Properties

Label 7616.2.a.bb.1.1
Level $7616$
Weight $2$
Character 7616.1
Self dual yes
Analytic conductor $60.814$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7616,2,Mod(1,7616)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7616, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7616.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 7616 = 2^{6} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7616.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,-3,0,5,0,-3,0,2,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.8140661794\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.229.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 4x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 952)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.11491\) of defining polynomial
Character \(\chi\) \(=\) 7616.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.11491 q^{3} +3.47283 q^{5} -1.00000 q^{7} +6.70265 q^{9} +4.22982 q^{11} +1.28415 q^{13} -10.8176 q^{15} -1.00000 q^{17} +2.94567 q^{19} +3.11491 q^{21} +0.715853 q^{23} +7.06058 q^{25} -11.5334 q^{27} +6.94567 q^{29} -8.98680 q^{31} -13.1755 q^{33} -3.47283 q^{35} +10.9457 q^{37} -4.00000 q^{39} +2.06058 q^{41} -0.399055 q^{43} +23.2772 q^{45} +12.4596 q^{47} +1.00000 q^{49} +3.11491 q^{51} -6.64832 q^{53} +14.6894 q^{55} -9.17548 q^{57} -1.43171 q^{59} +6.88509 q^{61} -6.70265 q^{63} +4.45963 q^{65} +10.4185 q^{67} -2.22982 q^{69} +13.9736 q^{71} -14.5202 q^{73} -21.9930 q^{75} -4.22982 q^{77} -4.00000 q^{79} +15.8176 q^{81} -1.05433 q^{83} -3.47283 q^{85} -21.6351 q^{87} +4.60719 q^{89} -1.28415 q^{91} +27.9930 q^{93} +10.2298 q^{95} +10.2709 q^{97} +28.3510 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{3} + 5 q^{5} - 3 q^{7} + 2 q^{9} + 2 q^{13} - 8 q^{15} - 3 q^{17} - 2 q^{19} + 3 q^{21} + 4 q^{23} + 4 q^{25} - 12 q^{27} + 10 q^{29} - 7 q^{31} - 16 q^{33} - 5 q^{35} + 22 q^{37} - 12 q^{39}+ \cdots + 38 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.11491 −1.79839 −0.899196 0.437545i \(-0.855848\pi\)
−0.899196 + 0.437545i \(0.855848\pi\)
\(4\) 0 0
\(5\) 3.47283 1.55310 0.776549 0.630057i \(-0.216968\pi\)
0.776549 + 0.630057i \(0.216968\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 6.70265 2.23422
\(10\) 0 0
\(11\) 4.22982 1.27534 0.637669 0.770311i \(-0.279899\pi\)
0.637669 + 0.770311i \(0.279899\pi\)
\(12\) 0 0
\(13\) 1.28415 0.356158 0.178079 0.984016i \(-0.443012\pi\)
0.178079 + 0.984016i \(0.443012\pi\)
\(14\) 0 0
\(15\) −10.8176 −2.79308
\(16\) 0 0
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) 2.94567 0.675783 0.337891 0.941185i \(-0.390286\pi\)
0.337891 + 0.941185i \(0.390286\pi\)
\(20\) 0 0
\(21\) 3.11491 0.679729
\(22\) 0 0
\(23\) 0.715853 0.149266 0.0746328 0.997211i \(-0.476222\pi\)
0.0746328 + 0.997211i \(0.476222\pi\)
\(24\) 0 0
\(25\) 7.06058 1.41212
\(26\) 0 0
\(27\) −11.5334 −2.21961
\(28\) 0 0
\(29\) 6.94567 1.28978 0.644889 0.764276i \(-0.276904\pi\)
0.644889 + 0.764276i \(0.276904\pi\)
\(30\) 0 0
\(31\) −8.98680 −1.61408 −0.807038 0.590499i \(-0.798931\pi\)
−0.807038 + 0.590499i \(0.798931\pi\)
\(32\) 0 0
\(33\) −13.1755 −2.29356
\(34\) 0 0
\(35\) −3.47283 −0.587016
\(36\) 0 0
\(37\) 10.9457 1.79946 0.899728 0.436450i \(-0.143765\pi\)
0.899728 + 0.436450i \(0.143765\pi\)
\(38\) 0 0
\(39\) −4.00000 −0.640513
\(40\) 0 0
\(41\) 2.06058 0.321808 0.160904 0.986970i \(-0.448559\pi\)
0.160904 + 0.986970i \(0.448559\pi\)
\(42\) 0 0
\(43\) −0.399055 −0.0608553 −0.0304276 0.999537i \(-0.509687\pi\)
−0.0304276 + 0.999537i \(0.509687\pi\)
\(44\) 0 0
\(45\) 23.2772 3.46996
\(46\) 0 0
\(47\) 12.4596 1.81742 0.908712 0.417424i \(-0.137067\pi\)
0.908712 + 0.417424i \(0.137067\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 3.11491 0.436174
\(52\) 0 0
\(53\) −6.64832 −0.913217 −0.456608 0.889668i \(-0.650936\pi\)
−0.456608 + 0.889668i \(0.650936\pi\)
\(54\) 0 0
\(55\) 14.6894 1.98072
\(56\) 0 0
\(57\) −9.17548 −1.21532
\(58\) 0 0
\(59\) −1.43171 −0.186392 −0.0931961 0.995648i \(-0.529708\pi\)
−0.0931961 + 0.995648i \(0.529708\pi\)
\(60\) 0 0
\(61\) 6.88509 0.881546 0.440773 0.897619i \(-0.354704\pi\)
0.440773 + 0.897619i \(0.354704\pi\)
\(62\) 0 0
