Properties

Label 7605.2.a.bg.1.1
Level $7605$
Weight $2$
Character 7605.1
Self dual yes
Analytic conductor $60.726$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7605,2,Mod(1,7605)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7605, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7605.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7605 = 3^{2} \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7605.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.7262307372\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{13}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.30278\) of defining polynomial
Character \(\chi\) \(=\) 7605.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.30278 q^{2} -0.302776 q^{4} +1.00000 q^{5} -1.00000 q^{7} +3.00000 q^{8} -1.30278 q^{10} +5.60555 q^{11} +1.30278 q^{14} -3.30278 q^{16} -0.394449 q^{17} +1.60555 q^{19} -0.302776 q^{20} -7.30278 q^{22} +3.00000 q^{23} +1.00000 q^{25} +0.302776 q^{28} -8.21110 q^{29} -4.00000 q^{31} -1.69722 q^{32} +0.513878 q^{34} -1.00000 q^{35} -3.60555 q^{37} -2.09167 q^{38} +3.00000 q^{40} -3.00000 q^{41} +4.21110 q^{43} -1.69722 q^{44} -3.90833 q^{46} +5.21110 q^{47} -6.00000 q^{49} -1.30278 q^{50} -11.2111 q^{53} +5.60555 q^{55} -3.00000 q^{56} +10.6972 q^{58} -10.8167 q^{59} -1.00000 q^{61} +5.21110 q^{62} +8.81665 q^{64} -7.00000 q^{67} +0.119429 q^{68} +1.30278 q^{70} +16.8167 q^{71} -15.2111 q^{73} +4.69722 q^{74} -0.486122 q^{76} -5.60555 q^{77} -9.21110 q^{79} -3.30278 q^{80} +3.90833 q^{82} -5.21110 q^{83} -0.394449 q^{85} -5.48612 q^{86} +16.8167 q^{88} -8.21110 q^{89} -0.908327 q^{92} -6.78890 q^{94} +1.60555 q^{95} -15.6056 q^{97} +7.81665 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} + 3 q^{4} + 2 q^{5} - 2 q^{7} + 6 q^{8} + q^{10} + 4 q^{11} - q^{14} - 3 q^{16} - 8 q^{17} - 4 q^{19} + 3 q^{20} - 11 q^{22} + 6 q^{23} + 2 q^{25} - 3 q^{28} - 2 q^{29} - 8 q^{31} - 7 q^{32}+ \cdots - 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.30278 −0.921201 −0.460601 0.887607i \(-0.652366\pi\)
−0.460601 + 0.887607i \(0.652366\pi\)
\(3\) 0 0
\(4\) −0.302776 −0.151388
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −1.00000 −0.377964 −0.188982 0.981981i \(-0.560519\pi\)
−0.188982 + 0.981981i \(0.560519\pi\)
\(8\) 3.00000 1.06066
\(9\) 0 0
\(10\) −1.30278 −0.411974
\(11\) 5.60555 1.69014 0.845069 0.534658i \(-0.179559\pi\)
0.845069 + 0.534658i \(0.179559\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 1.30278 0.348181
\(15\) 0 0
\(16\) −3.30278 −0.825694
\(17\) −0.394449 −0.0956679 −0.0478339 0.998855i \(-0.515232\pi\)
−0.0478339 + 0.998855i \(0.515232\pi\)
\(18\) 0 0
\(19\) 1.60555 0.368339 0.184169 0.982895i \(-0.441041\pi\)
0.184169 + 0.982895i \(0.441041\pi\)
\(20\) −0.302776 −0.0677027
\(21\) 0 0
\(22\) −7.30278 −1.55696
\(23\) 3.00000 0.625543 0.312772 0.949828i \(-0.398743\pi\)
0.312772 + 0.949828i \(0.398743\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0.302776 0.0572192
\(29\) −8.21110 −1.52476 −0.762382 0.647128i \(-0.775970\pi\)
−0.762382 + 0.647128i \(0.775970\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) −1.69722 −0.300030
\(33\) 0 0
\(34\) 0.513878 0.0881294
\(35\) −1.00000 −0.169031
\(36\) 0 0
\(37\) −3.60555 −0.592749 −0.296374 0.955072i \(-0.595778\pi\)
−0.296374 + 0.955072i \(0.595778\pi\)
\(38\) −2.09167 −0.339314
\(39\) 0 0
\(40\) 3.00000 0.474342
\(41\) −3.00000 −0.468521 −0.234261 0.972174i \(-0.575267\pi\)
−0.234261 + 0.972174i \(0.575267\pi\)
\(42\) 0 0
\(43\) 4.21110 0.642187 0.321094 0.947047i \(-0.395950\pi\)
0.321094 + 0.947047i \(0.395950\pi\)
\(44\) −1.69722 −0.255866
\(45\) 0 0
\(46\) −3.90833 −0.576251
\(47\) 5.21110 0.760117 0.380059 0.924962i \(-0.375904\pi\)
0.380059 + 0.924962i \(0.375904\pi\)
\(48\) 0 0
\(49\) −6.00000 −0.857143
\(50\) −1.30278 −0.184240
\(51\) 0 0
\(52\) 0 0
\(53\) −11.2111 −1.53996 −0.769982 0.638066i \(-0.779735\pi\)
−0.769982 + 0.638066i \(0.779735\pi\)
\(54\) 0 0
\(55\) 5.60555 0.755852
