Properties

Label 7616.2.a.ba.1.3
Level $7616$
Weight $2$
Character 7616.1
Self dual yes
Analytic conductor $60.814$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7616,2,Mod(1,7616)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7616, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7616.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 7616 = 2^{6} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7616.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,-3,0,-1,0,3,0,2,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.8140661794\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.229.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 4x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 952)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.11491\) of defining polynomial
Character \(\chi\) \(=\) 7616.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.11491 q^{3} +1.47283 q^{5} +1.00000 q^{7} -1.75698 q^{9} -2.00000 q^{11} -0.715853 q^{13} +1.64207 q^{15} -1.00000 q^{17} -1.28415 q^{19} +1.11491 q^{21} -2.22982 q^{23} -2.83076 q^{25} -5.30359 q^{27} +9.17548 q^{29} +6.75698 q^{31} -2.22982 q^{33} +1.47283 q^{35} -8.45963 q^{37} -0.798110 q^{39} -6.77643 q^{41} -4.39905 q^{43} -2.58774 q^{45} -2.22982 q^{47} +1.00000 q^{49} -1.11491 q^{51} -6.64832 q^{53} -2.94567 q^{55} -1.43171 q^{57} -5.28415 q^{59} -0.885092 q^{61} -1.75698 q^{63} -1.05433 q^{65} -4.90454 q^{67} -2.48604 q^{69} +16.4596 q^{71} +11.2361 q^{73} -3.15604 q^{75} -2.00000 q^{77} -10.6894 q^{79} -0.642074 q^{81} -2.37737 q^{83} -1.47283 q^{85} +10.2298 q^{87} +7.51396 q^{89} -0.715853 q^{91} +7.53341 q^{93} -1.89134 q^{95} +5.85021 q^{97} +3.51396 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{3} - q^{5} + 3 q^{7} + 2 q^{9} - 6 q^{11} - 4 q^{13} + 4 q^{15} - 3 q^{17} - 2 q^{19} - 3 q^{21} + 6 q^{23} - 4 q^{25} - 6 q^{27} + 4 q^{29} + 13 q^{31} + 6 q^{33} - q^{35} + 14 q^{39} - 5 q^{41}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.11491 0.643692 0.321846 0.946792i \(-0.395697\pi\)
0.321846 + 0.946792i \(0.395697\pi\)
\(4\) 0 0
\(5\) 1.47283 0.658671 0.329336 0.944213i \(-0.393175\pi\)
0.329336 + 0.944213i \(0.393175\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) −1.75698 −0.585660
\(10\) 0 0
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 0 0
\(13\) −0.715853 −0.198542 −0.0992709 0.995060i \(-0.531651\pi\)
−0.0992709 + 0.995060i \(0.531651\pi\)
\(14\) 0 0
\(15\) 1.64207 0.423982
\(16\) 0 0
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) −1.28415 −0.294604 −0.147302 0.989092i \(-0.547059\pi\)
−0.147302 + 0.989092i \(0.547059\pi\)
\(20\) 0 0
\(21\) 1.11491 0.243293
\(22\) 0 0
\(23\) −2.22982 −0.464949 −0.232474 0.972603i \(-0.574682\pi\)
−0.232474 + 0.972603i \(0.574682\pi\)
\(24\) 0 0
\(25\) −2.83076 −0.566152
\(26\) 0 0
\(27\) −5.30359 −1.02068
\(28\) 0 0
\(29\) 9.17548 1.70384 0.851922 0.523668i \(-0.175437\pi\)
0.851922 + 0.523668i \(0.175437\pi\)
\(30\) 0 0
\(31\) 6.75698 1.21359 0.606795 0.794859i \(-0.292455\pi\)
0.606795 + 0.794859i \(0.292455\pi\)
\(32\) 0 0
\(33\) −2.22982 −0.388161
\(34\) 0 0
\(35\) 1.47283 0.248954
\(36\) 0 0
\(37\) −8.45963 −1.39075 −0.695377 0.718645i \(-0.744763\pi\)
−0.695377 + 0.718645i \(0.744763\pi\)
\(38\) 0 0
\(39\) −0.798110 −0.127800
\(40\) 0 0
\(41\) −6.77643 −1.05830 −0.529150 0.848528i \(-0.677489\pi\)
−0.529150 + 0.848528i \(0.677489\pi\)
\(42\) 0 0
\(43\) −4.39905 −0.670850 −0.335425 0.942067i \(-0.608880\pi\)
−0.335425 + 0.942067i \(0.608880\pi\)
\(44\) 0 0
\(45\) −2.58774 −0.385758
\(46\) 0 0
\(47\) −2.22982 −0.325252 −0.162626 0.986688i \(-0.551996\pi\)
−0.162626 + 0.986688i \(0.551996\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −1.11491 −0.156118
\(52\) 0 0
\(53\) −6.64832 −0.913217 −0.456608 0.889668i \(-0.650936\pi\)
−0.456608 + 0.889668i \(0.650936\pi\)
\(54\) 0 0
\(55\) −2.94567 −0.397194
\(56\) 0 0
\(57\) −1.43171 −0.189634
\(58\) 0 0
\(59\) −5.28415 −0.687937 −0.343969 0.938981i \(-0.611771\pi\)
−0.343969 + 0.938981i \(0.611771\pi\)
\(60\) 0 0
\(61\) −0.885092 −0.113324 −0.0566622 0.998393i \(-0.518046\pi\)
−0.0566622 + 0.998393i \(0.518046\pi\)
\(62\) 0 0
\(63\) −1.75698 −0.221359
\(64\) 0 0
\(65\) −1.05433 −0.130774
