Properties

Label 7605.2.a.br
Level $7605$
Weight $2$
Character orbit 7605.a
Self dual yes
Analytic conductor $60.726$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 7605 = 3^{2} \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7605.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(60.7262307372\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
Defining polynomial: \( x^{3} - x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 845)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + \beta_{2} q^{4} + q^{5} + ( - \beta_{2} + \beta_1 + 1) q^{7} + ( - \beta_{2} + 2 \beta_1 - 1) q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q - \beta_1 q^{2} + \beta_{2} q^{4} + q^{5} + ( - \beta_{2} + \beta_1 + 1) q^{7} + ( - \beta_{2} + 2 \beta_1 - 1) q^{8} - \beta_1 q^{10} + ( - \beta_{2} + 2 \beta_1 - 2) q^{11} + ( - \beta_1 - 1) q^{14} + ( - 3 \beta_{2} + \beta_1 - 3) q^{16} + (3 \beta_{2} - 3 \beta_1 + 3) q^{17} + ( - \beta_{2} - 3 \beta_1 - 2) q^{19} + \beta_{2} q^{20} + ( - \beta_{2} + 2 \beta_1 - 3) q^{22} + (5 \beta_1 - 1) q^{23} + q^{25} + (3 \beta_{2} - \beta_1) q^{28} + ( - 3 \beta_{2} - 3 \beta_1 + 2) q^{29} + (5 \beta_{2} - \beta_1 + 1) q^{31} + (4 \beta_{2} - \beta_1 + 3) q^{32} + ( - 3 \beta_1 + 3) q^{34} + ( - \beta_{2} + \beta_1 + 1) q^{35} + ( - 2 \beta_1 - 1) q^{37} + (4 \beta_{2} + 2 \beta_1 + 7) q^{38} + ( - \beta_{2} + 2 \beta_1 - 1) q^{40} + (4 \beta_{2} - 3 \beta_1 + 9) q^{41} + ( - \beta_{2} - 8) q^{43} + (\beta_{2} - \beta_1 + 1) q^{44} + ( - 5 \beta_{2} + \beta_1 - 10) q^{46} + (4 \beta_{2} - 3 \beta_1 - 3) q^{47} + ( - 4 \beta_{2} + 3 \beta_1 - 5) q^{49} - \beta_1 q^{50} + (\beta_{2} + 1) q^{53} + ( - \beta_{2} + 2 \beta_1 - 2) q^{55} + ( - 2 \beta_{2} + 2 \beta_1 + 1) q^{56} + (6 \beta_{2} - 2 \beta_1 + 9) q^{58} + (2 \beta_{2} - 3) q^{59} + ( - \beta_{2} - 6) q^{61} + ( - 4 \beta_{2} - \beta_1 - 3) q^{62} + (3 \beta_{2} - 5 \beta_1 + 4) q^{64} + (6 \beta_{2} - 3) q^{67} + ( - 3 \beta_{2} + 3 \beta_1) q^{68} + ( - \beta_1 - 1) q^{70} + ( - 4 \beta_{2} - 3 \beta_1 + 4) q^{71} + ( - 2 \beta_{2} + 10 \beta_1) q^{73} + (2 \beta_{2} + \beta_1 + 4) q^{74} + ( - 4 \beta_{2} - \beta_1 - 4) q^{76} + ( - \beta_{2} + \beta_1) q^{77} + (3 \beta_{2} + 2 \beta_1 - 12) q^{79} + ( - 3 \beta_{2} + \beta_1 - 3) q^{80} + ( - \beta_{2} - 9 \beta_1 + 2) q^{82} + ( - 2 \beta_{2} + 5 \beta_1 - 12) q^{83} + (3 \beta_{2} - 3 \beta_1 + 3) q^{85} + (\beta_{2} + 8 \beta_1 + 1) q^{86} + (2 \beta_{2} - 5 \beta_1 + 7) q^{88} + ( - 8 \beta_{2} - 2 \beta_1 - 3) q^{89} + (4 \beta_{2} + 5) q^{92} + ( - \beta_{2} + 3 \beta_1 + 2) q^{94} + ( - \beta_{2} - 3 \beta_1 - 2) q^{95} + (5 \beta_{2} - \beta_1 + 6) q^{97} + (\beta_{2} + 5 \beta_1 - 2) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{2} - q^{4} + 3 q^{5} + 5 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 3 q - q^{2} - q^{4} + 3 q^{5} + 5 q^{7} - q^{10} - 3 q^{11} - 4 q^{14} - 5 q^{16} + 3 q^{17} - 8 q^{19} - q^{20} - 6 q^{22} + 2 q^{23} + 3 q^{25} - 4 q^{28} + 6 q^{29} - 3 q^{31} + 4 q^{32} + 6 q^{34} + 5 q^{35} - 5 q^{37} + 19 q^{38} + 20 q^{41} - 23 q^{43} + q^{44} - 24 q^{46} - 16 q^{47} - 8 q^{49} - q^{50} + 2 q^{53} - 3 q^{55} + 7 q^{56} + 19 q^{58} - 11 q^{59} - 17 q^{61} - 6 q^{62} + 4 q^{64} - 15 q^{67} + 6 q^{68} - 4 q^{70} + 13 q^{71} + 12 q^{73} + 11 q^{74} - 9 q^{76} + 2 q^{77} - 37 q^{79} - 5 q^{80} - 2 q^{82} - 29 q^{83} + 3 q^{85} + 10 q^{86} + 14 q^{88} - 3 q^{89} + 11 q^{92} + 10 q^{94} - 8 q^{95} + 12 q^{97} - 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{14} + \zeta_{14}^{-1}\):