\(56\) −3.00000 −0.400892
\(57\) 0 0
\(58\) 10.6972 1.40461
\(59\) −10.8167 −1.40821 −0.704104 0.710097i \(-0.748651\pi\)
−0.704104 + 0.710097i \(0.748651\pi\)
\(60\) 0 0
\(61\) −1.00000 −0.128037 −0.0640184 0.997949i \(-0.520392\pi\)
−0.0640184 + 0.997949i \(0.520392\pi\)
\(62\) 5.21110 0.661811
\(63\) 0 0
\(64\) 8.81665 1.10208
\(65\) 0 0
\(66\) 0 0
\(67\) −7.00000 −0.855186 −0.427593 0.903971i \(-0.640638\pi\)
−0.427593 + 0.903971i \(0.640638\pi\)
\(68\) 0.119429 0.0144829
\(69\) 0 0
\(70\) 1.30278 0.155711
\(71\) 16.8167 1.99577 0.997885 0.0650069i \(-0.0207069\pi\)
0.997885 + 0.0650069i \(0.0207069\pi\)
\(72\) 0 0
\(73\) −15.2111 −1.78032 −0.890162 0.455643i \(-0.849409\pi\)
−0.890162 + 0.455643i \(0.849409\pi\)
\(74\) 4.69722 0.546041
\(75\) 0 0
\(76\) −0.486122 −0.0557620
\(77\) −5.60555 −0.638812
\(78\) 0 0
\(79\) −9.21110 −1.03633 −0.518165 0.855281i \(-0.673385\pi\)
−0.518165 + 0.855281i \(0.673385\pi\)
\(80\) −3.30278 −0.369262
\(81\) 0 0
\(82\) 3.90833 0.431603
\(83\) −5.21110 −0.571993 −0.285996 0.958231i \(-0.592325\pi\)
−0.285996 + 0.958231i \(0.592325\pi\)
\(84\) 0 0
\(85\) −0.394449 −0.0427840
\(86\) −5.48612 −0.591584
\(87\) 0 0
\(88\) 16.8167 1.79266
\(89\) −8.21110 −0.870375 −0.435188 0.900340i \(-0.643318\pi\)
−0.435188 + 0.900340i \(0.643318\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −0.908327 −0.0946996
\(93\) 0 0
\(94\) −6.78890 −0.700221
\(95\) 1.60555 0.164726
\(96\) 0 0
\(97\) −15.6056 −1.58450 −0.792252 0.610194i \(-0.791091\pi\)
−0.792252 + 0.610194i \(0.791091\pi\)
\(98\) 7.81665 0.789601
\(99\) 0 0
\(100\) −0.302776 −0.0302776
\(101\) 9.00000 0.895533 0.447767 0.894150i \(-0.352219\pi\)
0.447767 + 0.894150i \(0.352219\pi\)
\(102\) 0 0
\(103\) −4.00000 −0.394132 −0.197066 0.980390i \(-0.563141\pi\)
−0.197066 + 0.980390i \(0.563141\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 14.6056 1.41862
\(107\) 8.21110 0.793797 0.396899 0.917862i \(-0.370086\pi\)
0.396899 + 0.917862i \(0.370086\pi\)
\(108\) 0 0
\(109\) −4.78890 −0.458693 −0.229347 0.973345i \(-0.573659\pi\)
−0.229347 + 0.973345i \(0.573659\pi\)
\(110\) −7.30278 −0.696292
\(111\) 0 0
\(112\) 3.30278 0.312083
\(113\) −5.60555 −0.527326 −0.263663 0.964615i \(-0.584931\pi\)
−0.263663 + 0.964615i \(0.584931\pi\)
\(114\) 0 0
\(115\) 3.00000 0.279751
\(116\) 2.48612 0.230831
\(117\) 0 0
\(118\) 14.0917 1.29724
\(119\) 0.394449 0.0361591
\(120\) 0 0
\(121\) 20.4222 1.85656
\(122\) 1.30278 0.117948
\(123\) 0 0
\(124\) 1.21110 0.108760
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 10.2111 0.906089 0.453044 0.891488i \(-0.350338\pi\)
0.453044 + 0.891488i \(0.350338\pi\)
\(128\) −8.09167 −0.715210
\(129\) 0 0
\(130\) 0 0
\(131\) 6.78890 0.593149 0.296574 0.955010i \(-0.404156\pi\)
0.296574 + 0.955010i \(0.404156\pi\)
\(132\) 0 0
\(133\) −1.60555 −0.139219
\(134\) 9.11943 0.787799
\(135\) 0 0
\(136\) −1.18335 −0.101471
\(137\) −5.60555 −0.478915 −0.239457 0.970907i \(-0.576970\pi\)
−0.239457 + 0.970907i \(0.576970\pi\)
\(138\) 0 0
\(139\) 13.6056 1.15401 0.577004 0.816741i \(-0.304222\pi\)
0.577004 + 0.816741i \(0.304222\pi\)
\(140\) 0.302776 0.0255892
\(141\) 0 0
\(142\) −21.9083 −1.83851
\(143\) 0 0
\(144\) 0 0
\(145\) −8.21110 −0.681895
\(146\) 19.8167 1.64004
\(147\) 0 0
\(148\) 1.09167 0.0897350
\(149\) −3.00000 −0.245770 −0.122885 0.992421i \(-0.539215\pi\)
−0.122885 + 0.992421i \(0.539215\pi\)
\(150\) 0 0
\(151\) 13.2111 1.07510 0.537552 0.843231i \(-0.319349\pi\)
0.537552 + 0.843231i \(0.319349\pi\)
\(152\) 4.81665 0.390682
\(153\) 0 0
\(154\) 7.30278 0.588474
\(155\) −4.00000 −0.321288
\(156\) 0 0
\(157\) −3.21110 −0.256274 −0.128137 0.991756i \(-0.540900\pi\)
−0.128137 + 0.991756i \(0.540900\pi\)
\(158\) 12.0000 0.954669
\(159\) 0 0
\(160\) −1.69722 −0.134177
\(161\) −3.00000 −0.236433
\(162\) 0 0
\(163\) −18.2111 −1.42640 −0.713202 0.700959i \(-0.752756\pi\)
−0.713202 + 0.700959i \(0.752756\pi\)
\(164\) 0.908327 0.0709284
\(165\) 0 0
\(166\) 6.78890 0.526921