\(63\) −6.70265 −0.844454
\(64\) 0 0
\(65\) 4.45963 0.553149
\(66\) 0 0
\(67\) 10.4185 1.27282 0.636411 0.771350i \(-0.280418\pi\)
0.636411 + 0.771350i \(0.280418\pi\)
\(68\) 0 0
\(69\) −2.22982 −0.268438
\(70\) 0 0
\(71\) 13.9736 1.65836 0.829180 0.558981i \(-0.188808\pi\)
0.829180 + 0.558981i \(0.188808\pi\)
\(72\) 0 0
\(73\) −14.5202 −1.69946 −0.849731 0.527217i \(-0.823236\pi\)
−0.849731 + 0.527217i \(0.823236\pi\)
\(74\) 0 0
\(75\) −21.9930 −2.53954
\(76\) 0 0
\(77\) −4.22982 −0.482032
\(78\) 0 0
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) 0 0
\(81\) 15.8176 1.75751
\(82\) 0 0
\(83\) −1.05433 −0.115728 −0.0578640 0.998324i \(-0.518429\pi\)
−0.0578640 + 0.998324i \(0.518429\pi\)
\(84\) 0 0
\(85\) −3.47283 −0.376682
\(86\) 0 0
\(87\) −21.6351 −2.31953
\(88\) 0 0
\(89\) 4.60719 0.488361 0.244180 0.969730i \(-0.421481\pi\)
0.244180 + 0.969730i \(0.421481\pi\)
\(90\) 0 0
\(91\) −1.28415 −0.134615
\(92\) 0 0
\(93\) 27.9930 2.90274
\(94\) 0 0
\(95\) 10.2298 1.04956
\(96\) 0 0
\(97\) 10.2709 1.04286 0.521428 0.853295i \(-0.325399\pi\)
0.521428 + 0.853295i \(0.325399\pi\)
\(98\) 0 0
\(99\) 28.3510 2.84938
\(100\) 0 0
\(101\) −2.79811 −0.278422 −0.139211 0.990263i \(-0.544457\pi\)
−0.139211 + 0.990263i \(0.544457\pi\)
\(102\) 0 0
\(103\) −6.94567 −0.684377 −0.342188 0.939631i \(-0.611168\pi\)
−0.342188 + 0.939631i \(0.611168\pi\)
\(104\) 0 0
\(105\) 10.8176 1.05569
\(106\) 0 0
\(107\) −1.74378 −0.168577 −0.0842887 0.996441i \(-0.526862\pi\)
−0.0842887 + 0.996441i \(0.526862\pi\)
\(108\) 0 0
\(109\) 10.6072 1.01598 0.507992 0.861362i \(-0.330388\pi\)
0.507992 + 0.861362i \(0.330388\pi\)
\(110\) 0 0
\(111\) −34.0947 −3.23613
\(112\) 0 0
\(113\) −18.2034 −1.71243 −0.856216 0.516618i \(-0.827191\pi\)
−0.856216 + 0.516618i \(0.827191\pi\)
\(114\) 0 0
\(115\) 2.48604 0.231824
\(116\) 0 0
\(117\) 8.60719 0.795735
\(118\) 0 0
\(119\) 1.00000 0.0916698
\(120\) 0 0
\(121\) 6.89134 0.626485
\(122\) 0 0
\(123\) −6.41850 −0.578737
\(124\) 0 0
\(125\) 7.15604 0.640055
\(126\) 0 0
\(127\) −10.0411 −0.891006 −0.445503 0.895280i \(-0.646975\pi\)
−0.445503 + 0.895280i \(0.646975\pi\)
\(128\) 0 0
\(129\) 1.24302 0.109442
\(130\) 0 0
\(131\) −0.824517 −0.0720384 −0.0360192 0.999351i \(-0.511468\pi\)
−0.0360192 + 0.999351i \(0.511468\pi\)
\(132\) 0 0
\(133\) −2.94567 −0.255422
\(134\) 0 0
\(135\) −40.0536 −3.44727
\(136\) 0 0
\(137\) −0.290390 −0.0248097 −0.0124049 0.999923i \(-0.503949\pi\)
−0.0124049 + 0.999923i \(0.503949\pi\)
\(138\) 0 0
\(139\) −20.5397 −1.74215 −0.871075 0.491150i \(-0.836577\pi\)
−0.871075 + 0.491150i \(0.836577\pi\)
\(140\) 0 0
\(141\) −38.8106 −3.26844
\(142\) 0 0
\(143\) 5.43171 0.454222
\(144\) 0 0
\(145\) 24.1212 2.00315
\(146\) 0 0
\(147\) −3.11491 −0.256913
\(148\) 0 0
\(149\) 16.2904 1.33456 0.667280 0.744807i \(-0.267458\pi\)
0.667280 + 0.744807i \(0.267458\pi\)
\(150\) 0 0
\(151\) 7.72210 0.628415 0.314208 0.949354i \(-0.398261\pi\)
0.314208 + 0.949354i \(0.398261\pi\)
\(152\) 0 0
\(153\) −6.70265 −0.541877
\(154\) 0 0
\(155\) −31.2097 −2.50682
\(156\) 0 0
\(157\) −17.4053 −1.38909 −0.694547 0.719447i \(-0.744395\pi\)
−0.694547 + 0.719447i \(0.744395\pi\)
\(158\) 0 0
\(159\) 20.7089 1.64232
\(160\) 0 0
\(161\) −0.715853 −0.0564171
\(162\) 0 0
\(163\) 3.89134 0.304793 0.152396 0.988319i \(-0.451301\pi\)
0.152396 + 0.988319i \(0.451301\pi\)
\(164\) 0 0
\(165\) −45.7563 −3.56212
\(166\) 0 0
\(167\) 12.8587 0.995035 0.497517 0.867454i \(-0.334245\pi\)
0.497517 + 0.867454i \(0.334245\pi\)
\(168\) 0 0
\(169\) −11.3510 −0.873151
\(170\) 0 0
\(171\) 19.7438 1.50984
\(172\) 0 0
\(173\) 15.3447 1.16664 0.583319 0.812243i \(-0.301754\pi\)
0.583319 + 0.812243i \(0.301754\pi\)
\(174\) 0 0
\(175\) −7.06058 −0.533729
\(176\) 0 0
\(177\) 4.45963 0.335206
\(178\) 0 0
\(179\) −26.4115 −1.97409 −0.987046 0.160440i \(-0.948709\pi\)
−0.987046 + 0.160440i \(0.948709\pi\)
\(180\) 0 0
\(181\) −9.63511 −0.716172 −0.358086 0.933689i \(-0.616571\pi\)
−0.358086 + 0.933689i \(0.616571\pi\)
\(182\) 0 0
\(183\) −21.4464 −1.58537
\(184\) 0 0
\(185\) 38.0125 2.79473
\(186\) 0 0
\(187\) −4.22982 −0.309315
\(188\) 0 0
\(189\) 11.5334 0.838932
\(190\) 0 0
\(191\) 23.2555 1.68271 0.841355 0.540483i \(-0.181759\pi\)
