 0.625525i \(-0.215115\pi\)
0.780204 + 0.625525i \(0.215115\pi\)
\(374\) 0 0
\(375\) −8.34278 −0.430819
\(376\) 0 0
\(377\) −22.8864 −1.17871
\(378\) 0 0
\(379\) −2.86562 −0.147197 −0.0735986 0.997288i \(-0.523448\pi\)
−0.0735986 + 0.997288i \(0.523448\pi\)
\(380\) 0 0
\(381\) 2.43696 0.124849
\(382\) 0 0
\(383\) 33.9612 1.73534 0.867669 0.497142i \(-0.165617\pi\)
0.867669 + 0.497142i \(0.165617\pi\)
\(384\) 0 0
\(385\) 9.16484 0.467083
\(386\) 0 0
\(387\) −21.4778 −1.09178
\(388\) 0 0
\(389\) 15.7354 0.797816 0.398908 0.916991i \(-0.369389\pi\)
0.398908 + 0.916991i \(0.369389\pi\)
\(390\) 0 0
\(391\) −6.64681 −0.336144
\(392\) 0 0
\(393\) −9.29362 −0.468801
\(394\) 0 0
\(395\) −9.85039 −0.495627
\(396\) 0 0
\(397\) −11.3878 −0.571537 −0.285769 0.958299i \(-0.592249\pi\)
−0.285769 + 0.958299i \(0.592249\pi\)
\(398\) 0 0
\(399\) −0.796415 −0.0398706
\(400\) 0 0
\(401\) −25.2549 −1.26117 −0.630584 0.776121i \(-0.717185\pi\)
−0.630584 + 0.776121i \(0.717185\pi\)
\(402\) 0 0
\(403\) −27.4432 −1.36704
\(404\) 0 0
\(405\) 7.09273 0.352441
\(406\) 0 0
\(407\) −33.2161 −1.64646
\(408\) 0 0
\(409\) 18.6676 0.923055 0.461528 0.887126i \(-0.347302\pi\)
0.461528 + 0.887126i \(0.347302\pi\)
\(410\) 0 0
\(411\) 11.7562 0.579891
\(412\) 0 0
\(413\) 13.2936 0.654136
\(414\) 0 0
\(415\) −7.57201 −0.371695
\(416\) 0 0
\(417\) −4.74870 −0.232545
\(418\) 0 0
\(419\) −8.07625 −0.394551 −0.197275 0.980348i \(-0.563209\pi\)
−0.197275 + 0.980348i \(0.563209\pi\)
\(420\) 0 0
\(421\) −31.2597 −1.52350 −0.761752 0.647869i \(-0.775660\pi\)
−0.761752 + 0.647869i \(0.775660\pi\)
\(422\) 0 0
\(423\) 7.77829 0.378193
\(424\) 0 0
\(425\) −1.06439 −0.0516305
\(426\) 0 0
\(427\) −10.8608 −0.525591
\(428\) 0 0
\(429\) 14.8864 0.718724
\(430\) 0 0
\(431\) −16.8656 −0.812388 −0.406194 0.913787i \(-0.633144\pi\)
−0.406194 + 0.913787i \(0.633144\pi\)
\(432\) 0 0
\(433\) −32.3297 −1.55366 −0.776832 0.629707i \(-0.783175\pi\)
−0.776832 + 0.629707i \(0.783175\pi\)
\(434\) 0 0
\(435\) 10.4405 0.500585
\(436\) 0 0
\(437\) 6.14961 0.294176
\(438\) 0 0
\(439\) −24.2653 −1.15812 −0.579059 0.815285i \(-0.696580\pi\)
−0.579059 + 0.815285i \(0.696580\pi\)
\(440\) 0 0
\(441\) −2.25901 −0.107572
\(442\) 0 0
\(443\) −13.2936 −0.631599 −0.315799 0.948826i \(-0.602273\pi\)
−0.315799 + 0.948826i \(0.602273\pi\)
\(444\) 0 0
\(445\) 16.0000 0.758473
\(446\) 0 0
\(447\) 2.01668 0.0953856
\(448\) 0 0
\(449\) 34.4376 1.62521 0.812606 0.582813i \(-0.198048\pi\)