\(167\) −9.00000 −0.696441 −0.348220 0.937413i \(-0.613214\pi\)
−0.348220 + 0.937413i \(0.613214\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0.513878 0.0394127
\(171\) 0 0
\(172\) −1.27502 −0.0972193
\(173\) 16.8167 1.27855 0.639273 0.768980i \(-0.279235\pi\)
0.639273 + 0.768980i \(0.279235\pi\)
\(174\) 0 0
\(175\) −1.00000 −0.0755929
\(176\) −18.5139 −1.39554
\(177\) 0 0
\(178\) 10.6972 0.801791
\(179\) −1.18335 −0.0884474 −0.0442237 0.999022i \(-0.514081\pi\)
−0.0442237 + 0.999022i \(0.514081\pi\)
\(180\) 0 0
\(181\) −25.6333 −1.90531 −0.952654 0.304055i \(-0.901659\pi\)
−0.952654 + 0.304055i \(0.901659\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 9.00000 0.663489
\(185\) −3.60555 −0.265085
\(186\) 0 0
\(187\) −2.21110 −0.161692
\(188\) −1.57779 −0.115073
\(189\) 0 0
\(190\) −2.09167 −0.151746
\(191\) 4.81665 0.348521 0.174260 0.984700i \(-0.444247\pi\)
0.174260 + 0.984700i \(0.444247\pi\)
\(192\) 0 0
\(193\) 8.39445 0.604246 0.302123 0.953269i \(-0.402305\pi\)
0.302123 + 0.953269i \(0.402305\pi\)
\(194\) 20.3305 1.45965
\(195\) 0 0
\(196\) 1.81665 0.129761
\(197\) −22.8167 −1.62562 −0.812810 0.582529i \(-0.802063\pi\)
−0.812810 + 0.582529i \(0.802063\pi\)
\(198\) 0 0
\(199\) −8.81665 −0.624996 −0.312498 0.949918i \(-0.601166\pi\)
−0.312498 + 0.949918i \(0.601166\pi\)
\(200\) 3.00000 0.212132
\(201\) 0 0
\(202\) −11.7250 −0.824967
\(203\) 8.21110 0.576306
\(204\) 0 0
\(205\) −3.00000 −0.209529
\(206\) 5.21110 0.363075
\(207\) 0 0
\(208\) 0 0
\(209\) 9.00000 0.622543
\(210\) 0 0
\(211\) −16.3944 −1.12864 −0.564320 0.825556i \(-0.690862\pi\)
−0.564320 + 0.825556i \(0.690862\pi\)
\(212\) 3.39445 0.233132
\(213\) 0 0
\(214\) −10.6972 −0.731247
\(215\) 4.21110 0.287195
\(216\) 0 0
\(217\) 4.00000 0.271538
\(218\) 6.23886 0.422549
\(219\) 0 0
\(220\) −1.69722 −0.114427
\(221\) 0 0
\(222\) 0 0
\(223\) 10.2111 0.683786 0.341893 0.939739i \(-0.388932\pi\)
0.341893 + 0.939739i \(0.388932\pi\)
\(224\) 1.69722 0.113401
\(225\) 0 0
\(226\) 7.30278 0.485773
\(227\) −1.42221 −0.0943951 −0.0471975 0.998886i \(-0.515029\pi\)
−0.0471975 + 0.998886i \(0.515029\pi\)
\(228\) 0 0
\(229\) 14.0000 0.925146 0.462573 0.886581i \(-0.346926\pi\)
0.462573 + 0.886581i \(0.346926\pi\)
\(230\) −3.90833 −0.257707
\(231\) 0 0
\(232\) −24.6333 −1.61726
\(233\) −0.788897 −0.0516824 −0.0258412 0.999666i \(-0.508226\pi\)
−0.0258412 + 0.999666i \(0.508226\pi\)
\(234\) 0 0
\(235\) 5.21110 0.339935
\(236\) 3.27502 0.213186
\(237\) 0 0
\(238\) −0.513878 −0.0333098
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 16.2111 1.04425 0.522124 0.852869i \(-0.325140\pi\)
0.522124 + 0.852869i \(0.325140\pi\)
\(242\) −26.6056 −1.71027
\(243\) 0 0
\(244\) 0.302776 0.0193832
\(245\) −6.00000 −0.383326
\(246\) 0 0
\(247\) 0 0
\(248\) −12.0000 −0.762001
\(249\) 0 0
\(250\) −1.30278 −0.0823948
\(251\) 28.8167 1.81889 0.909446 0.415823i \(-0.136506\pi\)
0.909446 + 0.415823i \(0.136506\pi\)
\(252\) 0 0
\(253\) 16.8167 1.05725
\(254\) −13.3028 −0.834690
\(255\) 0 0
\(256\) −7.09167 −0.443230
\(257\) 23.6056 1.47247 0.736237 0.676724i \(-0.236601\pi\)
0.736237 + 0.676724i \(0.236601\pi\)
\(258\) 0 0
\(259\) 3.60555 0.224038
\(260\) 0 0
\(261\) 0 0
\(262\) −8.84441 −0.546409
\(263\) −26.2111 −1.61625 −0.808123 0.589014i \(-0.799516\pi\)
−0.808123 + 0.589014i \(0.799516\pi\)
\(264\) 0 0
\(265\) −11.2111 −0.688693
\(266\) 2.09167 0.128249
\(267\) 0 0
\(268\) 2.11943 0.129465
\(269\) 9.00000 0.548740 0.274370 0.961624i \(-0.411531\pi\)
0.274370 + 0.961624i \(0.411531\pi\)
\(270\) 0 0
\(271\) 0.816654 0.0496082 0.0248041 0.999692i \(-0.492104\pi\)
0.0248041 + 0.999692i \(0.492104\pi\)
\(272\) 1.30278 0.0789924
\(273\) 0 0
\(274\) 7.30278 0.441177
\(275\) 5.60555 0.338027
\(276\) 0 0
\(277\) 20.3944 1.22538 0.612692 0.790322i \(-0.290087\pi\)
0.612692 + 0.790322i \(0.290087\pi\)
\(278\) −17.7250 −1.06307
\(279\) 0 0
\(280\) −3.00000 −0.179284
\(281\) 6.00000 0.357930 0.178965 0.983855i \(-0.442725\pi\)
0.178965 + 0.983855i \(0.442725\pi\)
\(282\) 0 0