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.80194
0.445042
−1.24698
−1.80194 0 1.24698 1.00000 0 1.55496 1.35690 0 −1.80194
1.2 −0.445042 0 −1.80194 1.00000 0 3.24698 1.69202 0 −0.445042
1.3 1.24698 0 −0.445042 1.00000 0 0.198062 −3.04892 0 1.24698
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \(-1\)
\(5\) \(-1\)
\(13\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7605.2.a.br 3
3.b odd 2 1 845.2.a.j yes 3
13.b even 2 1 7605.2.a.by 3
15.d odd 2 1 4225.2.a.bd 3
39.d odd 2 1 845.2.a.h 3
39.f even 4 2 845.2.c.f 6
39.h odd 6 2 845.2.e.l 6
39.i odd 6 2 845.2.e.j 6
39.k even 12 4 845.2.m.i 12
195.e odd 2 1 4225.2.a.bf 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
845.2.a.h 3 39.d odd 2 1
845.2.a.j yes 3 3.b odd 2 1
845.2.c.f 6 39.f even 4 2
845.2.e.j 6 39.i odd 6 2
845.2.e.l 6 39.h odd 6 2
845.2.m.i 12 39.k even 12 4
4225.2.a.bd 3 15.d odd 2 1
4225.2.a.bf 3 195.e odd 2 1
7605.2.a.br 3 1.a even 1 1 trivial
7605.2.a.by 3 13.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7605))\):

\( T_{2}^{3} + T_{2}^{2} - 2T_{2} - 1 \) Copy content Toggle raw display
\( T_{7}^{3} - 5T_{7}^{2} + 6T_{7} - 1 \) Copy content Toggle raw display
\( T_{11}^{3} + 3T_{11}^{2} - 4T_{11} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} + T^{2} - 2T - 1 \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( (T - 1)^{3} \) Copy content Toggle raw display
$7$ \( T^{3} - 5 T^{2} + 6 T - 1 \) Copy content Toggle raw display
$11$ \( T^{3} + 3 T^{2} - 4 T + 1 \) Copy content Toggle raw display
$13$ \( T^{3} \) Copy content Toggle raw display
$17$ \( T^{3} - 3 T^{2} - 18 T + 27 \) Copy content Toggle raw display
$19$ \( T^{3} + 8 T^{2} - 9 T - 29 \) Copy content Toggle raw display
$23$ \( T^{3} - 2 T^{2} - 57 T + 71 \) Copy content Toggle raw display
$29$ \( T^{3} - 6 T^{2} - 51 T + 307 \) Copy content Toggle raw display
$31$ \( T^{3} + 3 T^{2} - 46 T + 1 \) Copy content Toggle raw display
$37$ \( T^{3} + 5T^{2} - T - 13 \) Copy content Toggle raw display
$41$ \( T^{3} - 20 T^{2} + 103 T - 43 \) Copy content Toggle raw display
$43$ \( T^{3} + 23 T^{2} + 174 T + 433 \) Copy content Toggle raw display
$47$ \( T^{3} + 16 T^{2} + 55 T + 41 \) Copy content Toggle raw display
$53$ \( T^{3} - 2T^{2} - T + 1 \) Copy content Toggle raw display
$59$ \( T^{3} + 11 T^{2} + 31 T + 13 \) Copy content Toggle raw display
$61$ \( T^{3} + 17 T^{2} + 94 T + 169 \) Copy content Toggle raw display
$67$ \( T^{3} + 15 T^{2} - 9 T - 351 \) Copy content Toggle raw display
$71$ \( T^{3} - 13 T^{2} - 30 T + 601 \) Copy content Toggle raw display
$73$ \( T^{3} - 12 T^{2} - 148 T + 1448 \) Copy content Toggle raw display
$79$ \( T^{3} + 37 T^{2} + 412 T + 1217 \) Copy content Toggle raw display
$83$ \( T^{3} + 29 T^{2} + 236 T + 587 \) Copy content Toggle raw display
$89$ \( T^{3} + 3 T^{2} - 193 T + 533 \) Copy content Toggle raw display
$97$ \( T^{3} - 12 T^{2} - T + 181 \) Copy content Toggle raw display
show more
show less