0.812606 + 0.582813i \(0.198048\pi\)
\(450\) 0 0
\(451\) 14.6468 0.689691
\(452\) 0 0
\(453\) 4.85184 0.227959
\(454\) 0 0
\(455\) 11.4432 0.536467
\(456\) 0 0
\(457\) 28.7714 1.34587 0.672936 0.739701i \(-0.265033\pi\)
0.672936 + 0.739701i \(0.265033\pi\)
\(458\) 0 0
\(459\) 4.52699 0.211302
\(460\) 0 0
\(461\) 34.4376 1.60392 0.801960 0.597378i \(-0.203791\pi\)
0.801960 + 0.597378i \(0.203791\pi\)
\(462\) 0 0
\(463\) −6.80123 −0.316080 −0.158040 0.987433i \(-0.550518\pi\)
−0.158040 + 0.987433i \(0.550518\pi\)
\(464\) 0 0
\(465\) 12.5193 0.580567
\(466\) 0 0
\(467\) −30.3892 −1.40625 −0.703123 0.711068i \(-0.748212\pi\)
−0.703123 + 0.711068i \(0.748212\pi\)
\(468\) 0 0
\(469\) −7.38780 −0.341137
\(470\) 0 0
\(471\) 0.445920 0.0205469
\(472\) 0 0
\(473\) −35.3836 −1.62694
\(474\) 0 0
\(475\) 0.984771 0.0451844
\(476\) 0 0
\(477\) −9.79015 −0.448260
\(478\) 0 0
\(479\) 6.36360 0.290760 0.145380 0.989376i \(-0.453559\pi\)
0.145380 + 0.989376i \(0.453559\pi\)
\(480\) 0 0
\(481\) −41.4737 −1.89104
\(482\) 0 0
\(483\) −5.72161 −0.260342
\(484\) 0 0
\(485\) −25.9869 −1.18000
\(486\) 0 0
\(487\) 35.4529 1.60652 0.803261 0.595627i \(-0.203096\pi\)
0.803261 + 0.595627i \(0.203096\pi\)
\(488\) 0 0
\(489\) −0.128782 −0.00582372
\(490\) 0 0
\(491\) −9.90582 −0.447043 −0.223522 0.974699i \(-0.571755\pi\)
−0.223522 + 0.974699i \(0.571755\pi\)
\(492\) 0 0
\(493\) −4.92520 −0.221820
\(494\) 0 0
\(495\) 20.7035 0.930552
\(496\) 0 0
\(497\) 15.8116 0.709249
\(498\) 0 0
\(499\) 7.78119 0.348334 0.174167 0.984716i \(-0.444277\pi\)
0.174167 + 0.984716i \(0.444277\pi\)
\(500\) 0 0
\(501\) −11.1482 −0.498063
\(502\) 0 0
\(503\) 23.1994 1.03441 0.517206 0.855861i \(-0.326972\pi\)
0.517206 + 0.855861i \(0.326972\pi\)
\(504\) 0 0
\(505\) 41.9017 1.86460
\(506\) 0 0
\(507\) 7.39676 0.328502
\(508\) 0 0
\(509\) 3.85039 0.170666 0.0853328 0.996353i \(-0.472805\pi\)
0.0853328 + 0.996353i \(0.472805\pi\)
\(510\) 0 0
\(511\) −7.37883 −0.326420
\(512\) 0 0
\(513\) −4.18836 −0.184920
\(514\) 0 0
\(515\) −12.1288 −0.534458
\(516\) 0 0
\(517\) 12.8143 0.563574
\(518\) 0 0
\(519\) 2.94187 0.129134
\(520\) 0 0
\(521\) −32.5437 −1.42576 −0.712882 0.701284i \(-0.752610\pi\)
−0.712882 + 0.701284i \(0.752610\pi\)
\(522\) 0 0
\(523\) −19.1261 −0.836325 −0.418163 0.908372i \(-0.637326\pi\)
−0.418163 + 0.908372i \(0.637326\pi\)
\(524\) 0 0
\(525\) −0.916234 −0.0399877
\(526\) 0 0
\(527\) −5.90582 −0.257262