\(283\) 5.00000 0.297219 0.148610 0.988896i \(-0.452520\pi\)
0.148610 + 0.988896i \(0.452520\pi\)
\(284\) −5.09167 −0.302135
\(285\) 0 0
\(286\) 0 0
\(287\) 3.00000 0.177084
\(288\) 0 0
\(289\) −16.8444 −0.990848
\(290\) 10.6972 0.628163
\(291\) 0 0
\(292\) 4.60555 0.269520
\(293\) −17.6056 −1.02853 −0.514264 0.857632i \(-0.671935\pi\)
−0.514264 + 0.857632i \(0.671935\pi\)
\(294\) 0 0
\(295\) −10.8167 −0.629770
\(296\) −10.8167 −0.628705
\(297\) 0 0
\(298\) 3.90833 0.226403
\(299\) 0 0
\(300\) 0 0
\(301\) −4.21110 −0.242724
\(302\) −17.2111 −0.990388
\(303\) 0 0
\(304\) −5.30278 −0.304135
\(305\) −1.00000 −0.0572598
\(306\) 0 0
\(307\) −16.0000 −0.913168 −0.456584 0.889680i \(-0.650927\pi\)
−0.456584 + 0.889680i \(0.650927\pi\)
\(308\) 1.69722 0.0967083
\(309\) 0 0
\(310\) 5.21110 0.295971
\(311\) −5.21110 −0.295495 −0.147747 0.989025i \(-0.547202\pi\)
−0.147747 + 0.989025i \(0.547202\pi\)
\(312\) 0 0
\(313\) 14.0000 0.791327 0.395663 0.918396i \(-0.370515\pi\)
0.395663 + 0.918396i \(0.370515\pi\)
\(314\) 4.18335 0.236080
\(315\) 0 0
\(316\) 2.78890 0.156888
\(317\) −6.00000 −0.336994 −0.168497 0.985702i \(-0.553891\pi\)
−0.168497 + 0.985702i \(0.553891\pi\)
\(318\) 0 0
\(319\) −46.0278 −2.57706
\(320\) 8.81665 0.492866
\(321\) 0 0
\(322\) 3.90833 0.217803
\(323\) −0.633308 −0.0352382
\(324\) 0 0
\(325\) 0 0
\(326\) 23.7250 1.31401
\(327\) 0 0
\(328\) −9.00000 −0.496942
\(329\) −5.21110 −0.287297
\(330\) 0 0
\(331\) −26.0278 −1.43061 −0.715307 0.698810i \(-0.753713\pi\)
−0.715307 + 0.698810i \(0.753713\pi\)
\(332\) 1.57779 0.0865927
\(333\) 0 0
\(334\) 11.7250 0.641562
\(335\) −7.00000 −0.382451
\(336\) 0 0
\(337\) 17.6333 0.960547 0.480274 0.877119i \(-0.340537\pi\)
0.480274 + 0.877119i \(0.340537\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0.119429 0.00647697
\(341\) −22.4222 −1.21423
\(342\) 0 0
\(343\) 13.0000 0.701934
\(344\) 12.6333 0.681142
\(345\) 0 0
\(346\) −21.9083 −1.17780
\(347\) −20.2111 −1.08499 −0.542494 0.840059i \(-0.682520\pi\)
−0.542494 + 0.840059i \(0.682520\pi\)
\(348\) 0 0
\(349\) −18.2111 −0.974818 −0.487409 0.873174i \(-0.662058\pi\)
−0.487409 + 0.873174i \(0.662058\pi\)
\(350\) 1.30278 0.0696363
\(351\) 0 0
\(352\) −9.51388 −0.507091
\(353\) 4.81665 0.256365 0.128182 0.991751i \(-0.459086\pi\)
0.128182 + 0.991751i \(0.459086\pi\)
\(354\) 0 0
\(355\) 16.8167 0.892535
\(356\) 2.48612 0.131764
\(357\) 0 0
\(358\) 1.54163 0.0814779
\(359\) 10.4222 0.550063 0.275031 0.961435i \(-0.411312\pi\)
0.275031 + 0.961435i \(0.411312\pi\)
\(360\) 0 0
\(361\) −16.4222 −0.864327
\(362\) 33.3944 1.75517
\(363\) 0 0
\(364\) 0 0
\(365\) −15.2111 −0.796185
\(366\) 0 0
\(367\) −17.4222 −0.909432 −0.454716 0.890637i \(-0.650259\pi\)
−0.454716 + 0.890637i \(0.650259\pi\)
\(368\) −9.90833 −0.516507
\(369\) 0 0
\(370\) 4.69722 0.244197
\(371\) 11.2111 0.582051
\(372\) 0 0
\(373\) −27.6056 −1.42936 −0.714681 0.699451i \(-0.753428\pi\)
−0.714681 + 0.699451i \(0.753428\pi\)
\(374\) 2.88057 0.148951
\(375\) 0 0
\(376\) 15.6333 0.806226
\(377\) 0 0
\(378\) 0 0
\(379\) 2.39445 0.122995 0.0614973 0.998107i \(-0.480412\pi\)
0.0614973 + 0.998107i \(0.480412\pi\)
\(380\) −0.486122 −0.0249375
\(381\) 0 0
\(382\) −6.27502 −0.321058
\(383\) −18.6333 −0.952118 −0.476059 0.879413i \(-0.657935\pi\)
−0.476059 + 0.879413i \(0.657935\pi\)
\(384\) 0 0
\(385\) −5.60555 −0.285685
\(386\) −10.9361 −0.556632
\(387\) 0 0
\(388\) 4.72498 0.239875
\(389\) 0.788897 0.0399987 0.0199993 0.999800i \(-0.493634\pi\)
0.0199993 + 0.999800i \(0.493634\pi\)
\(390\) 0 0
\(391\) −1.18335 −0.0598444
\(392\) −18.0000 −0.909137
\(393\) 0 0
\(394\) 29.7250 1.49752
\(395\) −9.21110 −0.463461
\(396\) 0 0
\(397\) −14.0278 −0.704033 −0.352016 0.935994i \(-0.614504\pi\)
−0.352016 + 0.935994i \(0.614504\pi\)
\(398\) 11.4861 0.575747
\(399\) 0 0
\(400\) −3.30278 −0.165139
\(401\) 2.21110 0.110417 0.0552086 0.998475i \(-0.482418\pi\)
0.0552086 + 0.998475i \(0.482418\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −2.72498 −0.135573