0.841355 + 0.540483i \(0.181759\pi\)
\(192\) 0 0
\(193\) −9.06682 −0.652644 −0.326322 0.945259i \(-0.605809\pi\)
−0.326322 + 0.945259i \(0.605809\pi\)
\(194\) 0 0
\(195\) −13.8913 −0.994779
\(196\) 0 0
\(197\) −16.2034 −1.15444 −0.577222 0.816587i \(-0.695863\pi\)
−0.577222 + 0.816587i \(0.695863\pi\)
\(198\) 0 0
\(199\) −9.49228 −0.672890 −0.336445 0.941703i \(-0.609225\pi\)
−0.336445 + 0.941703i \(0.609225\pi\)
\(200\) 0 0
\(201\) −32.4527 −2.28903
\(202\) 0 0
\(203\) −6.94567 −0.487490
\(204\) 0 0
\(205\) 7.15604 0.499799
\(206\) 0 0
\(207\) 4.79811 0.333492
\(208\) 0 0
\(209\) 12.4596 0.861851
\(210\) 0 0
\(211\) −1.40530 −0.0967447 −0.0483724 0.998829i \(-0.515403\pi\)
−0.0483724 + 0.998829i \(0.515403\pi\)
\(212\) 0 0
\(213\) −43.5264 −2.98238
\(214\) 0 0
\(215\) −1.38585 −0.0945143
\(216\) 0 0
\(217\) 8.98680 0.610063
\(218\) 0 0
\(219\) 45.2291 3.05630
\(220\) 0 0
\(221\) −1.28415 −0.0863811
\(222\) 0 0
\(223\) 21.5140 1.44068 0.720341 0.693620i \(-0.243985\pi\)
0.720341 + 0.693620i \(0.243985\pi\)
\(224\) 0 0
\(225\) 47.3246 3.15497
\(226\) 0 0
\(227\) 19.0257 1.26278 0.631390 0.775466i \(-0.282485\pi\)
0.631390 + 0.775466i \(0.282485\pi\)
\(228\) 0 0
\(229\) 12.2298 0.808169 0.404084 0.914722i \(-0.367590\pi\)
0.404084 + 0.914722i \(0.367590\pi\)
\(230\) 0 0
\(231\) 13.1755 0.866883
\(232\) 0 0
\(233\) −12.2687 −0.803750 −0.401875 0.915695i \(-0.631641\pi\)
−0.401875 + 0.915695i \(0.631641\pi\)
\(234\) 0 0
\(235\) 43.2702 2.82264
\(236\) 0 0
\(237\) 12.4596 0.809340
\(238\) 0 0
\(239\) −18.6289 −1.20500 −0.602501 0.798118i \(-0.705829\pi\)
−0.602501 + 0.798118i \(0.705829\pi\)
\(240\) 0 0
\(241\) 22.7306 1.46420 0.732102 0.681195i \(-0.238539\pi\)
0.732102 + 0.681195i \(0.238539\pi\)
\(242\) 0 0
\(243\) −14.6700 −0.941081
\(244\) 0 0
\(245\) 3.47283 0.221871
\(246\) 0 0
\(247\) 3.78267 0.240686
\(248\) 0 0
\(249\) 3.28415 0.208124
\(250\) 0 0
\(251\) 6.94567 0.438407 0.219203 0.975679i \(-0.429654\pi\)
0.219203 + 0.975679i \(0.429654\pi\)
\(252\) 0 0
\(253\) 3.02792 0.190364
\(254\) 0 0
\(255\) 10.8176 0.677422
\(256\) 0 0
\(257\) −26.6630 −1.66319 −0.831597 0.555379i \(-0.812573\pi\)
−0.831597 + 0.555379i \(0.812573\pi\)
\(258\) 0 0
\(259\) −10.9457 −0.680131
\(260\) 0 0
\(261\) 46.5544 2.88164
\(262\) 0 0
\(263\) 13.1366 0.810037 0.405018 0.914309i \(-0.367265\pi\)
0.405018 + 0.914309i \(0.367265\pi\)
\(264\) 0 0
\(265\) −23.0885 −1.41832
\(266\) 0 0
\(267\) −14.3510 −0.878265
\(268\) 0 0
\(269\) −6.14756 −0.374823 −0.187412 0.982281i \(-0.560010\pi\)
−0.187412 + 0.982281i \(0.560010\pi\)
\(270\) 0 0
\(271\) −23.7438 −1.44233 −0.721166 0.692762i \(-0.756393\pi\)
−0.721166 + 0.692762i \(0.756393\pi\)
\(272\) 0 0
\(273\) 4.00000 0.242091
\(274\) 0 0
\(275\) 29.8649 1.80092
\(276\) 0 0
\(277\) −16.4985 −0.991300 −0.495650 0.868522i \(-0.665070\pi\)
−0.495650 + 0.868522i \(0.665070\pi\)
\(278\) 0 0
\(279\) −60.2353 −3.60620
\(280\) 0 0
\(281\) 18.2709 1.08995 0.544977 0.838451i \(-0.316539\pi\)
0.544977 + 0.838451i \(0.316539\pi\)
\(282\) 0 0
\(283\) −20.6219 −1.22585 −0.612923 0.790143i \(-0.710006\pi\)
−0.612923 + 0.790143i \(0.710006\pi\)
\(284\) 0 0
\(285\) −31.8649 −1.88752
\(286\) 0 0
\(287\) −2.06058 −0.121632
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) −31.9930 −1.87547
\(292\) 0 0
\(293\) 0.824517 0.0481688 0.0240844 0.999710i \(-0.492333\pi\)
0.0240844 + 0.999710i \(0.492333\pi\)
\(294\) 0 0
\(295\) −4.97208 −0.289485
\(296\) 0 0
\(297\) −48.7842 −2.83075
\(298\) 0 0
\(299\) 0.919260 0.0531622
\(300\) 0 0
\(301\) 0.399055 0.0230011
\(302\) 0 0
\(303\) 8.71585 0.500713
\(304\) 0 0
\(305\) 23.9108 1.36913
\(306\) 0 0
\(307\) −31.9038 −1.82085 −0.910424 0.413677i \(-0.864244\pi\)
−0.910424 + 0.413677i \(0.864244\pi\)
\(308\) 0 0
\(309\) 21.6351 1.23078
\(310\) 0 0
\(311\) 16.3098 0.924846 0.462423 0.886659i \(-0.346980\pi\)
0.462423 + 0.886659i \(0.346980\pi\)
\(312\) 0 0
\(313\) −28.5397 −1.61316 −0.806578 0.591127i \(-0.798683\pi\)
−0.806578 + 0.591127i \(0.798683\pi\)
\(314\) 0 0
\(315\) −23.2772 −1.31152
\(316\) 0 0
\(317\) 18.5683 1.04290 0.521450 0.853282i \(-0.325391\pi\)
0.521450 + 0.853282i \(0.325391\pi\)
\(318\) 0 0
\(319\) 29.3789 1.64490
\(320\) 0 0