\(528\) 0 0
\(529\) 21.1801 0.920872
\(530\) 0 0
\(531\) 30.0305 1.30321
\(532\) 0 0
\(533\) 18.2880 0.792142
\(534\) 0 0
\(535\) 49.4737 2.13893
\(536\) 0 0
\(537\) −0.405923 −0.0175169
\(538\) 0 0
\(539\) −3.72161 −0.160301
\(540\) 0 0
\(541\) 32.2396 1.38609 0.693045 0.720894i \(-0.256269\pi\)
0.693045 + 0.720894i \(0.256269\pi\)
\(542\) 0 0
\(543\) 13.9792 0.599904
\(544\) 0 0
\(545\) 30.7756 1.31828
\(546\) 0 0
\(547\) −14.5485 −0.622048 −0.311024 0.950402i \(-0.600672\pi\)
−0.311024 + 0.950402i \(0.600672\pi\)
\(548\) 0 0
\(549\) −24.5347 −1.04712
\(550\) 0 0
\(551\) 4.55678 0.194125
\(552\) 0 0
\(553\) 4.00000 0.170097
\(554\) 0 0
\(555\) 18.9198 0.803101
\(556\) 0 0
\(557\) −17.6233 −0.746723 −0.373361 0.927686i \(-0.621795\pi\)
−0.373361 + 0.927686i \(0.621795\pi\)
\(558\) 0 0
\(559\) −44.1801 −1.86862
\(560\) 0 0
\(561\) 3.20359 0.135255
\(562\) 0 0
\(563\) −29.4045 −1.23925 −0.619625 0.784898i \(-0.712715\pi\)
−0.619625 + 0.784898i \(0.712715\pi\)
\(564\) 0 0
\(565\) 48.1026 2.02369
\(566\) 0 0
\(567\) −2.88018 −0.120956
\(568\) 0 0
\(569\) −9.52844 −0.399453 −0.199726 0.979852i \(-0.564005\pi\)
−0.199726 + 0.979852i \(0.564005\pi\)
\(570\) 0 0
\(571\) 32.1592 1.34582 0.672911 0.739723i \(-0.265044\pi\)
0.672911 + 0.739723i \(0.265044\pi\)
\(572\) 0 0
\(573\) 12.1919 0.509325
\(574\) 0 0
\(575\) 7.07480 0.295040
\(576\) 0 0
\(577\) 15.5928 0.649138 0.324569 0.945862i \(-0.394781\pi\)
0.324569 + 0.945862i \(0.394781\pi\)
\(578\) 0 0
\(579\) 4.25756 0.176938
\(580\) 0 0
\(581\) 3.07480 0.127564
\(582\) 0 0
\(583\) −16.1288 −0.667986
\(584\) 0 0
\(585\) 25.8504 1.06878
\(586\) 0 0
\(587\) −2.94602 −0.121595 −0.0607977 0.998150i \(-0.519364\pi\)
−0.0607977 + 0.998150i \(0.519364\pi\)
\(588\) 0 0
\(589\) 5.46405 0.225142
\(590\) 0 0
\(591\) 18.5360 0.762467
\(592\) 0 0
\(593\) −15.4224 −0.633322 −0.316661 0.948539i \(-0.602562\pi\)
−0.316661 + 0.948539i \(0.602562\pi\)
\(594\) 0 0
\(595\) 2.46260 0.100957
\(596\) 0 0
\(597\) −13.2203 −0.541069
\(598\) 0 0
\(599\) −18.6724 −0.762936 −0.381468 0.924382i \(-0.624581\pi\)
−0.381468 + 0.924382i \(0.624581\pi\)
\(600\) 0 0
\(601\) −9.44322 −0.385197 −0.192599 0.981278i \(-0.561692\pi\)
−0.192599 + 0.981278i \(0.561692\pi\)
\(602\) 0 0
\(603\) −16.6891 −0.679634
\(604\) 0 0
\(605\) 7.01938 0.285378
\(606\) 0 0
\(607\) −30.6427 −1.24375 −0.621874 0.783118i \(-0.713628\pi\)
−0.621874 + 0.783118i \(0.713628\pi\)