\(405\) 0 0
\(406\) −10.6972 −0.530894
\(407\) −20.2111 −1.00183
\(408\) 0 0
\(409\) −6.21110 −0.307119 −0.153560 0.988139i \(-0.549074\pi\)
−0.153560 + 0.988139i \(0.549074\pi\)
\(410\) 3.90833 0.193019
\(411\) 0 0
\(412\) 1.21110 0.0596667
\(413\) 10.8167 0.532253
\(414\) 0 0
\(415\) −5.21110 −0.255803
\(416\) 0 0
\(417\) 0 0
\(418\) −11.7250 −0.573488
\(419\) 33.2389 1.62382 0.811912 0.583779i \(-0.198427\pi\)
0.811912 + 0.583779i \(0.198427\pi\)
\(420\) 0 0
\(421\) 3.57779 0.174371 0.0871855 0.996192i \(-0.472213\pi\)
0.0871855 + 0.996192i \(0.472213\pi\)
\(422\) 21.3583 1.03971
\(423\) 0 0
\(424\) −33.6333 −1.63338
\(425\) −0.394449 −0.0191336
\(426\) 0 0
\(427\) 1.00000 0.0483934
\(428\) −2.48612 −0.120171
\(429\) 0 0
\(430\) −5.48612 −0.264564
\(431\) 21.2389 1.02304 0.511520 0.859271i \(-0.329083\pi\)
0.511520 + 0.859271i \(0.329083\pi\)
\(432\) 0 0
\(433\) −3.60555 −0.173272 −0.0866359 0.996240i \(-0.527612\pi\)
−0.0866359 + 0.996240i \(0.527612\pi\)
\(434\) −5.21110 −0.250141
\(435\) 0 0
\(436\) 1.44996 0.0694406
\(437\) 4.81665 0.230412
\(438\) 0 0
\(439\) 23.2389 1.10913 0.554565 0.832140i \(-0.312885\pi\)
0.554565 + 0.832140i \(0.312885\pi\)
\(440\) 16.8167 0.801703
\(441\) 0 0
\(442\) 0 0
\(443\) 22.4222 1.06531 0.532656 0.846332i \(-0.321194\pi\)
0.532656 + 0.846332i \(0.321194\pi\)
\(444\) 0 0
\(445\) −8.21110 −0.389244
\(446\) −13.3028 −0.629905
\(447\) 0 0
\(448\) −8.81665 −0.416548
\(449\) 12.6333 0.596203 0.298101 0.954534i \(-0.403647\pi\)
0.298101 + 0.954534i \(0.403647\pi\)
\(450\) 0 0
\(451\) −16.8167 −0.791865
\(452\) 1.69722 0.0798307
\(453\) 0 0
\(454\) 1.85281 0.0869569
\(455\) 0 0
\(456\) 0 0
\(457\) −5.18335 −0.242467 −0.121233 0.992624i \(-0.538685\pi\)
−0.121233 + 0.992624i \(0.538685\pi\)
\(458\) −18.2389 −0.852246
\(459\) 0 0
\(460\) −0.908327 −0.0423510
\(461\) −21.7889 −1.01481 −0.507405 0.861708i \(-0.669395\pi\)
−0.507405 + 0.861708i \(0.669395\pi\)
\(462\) 0 0
\(463\) −5.57779 −0.259222 −0.129611 0.991565i \(-0.541373\pi\)
−0.129611 + 0.991565i \(0.541373\pi\)
\(464\) 27.1194 1.25899
\(465\) 0 0
\(466\) 1.02776 0.0476099
\(467\) −17.2111 −0.796435 −0.398217 0.917291i \(-0.630371\pi\)
−0.398217 + 0.917291i \(0.630371\pi\)
\(468\) 0 0
\(469\) 7.00000 0.323230
\(470\) −6.78890 −0.313148
\(471\) 0 0
\(472\) −32.4500 −1.49363
\(473\) 23.6056 1.08538
\(474\) 0 0
\(475\) 1.60555 0.0736677
\(476\) −0.119429 −0.00547404
\(477\) 0 0
\(478\) 0 0
\(479\) 7.18335 0.328215 0.164108 0.986442i \(-0.447526\pi\)
0.164108 + 0.986442i \(0.447526\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −21.1194 −0.961964
\(483\) 0 0
\(484\) −6.18335 −0.281061
\(485\) −15.6056 −0.708612
\(486\) 0 0
\(487\) −1.00000 −0.0453143 −0.0226572 0.999743i \(-0.507213\pi\)
−0.0226572 + 0.999743i \(0.507213\pi\)
\(488\) −3.00000 −0.135804
\(489\) 0 0
\(490\) 7.81665 0.353120
\(491\) −4.81665 −0.217373 −0.108686 0.994076i \(-0.534664\pi\)
−0.108686 + 0.994076i \(0.534664\pi\)
\(492\) 0 0
\(493\) 3.23886 0.145871
\(494\) 0 0
\(495\) 0 0
\(496\) 13.2111 0.593196
\(497\) −16.8167 −0.754330
\(498\) 0 0
\(499\) −26.4222 −1.18282 −0.591410 0.806371i \(-0.701429\pi\)
−0.591410 + 0.806371i \(0.701429\pi\)
\(500\) −0.302776 −0.0135405
\(501\) 0 0
\(502\) −37.5416 −1.67557
\(503\) −3.00000 −0.133763 −0.0668817 0.997761i \(-0.521305\pi\)
−0.0668817 + 0.997761i \(0.521305\pi\)
\(504\) 0 0
\(505\) 9.00000 0.400495
\(506\) −21.9083 −0.973944
\(507\) 0 0
\(508\) −3.09167 −0.137171
\(509\) −3.00000 −0.132973 −0.0664863 0.997787i \(-0.521179\pi\)
−0.0664863 + 0.997787i \(0.521179\pi\)
\(510\) 0 0
\(511\) 15.2111 0.672900
\(512\) 25.4222 1.12351
\(513\) 0 0
\(514\) −30.7527 −1.35645
\(515\) −4.00000 −0.176261
\(516\) 0 0
\(517\) 29.2111 1.28470
\(518\) −4.69722 −0.206384
\(519\) 0 0
\(520\) 0 0
\(521\) −18.0000 −0.788594 −0.394297 0.918983i \(-0.629012\pi\)
−0.394297 + 0.918983i \(0.629012\pi\)
\(522\) 0 0
\(523\) 27.4222 1.19909 0.599545 0.800341i \(-0.295348\pi\)
0.599545 + 0.800341i \(0.295348\pi\)
