Properties

Label 7605.2.a.cj
Level $7605$
Weight $2$
Character orbit 7605.a
Self dual yes
Analytic conductor $60.726$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 7605 = 3^{2} \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7605.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(60.7262307372\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.4752.1
Defining polynomial: \(x^{4} - 2 x^{3} - 3 x^{2} + 4 x + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{1} q^{2} + ( \beta_{1} + \beta_{2} ) q^{4} - q^{5} + ( -3 - \beta_{2} + \beta_{3} ) q^{7} + ( 1 + \beta_{2} + \beta_{3} ) q^{8} +O(q^{10})\) \( q + \beta_{1} q^{2} + ( \beta_{1} + \beta_{2} ) q^{4} - q^{5} + ( -3 - \beta_{2} + \beta_{3} ) q^{7} + ( 1 + \beta_{2} + \beta_{3} ) q^{8} -\beta_{1} q^{10} + ( 2 \beta_{1} + \beta_{2} - 2 \beta_{3} ) q^{11} + ( 1 - 3 \beta_{1} + \beta_{2} ) q^{14} + ( -1 + \beta_{1} - \beta_{2} + 2 \beta_{3} ) q^{16} + ( -2 \beta_{2} + \beta_{3} ) q^{17} + ( -4 - \beta_{2} ) q^{19} + ( -\beta_{1} - \beta_{2} ) q^{20} + ( 3 + \beta_{1} - \beta_{3} ) q^{22} + ( 4 - 2 \beta_{1} - \beta_{3} ) q^{23} + q^{25} + ( -1 - \beta_{1} - \beta_{2} - \beta_{3} ) q^{28} + ( -1 - 2 \beta_{1} - 2 \beta_{2} ) q^{29} + ( -2 + 2 \beta_{2} ) q^{31} + ( 1 + \beta_{1} + \beta_{2} - \beta_{3} ) q^{32} + ( 2 - \beta_{1} + \beta_{2} - \beta_{3} ) q^{34} + ( 3 + \beta_{2} - \beta_{3} ) q^{35} + ( 1 + 2 \beta_{1} + \beta_{2} - 3 \beta_{3} ) q^{37} + ( 1 - 5 \beta_{1} - \beta_{3} ) q^{38} + ( -1 - \beta_{2} - \beta_{3} ) q^{40} + ( 2 - \beta_{2} ) q^{41} + ( 2 \beta_{2} - \beta_{3} ) q^{43} + ( 2 - \beta_{1} - 2 \beta_{2} + 3 \beta_{3} ) q^{44} + ( -4 + \beta_{1} - 3 \beta_{2} - \beta_{3} ) q^{46} + ( 4 - 4 \beta_{1} - 2 \beta_{2} ) q^{47} + ( 6 - 2 \beta_{1} + 4 \beta_{2} - 4 \beta_{3} ) q^{49} + \beta_{1} q^{50} + ( 2 + 2 \beta_{1} ) q^{53} + ( -2 \beta_{1} - \beta_{2} + 2 \beta_{3} ) q^{55} + ( -3 + 2 \beta_{1} - 4 \beta_{2} - 2 \beta_{3} ) q^{56} + ( -2 - 5 \beta_{1} - 2 \beta_{2} - 2 \beta_{3} ) q^{58} + ( 4 - 2 \beta_{1} + \beta_{2} ) q^{59} + ( 7 - 2 \beta_{1} - 2 \beta_{2} + 2 \beta_{3} ) q^{61} + ( -2 + 2 \beta_{3} ) q^{62} + ( 3 + 2 \beta_{2} - 4 \beta_{3} ) q^{64} + ( -7 + \beta_{2} - \beta_{3} ) q^{67} + ( -3 + \beta_{1} + 2 \beta_{2} - 2 \beta_{3} ) q^{68} + ( -1 + 3 \beta_{1} - \beta_{2} ) q^{70} + ( -2 - 