\(66\) 0 0
\(67\) −4.90454 −0.599185 −0.299592 0.954067i \(-0.596851\pi\)
−0.299592 + 0.954067i \(0.596851\pi\)
\(68\) 0 0
\(69\) −2.48604 −0.299284
\(70\) 0 0
\(71\) 16.4596 1.95340 0.976699 0.214612i \(-0.0688487\pi\)
0.976699 + 0.214612i \(0.0688487\pi\)
\(72\) 0 0
\(73\) 11.2361 1.31508 0.657541 0.753419i \(-0.271597\pi\)
0.657541 + 0.753419i \(0.271597\pi\)
\(74\) 0 0
\(75\) −3.15604 −0.364428
\(76\) 0 0
\(77\) −2.00000 −0.227921
\(78\) 0 0
\(79\) −10.6894 −1.20266 −0.601328 0.799002i \(-0.705362\pi\)
−0.601328 + 0.799002i \(0.705362\pi\)
\(80\) 0 0
\(81\) −0.642074 −0.0713415
\(82\) 0 0
\(83\) −2.37737 −0.260951 −0.130475 0.991452i \(-0.541650\pi\)
−0.130475 + 0.991452i \(0.541650\pi\)
\(84\) 0 0
\(85\) −1.47283 −0.159751
\(86\) 0 0
\(87\) 10.2298 1.09675
\(88\) 0 0
\(89\) 7.51396 0.796478 0.398239 0.917282i \(-0.369621\pi\)
0.398239 + 0.917282i \(0.369621\pi\)
\(90\) 0 0
\(91\) −0.715853 −0.0750418
\(92\) 0 0
\(93\) 7.53341 0.781178
\(94\) 0 0
\(95\) −1.89134 −0.194047
\(96\) 0 0
\(97\) 5.85021 0.593999 0.296999 0.954878i \(-0.404014\pi\)
0.296999 + 0.954878i \(0.404014\pi\)
\(98\) 0 0
\(99\) 3.51396 0.353167
\(100\) 0 0
\(101\) −18.3510 −1.82599 −0.912995 0.407971i \(-0.866236\pi\)
−0.912995 + 0.407971i \(0.866236\pi\)
\(102\) 0 0
\(103\) −0.338479 −0.0333514 −0.0166757 0.999861i \(-0.505308\pi\)
−0.0166757 + 0.999861i \(0.505308\pi\)
\(104\) 0 0
\(105\) 1.64207 0.160250
\(106\) 0 0
\(107\) −0.568295 −0.0549391 −0.0274696 0.999623i \(-0.508745\pi\)
−0.0274696 + 0.999623i \(0.508745\pi\)
\(108\) 0 0
\(109\) −4.71585 −0.451697 −0.225848 0.974162i \(-0.572515\pi\)
−0.225848 + 0.974162i \(0.572515\pi\)
\(110\) 0 0
\(111\) −9.43171 −0.895218
\(112\) 0 0
\(113\) −12.9457 −1.21783 −0.608913 0.793237i \(-0.708394\pi\)
−0.608913 + 0.793237i \(0.708394\pi\)
\(114\) 0 0
\(115\) −3.28415 −0.306248
\(116\) 0 0
\(117\) 1.25774 0.116278
\(118\) 0 0
\(119\) −1.00000 −0.0916698
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) −7.55509 −0.681220
\(124\) 0 0
\(125\) −11.5334 −1.03158
\(126\) 0 0
\(127\) 5.95887 0.528764 0.264382 0.964418i \(-0.414832\pi\)
0.264382 + 0.964418i \(0.414832\pi\)
\(128\) 0 0
\(129\) −4.90454 −0.431821
\(130\) 0 0
\(131\) −18.8106 −1.64349 −0.821745 0.569856i \(-0.806999\pi\)
−0.821745 + 0.569856i \(0.806999\pi\)
\(132\) 0 0
\(133\) −1.28415 −0.111350
\(134\) 0 0
\(135\) −7.81131 −0.672291
\(136\) 0 0
\(137\) −14.1817 −1.21163 −0.605813 0.795607i \(-0.707152\pi\)
−0.605813 + 0.795607i \(0.707152\pi\)
\(138\) 0 0
\(139\) −0.188687 −0.0160042 −0.00800210 0.999968i \(-0.502547\pi\)
−0.00800210 + 0.999968i \(0.502547\pi\)
\(140\) 0 0
\(141\) −2.48604 −0.209362
\(142\) 0 0
\(143\) 1.43171 0.119725
\(144\) 0 0
\(145\) 13.5140 1.12227
\(146\) 0 0
\(147\) 1.11491 0.0919560
\(148\) 0 0
\(149\) −13.0885 −1.07225 −0.536126 0.844138i \(-0.680113\pi\)
−0.536126 + 0.844138i \(0.680113\pi\)
\(150\) 0 0
\(151\) −5.49228 −0.446955 −0.223478 0.974709i \(-0.571741\pi\)
−0.223478 + 0.974709i \(0.571741\pi\)
\(152\) 0 0
\(153\) 1.75698 0.142044
\(154\) 0 0
\(155\) 9.95191 0.799357
\(156\) 0 0
\(157\) −11.0279 −0.880124 −0.440062 0.897967i \(-0.645044\pi\)
−0.440062 + 0.897967i \(0.645044\pi\)
\(158\) 0 0
\(159\) −7.41226 −0.587830
\(160\) 0 0
\(161\) −2.22982 −0.175734
\(162\) 0 0
\(163\) 6.71585 0.526026 0.263013 0.964792i \(-0.415284\pi\)
0.263013 + 0.964792i \(0.415284\pi\)
\(164\) 0 0
\(165\) −3.28415 −0.255671
\(166\) 0 0
\(167\) 11.8044 0.913448 0.456724 0.889608i \(-0.349023\pi\)
0.456724 + 0.889608i \(0.349023\pi\)
\(168\) 0 0
\(169\) −12.4876 −0.960581
\(170\) 0 0
\(171\) 2.25622 0.172538
\(172\) 0 0
\(173\) −13.3447 −1.01458 −0.507290 0.861775i \(-0.669353\pi\)
−0.507290 + 0.861775i \(0.669353\pi\)
\(174\) 0 0
\(175\) −2.83076 −0.213985
\(176\) 0 0
\(177\) −5.89134 −0.442820
\(178\) 0 0
\(179\) 1.37113 0.102483 0.0512415 0.998686i \(-0.483682\pi\)
0.0512415 + 0.998686i \(0.483682\pi\)
\(180\) 0 0
\(181\) −7.13659 −0.530458 −0.265229 0.964185i \(-0.585448\pi\)
−0.265229 + 0.964185i \(0.585448\pi\)
\(182\) 0 0
\(183\) −0.986796 −0.0729461
\(184\) 0 0
\(185\) −12.4596 −0.916050
\(186\) 0 0
\(187\) 2.00000 0.146254
\(188\) 0 0
\(189\) −5.30359 −0.385780
\(190\) 0 0
\(191\) 6.50076 0.470378 0.235189 0.971950i \(-0.424429\pi\)