\(524\) −2.05551 −0.0897955
\(525\) 0 0
\(526\) 34.1472 1.48889
\(527\) 1.57779 0.0687298
\(528\) 0 0
\(529\) −14.0000 −0.608696
\(530\) 14.6056 0.634425
\(531\) 0 0
\(532\) 0.486122 0.0210761
\(533\) 0 0
\(534\) 0 0
\(535\) 8.21110 0.354997
\(536\) −21.0000 −0.907062
\(537\) 0 0
\(538\) −11.7250 −0.505500
\(539\) −33.6333 −1.44869
\(540\) 0 0
\(541\) 17.6333 0.758115 0.379058 0.925373i \(-0.376248\pi\)
0.379058 + 0.925373i \(0.376248\pi\)
\(542\) −1.06392 −0.0456991
\(543\) 0 0
\(544\) 0.669468 0.0287032
\(545\) −4.78890 −0.205134
\(546\) 0 0
\(547\) −24.8444 −1.06227 −0.531135 0.847287i \(-0.678234\pi\)
−0.531135 + 0.847287i \(0.678234\pi\)
\(548\) 1.69722 0.0725018
\(549\) 0 0
\(550\) −7.30278 −0.311391
\(551\) −13.1833 −0.561629
\(552\) 0 0
\(553\) 9.21110 0.391696
\(554\) −26.5694 −1.12883
\(555\) 0 0
\(556\) −4.11943 −0.174703
\(557\) −5.60555 −0.237515 −0.118757 0.992923i \(-0.537891\pi\)
−0.118757 + 0.992923i \(0.537891\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 3.30278 0.139568
\(561\) 0 0
\(562\) −7.81665 −0.329726
\(563\) 19.4222 0.818548 0.409274 0.912411i \(-0.365782\pi\)
0.409274 + 0.912411i \(0.365782\pi\)
\(564\) 0 0
\(565\) −5.60555 −0.235827
\(566\) −6.51388 −0.273799
\(567\) 0 0
\(568\) 50.4500 2.11683
\(569\) −1.42221 −0.0596219 −0.0298110 0.999556i \(-0.509491\pi\)
−0.0298110 + 0.999556i \(0.509491\pi\)
\(570\) 0 0
\(571\) −36.8444 −1.54189 −0.770945 0.636901i \(-0.780216\pi\)
−0.770945 + 0.636901i \(0.780216\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) −3.90833 −0.163130
\(575\) 3.00000 0.125109
\(576\) 0 0
\(577\) 29.6333 1.23365 0.616825 0.787100i \(-0.288418\pi\)
0.616825 + 0.787100i \(0.288418\pi\)
\(578\) 21.9445 0.912770
\(579\) 0 0
\(580\) 2.48612 0.103231
\(581\) 5.21110 0.216193
\(582\) 0 0
\(583\) −62.8444 −2.60275
\(584\) −45.6333 −1.88832
\(585\) 0 0
\(586\) 22.9361 0.947481
\(587\) 4.57779 0.188946 0.0944729 0.995527i \(-0.469883\pi\)
0.0944729 + 0.995527i \(0.469883\pi\)
\(588\) 0 0
\(589\) −6.42221 −0.264622
\(590\) 14.0917 0.580145
\(591\) 0 0
\(592\) 11.9083 0.489429
\(593\) −35.2111 −1.44595 −0.722973 0.690876i \(-0.757225\pi\)
−0.722973 + 0.690876i \(0.757225\pi\)
\(594\) 0 0
\(595\) 0.394449 0.0161708
\(596\) 0.908327 0.0372065
\(597\) 0 0
\(598\) 0 0
\(599\) 6.78890 0.277387 0.138693 0.990335i \(-0.455710\pi\)
0.138693 + 0.990335i \(0.455710\pi\)
\(600\) 0 0
\(601\) 28.2111 1.15075 0.575377 0.817888i \(-0.304855\pi\)
0.575377 + 0.817888i \(0.304855\pi\)
\(602\) 5.48612 0.223598
\(603\) 0 0
\(604\) −4.00000 −0.162758
\(605\) 20.4222 0.830281
\(606\) 0 0
\(607\) −19.7889 −0.803207 −0.401603 0.915814i \(-0.631547\pi\)
−0.401603 + 0.915814i \(0.631547\pi\)
\(608\) −2.72498 −0.110513
\(609\) 0 0
\(610\) 1.30278 0.0527478
\(611\) 0 0
\(612\) 0 0
\(613\) 1.60555 0.0648476 0.0324238 0.999474i \(-0.489677\pi\)
0.0324238 + 0.999474i \(0.489677\pi\)
\(614\) 20.8444 0.841212
\(615\) 0 0
\(616\) −16.8167 −0.677562
\(617\) −26.4500 −1.06484 −0.532418 0.846482i \(-0.678716\pi\)
−0.532418 + 0.846482i \(0.678716\pi\)
\(618\) 0 0
\(619\) −14.4222 −0.579677 −0.289839 0.957076i \(-0.593602\pi\)
−0.289839 + 0.957076i \(0.593602\pi\)
\(620\) 1.21110 0.0486390
\(621\) 0 0
\(622\) 6.78890 0.272210
\(623\) 8.21110 0.328971
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −18.2389 −0.728971
\(627\) 0 0
\(628\) 0.972244 0.0387967
\(629\) 1.42221 0.0567070
\(630\) 0 0
\(631\) 0.0277564 0.00110496 0.000552482 1.00000i \(-0.499824\pi\)
0.000552482 1.00000i \(0.499824\pi\)
\(632\) −27.6333 −1.09919
\(633\) 0 0
\(634\) 7.81665 0.310439
\(635\) 10.2111 0.405215
\(636\) 0 0
\(637\) 0 0
\(638\) 59.9638 2.37399
\(639\) 0 0
\(640\) −8.09167 −0.319851
\(641\) 19.4222 0.767131 0.383565 0.923514i \(-0.374696\pi\)
0.383565 + 0.923514i \(0.374696\pi\)
\(642\) 0 0
\(643\) −40.6333 −1.60242 −0.801211 0.598382i \(-0.795810\pi\)
−0.801211 + 0.598382i \(0.795810\pi\)
\(644\) 0.908327 0.0357931
\(645\) 0 0
\(646\) 0.825058 0.0324615