\(608\) 0 0
\(609\) −4.23964 −0.171799
\(610\) 0 0
\(611\) 16.0000 0.647291
\(612\) 0 0
\(613\) −39.2895 −1.58689 −0.793443 0.608644i \(-0.791714\pi\)
−0.793443 + 0.608644i \(0.791714\pi\)
\(614\) 0 0
\(615\) −8.34278 −0.336413
\(616\) 0 0
\(617\) 8.71602 0.350894 0.175447 0.984489i \(-0.443863\pi\)
0.175447 + 0.984489i \(0.443863\pi\)
\(618\) 0 0
\(619\) 2.49720 0.100371 0.0501855 0.998740i \(-0.484019\pi\)
0.0501855 + 0.998740i \(0.484019\pi\)
\(620\) 0 0
\(621\) −30.0900 −1.20747
\(622\) 0 0
\(623\) −6.49720 −0.260305
\(624\) 0 0
\(625\) −29.1890 −1.16756
\(626\) 0 0
\(627\) −2.96395 −0.118369
\(628\) 0 0
\(629\) −8.92520 −0.355871
\(630\) 0 0
\(631\) 31.4987 1.25394 0.626971 0.779043i \(-0.284295\pi\)
0.626971 + 0.779043i \(0.284295\pi\)
\(632\) 0 0
\(633\) 14.2188 0.565147
\(634\) 0 0
\(635\) 6.97166 0.276662
\(636\) 0 0
\(637\) −4.64681 −0.184113
\(638\) 0 0
\(639\) 35.7187 1.41301
\(640\) 0 0
\(641\) 9.07480 0.358433 0.179217 0.983810i \(-0.442644\pi\)
0.179217 + 0.983810i \(0.442644\pi\)
\(642\) 0 0
\(643\) −33.4176 −1.31786 −0.658930 0.752204i \(-0.728991\pi\)
−0.658930 + 0.752204i \(0.728991\pi\)
\(644\) 0 0
\(645\) 20.1544 0.793580
\(646\) 0 0
\(647\) 0.110856 0.00435821 0.00217911 0.999998i \(-0.499306\pi\)
0.00217911 + 0.999998i \(0.499306\pi\)
\(648\) 0 0
\(649\) 49.4737 1.94201
\(650\) 0 0
\(651\) −5.08377 −0.199248
\(652\) 0 0
\(653\) −26.5277 −1.03811 −0.519054 0.854742i \(-0.673716\pi\)
−0.519054 + 0.854742i \(0.673716\pi\)
\(654\) 0 0
\(655\) −26.5872 −1.03885
\(656\) 0 0
\(657\) −16.6689 −0.650315
\(658\) 0 0
\(659\) −25.0498 −0.975803 −0.487901 0.872899i \(-0.662237\pi\)
−0.487901 + 0.872899i \(0.662237\pi\)
\(660\) 0 0
\(661\) 49.6925 1.93281 0.966407 0.257016i \(-0.0827395\pi\)
0.966407 + 0.257016i \(0.0827395\pi\)
\(662\) 0 0
\(663\) 4.00000 0.155347
\(664\) 0 0
\(665\) −2.27839 −0.0883521
\(666\) 0 0
\(667\) 32.7368 1.26758
\(668\) 0 0
\(669\) 6.56931 0.253984
\(670\) 0 0
\(671\) −40.4197 −1.56039
\(672\) 0 0
\(673\) 30.9944 1.19475 0.597373 0.801963i \(-0.296211\pi\)
0.597373 + 0.801963i \(0.296211\pi\)
\(674\) 0 0
\(675\) −4.81849 −0.185464
\(676\) 0 0
\(677\) 34.8269 1.33851 0.669253 0.743035i \(-0.266614\pi\)
0.669253 + 0.743035i \(0.266614\pi\)
\(678\) 0 0
\(679\) 10.5526 0.404973
\(680\) 0 0
\(681\) 15.3955 0.589957
\(682\) 0 0
\(683\) 20.5872 0.787749 0.393874 0.919164i \(-0.371135\pi\)
0.393874 + 0.919164i \(0.371135\pi\)
\(684\) 0 0
\(685\) 33.6323 1.28502