0.235189 + 0.971950i \(0.424429\pi\)
\(192\) 0 0
\(193\) 16.3510 1.17697 0.588484 0.808509i \(-0.299725\pi\)
0.588484 + 0.808509i \(0.299725\pi\)
\(194\) 0 0
\(195\) −1.17548 −0.0841781
\(196\) 0 0
\(197\) 20.4596 1.45769 0.728844 0.684680i \(-0.240058\pi\)
0.728844 + 0.684680i \(0.240058\pi\)
\(198\) 0 0
\(199\) 17.6957 1.25441 0.627207 0.778853i \(-0.284198\pi\)
0.627207 + 0.778853i \(0.284198\pi\)
\(200\) 0 0
\(201\) −5.46811 −0.385691
\(202\) 0 0
\(203\) 9.17548 0.643993
\(204\) 0 0
\(205\) −9.98055 −0.697072
\(206\) 0 0
\(207\) 3.91774 0.272302
\(208\) 0 0
\(209\) 2.56829 0.177653
\(210\) 0 0
\(211\) −24.7283 −1.70237 −0.851185 0.524867i \(-0.824115\pi\)
−0.851185 + 0.524867i \(0.824115\pi\)
\(212\) 0 0
\(213\) 18.3510 1.25739
\(214\) 0 0
\(215\) −6.47908 −0.441869
\(216\) 0 0
\(217\) 6.75698 0.458694
\(218\) 0 0
\(219\) 12.5272 0.846507
\(220\) 0 0
\(221\) 0.715853 0.0481535
\(222\) 0 0
\(223\) −22.3510 −1.49673 −0.748366 0.663286i \(-0.769161\pi\)
−0.748366 + 0.663286i \(0.769161\pi\)
\(224\) 0 0
\(225\) 4.97359 0.331573
\(226\) 0 0
\(227\) 19.2989 1.28091 0.640455 0.767995i \(-0.278746\pi\)
0.640455 + 0.767995i \(0.278746\pi\)
\(228\) 0 0
\(229\) −5.39281 −0.356367 −0.178184 0.983997i \(-0.557022\pi\)
−0.178184 + 0.983997i \(0.557022\pi\)
\(230\) 0 0
\(231\) −2.22982 −0.146711
\(232\) 0 0
\(233\) −8.10866 −0.531216 −0.265608 0.964081i \(-0.585573\pi\)
−0.265608 + 0.964081i \(0.585573\pi\)
\(234\) 0 0
\(235\) −3.28415 −0.214234
\(236\) 0 0
\(237\) −11.9177 −0.774141
\(238\) 0 0
\(239\) −22.4115 −1.44968 −0.724841 0.688916i \(-0.758087\pi\)
−0.724841 + 0.688916i \(0.758087\pi\)
\(240\) 0 0
\(241\) 6.98680 0.450059 0.225030 0.974352i \(-0.427752\pi\)
0.225030 + 0.974352i \(0.427752\pi\)
\(242\) 0 0
\(243\) 15.1949 0.974755
\(244\) 0 0
\(245\) 1.47283 0.0940959
\(246\) 0 0
\(247\) 0.919260 0.0584911
\(248\) 0 0
\(249\) −2.65055 −0.167972
\(250\) 0 0
\(251\) 15.6351 0.986880 0.493440 0.869780i \(-0.335739\pi\)
0.493440 + 0.869780i \(0.335739\pi\)
\(252\) 0 0
\(253\) 4.45963 0.280375
\(254\) 0 0
\(255\) −1.64207 −0.102831
\(256\) 0 0
\(257\) 0.689445 0.0430064 0.0215032 0.999769i \(-0.493155\pi\)
0.0215032 + 0.999769i \(0.493155\pi\)
\(258\) 0 0
\(259\) −8.45963 −0.525656
\(260\) 0 0
\(261\) −16.1212 −0.997874
\(262\) 0 0
\(263\) 17.4317 1.07489 0.537443 0.843300i \(-0.319391\pi\)
0.537443 + 0.843300i \(0.319391\pi\)
\(264\) 0 0
\(265\) −9.79187 −0.601510
\(266\) 0 0
\(267\) 8.37737 0.512687
\(268\) 0 0
\(269\) 3.43171 0.209235 0.104617 0.994513i \(-0.466638\pi\)
0.104617 + 0.994513i \(0.466638\pi\)
\(270\) 0 0
\(271\) 2.68945 0.163372 0.0816861 0.996658i \(-0.473970\pi\)
0.0816861 + 0.996658i \(0.473970\pi\)
\(272\) 0 0
\(273\) −0.798110 −0.0483038
\(274\) 0 0
\(275\) 5.66152 0.341403
\(276\) 0 0
\(277\) −15.6615 −0.941010 −0.470505 0.882397i \(-0.655928\pi\)
−0.470505 + 0.882397i \(0.655928\pi\)
\(278\) 0 0
\(279\) −11.8719 −0.710751
\(280\) 0 0
\(281\) −5.72906 −0.341767 −0.170883 0.985291i \(-0.554662\pi\)
−0.170883 + 0.985291i \(0.554662\pi\)
\(282\) 0 0
\(283\) −17.2430 −1.02499 −0.512496 0.858690i \(-0.671279\pi\)
−0.512496 + 0.858690i \(0.671279\pi\)
\(284\) 0 0
\(285\) −2.10866 −0.124906
\(286\) 0 0
\(287\) −6.77643 −0.400000
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 6.52244 0.382352
\(292\) 0 0
\(293\) 24.8370 1.45099 0.725497 0.688226i \(-0.241610\pi\)
0.725497 + 0.688226i \(0.241610\pi\)
\(294\) 0 0
\(295\) −7.78267 −0.453125
\(296\) 0 0
\(297\) 10.6072 0.615491
\(298\) 0 0
\(299\) 1.59622 0.0923117
\(300\) 0 0
\(301\) −4.39905 −0.253557
\(302\) 0 0
\(303\) −20.4596 −1.17538
\(304\) 0 0
\(305\) −1.30359 −0.0746436
\(306\) 0 0
\(307\) 24.6894 1.40910 0.704551 0.709654i \(-0.251149\pi\)
0.704551 + 0.709654i \(0.251149\pi\)
\(308\) 0 0
\(309\) −0.377373 −0.0214680
\(310\) 0 0
\(311\) 12.2709 0.695821 0.347911 0.937528i \(-0.386891\pi\)
0.347911 + 0.937528i \(0.386891\pi\)
\(312\) 0 0
\(313\) 8.87813 0.501822 0.250911 0.968010i \(-0.419270\pi\)
0.250911 + 0.968010i \(0.419270\pi\)
\(314\) 0 0
\(315\) −2.58774 −0.145803
\(316\) 0 0
\(317\) 24.5419 1.37841 0.689205 0.724567i \(-0.257960\pi\)
0.689205 + 0.724567i \(0.257960\pi\)
\(318\) 0 0
\(319\) −18.3510 −1.02746