\(321\) 5.43171 0.303168
\(322\) 0 0
\(323\) −2.94567 −0.163901
\(324\) 0 0
\(325\) 9.06682 0.502937
\(326\) 0 0
\(327\) −33.0404 −1.82714
\(328\) 0 0
\(329\) −12.4596 −0.686922
\(330\) 0 0
\(331\) 2.79588 0.153675 0.0768376 0.997044i \(-0.475518\pi\)
0.0768376 + 0.997044i \(0.475518\pi\)
\(332\) 0 0
\(333\) 73.3650 4.02038
\(334\) 0 0
\(335\) 36.1817 1.97682
\(336\) 0 0
\(337\) −5.57926 −0.303922 −0.151961 0.988387i \(-0.548559\pi\)
−0.151961 + 0.988387i \(0.548559\pi\)
\(338\) 0 0
\(339\) 56.7019 3.07963
\(340\) 0 0
\(341\) −38.0125 −2.05849
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) −7.74378 −0.416911
\(346\) 0 0
\(347\) 25.9472 1.39292 0.696459 0.717597i \(-0.254758\pi\)
0.696459 + 0.717597i \(0.254758\pi\)
\(348\) 0 0
\(349\) 18.8370 1.00832 0.504161 0.863610i \(-0.331802\pi\)
0.504161 + 0.863610i \(0.331802\pi\)
\(350\) 0 0
\(351\) −14.8106 −0.790531
\(352\) 0 0
\(353\) −31.5000 −1.67658 −0.838289 0.545226i \(-0.816444\pi\)
−0.838289 + 0.545226i \(0.816444\pi\)
\(354\) 0 0
\(355\) 48.5280 2.57560
\(356\) 0 0
\(357\) −3.11491 −0.164858
\(358\) 0 0
\(359\) −10.7959 −0.569784 −0.284892 0.958560i \(-0.591958\pi\)
−0.284892 + 0.958560i \(0.591958\pi\)
\(360\) 0 0
\(361\) −10.3230 −0.543318
\(362\) 0 0
\(363\) −21.4659 −1.12667
\(364\) 0 0
\(365\) −50.4263 −2.63943
\(366\) 0 0
\(367\) 3.47979 0.181644 0.0908219 0.995867i \(-0.471051\pi\)
0.0908219 + 0.995867i \(0.471051\pi\)
\(368\) 0 0
\(369\) 13.8113 0.718988
\(370\) 0 0
\(371\) 6.64832 0.345163
\(372\) 0 0
\(373\) −35.5606 −1.84126 −0.920629 0.390437i \(-0.872324\pi\)
−0.920629 + 0.390437i \(0.872324\pi\)
\(374\) 0 0
\(375\) −22.2904 −1.15107
\(376\) 0 0
\(377\) 8.91926 0.459365
\(378\) 0 0
\(379\) 12.9068 0.662976 0.331488 0.943459i \(-0.392449\pi\)
0.331488 + 0.943459i \(0.392449\pi\)
\(380\) 0 0
\(381\) 31.2772 1.60238
\(382\) 0 0
\(383\) 0.135072 0.00690185 0.00345092 0.999994i \(-0.498902\pi\)
0.00345092 + 0.999994i \(0.498902\pi\)
\(384\) 0 0
\(385\) −14.6894 −0.748643
\(386\) 0 0
\(387\) −2.67472 −0.135964
\(388\) 0 0
\(389\) 20.9170 1.06054 0.530268 0.847830i \(-0.322091\pi\)
0.530268 + 0.847830i \(0.322091\pi\)
\(390\) 0 0
\(391\) −0.715853 −0.0362022
\(392\) 0 0
\(393\) 2.56829 0.129553
\(394\) 0 0
\(395\) −13.8913 −0.698949
\(396\) 0 0
\(397\) −14.4185 −0.723644 −0.361822 0.932247i \(-0.617845\pi\)
−0.361822 + 0.932247i \(0.617845\pi\)
\(398\) 0 0
\(399\) 9.17548 0.459349
\(400\) 0 0
\(401\) 20.4332 1.02039 0.510193 0.860060i \(-0.329574\pi\)
0.510193 + 0.860060i \(0.329574\pi\)
\(402\) 0 0
\(403\) −11.5404 −0.574867
\(404\) 0 0
\(405\) 54.9317 2.72958
\(406\) 0 0
\(407\) 46.2982 2.29491
\(408\) 0 0
\(409\) −3.29663 −0.163008 −0.0815040 0.996673i \(-0.525972\pi\)
−0.0815040 + 0.996673i \(0.525972\pi\)
\(410\) 0 0
\(411\) 0.904539 0.0446176
\(412\) 0 0
\(413\) 1.43171 0.0704496
\(414\) 0 0
\(415\) −3.66152 −0.179737
\(416\) 0 0
\(417\) 63.9791 3.13307
\(418\) 0 0
\(419\) 26.8906 1.31369 0.656846 0.754024i \(-0.271890\pi\)
0.656846 + 0.754024i \(0.271890\pi\)
\(420\) 0 0
\(421\) 26.2251 1.27813 0.639066 0.769152i \(-0.279321\pi\)
0.639066 + 0.769152i \(0.279321\pi\)
\(422\) 0 0
\(423\) 83.5125 4.06052
\(424\) 0 0
\(425\) −7.06058 −0.342488
\(426\) 0 0
\(427\) −6.88509 −0.333193
\(428\) 0 0
\(429\) −16.9193 −0.816870
\(430\) 0 0
\(431\) −1.09323 −0.0526588 −0.0263294 0.999653i \(-0.508382\pi\)
−0.0263294 + 0.999653i \(0.508382\pi\)
\(432\) 0 0
\(433\) 15.3789 0.739062 0.369531 0.929218i \(-0.379518\pi\)
0.369531 + 0.929218i \(0.379518\pi\)
\(434\) 0 0
\(435\) −75.1352 −3.60245
\(436\) 0 0
\(437\) 2.10866 0.100871
\(438\) 0 0
\(439\) 29.4395 1.40507 0.702535 0.711650i \(-0.252052\pi\)
0.702535 + 0.711650i \(0.252052\pi\)
\(440\) 0 0
\(441\) 6.70265 0.319174
\(442\) 0 0
\(443\) −1.43171 −0.0680224 −0.0340112 0.999421i \(-0.510828\pi\)
−0.0340112 + 0.999421i \(0.510828\pi\)
\(444\) 0 0
\(445\) 16.0000 0.758473
\(446\) 0 0
\(447\) −50.7431 −2.40006
\(448\) 0 0
\(449\) 14.7547 0.696320 0.348160 0.937435i \(-0.386807\pi\)
0.348160 + 0.937435i \(0.386807\pi\)
\(450\) 0 0
\(451\) 8.71585 0.410413
\(452\) 0 0
\(453\) −24.0536 −1.13014
\(454\) 0 0
\(455\) −4.45963 −0.209071
\(456\) 0 0
\(457\) −1.89357 −0.0885775 −0.0442887 0.999019i \(-0.514102\pi\)