\(647\) −10.5778 −0.415856 −0.207928 0.978144i \(-0.566672\pi\)
−0.207928 + 0.978144i \(0.566672\pi\)
\(648\) 0 0
\(649\) −60.6333 −2.38007
\(650\) 0 0
\(651\) 0 0
\(652\) 5.51388 0.215940
\(653\) 28.8167 1.12768 0.563841 0.825883i \(-0.309323\pi\)
0.563841 + 0.825883i \(0.309323\pi\)
\(654\) 0 0
\(655\) 6.78890 0.265264
\(656\) 9.90833 0.386855
\(657\) 0 0
\(658\) 6.78890 0.264659
\(659\) 13.1833 0.513550 0.256775 0.966471i \(-0.417340\pi\)
0.256775 + 0.966471i \(0.417340\pi\)
\(660\) 0 0
\(661\) 38.6333 1.50266 0.751331 0.659926i \(-0.229412\pi\)
0.751331 + 0.659926i \(0.229412\pi\)
\(662\) 33.9083 1.31788
\(663\) 0 0
\(664\) −15.6333 −0.606690
\(665\) −1.60555 −0.0622606
\(666\) 0 0
\(667\) −24.6333 −0.953805
\(668\) 2.72498 0.105433
\(669\) 0 0
\(670\) 9.11943 0.352314
\(671\) −5.60555 −0.216400
\(672\) 0 0
\(673\) −10.3944 −0.400677 −0.200338 0.979727i \(-0.564204\pi\)
−0.200338 + 0.979727i \(0.564204\pi\)
\(674\) −22.9722 −0.884858
\(675\) 0 0
\(676\) 0 0
\(677\) −33.6333 −1.29263 −0.646317 0.763069i \(-0.723691\pi\)
−0.646317 + 0.763069i \(0.723691\pi\)
\(678\) 0 0
\(679\) 15.6056 0.598886
\(680\) −1.18335 −0.0453793
\(681\) 0 0
\(682\) 29.2111 1.11855
\(683\) −21.7889 −0.833729 −0.416864 0.908969i \(-0.636871\pi\)
−0.416864 + 0.908969i \(0.636871\pi\)
\(684\) 0 0
\(685\) −5.60555 −0.214177
\(686\) −16.9361 −0.646623
\(687\) 0 0
\(688\) −13.9083 −0.530250
\(689\) 0 0
\(690\) 0 0
\(691\) 6.02776 0.229307 0.114653 0.993406i \(-0.463424\pi\)
0.114653 + 0.993406i \(0.463424\pi\)
\(692\) −5.09167 −0.193556
\(693\) 0 0
\(694\) 26.3305 0.999493
\(695\) 13.6056 0.516088
\(696\) 0 0
\(697\) 1.18335 0.0448224
\(698\) 23.7250 0.898004
\(699\) 0 0
\(700\) 0.302776 0.0114438
\(701\) 7.57779 0.286209 0.143105 0.989708i \(-0.454291\pi\)
0.143105 + 0.989708i \(0.454291\pi\)
\(702\) 0 0
\(703\) −5.78890 −0.218332
\(704\) 49.4222 1.86267
\(705\) 0 0
\(706\) −6.27502 −0.236163
\(707\) −9.00000 −0.338480
\(708\) 0 0
\(709\) 43.8444 1.64661 0.823306 0.567598i \(-0.192127\pi\)
0.823306 + 0.567598i \(0.192127\pi\)
\(710\) −21.9083 −0.822205
\(711\) 0 0
\(712\) −24.6333 −0.923172
\(713\) −12.0000 −0.449404
\(714\) 0 0
\(715\) 0 0
\(716\) 0.358288 0.0133899
\(717\) 0 0
\(718\) −13.5778 −0.506719
\(719\) 18.3944 0.685997 0.342999 0.939336i \(-0.388557\pi\)
0.342999 + 0.939336i \(0.388557\pi\)
\(720\) 0 0
\(721\) 4.00000 0.148968
\(722\) 21.3944 0.796219
\(723\) 0 0
\(724\) 7.76114 0.288441
\(725\) −8.21110 −0.304953
\(726\) 0 0
\(727\) 42.4222 1.57335 0.786676 0.617366i \(-0.211800\pi\)
0.786676 + 0.617366i \(0.211800\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 19.8167 0.733447
\(731\) −1.66106 −0.0614367
\(732\) 0 0
\(733\) 10.8444 0.400547 0.200274 0.979740i \(-0.435817\pi\)
0.200274 + 0.979740i \(0.435817\pi\)
\(734\) 22.6972 0.837770
\(735\) 0 0
\(736\) −5.09167 −0.187682
\(737\) −39.2389 −1.44538
\(738\) 0 0
\(739\) −28.3944 −1.04451 −0.522253 0.852790i \(-0.674908\pi\)
−0.522253 + 0.852790i \(0.674908\pi\)
\(740\) 1.09167 0.0401307
\(741\) 0 0
\(742\) −14.6056 −0.536187
\(743\) 6.63331 0.243352 0.121676 0.992570i \(-0.461173\pi\)
0.121676 + 0.992570i \(0.461173\pi\)
\(744\) 0 0
\(745\) −3.00000 −0.109911
\(746\) 35.9638 1.31673
\(747\) 0 0
\(748\) 0.669468 0.0244782
\(749\) −8.21110 −0.300027
\(750\) 0 0
\(751\) −18.4500 −0.673249 −0.336624 0.941639i \(-0.609285\pi\)
−0.336624 + 0.941639i \(0.609285\pi\)
\(752\) −17.2111 −0.627624
\(753\) 0 0
\(754\) 0 0
\(755\) 13.2111 0.480801
\(756\) 0 0
\(757\) −20.8167 −0.756594 −0.378297 0.925684i \(-0.623490\pi\)
−0.378297 + 0.925684i \(0.623490\pi\)
\(758\) −3.11943 −0.113303
\(759\) 0 0
\(760\) 4.81665 0.174718
\(761\) 24.6333 0.892957 0.446478 0.894794i \(-0.352678\pi\)
0.446478 + 0.894794i \(0.352678\pi\)
\(762\) 0 0
\(763\) 4.78890 0.173370
\(764\) −1.45837 −0.0527618
\(765\) 0 0
\(766\) 24.2750 0.877092
\(767\) 0 0
\(768\) 0 0
\(769\) 11.0000 0.396670 0.198335 0.980134i \(-0.436447\pi\)
0.198335 + 0.980134i \(0.436447\pi\)
\(770\) 7.30278 0.263174
\(771\) 0 0