\(686\) 0 0
\(687\) 3.68286 0.140510
\(688\) 0 0
\(689\) −20.1384 −0.767213
\(690\) 0 0
\(691\) −2.83998 −0.108038 −0.0540190 0.998540i \(-0.517203\pi\)
−0.0540190 + 0.998540i \(0.517203\pi\)
\(692\) 0 0
\(693\) −8.40717 −0.319362
\(694\) 0 0
\(695\) −13.5851 −0.515313
\(696\) 0 0
\(697\) 3.93561 0.149072
\(698\) 0 0
\(699\) −15.5541 −0.588309
\(700\) 0 0
\(701\) 8.96395 0.338564 0.169282 0.985568i \(-0.445855\pi\)
0.169282 + 0.985568i \(0.445855\pi\)
\(702\) 0 0
\(703\) 8.25756 0.311440
\(704\) 0 0
\(705\) −7.29901 −0.274897
\(706\) 0 0
\(707\) −17.0152 −0.639924
\(708\) 0 0
\(709\) 24.4793 0.919339 0.459669 0.888090i \(-0.347968\pi\)
0.459669 + 0.888090i \(0.347968\pi\)
\(710\) 0 0
\(711\) 9.03605 0.338878
\(712\) 0 0
\(713\) 39.2549 1.47011
\(714\) 0 0
\(715\) 42.5872 1.59267
\(716\) 0 0
\(717\) −0.663487 −0.0247784
\(718\) 0 0
\(719\) −23.1004 −0.861501 −0.430751 0.902471i \(-0.641751\pi\)
−0.430751 + 0.902471i \(0.641751\pi\)
\(720\) 0 0
\(721\) 4.92520 0.183424
\(722\) 0 0
\(723\) −12.0477 −0.448059
\(724\) 0 0
\(725\) 5.24234 0.194695
\(726\) 0 0
\(727\) 5.97918 0.221755 0.110878 0.993834i \(-0.464634\pi\)
0.110878 + 0.993834i \(0.464634\pi\)
\(728\) 0 0
\(729\) 5.18421 0.192008
\(730\) 0 0
\(731\) −9.50761 −0.351652
\(732\) 0 0
\(733\) 2.55678 0.0944367 0.0472183 0.998885i \(-0.484964\pi\)
0.0472183 + 0.998885i \(0.484964\pi\)
\(734\) 0 0
\(735\) 2.11982 0.0781907
\(736\) 0 0
\(737\) −27.4945 −1.01277
\(738\) 0 0
\(739\) 36.5645 1.34505 0.672523 0.740076i \(-0.265210\pi\)
0.672523 + 0.740076i \(0.265210\pi\)
\(740\) 0 0
\(741\) −3.70079 −0.135952
\(742\) 0 0
\(743\) 11.0748 0.406295 0.203148 0.979148i \(-0.434883\pi\)
0.203148 + 0.979148i \(0.434883\pi\)
\(744\) 0 0
\(745\) 5.76932 0.211372
\(746\) 0 0
\(747\) 6.94602 0.254142
\(748\) 0 0
\(749\) −20.0900 −0.734074
\(750\) 0 0
\(751\) −21.4820 −0.783888 −0.391944 0.919989i \(-0.628197\pi\)
−0.391944 + 0.919989i \(0.628197\pi\)
\(752\) 0 0
\(753\) 4.23964 0.154501
\(754\) 0 0
\(755\) 13.8802 0.505152
\(756\) 0 0
\(757\) 8.80123 0.319886 0.159943 0.987126i \(-0.448869\pi\)
0.159943 + 0.987126i \(0.448869\pi\)
\(758\) 0 0
\(759\) −21.2936 −0.772909
\(760\) 0 0
\(761\) 25.0152 0.906801 0.453401 0.891307i \(-0.350211\pi\)
0.453401 + 0.891307i \(0.350211\pi\)
\(762\) 0 0
\(763\) −12.4972 −0.452429
\(764\) 0 0
\(765\) 5.56304 0.201132
\(766\) 0 0
\(767\) 61.7729 2.23049
\(768\) 0 0