−0.0442887 + 0.999019i \(0.514102\pi\)
\(458\) 0 0
\(459\) 11.5334 0.538333
\(460\) 0 0
\(461\) 14.7547 0.687197 0.343599 0.939117i \(-0.388354\pi\)
0.343599 + 0.939117i \(0.388354\pi\)
\(462\) 0 0
\(463\) 14.9673 0.695592 0.347796 0.937570i \(-0.386930\pi\)
0.347796 + 0.937570i \(0.386930\pi\)
\(464\) 0 0
\(465\) 97.2152 4.50825
\(466\) 0 0
\(467\) −0.473551 −0.0219133 −0.0109567 0.999940i \(-0.503488\pi\)
−0.0109567 + 0.999940i \(0.503488\pi\)
\(468\) 0 0
\(469\) −10.4185 −0.481082
\(470\) 0 0
\(471\) 54.2159 2.49814
\(472\) 0 0
\(473\) −1.68793 −0.0776110
\(474\) 0 0
\(475\) 20.7981 0.954283
\(476\) 0 0
\(477\) −44.5613 −2.04032
\(478\) 0 0
\(479\) 4.27790 0.195462 0.0977312 0.995213i \(-0.468841\pi\)
0.0977312 + 0.995213i \(0.468841\pi\)
\(480\) 0 0
\(481\) 14.0558 0.640892
\(482\) 0 0
\(483\) 2.22982 0.101460
\(484\) 0 0
\(485\) 35.6693 1.61966
\(486\) 0 0
\(487\) −4.04336 −0.183222 −0.0916111 0.995795i \(-0.529202\pi\)
−0.0916111 + 0.995795i \(0.529202\pi\)
\(488\) 0 0
\(489\) −12.1212 −0.548137
\(490\) 0 0
\(491\) 4.98680 0.225051 0.112525 0.993649i \(-0.464106\pi\)
0.112525 + 0.993649i \(0.464106\pi\)
\(492\) 0 0
\(493\) −6.94567 −0.312817
\(494\) 0 0
\(495\) 98.4582 4.42537
\(496\) 0 0
\(497\) −13.9736 −0.626801
\(498\) 0 0
\(499\) 17.6226 0.788897 0.394449 0.918918i \(-0.370936\pi\)
0.394449 + 0.918918i \(0.370936\pi\)
\(500\) 0 0
\(501\) −40.0536 −1.78946
\(502\) 0 0
\(503\) −3.55509 −0.158514 −0.0792568 0.996854i \(-0.525255\pi\)
−0.0792568 + 0.996854i \(0.525255\pi\)
\(504\) 0 0
\(505\) −9.71737 −0.432417
\(506\) 0 0
\(507\) 35.3572 1.57027
\(508\) 0 0
\(509\) 7.89134 0.349777 0.174889 0.984588i \(-0.444043\pi\)
0.174889 + 0.984588i \(0.444043\pi\)
\(510\) 0 0
\(511\) 14.5202 0.642336
\(512\) 0 0
\(513\) −33.9736 −1.49997
\(514\) 0 0
\(515\) −24.1212 −1.06290
\(516\) 0 0
\(517\) 52.7019 2.31783
\(518\) 0 0
\(519\) −47.7974 −2.09807
\(520\) 0 0
\(521\) 13.2097 0.578725 0.289363 0.957220i \(-0.406557\pi\)
0.289363 + 0.957220i \(0.406557\pi\)
\(522\) 0 0
\(523\) 38.5544 1.68587 0.842933 0.538019i \(-0.180827\pi\)
0.842933 + 0.538019i \(0.180827\pi\)
\(524\) 0 0
\(525\) 21.9930 0.959855
\(526\) 0 0
\(527\) 8.98680 0.391471
\(528\) 0 0
\(529\) −22.4876 −0.977720
\(530\) 0 0
\(531\) −9.59622 −0.416440
\(532\) 0 0
\(533\) 2.64608 0.114615
\(534\) 0 0
\(535\) −6.05585 −0.261817
\(536\) 0 0
\(537\) 82.2695 3.55019
\(538\) 0 0
\(539\) 4.22982 0.182191
\(540\) 0 0
\(541\) 6.36489 0.273648 0.136824 0.990595i \(-0.456311\pi\)
0.136824 + 0.990595i \(0.456311\pi\)
\(542\) 0 0
\(543\) 30.0125 1.28796
\(544\) 0 0
\(545\) 36.8370 1.57792
\(546\) 0 0
\(547\) 43.0015 1.83861 0.919306 0.393543i \(-0.128751\pi\)
0.919306 + 0.393543i \(0.128751\pi\)
\(548\) 0 0
\(549\) 46.1484 1.96956
\(550\) 0 0
\(551\) 20.4596 0.871610
\(552\) 0 0
\(553\) 4.00000 0.170097
\(554\) 0 0
\(555\) −118.405 −5.02603
\(556\) 0 0
\(557\) 41.9472 1.77736 0.888680 0.458529i \(-0.151623\pi\)
0.888680 + 0.458529i \(0.151623\pi\)
\(558\) 0 0
\(559\) −0.512445 −0.0216741
\(560\) 0 0
\(561\) 13.1755 0.556269
\(562\) 0 0
\(563\) 20.3246 0.856578 0.428289 0.903642i \(-0.359117\pi\)
0.428289 + 0.903642i \(0.359117\pi\)
\(564\) 0 0
\(565\) −63.2174 −2.65958
\(566\) 0 0
\(567\) −15.8176 −0.664275
\(568\) 0 0
\(569\) 16.4115 0.688008 0.344004 0.938968i \(-0.388217\pi\)
0.344004 + 0.938968i \(0.388217\pi\)
\(570\) 0 0
\(571\) 4.52493 0.189362 0.0946812 0.995508i \(-0.469817\pi\)
0.0946812 + 0.995508i \(0.469817\pi\)
\(572\) 0 0
\(573\) −72.4387 −3.02617
\(574\) 0 0
\(575\) 5.05433 0.210780
\(576\) 0 0
\(577\) −4.35097 −0.181133 −0.0905665 0.995890i \(-0.528868\pi\)
−0.0905665 + 0.995890i \(0.528868\pi\)
\(578\) 0 0
\(579\) 28.2423 1.17371
\(580\) 0 0
\(581\) 1.05433 0.0437411
\(582\) 0 0
\(583\) −28.1212 −1.16466
\(584\) 0 0
\(585\) 29.8913 1.23585
\(586\) 0 0
\(587\) 11.0668 0.456776 0.228388 0.973570i \(-0.426654\pi\)
0.228388 + 0.973570i \(0.426654\pi\)
\(588\) 0 0
\(589\) −26.4721 −1.09076
\(590\) 0 0
\(591\) 50.4721 2.07615
\(592\) 0 0
\(593\) −15.5529 −0.638679 −0.319340 0.947640i \(-0.603461\pi\)
−0.319340 + 0.947640i \(0.603461\pi\)
\(594\) 0 0
\(595\) 3.47283 0.142372
\(596\) 0 0
\(597\) 29.5676 1.21012
