Properties

Label 7605.2.a.bi
Level $7605$
Weight $2$
Character orbit 7605.a
Self dual yes
Analytic conductor $60.726$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 7605 = 3^{2} \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7605.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(60.7262307372\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 585)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{17})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{2} + (\beta + 2) q^{4} + q^{5} + ( - \beta + 3) q^{7} + (\beta + 4) q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta q^{2} + (\beta + 2) q^{4} + q^{5} + ( - \beta + 3) q^{7} + (\beta + 4) q^{8} + \beta q^{10} + ( - \beta + 1) q^{11} + (2 \beta - 4) q^{14} + 3 \beta q^{16} + ( - \beta + 1) q^{17} + 2 \beta q^{19} + (\beta + 2) q^{20} - 4 q^{22} + (\beta - 5) q^{23} + q^{25} + 2 q^{28} + (2 \beta + 2) q^{29} - 6 q^{31} + (\beta + 4) q^{32} - 4 q^{34} + ( - \beta + 3) q^{35} + (3 \beta + 3) q^{37} + (2 \beta + 8) q^{38} + (\beta + 4) q^{40} + (\beta + 1) q^{41} + (2 \beta - 2) q^{43} + ( - 2 \beta - 2) q^{44} + ( - 4 \beta + 4) q^{46} + (2 \beta + 6) q^{47} + ( - 5 \beta + 6) q^{49} + \beta q^{50} + (3 \beta - 3) q^{53} + ( - \beta + 1) q^{55} + ( - 2 \beta + 8) q^{56} + (4 \beta + 8) q^{58} + 12 q^{59} + ( - 3 \beta + 1) q^{61} - 6 \beta q^{62} + ( - \beta + 4) q^{64} + (6 \beta - 4) q^{67} + ( - 2 \beta - 2) q^{68} + (2 \beta - 4) q^{70} + ( - \beta + 13) q^{71} + 6 q^{73} + (6 \beta + 12) q^{74} + (6 \beta + 8) q^{76} + ( - 3 \beta + 7) q^{77} + (3 \beta - 3) q^{79} + 3 \beta q^{80} + (2 \beta + 4) q^{82} + ( - 8 \beta + 4) q^{83} + ( - \beta + 1) q^{85} + 8 q^{86} - 4 \beta q^{88} + (3 \beta + 3) q^{89} + ( - 2 \beta - 6) q^{92} + (8 \beta + 8) q^{94} + 2 \beta q^{95} + ( - 7 \beta + 1) q^{97} + (\beta - 20) q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} + 5 q^{4} + 2 q^{5} + 5 q^{7} + 9 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + q^{2} + 5 q^{4} + 2 q^{5} + 5 q^{7} + 9 q^{8} + q^{10} + q^{11} - 6 q^{14} + 3 q^{16} + q^{17} + 2 q^{19} + 5 q^{20} - 8 q^{22} - 9 q^{23} + 2 q^{25} + 4 q^{28} + 6 q^{29} - 12 q^{31} + 9 q^{32} - 8 q^{34} + 5 q^{35} + 9 q^{37} + 18 q^{38} + 9 q^{40} + 3 q^{41} - 2 q^{43} - 6 q^{44} + 4 q^{46} + 14 q^{47} + 7 q^{49} + q^{50} - 3 q^{53} + q^{55} + 14 q^{56} + 20 q^{58} + 24 q^{59} - q^{61} - 6 q^{62} + 7 q^{64} - 2 q^{67} - 6 q^{68} - 6 q^{70} + 25 q^{71} + 12 q^{73} + 30 q^{74} + 22 q^{76} + 11 q^{77} - 3 q^{79} + 3 q^{80} + 10 q^{82} + q^{85} + 16 q^{86} - 4 q^{88} + 9 q^{89} - 14 q^{92} + 24 q^{94} + 2 q^{95} - 5 q^{97} - 39 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.56155
2.56155
−1.56155 0 0.438447 1.00000 0 4.56155 2.43845 0 −1.56155
1.2 2.56155 0 4.56155 1.00000 0 0.438447 6.56155 0 2.56155
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \(1\)
\(5\) \(-1\)
\(13\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7605.2.a.bi 2
3.b odd 2 1 7605.2.a.bd 2
13.b even 2 1 585.2.a.j 2
39.d odd 2 1 585.2.a.l yes 2
52.b odd 2 1 9360.2.a.cl 2
65.d even 2 1 2925.2.a.bc 2
65.h odd 4 2 2925.2.c.o 4
156.h even 2 1 9360.2.a.cw 2
195.e odd 2 1 2925.2.a.x 2
195.s even 4 2 2925.2.c.p 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
585.2.a.j 2 13.b even 2 1
585.2.a.l yes 2 39.d odd 2 1
2925.2.a.x 2 195.e odd 2 1
2925.2.a.bc 2 65.d even 2 1
2925.2.c.o 4 65.h odd 4 2
2925.2.c.p 4 195.s even 4 2
7605.2.a.bd 2 3.b odd 2 1
7605.2.a.bi 2 1.a even 1 1 trivial
9360.2.a.cl 2 52.b odd 2 1
9360.2.a.cw 2 156.h even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7605))\):

\( T_{2}^{2} - T_{2} - 4 \) Copy content Toggle raw display
\( T_{7}^{2} - 5T_{7} + 2 \) Copy content Toggle raw display
\( T_{11}^{2} - T_{11} - 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - T - 4 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( (T - 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 5T + 2 \) Copy content Toggle raw display
$11$ \( T^{2} - T - 4 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - T - 4 \) Copy content Toggle raw display
$19$ \( T^{2} - 2T - 16 \) Copy content Toggle raw display
$23$ \( T^{2} + 9T + 16 \) Copy content Toggle raw display
$29$ \( T^{2} - 6T - 8 \) Copy content Toggle raw display
$31$ \( (T + 6)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} - 9T - 18 \) Copy content Toggle raw display
$41$ \( T^{2} - 3T - 2 \) Copy content Toggle raw display
$43$ \( T^{2} + 2T - 16 \) Copy content Toggle raw display
$47$ \( T^{2} - 14T + 32 \) Copy content Toggle raw display
$53$ \( T^{2} + 3T - 36 \) Copy content Toggle raw display
$59$ \( (T - 12)^{2} \) Copy content Toggle raw display
$61$ \( T^{2} + T - 38 \) Copy content Toggle raw display
$67$ \( T^{2} + 2T - 152 \) Copy content Toggle raw display
$71$ \( T^{2} - 25T + 152 \) Copy content Toggle raw display
$73$ \( (T - 6)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} + 3T - 36 \) Copy content Toggle raw display
$83$ \( T^{2} - 272 \) Copy content Toggle raw display
$89$ \( T^{2} - 9T - 18 \) Copy content Toggle raw display
$97$ \( T^{2} + 5T - 202 \) Copy content Toggle raw display
show more
show less