\(769\) −7.78119 −0.280597 −0.140298 0.990109i \(-0.544806\pi\)
−0.140298 + 0.990109i \(0.544806\pi\)
\(770\) 0 0
\(771\) 23.2215 0.836302
\(772\) 0 0
\(773\) 27.2757 0.981038 0.490519 0.871430i \(-0.336807\pi\)
0.490519 + 0.871430i \(0.336807\pi\)
\(774\) 0 0
\(775\) 6.28610 0.225804
\(776\) 0 0
\(777\) −7.68286 −0.275621
\(778\) 0 0
\(779\) −3.64121 −0.130460
\(780\) 0 0
\(781\) 58.8448 2.10563
\(782\) 0 0
\(783\) −22.2963 −0.796805
\(784\) 0 0
\(785\) 1.27569 0.0455314
\(786\) 0 0
\(787\) 3.35319 0.119528 0.0597642 0.998213i \(-0.480965\pi\)
0.0597642 + 0.998213i \(0.480965\pi\)
\(788\) 0 0
\(789\) −9.11355 −0.324451
\(790\) 0 0
\(791\) −19.5333 −0.694523
\(792\) 0 0
\(793\) −50.4681 −1.79217
\(794\) 0 0
\(795\) 9.18691 0.325826
\(796\) 0 0
\(797\) −27.6800 −0.980475 −0.490237 0.871589i \(-0.663090\pi\)
−0.490237 + 0.871589i \(0.663090\pi\)
\(798\) 0 0
\(799\) 3.44322 0.121812
\(800\) 0 0
\(801\) −14.6773 −0.518596
\(802\) 0 0
\(803\) −27.4611 −0.969083
\(804\) 0 0
\(805\) −16.3684 −0.576911
\(806\) 0 0
\(807\) −20.6081 −0.725438
\(808\) 0 0
\(809\) −5.70079 −0.200429 −0.100215 0.994966i \(-0.531953\pi\)
−0.100215 + 0.994966i \(0.531953\pi\)
\(810\) 0 0
\(811\) 3.39676 0.119276 0.0596382 0.998220i \(-0.481005\pi\)
0.0596382 + 0.998220i \(0.481005\pi\)
\(812\) 0 0
\(813\) −1.64411 −0.0576615
\(814\) 0 0
\(815\) −0.368420 −0.0129052
\(816\) 0 0
\(817\) 8.79641 0.307748
\(818\) 0 0
\(819\) −10.4972 −0.366802
\(820\) 0 0
\(821\) −16.6676 −0.581704 −0.290852 0.956768i \(-0.593939\pi\)
−0.290852 + 0.956768i \(0.593939\pi\)
\(822\) 0 0
\(823\) −25.9196 −0.903501 −0.451750 0.892144i \(-0.649200\pi\)
−0.451750 + 0.892144i \(0.649200\pi\)
\(824\) 0 0
\(825\) −3.40987 −0.118716
\(826\) 0 0
\(827\) 30.9252 1.07537 0.537687 0.843144i \(-0.319298\pi\)
0.537687 + 0.843144i \(0.319298\pi\)
\(828\) 0 0
\(829\) −49.3836 −1.71517 −0.857583 0.514346i \(-0.828035\pi\)
−0.857583 + 0.514346i \(0.828035\pi\)
\(830\) 0 0
\(831\) −12.3505 −0.428434
\(832\) 0 0
\(833\) −1.00000 −0.0346479
\(834\) 0 0
\(835\) −31.8927 −1.10369
\(836\) 0 0
\(837\) −26.7356 −0.924117
\(838\) 0 0
\(839\) −27.1857 −0.938553 −0.469277 0.883051i \(-0.655485\pi\)
−0.469277 + 0.883051i \(0.655485\pi\)
\(840\) 0 0
\(841\) −4.74244 −0.163532
\(842\) 0 0
\(843\) −2.19732 −0.0756797
\(844\) 0 0
\(845\) 21.1607 0.727950
\(846\) 0 0
\(847\) −2.85039 −0.0979407
\(848\) 0 0
\(849\) 17.3413 0.595153
\(850\) 0 0
\(851\) 59.3241 2.03360
\(852\) 0 0