\(320\) 0 0
\(321\) −0.633596 −0.0353639
\(322\) 0 0
\(323\) 1.28415 0.0714519
\(324\) 0 0
\(325\) 2.02641 0.112405
\(326\) 0 0
\(327\) −5.25774 −0.290754
\(328\) 0 0
\(329\) −2.22982 −0.122934
\(330\) 0 0
\(331\) 7.47283 0.410744 0.205372 0.978684i \(-0.434160\pi\)
0.205372 + 0.978684i \(0.434160\pi\)
\(332\) 0 0
\(333\) 14.8634 0.814510
\(334\) 0 0
\(335\) −7.22357 −0.394666
\(336\) 0 0
\(337\) −3.39281 −0.184818 −0.0924091 0.995721i \(-0.529457\pi\)
−0.0924091 + 0.995721i \(0.529457\pi\)
\(338\) 0 0
\(339\) −14.4332 −0.783905
\(340\) 0 0
\(341\) −13.5140 −0.731822
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) −3.66152 −0.197130
\(346\) 0 0
\(347\) −6.67696 −0.358438 −0.179219 0.983809i \(-0.557357\pi\)
−0.179219 + 0.983809i \(0.557357\pi\)
\(348\) 0 0
\(349\) −13.0543 −0.698782 −0.349391 0.936977i \(-0.613612\pi\)
−0.349391 + 0.936977i \(0.613612\pi\)
\(350\) 0 0
\(351\) 3.79659 0.202647
\(352\) 0 0
\(353\) −25.0279 −1.33210 −0.666051 0.745906i \(-0.732017\pi\)
−0.666051 + 0.745906i \(0.732017\pi\)
\(354\) 0 0
\(355\) 24.2423 1.28665
\(356\) 0 0
\(357\) −1.11491 −0.0590072
\(358\) 0 0
\(359\) 11.1732 0.589701 0.294851 0.955543i \(-0.404730\pi\)
0.294851 + 0.955543i \(0.404730\pi\)
\(360\) 0 0
\(361\) −17.3510 −0.913209
\(362\) 0 0
\(363\) −7.80435 −0.409622
\(364\) 0 0
\(365\) 16.5488 0.866206
\(366\) 0 0
\(367\) 19.8044 1.03378 0.516889 0.856052i \(-0.327090\pi\)
0.516889 + 0.856052i \(0.327090\pi\)
\(368\) 0 0
\(369\) 11.9061 0.619805
\(370\) 0 0
\(371\) −6.64832 −0.345163
\(372\) 0 0
\(373\) −7.53564 −0.390181 −0.195090 0.980785i \(-0.562500\pi\)
−0.195090 + 0.980785i \(0.562500\pi\)
\(374\) 0 0
\(375\) −12.8587 −0.664020
\(376\) 0 0
\(377\) −6.56829 −0.338284
\(378\) 0 0
\(379\) −2.75475 −0.141502 −0.0707509 0.997494i \(-0.522540\pi\)
−0.0707509 + 0.997494i \(0.522540\pi\)
\(380\) 0 0
\(381\) 6.64359 0.340361
\(382\) 0 0
\(383\) 0.0388938 0.00198738 0.000993691 1.00000i \(-0.499684\pi\)
0.000993691 1.00000i \(0.499684\pi\)
\(384\) 0 0
\(385\) −2.94567 −0.150125
\(386\) 0 0
\(387\) 7.72906 0.392890
\(388\) 0 0
\(389\) −5.05210 −0.256152 −0.128076 0.991764i \(-0.540880\pi\)
−0.128076 + 0.991764i \(0.540880\pi\)
\(390\) 0 0
\(391\) 2.22982 0.112767
\(392\) 0 0
\(393\) −20.9721 −1.05790
\(394\) 0 0
\(395\) −15.7438 −0.792155
\(396\) 0 0
\(397\) −2.06754 −0.103767 −0.0518833 0.998653i \(-0.516522\pi\)
−0.0518833 + 0.998653i \(0.516522\pi\)
\(398\) 0 0
\(399\) −1.43171 −0.0716749
\(400\) 0 0
\(401\) −26.0000 −1.29838 −0.649189 0.760627i \(-0.724892\pi\)
−0.649189 + 0.760627i \(0.724892\pi\)
\(402\) 0 0
\(403\) −4.83700 −0.240948
\(404\) 0 0
\(405\) −0.945668 −0.0469906
\(406\) 0 0
\(407\) 16.9193 0.838657
\(408\) 0 0
\(409\) 2.59470 0.128300 0.0641499 0.997940i \(-0.479566\pi\)
0.0641499 + 0.997940i \(0.479566\pi\)
\(410\) 0 0
\(411\) −15.8113 −0.779915
\(412\) 0 0
\(413\) −5.28415 −0.260016
\(414\) 0 0
\(415\) −3.50148 −0.171881
\(416\) 0 0
\(417\) −0.210368 −0.0103018
\(418\) 0 0
\(419\) 22.9993 1.12359 0.561794 0.827277i \(-0.310111\pi\)
0.561794 + 0.827277i \(0.310111\pi\)
\(420\) 0 0
\(421\) −1.47979 −0.0721208 −0.0360604 0.999350i \(-0.511481\pi\)
−0.0360604 + 0.999350i \(0.511481\pi\)
\(422\) 0 0
\(423\) 3.91774 0.190487
\(424\) 0 0
\(425\) 2.83076 0.137312
\(426\) 0 0
\(427\) −0.885092 −0.0428326
\(428\) 0 0
\(429\) 1.59622 0.0770662
\(430\) 0 0
\(431\) 9.97359 0.480411 0.240206 0.970722i \(-0.422785\pi\)
0.240206 + 0.970722i \(0.422785\pi\)
\(432\) 0 0
\(433\) −20.3943 −0.980089 −0.490044 0.871697i \(-0.663019\pi\)
−0.490044 + 0.871697i \(0.663019\pi\)
\(434\) 0 0
\(435\) 15.0668 0.722399
\(436\) 0 0
\(437\) 2.86341 0.136976
\(438\) 0 0
\(439\) 32.3851 1.54566 0.772829 0.634614i \(-0.218841\pi\)
0.772829 + 0.634614i \(0.218841\pi\)
\(440\) 0 0
\(441\) −1.75698 −0.0836658
\(442\) 0 0
\(443\) 13.8913 0.659997 0.329999 0.943981i \(-0.392952\pi\)
0.329999 + 0.943981i \(0.392952\pi\)
\(444\) 0 0
\(445\) 11.0668 0.524618
\(446\) 0 0
\(447\) −14.5925 −0.690200
\(448\) 0 0
\(449\) −15.3928 −0.726432 −0.363216 0.931705i \(-0.618321\pi\)
−0.363216 + 0.931705i \(0.618321\pi\)
\(450\) 0 0
\(451\) 13.5529 0.638179
\(452\) 0 0
\(453\) −6.12339 −0.287702
\(454\) 0 0
\(455\) −1.05433 −0.0494279
\(456\) 0 0