\(598\) 0 0
\(599\) 15.0885 0.616499 0.308250 0.951305i \(-0.400257\pi\)
0.308250 + 0.951305i \(0.400257\pi\)
\(600\) 0 0
\(601\) 6.45963 0.263494 0.131747 0.991283i \(-0.457941\pi\)
0.131747 + 0.991283i \(0.457941\pi\)
\(602\) 0 0
\(603\) 69.8316 2.84376
\(604\) 0 0
\(605\) 23.9325 0.972993
\(606\) 0 0
\(607\) 12.0147 0.487662 0.243831 0.969818i \(-0.421596\pi\)
0.243831 + 0.969818i \(0.421596\pi\)
\(608\) 0 0
\(609\) 21.6351 0.876699
\(610\) 0 0
\(611\) 16.0000 0.647291
\(612\) 0 0
\(613\) 9.29887 0.375578 0.187789 0.982209i \(-0.439868\pi\)
0.187789 + 0.982209i \(0.439868\pi\)
\(614\) 0 0
\(615\) −22.2904 −0.898835
\(616\) 0 0
\(617\) −3.01544 −0.121397 −0.0606985 0.998156i \(-0.519333\pi\)
−0.0606985 + 0.998156i \(0.519333\pi\)
\(618\) 0 0
\(619\) 0.607188 0.0244050 0.0122025 0.999926i \(-0.496116\pi\)
0.0122025 + 0.999926i \(0.496116\pi\)
\(620\) 0 0
\(621\) −8.25622 −0.331311
\(622\) 0 0
\(623\) −4.60719 −0.184583
\(624\) 0 0
\(625\) −10.4512 −0.418046
\(626\) 0 0
\(627\) −38.8106 −1.54995
\(628\) 0 0
\(629\) −10.9457 −0.436432
\(630\) 0 0
\(631\) −3.33776 −0.132874 −0.0664371 0.997791i \(-0.521163\pi\)
−0.0664371 + 0.997791i \(0.521163\pi\)
\(632\) 0 0
\(633\) 4.37737 0.173985
\(634\) 0 0
\(635\) −34.8712 −1.38382
\(636\) 0 0
\(637\) 1.28415 0.0508798
\(638\) 0 0
\(639\) 93.6601 3.70514
\(640\) 0 0
\(641\) 7.05433 0.278629 0.139315 0.990248i \(-0.455510\pi\)
0.139315 + 0.990248i \(0.455510\pi\)
\(642\) 0 0
\(643\) −45.3447 −1.78822 −0.894111 0.447846i \(-0.852191\pi\)
−0.894111 + 0.447846i \(0.852191\pi\)
\(644\) 0 0
\(645\) 4.31680 0.169974
\(646\) 0 0
\(647\) −37.7563 −1.48435 −0.742176 0.670205i \(-0.766206\pi\)
−0.742176 + 0.670205i \(0.766206\pi\)
\(648\) 0 0
\(649\) −6.05585 −0.237713
\(650\) 0 0
\(651\) −27.9930 −1.09713
\(652\) 0 0
\(653\) 14.9890 0.586566 0.293283 0.956026i \(-0.405252\pi\)
0.293283 + 0.956026i \(0.405252\pi\)
\(654\) 0 0
\(655\) −2.86341 −0.111883
\(656\) 0 0
\(657\) −97.3238 −3.79696
\(658\) 0 0
\(659\) −2.33624 −0.0910072 −0.0455036 0.998964i \(-0.514489\pi\)
−0.0455036 + 0.998964i \(0.514489\pi\)
\(660\) 0 0
\(661\) −15.6785 −0.609822 −0.304911 0.952381i \(-0.598627\pi\)
−0.304911 + 0.952381i \(0.598627\pi\)
\(662\) 0 0
\(663\) 4.00000 0.155347
\(664\) 0 0
\(665\) −10.2298 −0.396695
\(666\) 0 0
\(667\) 4.97208 0.192520
\(668\) 0 0
\(669\) −67.0140 −2.59091
\(670\) 0 0
\(671\) 29.1227 1.12427
\(672\) 0 0
\(673\) 27.2144 1.04904 0.524519 0.851399i \(-0.324245\pi\)
0.524519 + 0.851399i \(0.324245\pi\)
\(674\) 0 0
\(675\) −81.4325 −3.13434
\(676\) 0 0
\(677\) −14.7717 −0.567723 −0.283861 0.958865i \(-0.591616\pi\)
−0.283861 + 0.958865i \(0.591616\pi\)
\(678\) 0 0
\(679\) −10.2709 −0.394163
\(680\) 0 0
\(681\) −59.2633 −2.27097
\(682\) 0 0
\(683\) −3.13659 −0.120018 −0.0600091 0.998198i \(-0.519113\pi\)
−0.0600091 + 0.998198i \(0.519113\pi\)
\(684\) 0 0
\(685\) −1.00848 −0.0385320
\(686\) 0 0
\(687\) −38.0947 −1.45341
\(688\) 0 0
\(689\) −8.53742 −0.325250
\(690\) 0 0
\(691\) −14.8976 −0.566731 −0.283365 0.959012i \(-0.591451\pi\)
−0.283365 + 0.959012i \(0.591451\pi\)
\(692\) 0 0
\(693\) −28.3510 −1.07696
\(694\) 0 0
\(695\) −71.3308 −2.70573
\(696\) 0 0
\(697\) −2.06058 −0.0780499
\(698\) 0 0
\(699\) 38.2159 1.44546
\(700\) 0 0
\(701\) 44.8106 1.69247 0.846236 0.532808i \(-0.178863\pi\)
0.846236 + 0.532808i \(0.178863\pi\)
\(702\) 0 0
\(703\) 32.2423 1.21604
\(704\) 0 0
\(705\) −134.783 −5.07621
\(706\) 0 0
\(707\) 2.79811 0.105234
\(708\) 0 0
\(709\) −27.2702 −1.02415 −0.512077 0.858939i \(-0.671124\pi\)
−0.512077 + 0.858939i \(0.671124\pi\)
\(710\) 0 0
\(711\) −26.8106 −1.00548
\(712\) 0 0
\(713\) −6.43322 −0.240926
\(714\) 0 0
\(715\) 18.8634 0.705452
\(716\) 0 0
\(717\) 58.0272 2.16707
\(718\) 0 0
\(719\) 6.75002 0.251733 0.125867 0.992047i \(-0.459829\pi\)
0.125867 + 0.992047i \(0.459829\pi\)
\(720\) 0 0
\(721\) 6.94567 0.258670
\(722\) 0 0
\(723\) −70.8036 −2.63322
\(724\) 0 0
\(725\) 49.0404 1.82132
\(726\) 0 0
\(727\) 22.0125 0.816398 0.408199 0.912893i \(-0.366157\pi\)
0.408199 + 0.912893i \(0.366157\pi\)
\(728\) 0 0
\(729\) −1.75698 −0.0650734
\(730\) 0 0
\(731\) 0.399055 0.0147596
\(732\) 0 0
\(733\) 18.4596 0.681822 0.340911 0.940096i \(-0.389265\pi\)