3 \beta_{2} + 6 \beta_{3} ) q^{71} + ( 2 \beta_{1} - 4 \beta_{2} + 2 \beta_{3} ) q^{73} + ( 3 + \beta_{1} - \beta_{2} - 2 \beta_{3} ) q^{74} + ( -2 - 5 \beta_{1} - 4 \beta_{2} - \beta_{3} ) q^{76} + ( -4 - 4 \beta_{1} + 2 \beta_{2} + 3 \beta_{3} ) q^{77} + ( -6 \beta_{1} + 2 \beta_{3} ) q^{79} + ( 1 - \beta_{1} + \beta_{2} - 2 \beta_{3} ) q^{80} + ( 1 + \beta_{1} - \beta_{3} ) q^{82} + ( -4 + 2 \beta_{2} + 2 \beta_{3} ) q^{83} + ( 2 \beta_{2} - \beta_{3} ) q^{85} + ( -2 + \beta_{1} - \beta_{2} + \beta_{3} ) q^{86} + ( -6 + 2 \beta_{2} + 3 \beta_{3} ) q^{88} + ( -8 \beta_{1} + \beta_{2} + 2 \beta_{3} ) q^{89} + ( -3 - 3 \beta_{1} - 2 \beta_{3} ) q^{92} + ( -6 - 2 \beta_{1} - 4 \beta_{2} - 2 \beta_{3} ) q^{94} + ( 4 + \beta_{2} ) q^{95} + ( -1 - 2 \beta_{1} + \beta_{2} + 3 \beta_{3} ) q^{97} + ( -8 + 4 \beta_{1} - 6 \beta_{2} ) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q + 2q^{2} + 2q^{4} - 4q^{5} - 10q^{7} + 6q^{8} + O(q^{10}) \) \( 4q + 2q^{2} + 2q^{4} - 4q^{5} - 10q^{7} + 6q^{8} - 2q^{10} - 2q^{14} + 2q^{16} + 2q^{17} - 16q^{19} - 2q^{20} + 12q^{22} + 10q^{23} + 4q^{25} - 8q^{28} - 8q^{29} - 8q^{31} + 4q^{32} + 4q^{34} + 10q^{35} + 2q^{37} - 8q^{38} - 6q^{40} + 8q^{41} - 2q^{43} + 12q^{44} - 16q^{46} + 8q^{47} + 12q^{49} + 2q^{50} + 12q^{53} - 12q^{56} - 22q^{58} + 12q^{59} + 28q^{61} - 4q^{62} + 4q^{64} - 30q^{67} - 14q^{68} + 2q^{70} + 4q^{71} + 8q^{73} + 10q^{74} - 20q^{76} - 18q^{77} - 8q^{79} - 2q^{80} + 4q^{82} - 12q^{83} - 2q^{85} - 4q^{86} - 18q^{88} - 12q^{89} - 22q^{92} - 32q^{94} + 16q^{95} - 2q^{97} - 24q^{98} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{4} - 2 x^{3} - 3 x^{2} + 4 x + 1\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\( \nu^{2} - \nu - 2 \)
\(\beta_{3}\)\(=\)\( \nu^{3} - \nu^{2} - 3 \nu + 1 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{2} + \beta_{1} + 2\)
\(\nu^{3}\)\(=\)\(\beta_{3} + \beta_{2} + 4 \beta_{1} + 1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.49551
−0.219687
1.21969
2.49551
−1.49551 0 0.236543 −1.00000 0 −4.82684 2.63726 0 1.49551
1.2 −0.219687 0 −1.95174 −1.00000 0 0.332247 0.868145 0 0.219687
1.3 1.21969 0 −0.512364 −1.00000 0 −3.60020 −3.06430 0 −1.21969
1.4 2.49551 0 4.22756 −1.00000 0 −1.90521 5.55889 0 −2.49551
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \(-1\)
\(5\) \(1\)