\(457\) −32.3223 −1.51197 −0.755987 0.654586i \(-0.772843\pi\)
−0.755987 + 0.654586i \(0.772843\pi\)
\(458\) 0 0
\(459\) 5.30359 0.247551
\(460\) 0 0
\(461\) 21.9736 1.02341 0.511706 0.859161i \(-0.329014\pi\)
0.511706 + 0.859161i \(0.329014\pi\)
\(462\) 0 0
\(463\) 25.8308 1.20046 0.600229 0.799828i \(-0.295076\pi\)
0.600229 + 0.799828i \(0.295076\pi\)
\(464\) 0 0
\(465\) 11.0955 0.514540
\(466\) 0 0
\(467\) −27.2577 −1.26134 −0.630669 0.776052i \(-0.717219\pi\)
−0.630669 + 0.776052i \(0.717219\pi\)
\(468\) 0 0
\(469\) −4.90454 −0.226471
\(470\) 0 0
\(471\) −12.2951 −0.566529
\(472\) 0 0
\(473\) 8.79811 0.404538
\(474\) 0 0
\(475\) 3.63511 0.166790
\(476\) 0 0
\(477\) 11.6810 0.534835
\(478\) 0 0
\(479\) 26.4938 1.21053 0.605266 0.796023i \(-0.293067\pi\)
0.605266 + 0.796023i \(0.293067\pi\)
\(480\) 0 0
\(481\) 6.05585 0.276123
\(482\) 0 0
\(483\) −2.48604 −0.113119
\(484\) 0 0
\(485\) 8.61638 0.391250
\(486\) 0 0
\(487\) 17.9736 0.814461 0.407231 0.913325i \(-0.366495\pi\)
0.407231 + 0.913325i \(0.366495\pi\)
\(488\) 0 0
\(489\) 7.48755 0.338599
\(490\) 0 0
\(491\) −17.1468 −0.773826 −0.386913 0.922116i \(-0.626459\pi\)
−0.386913 + 0.922116i \(0.626459\pi\)
\(492\) 0 0
\(493\) −9.17548 −0.413243
\(494\) 0 0
\(495\) 5.17548 0.232621
\(496\) 0 0
\(497\) 16.4596 0.738315
\(498\) 0 0
\(499\) 20.2298 0.905611 0.452805 0.891609i \(-0.350423\pi\)
0.452805 + 0.891609i \(0.350423\pi\)
\(500\) 0 0
\(501\) 13.1608 0.587979
\(502\) 0 0
\(503\) −2.16228 −0.0964113 −0.0482056 0.998837i \(-0.515350\pi\)
−0.0482056 + 0.998837i \(0.515350\pi\)
\(504\) 0 0
\(505\) −27.0279 −1.20273
\(506\) 0 0
\(507\) −13.9225 −0.618319
\(508\) 0 0
\(509\) −29.2144 −1.29490 −0.647452 0.762106i \(-0.724165\pi\)
−0.647452 + 0.762106i \(0.724165\pi\)
\(510\) 0 0
\(511\) 11.2361 0.497054
\(512\) 0 0
\(513\) 6.81060 0.300695
\(514\) 0 0
\(515\) −0.498524 −0.0219676
\(516\) 0 0
\(517\) 4.45963 0.196134
\(518\) 0 0
\(519\) −14.8781 −0.653078
\(520\) 0 0
\(521\) −10.1428 −0.444366 −0.222183 0.975005i \(-0.571318\pi\)
−0.222183 + 0.975005i \(0.571318\pi\)
\(522\) 0 0
\(523\) 24.8929 1.08849 0.544244 0.838927i \(-0.316816\pi\)
0.544244 + 0.838927i \(0.316816\pi\)
\(524\) 0 0
\(525\) −3.15604 −0.137741
\(526\) 0 0
\(527\) −6.75698 −0.294339
\(528\) 0 0
\(529\) −18.0279 −0.783823
\(530\) 0 0
\(531\) 9.28415 0.402898
\(532\) 0 0
\(533\) 4.85092 0.210117
\(534\) 0 0
\(535\) −0.837003 −0.0361868
\(536\) 0 0
\(537\) 1.52868 0.0659676
\(538\) 0 0
\(539\) −2.00000 −0.0861461
\(540\) 0 0
\(541\) 15.3664 0.660653 0.330327 0.943867i \(-0.392841\pi\)
0.330327 + 0.943867i \(0.392841\pi\)
\(542\) 0 0
\(543\) −7.95664 −0.341452
\(544\) 0 0
\(545\) −6.94567 −0.297520
\(546\) 0 0
\(547\) −4.31207 −0.184371 −0.0921854 0.995742i \(-0.529385\pi\)
−0.0921854 + 0.995742i \(0.529385\pi\)
\(548\) 0 0
\(549\) 1.55509 0.0663697
\(550\) 0 0
\(551\) −11.7827 −0.501959
\(552\) 0 0
\(553\) −10.6894 −0.454561
\(554\) 0 0
\(555\) −13.8913 −0.589654
\(556\) 0 0
\(557\) 32.5933 1.38102 0.690511 0.723322i \(-0.257386\pi\)
0.690511 + 0.723322i \(0.257386\pi\)
\(558\) 0 0
\(559\) 3.14908 0.133192
\(560\) 0 0
\(561\) 2.22982 0.0941429
\(562\) 0 0
\(563\) 11.6740 0.492001 0.246000 0.969270i \(-0.420884\pi\)
0.246000 + 0.969270i \(0.420884\pi\)
\(564\) 0 0
\(565\) −19.0668 −0.802147
\(566\) 0 0
\(567\) −0.642074 −0.0269646
\(568\) 0 0
\(569\) −23.6134 −0.989927 −0.494963 0.868914i \(-0.664818\pi\)
−0.494963 + 0.868914i \(0.664818\pi\)
\(570\) 0 0
\(571\) −45.2313 −1.89287 −0.946436 0.322891i \(-0.895345\pi\)
−0.946436 + 0.322891i \(0.895345\pi\)
\(572\) 0 0
\(573\) 7.24774 0.302779
\(574\) 0 0
\(575\) 6.31207 0.263232
\(576\) 0 0
\(577\) 8.98903 0.374218 0.187109 0.982339i \(-0.440088\pi\)
0.187109 + 0.982339i \(0.440088\pi\)
\(578\) 0 0
\(579\) 18.2298 0.757605
\(580\) 0 0
\(581\) −2.37737 −0.0986301
\(582\) 0 0
\(583\) 13.2966 0.550690
\(584\) 0 0
\(585\) 1.85244 0.0765890
\(586\) 0 0
\(587\) −19.0404 −0.785882 −0.392941 0.919564i \(-0.628542\pi\)
−0.392941 + 0.919564i \(0.628542\pi\)
\(588\) 0 0
\(589\) −8.67696 −0.357528
\(590\) 0 0
\(591\) 22.8106 0.938303
\(592\) 0 0
\(593\) 12.0947 0.496672 0.248336 0.968674i \(-0.420116\pi\)
0.248336 + 0.968674i \(0.420116\pi\)
\(594\) 0 0
\(595\) −1.47283 −0.0603803