0.340911 + 0.940096i \(0.389265\pi\)
\(734\) 0 0
\(735\) −10.8176 −0.399012
\(736\) 0 0
\(737\) 44.0683 1.62328
\(738\) 0 0
\(739\) −25.2221 −0.927811 −0.463906 0.885885i \(-0.653552\pi\)
−0.463906 + 0.885885i \(0.653552\pi\)
\(740\) 0 0
\(741\) −11.7827 −0.432847
\(742\) 0 0
\(743\) 9.05433 0.332171 0.166086 0.986111i \(-0.446887\pi\)
0.166086 + 0.986111i \(0.446887\pi\)
\(744\) 0 0
\(745\) 56.5738 2.07270
\(746\) 0 0
\(747\) −7.06682 −0.258561
\(748\) 0 0
\(749\) 1.74378 0.0637162
\(750\) 0 0
\(751\) −39.4053 −1.43792 −0.718960 0.695052i \(-0.755382\pi\)
−0.718960 + 0.695052i \(0.755382\pi\)
\(752\) 0 0
\(753\) −21.6351 −0.788427
\(754\) 0 0
\(755\) 26.8176 0.975991
\(756\) 0 0
\(757\) −12.9673 −0.471306 −0.235653 0.971837i \(-0.575723\pi\)
−0.235653 + 0.971837i \(0.575723\pi\)
\(758\) 0 0
\(759\) −9.43171 −0.342349
\(760\) 0 0
\(761\) 5.20189 0.188568 0.0942842 0.995545i \(-0.469944\pi\)
0.0942842 + 0.995545i \(0.469944\pi\)
\(762\) 0 0
\(763\) −10.6072 −0.384006
\(764\) 0 0
\(765\) −23.2772 −0.841588
\(766\) 0 0
\(767\) −1.83852 −0.0663851
\(768\) 0 0
\(769\) −17.6226 −0.635488 −0.317744 0.948177i \(-0.602925\pi\)
−0.317744 + 0.948177i \(0.602925\pi\)
\(770\) 0 0
\(771\) 83.0529 2.99108
\(772\) 0 0
\(773\) −34.4457 −1.23893 −0.619463 0.785026i \(-0.712650\pi\)
−0.619463 + 0.785026i \(0.712650\pi\)
\(774\) 0 0
\(775\) −63.4520 −2.27926
\(776\) 0 0
\(777\) 34.0947 1.22314
\(778\) 0 0
\(779\) 6.06977 0.217472
\(780\) 0 0
\(781\) 59.1057 2.11497
\(782\) 0 0
\(783\) −80.1072 −2.86280
\(784\) 0 0
\(785\) −60.4457 −2.15740
\(786\) 0 0
\(787\) 9.28415 0.330944 0.165472 0.986214i \(-0.447085\pi\)
0.165472 + 0.986214i \(0.447085\pi\)
\(788\) 0 0
\(789\) −40.9193 −1.45676
\(790\) 0 0
\(791\) 18.2034 0.647239
\(792\) 0 0
\(793\) 8.84147 0.313970
\(794\) 0 0
\(795\) 71.9185 2.55069
\(796\) 0 0
\(797\) −51.7952 −1.83468 −0.917339 0.398106i \(-0.869668\pi\)
−0.917339 + 0.398106i \(0.869668\pi\)
\(798\) 0 0
\(799\) −12.4596 −0.440790
\(800\) 0 0
\(801\) 30.8804 1.09110
\(802\) 0 0
\(803\) −61.4178 −2.16739
\(804\) 0 0
\(805\) −2.48604 −0.0876213
\(806\) 0 0
\(807\) 19.1491 0.674079
\(808\) 0 0
\(809\) −13.7827 −0.484573 −0.242286 0.970205i \(-0.577897\pi\)
−0.242286 + 0.970205i \(0.577897\pi\)
\(810\) 0 0
\(811\) 31.3572 1.10110 0.550550 0.834802i \(-0.314418\pi\)
0.550550 + 0.834802i \(0.314418\pi\)
\(812\) 0 0
\(813\) 73.9597 2.59388
\(814\) 0 0
\(815\) 13.5140 0.473373
\(816\) 0 0
\(817\) −1.17548 −0.0411249
\(818\) 0 0
\(819\) −8.60719 −0.300760
\(820\) 0 0
\(821\) 5.29663 0.184854 0.0924269 0.995719i \(-0.470538\pi\)
0.0924269 + 0.995719i \(0.470538\pi\)
\(822\) 0 0
\(823\) −24.1600 −0.842166 −0.421083 0.907022i \(-0.638350\pi\)
−0.421083 + 0.907022i \(0.638350\pi\)
\(824\) 0 0
\(825\) −93.0265 −3.23877
\(826\) 0 0
\(827\) 32.9457 1.14563 0.572817 0.819684i \(-0.305851\pi\)
0.572817 + 0.819684i \(0.305851\pi\)
\(828\) 0 0
\(829\) −15.6879 −0.544864 −0.272432 0.962175i \(-0.587828\pi\)
−0.272432 + 0.962175i \(0.587828\pi\)
\(830\) 0 0
\(831\) 51.3914 1.78275
\(832\) 0 0
\(833\) −1.00000 −0.0346479
\(834\) 0 0
\(835\) 44.6561 1.54539
\(836\) 0 0
\(837\) 103.648 3.58261
\(838\) 0 0
\(839\) 12.7019 0.438519 0.219260 0.975667i \(-0.429636\pi\)
0.219260 + 0.975667i \(0.429636\pi\)
\(840\) 0 0
\(841\) 19.2423 0.663528
\(842\) 0 0
\(843\) −56.9123 −1.96016
\(844\) 0 0
\(845\) −39.4200 −1.35609
\(846\) 0 0
\(847\) −6.89134 −0.236789
\(848\) 0 0
\(849\) 64.2353 2.20455
\(850\) 0 0
\(851\) 7.83549 0.268597
\(852\) 0 0
\(853\) −21.6351 −0.740772 −0.370386 0.928878i \(-0.620775\pi\)
−0.370386 + 0.928878i \(0.620775\pi\)
\(854\) 0 0
\(855\) 68.5669 2.34494
\(856\) 0 0
\(857\) 26.3782 0.901061 0.450531 0.892761i \(-0.351235\pi\)
0.450531 + 0.892761i \(0.351235\pi\)
\(858\) 0 0
\(859\) −25.8385 −0.881599 −0.440799 0.897606i \(-0.645305\pi\)
−0.440799 + 0.897606i \(0.645305\pi\)
\(860\) 0 0
\(861\) 6.41850 0.218742
\(862\) 0 0
\(863\) −45.8238 −1.55986 −0.779930 0.625867i \(-0.784745\pi\)
−0.779930 + 0.625867i \(0.784745\pi\)
\(864\) 0 0
\(865\) 53.2897 1.81190
\(866\) 0 0
\(867\) −3.11491 −0.105788
\(868\) 0 0
\(869\) −16.9193 −0.573947
\(870\) 0 0
\(871\) 13.3789 0.453326
\(872\) 0 0
\(873\) 68.8425 2.32997