\(853\) 4.23964 0.145162 0.0725812 0.997363i \(-0.476876\pi\)
0.0725812 + 0.997363i \(0.476876\pi\)
\(854\) 0 0
\(855\) −5.14691 −0.176021
\(856\) 0 0
\(857\) −52.2563 −1.78504 −0.892521 0.451006i \(-0.851065\pi\)
−0.892521 + 0.451006i \(0.851065\pi\)
\(858\) 0 0
\(859\) 37.7729 1.28879 0.644397 0.764691i \(-0.277108\pi\)
0.644397 + 0.764691i \(0.277108\pi\)
\(860\) 0 0
\(861\) 3.38780 0.115456
\(862\) 0 0
\(863\) −24.8698 −0.846577 −0.423288 0.905995i \(-0.639124\pi\)
−0.423288 + 0.905995i \(0.639124\pi\)
\(864\) 0 0
\(865\) 8.41613 0.286157
\(866\) 0 0
\(867\) 0.860806 0.0292345
\(868\) 0 0
\(869\) 14.8864 0.504988
\(870\) 0 0
\(871\) −34.3297 −1.16322
\(872\) 0 0
\(873\) 23.8385 0.806812
\(874\) 0 0
\(875\) 9.69182 0.327643
\(876\) 0 0
\(877\) 33.0540 1.11615 0.558077 0.829789i \(-0.311539\pi\)
0.558077 + 0.829789i \(0.311539\pi\)
\(878\) 0 0
\(879\) 9.29362 0.313466
\(880\) 0 0
\(881\) −10.7410 −0.361873 −0.180937 0.983495i \(-0.557913\pi\)
−0.180937 + 0.983495i \(0.557913\pi\)
\(882\) 0 0
\(883\) 33.3490 1.12228 0.561142 0.827719i \(-0.310362\pi\)
0.561142 + 0.827719i \(0.310362\pi\)
\(884\) 0 0
\(885\) −28.1801 −0.947262
\(886\) 0 0
\(887\) 35.6371 1.19658 0.598288 0.801281i \(-0.295848\pi\)
0.598288 + 0.801281i \(0.295848\pi\)
\(888\) 0 0
\(889\) −2.83102 −0.0949493
\(890\) 0 0
\(891\) −10.7189 −0.359097
\(892\) 0 0
\(893\) −3.18566 −0.106604
\(894\) 0 0
\(895\) −1.16127 −0.0388168
\(896\) 0 0
\(897\) −26.5872 −0.887722
\(898\) 0 0
\(899\) 29.0873 0.970117
\(900\) 0 0
\(901\) −4.33382 −0.144380
\(902\) 0 0
\(903\) −8.18421 −0.272353
\(904\) 0 0
\(905\) 39.9917 1.32937
\(906\) 0 0
\(907\) 3.96954 0.131806 0.0659032 0.997826i \(-0.479007\pi\)
0.0659032 + 0.997826i \(0.479007\pi\)
\(908\) 0 0
\(909\) −38.4376 −1.27490
\(910\) 0 0
\(911\) 29.4640 0.976187 0.488094 0.872791i \(-0.337692\pi\)
0.488094 + 0.872791i \(0.337692\pi\)
\(912\) 0 0
\(913\) 11.4432 0.378715
\(914\) 0 0
\(915\) 23.0229 0.761115
\(916\) 0 0
\(917\) 10.7964 0.356529
\(918\) 0 0
\(919\) 13.6877 0.451515 0.225757 0.974184i \(-0.427514\pi\)
0.225757 + 0.974184i \(0.427514\pi\)
\(920\) 0 0
\(921\) −10.1830 −0.335540
\(922\) 0 0
\(923\) 73.4737 2.41842
\(924\) 0 0
\(925\) 9.49990 0.312355
\(926\) 0 0
\(927\) 11.1261 0.365429
\(928\) 0 0
\(929\) 14.8102 0.485907 0.242953 0.970038i \(-0.421884\pi\)
0.242953 + 0.970038i \(0.421884\pi\)
\(930\) 0 0
\(931\) 0.925197 0.0303221
\(932\) 0 0
\(933\) 7.95229 0.260346
\(934\) 0 0