\(596\) 0 0
\(597\) 19.7291 0.807457
\(598\) 0 0
\(599\) 3.30583 0.135073 0.0675363 0.997717i \(-0.478486\pi\)
0.0675363 + 0.997717i \(0.478486\pi\)
\(600\) 0 0
\(601\) 25.4876 1.03966 0.519830 0.854270i \(-0.325995\pi\)
0.519830 + 0.854270i \(0.325995\pi\)
\(602\) 0 0
\(603\) 8.61718 0.350919
\(604\) 0 0
\(605\) −10.3098 −0.419154
\(606\) 0 0
\(607\) −30.9993 −1.25822 −0.629111 0.777315i \(-0.716581\pi\)
−0.629111 + 0.777315i \(0.716581\pi\)
\(608\) 0 0
\(609\) 10.2298 0.414533
\(610\) 0 0
\(611\) 1.59622 0.0645761
\(612\) 0 0
\(613\) −17.5117 −0.707292 −0.353646 0.935379i \(-0.615058\pi\)
−0.353646 + 0.935379i \(0.615058\pi\)
\(614\) 0 0
\(615\) −11.1274 −0.448700
\(616\) 0 0
\(617\) 23.2144 0.934576 0.467288 0.884105i \(-0.345231\pi\)
0.467288 + 0.884105i \(0.345231\pi\)
\(618\) 0 0
\(619\) 47.5125 1.90969 0.954845 0.297105i \(-0.0960211\pi\)
0.954845 + 0.297105i \(0.0960211\pi\)
\(620\) 0 0
\(621\) 11.8260 0.474562
\(622\) 0 0
\(623\) 7.51396 0.301041
\(624\) 0 0
\(625\) −2.83299 −0.113320
\(626\) 0 0
\(627\) 2.86341 0.114354
\(628\) 0 0
\(629\) 8.45963 0.337308
\(630\) 0 0
\(631\) 12.3921 0.493321 0.246661 0.969102i \(-0.420667\pi\)
0.246661 + 0.969102i \(0.420667\pi\)
\(632\) 0 0
\(633\) −27.5698 −1.09580
\(634\) 0 0
\(635\) 8.77643 0.348282
\(636\) 0 0
\(637\) −0.715853 −0.0283631
\(638\) 0 0
\(639\) −28.9193 −1.14403
\(640\) 0 0
\(641\) −20.2298 −0.799030 −0.399515 0.916727i \(-0.630821\pi\)
−0.399515 + 0.916727i \(0.630821\pi\)
\(642\) 0 0
\(643\) −26.5466 −1.04690 −0.523448 0.852058i \(-0.675355\pi\)
−0.523448 + 0.852058i \(0.675355\pi\)
\(644\) 0 0
\(645\) −7.22357 −0.284428
\(646\) 0 0
\(647\) −31.0668 −1.22136 −0.610681 0.791876i \(-0.709104\pi\)
−0.610681 + 0.791876i \(0.709104\pi\)
\(648\) 0 0
\(649\) 10.5683 0.414842
\(650\) 0 0
\(651\) 7.53341 0.295258
\(652\) 0 0
\(653\) 2.36489 0.0925452 0.0462726 0.998929i \(-0.485266\pi\)
0.0462726 + 0.998929i \(0.485266\pi\)
\(654\) 0 0
\(655\) −27.7049 −1.08252
\(656\) 0 0
\(657\) −19.7415 −0.770191
\(658\) 0 0
\(659\) 22.6358 0.881767 0.440883 0.897564i \(-0.354665\pi\)
0.440883 + 0.897564i \(0.354665\pi\)
\(660\) 0 0
\(661\) −17.9302 −0.697405 −0.348703 0.937233i \(-0.613378\pi\)
−0.348703 + 0.937233i \(0.613378\pi\)
\(662\) 0 0
\(663\) 0.798110 0.0309960
\(664\) 0 0
\(665\) −1.89134 −0.0733429
\(666\) 0 0
\(667\) −20.4596 −0.792200
\(668\) 0 0
\(669\) −24.9193 −0.963434
\(670\) 0 0
\(671\) 1.77018 0.0683372
\(672\) 0 0
\(673\) −23.0932 −0.890178 −0.445089 0.895486i \(-0.646828\pi\)
−0.445089 + 0.895486i \(0.646828\pi\)
\(674\) 0 0
\(675\) 15.0132 0.577858
\(676\) 0 0
\(677\) 36.2982 1.39505 0.697526 0.716560i \(-0.254284\pi\)
0.697526 + 0.716560i \(0.254284\pi\)
\(678\) 0 0
\(679\) 5.85021 0.224510
\(680\) 0 0
\(681\) 21.5165 0.824512
\(682\) 0 0
\(683\) −12.1476 −0.464813 −0.232407 0.972619i \(-0.574660\pi\)
−0.232407 + 0.972619i \(0.574660\pi\)
\(684\) 0 0
\(685\) −20.8873 −0.798064
\(686\) 0 0
\(687\) −6.01249 −0.229391
\(688\) 0 0
\(689\) 4.75922 0.181312
\(690\) 0 0
\(691\) −49.6957 −1.89051 −0.945257 0.326328i \(-0.894189\pi\)
−0.945257 + 0.326328i \(0.894189\pi\)
\(692\) 0 0
\(693\) 3.51396 0.133484
\(694\) 0 0
\(695\) −0.277904 −0.0105415
\(696\) 0 0
\(697\) 6.77643 0.256676
\(698\) 0 0
\(699\) −9.04041 −0.341940
\(700\) 0 0
\(701\) −38.4068 −1.45061 −0.725303 0.688430i \(-0.758300\pi\)
−0.725303 + 0.688430i \(0.758300\pi\)
\(702\) 0 0
\(703\) 10.8634 0.409721
\(704\) 0 0
\(705\) −3.66152 −0.137901
\(706\) 0 0
\(707\) −18.3510 −0.690159
\(708\) 0 0
\(709\) −23.9861 −0.900816 −0.450408 0.892823i \(-0.648721\pi\)
−0.450408 + 0.892823i \(0.648721\pi\)
\(710\) 0 0
\(711\) 18.7812 0.704348
\(712\) 0 0
\(713\) −15.0668 −0.564257
\(714\) 0 0
\(715\) 2.10866 0.0788596
\(716\) 0 0
\(717\) −24.9868 −0.933149
\(718\) 0 0
\(719\) −19.6832 −0.734060 −0.367030 0.930209i \(-0.619625\pi\)
−0.367030 + 0.930209i \(0.619625\pi\)
\(720\) 0 0
\(721\) −0.338479 −0.0126056
\(722\) 0 0
\(723\) 7.78963 0.289700
\(724\) 0 0
\(725\) −25.9736 −0.964635
\(726\) 0 0
\(727\) −9.97359 −0.369900 −0.184950 0.982748i \(-0.559212\pi\)
−0.184950 + 0.982748i \(0.559212\pi\)
\(728\) 0 0
\(729\) 18.8672 0.698784
\(730\) 0 0
\(731\) 4.39905 0.162705
\(732\) 0 0