\(874\) 0 0
\(875\) −7.15604 −0.241918
\(876\) 0 0
\(877\) 47.0668 1.58933 0.794667 0.607046i \(-0.207646\pi\)
0.794667 + 0.607046i \(0.207646\pi\)
\(878\) 0 0
\(879\) −2.56829 −0.0866264
\(880\) 0 0
\(881\) −19.7026 −0.663799 −0.331900 0.943315i \(-0.607690\pi\)
−0.331900 + 0.943315i \(0.607690\pi\)
\(882\) 0 0
\(883\) 2.55357 0.0859346 0.0429673 0.999076i \(-0.486319\pi\)
0.0429673 + 0.999076i \(0.486319\pi\)
\(884\) 0 0
\(885\) 15.4876 0.520608
\(886\) 0 0
\(887\) −10.8003 −0.362640 −0.181320 0.983424i \(-0.558037\pi\)
−0.181320 + 0.983424i \(0.558037\pi\)
\(888\) 0 0
\(889\) 10.0411 0.336769
\(890\) 0 0
\(891\) 66.9053 2.24141
\(892\) 0 0
\(893\) 36.7019 1.22818
\(894\) 0 0
\(895\) −91.7229 −3.06596
\(896\) 0 0
\(897\) −2.86341 −0.0956065
\(898\) 0 0
\(899\) −62.4193 −2.08180
\(900\) 0 0
\(901\) 6.64832 0.221488
\(902\) 0 0
\(903\) −1.24302 −0.0413651
\(904\) 0 0
\(905\) −33.4611 −1.11229
\(906\) 0 0
\(907\) 43.5962 1.44759 0.723794 0.690016i \(-0.242396\pi\)
0.723794 + 0.690016i \(0.242396\pi\)
\(908\) 0 0
\(909\) −18.7547 −0.622056
\(910\) 0 0
\(911\) −2.47212 −0.0819049 −0.0409524 0.999161i \(-0.513039\pi\)
−0.0409524 + 0.999161i \(0.513039\pi\)
\(912\) 0 0
\(913\) −4.45963 −0.147592
\(914\) 0 0
\(915\) −74.4799 −2.46223
\(916\) 0 0
\(917\) 0.824517 0.0272280
\(918\) 0 0
\(919\) −39.8866 −1.31574 −0.657869 0.753132i \(-0.728542\pi\)
−0.657869 + 0.753132i \(0.728542\pi\)
\(920\) 0 0
\(921\) 99.3775 3.27460
\(922\) 0 0
\(923\) 17.9442 0.590639
\(924\) 0 0
\(925\) 77.2827 2.54104
\(926\) 0 0
\(927\) −46.5544 −1.52905
\(928\) 0 0
\(929\) 17.9714 0.589621 0.294811 0.955556i \(-0.404743\pi\)
0.294811 + 0.955556i \(0.404743\pi\)
\(930\) 0 0
\(931\) 2.94567 0.0965404
\(932\) 0 0
\(933\) −50.8036 −1.66324
\(934\) 0 0
\(935\) −14.6894 −0.480396
\(936\) 0 0
\(937\) 3.47060 0.113380 0.0566898 0.998392i \(-0.481945\pi\)
0.0566898 + 0.998392i \(0.481945\pi\)
\(938\) 0 0
\(939\) 88.8984 2.90109
\(940\) 0 0
\(941\) 16.5591 0.539811 0.269906 0.962887i \(-0.413008\pi\)
0.269906 + 0.962887i \(0.413008\pi\)
\(942\) 0 0
\(943\) 1.47507 0.0480348
\(944\) 0 0
\(945\) 40.0536 1.30294
\(946\) 0 0
\(947\) 17.1491 0.557270 0.278635 0.960397i \(-0.410118\pi\)
0.278635 + 0.960397i \(0.410118\pi\)
\(948\) 0 0
\(949\) −18.6461 −0.605277
\(950\) 0 0
\(951\) −57.8385 −1.87554
\(952\) 0 0
\(953\) 16.7570 0.542812 0.271406 0.962465i \(-0.412511\pi\)
0.271406 + 0.962465i \(0.412511\pi\)
\(954\) 0 0
\(955\) 80.7625 2.61341
\(956\) 0 0
\(957\) −91.5125 −2.95818
\(958\) 0 0
\(959\) 0.290390 0.00937720
\(960\) 0 0
\(961\) 49.7625 1.60524
\(962\) 0 0
\(963\) −11.6879 −0.376638
\(964\) 0 0
\(965\) −31.4876 −1.01362
\(966\) 0 0
\(967\) −48.0855 −1.54633 −0.773163 0.634207i \(-0.781327\pi\)
−0.773163 + 0.634207i \(0.781327\pi\)
\(968\) 0 0
\(969\) 9.17548 0.294759
\(970\) 0 0
\(971\) 21.6785 0.695695 0.347848 0.937551i \(-0.386913\pi\)
0.347848 + 0.937551i \(0.386913\pi\)
\(972\) 0 0
\(973\) 20.5397 0.658471
\(974\) 0 0
\(975\) −28.2423 −0.904478
\(976\) 0 0
\(977\) −44.0800 −1.41024 −0.705122 0.709086i \(-0.749108\pi\)
−0.705122 + 0.709086i \(0.749108\pi\)
\(978\) 0 0
\(979\) 19.4876 0.622825
\(980\) 0 0
\(981\) 71.0963 2.26993
\(982\) 0 0
\(983\) 41.3114 1.31763 0.658814 0.752306i \(-0.271059\pi\)
0.658814 + 0.752306i \(0.271059\pi\)
\(984\) 0 0
\(985\) −56.2717 −1.79297
\(986\) 0 0
\(987\) 38.8106 1.23535
\(988\) 0 0
\(989\) −0.285664 −0.00908360
\(990\) 0 0
\(991\) 13.9302 0.442508 0.221254 0.975216i \(-0.428985\pi\)
0.221254 + 0.975216i \(0.428985\pi\)
\(992\) 0 0
\(993\) −8.70889 −0.276368
\(994\) 0 0
\(995\) −32.9651 −1.04506
\(996\) 0 0
\(997\) −40.6803 −1.28836 −0.644178 0.764875i \(-0.722800\pi\)
−0.644178 + 0.764875i \(0.722800\pi\)
\(998\) 0 0
\(999\) −126.241 −3.99408
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7616.2.a.bb.1.1 3
4.3 odd 2 7616.2.a.bh.1.3 3
8.3 odd 2 952.2.a.c.1.1 3
8.5 even 2 1904.2.a.o.1.3 3
24.11 even 2 8568.2.a.be.1.3 3
56.27 even 2 6664.2.a.m.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
952.2.a.c.1.1 3 8.3 odd 2
1904.2.a.o.1.3 3 8.5 even 2
6664.2.a.m.1.3 3 56.27 even 2
7616.2.a.bb.1.1 3 1.1 even 1 trivial
7616.2.a.bh.1.3 3 4.3 odd 2
8568.2.a.be.1.3 3 24.11 even 2