\(935\) 9.16484 0.299722
\(936\) 0 0
\(937\) 29.0844 0.950147 0.475074 0.879946i \(-0.342421\pi\)
0.475074 + 0.879946i \(0.342421\pi\)
\(938\) 0 0
\(939\) −11.6351 −0.379699
\(940\) 0 0
\(941\) 8.41199 0.274223 0.137111 0.990556i \(-0.456218\pi\)
0.137111 + 0.990556i \(0.456218\pi\)
\(942\) 0 0
\(943\) −26.1592 −0.851862
\(944\) 0 0
\(945\) 11.1482 0.362650
\(946\) 0 0
\(947\) −22.6081 −0.734663 −0.367332 0.930090i \(-0.619729\pi\)
−0.367332 + 0.930090i \(0.619729\pi\)
\(948\) 0 0
\(949\) −34.2880 −1.11304
\(950\) 0 0
\(951\) 5.77289 0.187199
\(952\) 0 0
\(953\) 9.81579 0.317965 0.158982 0.987281i \(-0.449179\pi\)
0.158982 + 0.987281i \(0.449179\pi\)
\(954\) 0 0
\(955\) 34.8787 1.12865
\(956\) 0 0
\(957\) −15.7783 −0.510040
\(958\) 0 0
\(959\) −13.6572 −0.441015
\(960\) 0 0
\(961\) 3.87873 0.125120
\(962\) 0 0
\(963\) −45.3836 −1.46247
\(964\) 0 0
\(965\) 12.1801 0.392090
\(966\) 0 0
\(967\) −10.0227 −0.322310 −0.161155 0.986929i \(-0.551522\pi\)
−0.161155 + 0.986929i \(0.551522\pi\)
\(968\) 0 0
\(969\) −0.796415 −0.0255845
\(970\) 0 0
\(971\) −43.6925 −1.40216 −0.701079 0.713083i \(-0.747298\pi\)
−0.701079 + 0.713083i \(0.747298\pi\)
\(972\) 0 0
\(973\) 5.51658 0.176853
\(974\) 0 0
\(975\) −4.25756 −0.136351
\(976\) 0 0
\(977\) −44.9598 −1.43839 −0.719196 0.694808i \(-0.755490\pi\)
−0.719196 + 0.694808i \(0.755490\pi\)
\(978\) 0 0
\(979\) −24.1801 −0.772798
\(980\) 0 0
\(981\) −28.2313 −0.901358
\(982\) 0 0
\(983\) −23.3103 −0.743483 −0.371741 0.928336i \(-0.621239\pi\)
−0.371741 + 0.928336i \(0.621239\pi\)
\(984\) 0 0
\(985\) 53.0278 1.68960
\(986\) 0 0
\(987\) 2.96395 0.0943435
\(988\) 0 0
\(989\) 63.1953 2.00949
\(990\) 0 0
\(991\) 23.6412 0.750988 0.375494 0.926825i \(-0.377473\pi\)
0.375494 + 0.926825i \(0.377473\pi\)
\(992\) 0 0
\(993\) 8.26943 0.262422
\(994\) 0 0
\(995\) −37.8206 −1.19899
\(996\) 0 0
\(997\) −20.5408 −0.650533 −0.325266 0.945622i \(-0.605454\pi\)
−0.325266 + 0.945622i \(0.605454\pi\)
\(998\) 0 0
\(999\) −40.4043 −1.27833
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7616.2.a.bb.1.3 3
4.3 odd 2 7616.2.a.bh.1.1 3
8.3 odd 2 952.2.a.c.1.3 3
8.5 even 2 1904.2.a.o.1.1 3
24.11 even 2 8568.2.a.be.1.2 3
56.27 even 2 6664.2.a.m.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
952.2.a.c.1.3 3 8.3 odd 2
1904.2.a.o.1.1 3 8.5 even 2
6664.2.a.m.1.1 3 56.27 even 2
7616.2.a.bb.1.3 3 1.1 even 1 trivial
7616.2.a.bh.1.1 3 4.3 odd 2
8568.2.a.be.1.2 3 24.11 even 2