\(733\) 48.0294 1.77401 0.887004 0.461762i \(-0.152783\pi\)
0.887004 + 0.461762i \(0.152783\pi\)
\(734\) 0 0
\(735\) 1.64207 0.0605688
\(736\) 0 0
\(737\) 9.80908 0.361322
\(738\) 0 0
\(739\) 18.7500 0.689731 0.344865 0.938652i \(-0.387925\pi\)
0.344865 + 0.938652i \(0.387925\pi\)
\(740\) 0 0
\(741\) 1.02489 0.0376503
\(742\) 0 0
\(743\) 48.5669 1.78175 0.890873 0.454253i \(-0.150094\pi\)
0.890873 + 0.454253i \(0.150094\pi\)
\(744\) 0 0
\(745\) −19.2772 −0.706261
\(746\) 0 0
\(747\) 4.17700 0.152828
\(748\) 0 0
\(749\) −0.568295 −0.0207650
\(750\) 0 0
\(751\) 22.1336 0.807668 0.403834 0.914832i \(-0.367677\pi\)
0.403834 + 0.914832i \(0.367677\pi\)
\(752\) 0 0
\(753\) 17.4317 0.635247
\(754\) 0 0
\(755\) −8.08922 −0.294397
\(756\) 0 0
\(757\) −47.7779 −1.73652 −0.868259 0.496110i \(-0.834761\pi\)
−0.868259 + 0.496110i \(0.834761\pi\)
\(758\) 0 0
\(759\) 4.97208 0.180475
\(760\) 0 0
\(761\) 29.6087 1.07331 0.536657 0.843800i \(-0.319687\pi\)
0.536657 + 0.843800i \(0.319687\pi\)
\(762\) 0 0
\(763\) −4.71585 −0.170725
\(764\) 0 0
\(765\) 2.58774 0.0935600
\(766\) 0 0
\(767\) 3.78267 0.136584
\(768\) 0 0
\(769\) 4.14756 0.149565 0.0747824 0.997200i \(-0.476174\pi\)
0.0747824 + 0.997200i \(0.476174\pi\)
\(770\) 0 0
\(771\) 0.768668 0.0276829
\(772\) 0 0
\(773\) −26.9317 −0.968668 −0.484334 0.874883i \(-0.660938\pi\)
−0.484334 + 0.874883i \(0.660938\pi\)
\(774\) 0 0
\(775\) −19.1274 −0.687076
\(776\) 0 0
\(777\) −9.43171 −0.338361
\(778\) 0 0
\(779\) 8.70193 0.311779
\(780\) 0 0
\(781\) −32.9193 −1.17794
\(782\) 0 0
\(783\) −48.6630 −1.73908
\(784\) 0 0
\(785\) −16.2423 −0.579713
\(786\) 0 0
\(787\) −36.1645 −1.28913 −0.644563 0.764551i \(-0.722961\pi\)
−0.644563 + 0.764551i \(0.722961\pi\)
\(788\) 0 0
\(789\) 19.4347 0.691895
\(790\) 0 0
\(791\) −12.9457 −0.460295
\(792\) 0 0
\(793\) 0.633596 0.0224996
\(794\) 0 0
\(795\) −10.9170 −0.387187
\(796\) 0 0
\(797\) 15.8260 0.560587 0.280293 0.959914i \(-0.409568\pi\)
0.280293 + 0.959914i \(0.409568\pi\)
\(798\) 0 0
\(799\) 2.22982 0.0788852
\(800\) 0 0
\(801\) −13.2019 −0.466466
\(802\) 0 0
\(803\) −22.4721 −0.793024
\(804\) 0 0
\(805\) −3.28415 −0.115751
\(806\) 0 0
\(807\) 3.82603 0.134683
\(808\) 0 0
\(809\) −48.7967 −1.71560 −0.857800 0.513984i \(-0.828169\pi\)
−0.857800 + 0.513984i \(0.828169\pi\)
\(810\) 0 0
\(811\) 30.9101 1.08540 0.542700 0.839927i \(-0.317402\pi\)
0.542700 + 0.839927i \(0.317402\pi\)
\(812\) 0 0
\(813\) 2.99848 0.105161
\(814\) 0 0
\(815\) 9.89134 0.346478
\(816\) 0 0
\(817\) 5.64903 0.197635
\(818\) 0 0
\(819\) 1.25774 0.0439490
\(820\) 0 0
\(821\) 3.61816 0.126275 0.0631373 0.998005i \(-0.479889\pi\)
0.0631373 + 0.998005i \(0.479889\pi\)
\(822\) 0 0
\(823\) 37.9736 1.32368 0.661838 0.749647i \(-0.269777\pi\)
0.661838 + 0.749647i \(0.269777\pi\)
\(824\) 0 0
\(825\) 6.31207 0.219758
\(826\) 0 0
\(827\) −6.79811 −0.236393 −0.118197 0.992990i \(-0.537711\pi\)
−0.118197 + 0.992990i \(0.537711\pi\)
\(828\) 0 0
\(829\) −25.3928 −0.881929 −0.440964 0.897525i \(-0.645363\pi\)
−0.440964 + 0.897525i \(0.645363\pi\)
\(830\) 0 0
\(831\) −17.4611 −0.605720
\(832\) 0 0
\(833\) −1.00000 −0.0346479
\(834\) 0 0
\(835\) 17.3859 0.601662
\(836\) 0 0
\(837\) −35.8363 −1.23868
\(838\) 0 0
\(839\) 9.67401 0.333984 0.166992 0.985958i \(-0.446595\pi\)
0.166992 + 0.985958i \(0.446595\pi\)
\(840\) 0 0
\(841\) 55.1895 1.90309
\(842\) 0 0
\(843\) −6.38737 −0.219993
\(844\) 0 0
\(845\) −18.3921 −0.632707
\(846\) 0 0
\(847\) −7.00000 −0.240523
\(848\) 0 0
\(849\) −19.2244 −0.659779
\(850\) 0 0
\(851\) 18.8634 0.646629
\(852\) 0 0
\(853\) −35.2144 −1.20572 −0.602859 0.797848i \(-0.705972\pi\)
−0.602859 + 0.797848i \(0.705972\pi\)
\(854\) 0 0
\(855\) 3.32304 0.113646
\(856\) 0 0
\(857\) 37.4728 1.28005 0.640024 0.768355i \(-0.278924\pi\)
0.640024 + 0.768355i \(0.278924\pi\)
\(858\) 0 0
\(859\) −40.7283 −1.38963 −0.694816 0.719187i \(-0.744514\pi\)
−0.694816 + 0.719187i \(0.744514\pi\)
\(860\) 0 0
\(861\) −7.55509 −0.257477
\(862\) 0 0
\(863\) −39.4978 −1.34452 −0.672260 0.740315i \(-0.734677\pi\)
−0.672260 + 0.740315i \(0.734677\pi\)
\(864\) 0 0
\(865\) −19.6546 −0.668275
\(866\) 0 0
\(867\) 1.11491 0.0378642
\(868\) 0 0
\(869\) 21.3789 0.725229
\(870\) 0 0
\(871\) 3.51093 0.118963
\(872\) 0 0