\(13\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7605.2.a.cj 4
3.b odd 2 1 845.2.a.l 4
13.b even 2 1 7605.2.a.cf 4
13.f odd 12 2 585.2.bu.c 8
15.d odd 2 1 4225.2.a.bl 4
39.d odd 2 1 845.2.a.m 4
39.f even 4 2 845.2.c.g 8
39.h odd 6 2 845.2.e.m 8
39.i odd 6 2 845.2.e.n 8
39.k even 12 2 65.2.m.a 8
39.k even 12 2 845.2.m.g 8
156.v odd 12 2 1040.2.da.b 8
195.e odd 2 1 4225.2.a.bi 4
195.bc odd 12 2 325.2.m.b 8
195.bh even 12 2 325.2.n.d 8
195.bn odd 12 2 325.2.m.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
65.2.m.a 8 39.k even 12 2
325.2.m.b 8 195.bc odd 12 2
325.2.m.c 8 195.bn odd 12 2
325.2.n.d 8 195.bh even 12 2
585.2.bu.c 8 13.f odd 12 2
845.2.a.l 4 3.b odd 2 1
845.2.a.m 4 39.d odd 2 1
845.2.c.g 8 39.f even 4 2
845.2.e.m 8 39.h odd 6 2
845.2.e.n 8 39.i odd 6 2
845.2.m.g 8 39.k even 12 2
1040.2.da.b 8 156.v odd 12 2
4225.2.a.bi 4 195.e odd 2 1
4225.2.a.bl 4 15.d odd 2 1
7605.2.a.cf 4 13.b even 2 1
7605.2.a.cj 4 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7605))\):

\( T_{2}^{4} - 2 T_{2}^{3} - 3 T_{2}^{2} + 4 T_{2} + 1 \)
\( T_{7}^{4} + 10 T_{7}^{3} + 30 T_{7}^{2} + 22 T_{7} - 11 \)
\( T_{11}^{4} - 30 T_{11}^{2} + 33 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + 4 T - 3 T^{2} - 2 T^{3} + T^{4} \)
$3$ \( T^{4} \)
$5$ \( ( 1 + T )^{4} \)
$7$ \( -11 + 22 T + 30 T^{2} + 10 T^{3} + T^{4} \)
$11$ \( 33 - 30 T^{2} + T^{4} \)
$13$ \( T^{4} \)
$17$ \( 13 + 10 T - 18 T^{2} - 2 T^{3} + T^{4} \)
$19$ \( ( 13 + 8 T + T^{2} )^{2} \)
$23$ \( -299 + 146 T + 6 T^{2} - 10 T^{3} + T^{4} \)
$29$ \( 1 - 40 T - 18 T^{2} + 8 T^{3} + T^{4} \)
$31$ \( ( -8 + 4 T + T^{2} )^{2} \)
$37$ \( 1 - 38 T - 54 T^{2} - 2 T^{3} + T^{4} \)
$41$ \( ( 1 - 4 T + T^{2} )^{2} \)
$43$ \( 13 - 10 T - 18 T^{2} + 2 T^{3} + T^{4} \)
$47$ \( -1328 + 736 T - 72 T^{2} - 8 T^{3} + T^{4} \)
$53$ \( -48 + 36 T^{2} - 12 T^{3} + T^{4} \)
$59$ \( -3 - 12 T + 30 T^{2} - 12 T^{3} + T^{4} \)
$61$ \( 1261 - 964 T + 258 T^{2} - 28 T^{3} + T^{4} \)
$67$ \( 2769 + 1578 T + 330 T^{2} + 30 T^{3} + T^{4} \)
$71$ \( 10477 + 428 T - 210 T^{2} - 4 T^{3} + T^{4} \)
$73$ \( -1712 + 832 T - 84 T^{2} - 8 T^{3} + T^{4} \)
$79$ \( 4432 - 640 T - 132 T^{2} + 8 T^{3} + T^{4} \)
$83$ \( -192 - 288 T - 24 T^{2} + 12 T^{3} + T^{4} \)
$89$ \( 8853 - 2148 T - 234 T^{2} + 12 T^{3} + T^{4} \)
$97$ \( -443 + 374 T - 90 T^{2} + 2 T^{3} + T^{4} \)
show more
show less