\(873\) −10.2787 −0.347881
\(874\) 0 0
\(875\) −11.5334 −0.389900
\(876\) 0 0
\(877\) −14.6461 −0.494563 −0.247282 0.968944i \(-0.579537\pi\)
−0.247282 + 0.968944i \(0.579537\pi\)
\(878\) 0 0
\(879\) 27.6910 0.933993
\(880\) 0 0
\(881\) 41.2555 1.38993 0.694967 0.719042i \(-0.255419\pi\)
0.694967 + 0.719042i \(0.255419\pi\)
\(882\) 0 0
\(883\) 30.3362 1.02090 0.510448 0.859909i \(-0.329480\pi\)
0.510448 + 0.859909i \(0.329480\pi\)
\(884\) 0 0
\(885\) −8.67696 −0.291673
\(886\) 0 0
\(887\) 24.1887 0.812177 0.406088 0.913834i \(-0.366893\pi\)
0.406088 + 0.913834i \(0.366893\pi\)
\(888\) 0 0
\(889\) 5.95887 0.199854
\(890\) 0 0
\(891\) 1.28415 0.0430206
\(892\) 0 0
\(893\) 2.86341 0.0958204
\(894\) 0 0
\(895\) 2.01945 0.0675027
\(896\) 0 0
\(897\) 1.77964 0.0594203
\(898\) 0 0
\(899\) 61.9986 2.06777
\(900\) 0 0
\(901\) 6.64832 0.221488
\(902\) 0 0
\(903\) −4.90454 −0.163213
\(904\) 0 0
\(905\) −10.5110 −0.349398
\(906\) 0 0
\(907\) 2.00000 0.0664089 0.0332045 0.999449i \(-0.489429\pi\)
0.0332045 + 0.999449i \(0.489429\pi\)
\(908\) 0 0
\(909\) 32.2423 1.06941
\(910\) 0 0
\(911\) 51.4736 1.70540 0.852699 0.522403i \(-0.174964\pi\)
0.852699 + 0.522403i \(0.174964\pi\)
\(912\) 0 0
\(913\) 4.75475 0.157359
\(914\) 0 0
\(915\) −1.45339 −0.0480475
\(916\) 0 0
\(917\) −18.8106 −0.621181
\(918\) 0 0
\(919\) −47.9644 −1.58220 −0.791100 0.611687i \(-0.790491\pi\)
−0.791100 + 0.611687i \(0.790491\pi\)
\(920\) 0 0
\(921\) 27.5264 0.907027
\(922\) 0 0
\(923\) −11.7827 −0.387831
\(924\) 0 0
\(925\) 23.9472 0.787379
\(926\) 0 0
\(927\) 0.594702 0.0195326
\(928\) 0 0
\(929\) 24.1189 0.791316 0.395658 0.918398i \(-0.370517\pi\)
0.395658 + 0.918398i \(0.370517\pi\)
\(930\) 0 0
\(931\) −1.28415 −0.0420862
\(932\) 0 0
\(933\) 13.6810 0.447895
\(934\) 0 0
\(935\) 2.94567 0.0963336
\(936\) 0 0
\(937\) −28.7967 −0.940746 −0.470373 0.882468i \(-0.655881\pi\)
−0.470373 + 0.882468i \(0.655881\pi\)
\(938\) 0 0
\(939\) 9.89830 0.323019
\(940\) 0 0
\(941\) −10.0745 −0.328419 −0.164210 0.986425i \(-0.552507\pi\)
−0.164210 + 0.986425i \(0.552507\pi\)
\(942\) 0 0
\(943\) 15.1102 0.492055
\(944\) 0 0
\(945\) −7.81131 −0.254102
\(946\) 0 0
\(947\) 30.8664 1.00302 0.501512 0.865150i \(-0.332777\pi\)
0.501512 + 0.865150i \(0.332777\pi\)
\(948\) 0 0
\(949\) −8.04336 −0.261099
\(950\) 0 0
\(951\) 27.3619 0.887272
\(952\) 0 0
\(953\) −0.0844915 −0.00273695 −0.00136847 0.999999i \(-0.500436\pi\)
−0.00136847 + 0.999999i \(0.500436\pi\)
\(954\) 0 0
\(955\) 9.57454 0.309825
\(956\) 0 0
\(957\) −20.4596 −0.661366
\(958\) 0 0
\(959\) −14.1817 −0.457952
\(960\) 0 0
\(961\) 14.6568 0.472800
\(962\) 0 0
\(963\) 0.998483 0.0321757
\(964\) 0 0
\(965\) 24.0823 0.775235
\(966\) 0 0
\(967\) −14.9240 −0.479923 −0.239962 0.970782i \(-0.577135\pi\)
−0.239962 + 0.970782i \(0.577135\pi\)
\(968\) 0 0
\(969\) 1.43171 0.0459930
\(970\) 0 0
\(971\) −16.8106 −0.539478 −0.269739 0.962934i \(-0.586937\pi\)
−0.269739 + 0.962934i \(0.586937\pi\)
\(972\) 0 0
\(973\) −0.188687 −0.00604902
\(974\) 0 0
\(975\) 2.25926 0.0723541
\(976\) 0 0
\(977\) 33.3767 1.06781 0.533907 0.845543i \(-0.320723\pi\)
0.533907 + 0.845543i \(0.320723\pi\)
\(978\) 0 0
\(979\) −15.0279 −0.480295
\(980\) 0 0
\(981\) 8.28566 0.264541
\(982\) 0 0
\(983\) 18.2974 0.583595 0.291797 0.956480i \(-0.405747\pi\)
0.291797 + 0.956480i \(0.405747\pi\)
\(984\) 0 0
\(985\) 30.1336 0.960138
\(986\) 0 0
\(987\) −2.48604 −0.0791315
\(988\) 0 0
\(989\) 9.80908 0.311911
\(990\) 0 0
\(991\) −0.958154 −0.0304368 −0.0152184 0.999884i \(-0.504844\pi\)
−0.0152184 + 0.999884i \(0.504844\pi\)
\(992\) 0 0
\(993\) 8.33152 0.264393
\(994\) 0 0
\(995\) 26.0628 0.826247
\(996\) 0 0
\(997\) 56.5188 1.78997 0.894984 0.446099i \(-0.147187\pi\)
0.894984 + 0.446099i \(0.147187\pi\)
\(998\) 0 0
\(999\) 44.8664 1.41951
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7616.2.a.ba.1.3 3
4.3 odd 2 7616.2.a.bg.1.1 3
8.3 odd 2 952.2.a.d.1.3 3
8.5 even 2 1904.2.a.p.1.1 3
24.11 even 2 8568.2.a.z.1.3 3
56.27 even 2 6664.2.a.l.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
952.2.a.d.1.3 3 8.3 odd 2
1904.2.a.p.1.1 3 8.5 even 2
6664.2.a.l.1.1 3 56.27 even 2
7616.2.a.ba.1.3 3 1.1 even 1 trivial
7616.2.a.bg.1.1 3 4.3 odd 2
8568.2.a.z.1.3 3 24.11 even 2