\(772\) −2.54163 −0.0914754
\(773\) −29.6056 −1.06484 −0.532419 0.846481i \(-0.678717\pi\)
−0.532419 + 0.846481i \(0.678717\pi\)
\(774\) 0 0
\(775\) −4.00000 −0.143684
\(776\) −46.8167 −1.68062
\(777\) 0 0
\(778\) −1.02776 −0.0368469
\(779\) −4.81665 −0.172575
\(780\) 0 0
\(781\) 94.2666 3.37312
\(782\) 1.54163 0.0551287
\(783\) 0 0
\(784\) 19.8167 0.707738
\(785\) −3.21110 −0.114609
\(786\) 0 0
\(787\) −28.6333 −1.02067 −0.510334 0.859977i \(-0.670478\pi\)
−0.510334 + 0.859977i \(0.670478\pi\)
\(788\) 6.90833 0.246099
\(789\) 0 0
\(790\) 12.0000 0.426941
\(791\) 5.60555 0.199310
\(792\) 0 0
\(793\) 0 0
\(794\) 18.2750 0.648556
\(795\) 0 0
\(796\) 2.66947 0.0946168
\(797\) −50.4500 −1.78703 −0.893515 0.449034i \(-0.851768\pi\)
−0.893515 + 0.449034i \(0.851768\pi\)
\(798\) 0 0
\(799\) −2.05551 −0.0727188
\(800\) −1.69722 −0.0600059
\(801\) 0 0
\(802\) −2.88057 −0.101716
\(803\) −85.2666 −3.00899
\(804\) 0 0
\(805\) −3.00000 −0.105736
\(806\) 0 0
\(807\) 0 0
\(808\) 27.0000 0.949857
\(809\) −17.0555 −0.599640 −0.299820 0.953996i \(-0.596927\pi\)
−0.299820 + 0.953996i \(0.596927\pi\)
\(810\) 0 0
\(811\) −17.5778 −0.617240 −0.308620 0.951185i \(-0.599867\pi\)
−0.308620 + 0.951185i \(0.599867\pi\)
\(812\) −2.48612 −0.0872458
\(813\) 0 0
\(814\) 26.3305 0.922885
\(815\) −18.2111 −0.637907
\(816\) 0 0
\(817\) 6.76114 0.236542
\(818\) 8.09167 0.282919
\(819\) 0 0
\(820\) 0.908327 0.0317202
\(821\) 7.42221 0.259037 0.129518 0.991577i \(-0.458657\pi\)
0.129518 + 0.991577i \(0.458657\pi\)
\(822\) 0 0
\(823\) 26.6333 0.928379 0.464189 0.885736i \(-0.346346\pi\)
0.464189 + 0.885736i \(0.346346\pi\)
\(824\) −12.0000 −0.418040
\(825\) 0 0
\(826\) −14.0917 −0.490312
\(827\) 13.5778 0.472146 0.236073 0.971735i \(-0.424140\pi\)
0.236073 + 0.971735i \(0.424140\pi\)
\(828\) 0 0
\(829\) 0.577795 0.0200676 0.0100338 0.999950i \(-0.496806\pi\)
0.0100338 + 0.999950i \(0.496806\pi\)
\(830\) 6.78890 0.235646
\(831\) 0 0
\(832\) 0 0
\(833\) 2.36669 0.0820010
\(834\) 0 0
\(835\) −9.00000 −0.311458
\(836\) −2.72498 −0.0942454
\(837\) 0 0
\(838\) −43.3028 −1.49587
\(839\) −16.0278 −0.553340 −0.276670 0.960965i \(-0.589231\pi\)
−0.276670 + 0.960965i \(0.589231\pi\)
\(840\) 0 0
\(841\) 38.4222 1.32490
\(842\) −4.66106 −0.160631
\(843\) 0 0
\(844\) 4.96384 0.170862
\(845\) 0 0
\(846\) 0 0
\(847\) −20.4222 −0.701715
\(848\) 37.0278 1.27154
\(849\) 0 0
\(850\) 0.513878 0.0176259
\(851\) −10.8167 −0.370790
\(852\) 0 0
\(853\) 32.7889 1.12267 0.561335 0.827589i \(-0.310288\pi\)
0.561335 + 0.827589i \(0.310288\pi\)
\(854\) −1.30278 −0.0445801
\(855\) 0 0
\(856\) 24.6333 0.841949
\(857\) −6.00000 −0.204956 −0.102478 0.994735i \(-0.532677\pi\)
−0.102478 + 0.994735i \(0.532677\pi\)
\(858\) 0 0
\(859\) 25.2111 0.860192 0.430096 0.902783i \(-0.358480\pi\)
0.430096 + 0.902783i \(0.358480\pi\)
\(860\) −1.27502 −0.0434778
\(861\) 0 0
\(862\) −27.6695 −0.942426
\(863\) −36.0000 −1.22545 −0.612727 0.790295i \(-0.709928\pi\)
−0.612727 + 0.790295i \(0.709928\pi\)
\(864\) 0 0
\(865\) 16.8167 0.571783
\(866\) 4.69722 0.159618
\(867\) 0 0
\(868\) −1.21110 −0.0411075
\(869\) −51.6333 −1.75154
\(870\) 0 0
\(871\) 0 0
\(872\) −14.3667 −0.486518
\(873\) 0 0
\(874\) −6.27502 −0.212256
\(875\) −1.00000 −0.0338062
\(876\) 0 0
\(877\) −38.0278 −1.28411 −0.642053 0.766660i \(-0.721917\pi\)
−0.642053 + 0.766660i \(0.721917\pi\)
\(878\) −30.2750 −1.02173
\(879\) 0 0
\(880\) −18.5139 −0.624103
\(881\) −35.8444 −1.20763 −0.603814 0.797125i \(-0.706353\pi\)
−0.603814 + 0.797125i \(0.706353\pi\)
\(882\) 0 0
\(883\) −31.6333 −1.06455 −0.532273 0.846573i \(-0.678662\pi\)
−0.532273 + 0.846573i \(0.678662\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −29.2111 −0.981366
\(887\) −35.0555 −1.17705 −0.588524 0.808479i \(-0.700291\pi\)
−0.588524 + 0.808479i \(0.700291\pi\)
\(888\) 0 0
\(889\) −10.2111 −0.342469
\(890\) 10.6972 0.358572
\(891\) 0 0
\(892\) −3.09167 −0.103517
\(893\) 8.36669 0.279981
\(894\) 0 0
\(895\) −1.18335 −0.0395549
\(896\) 8.09167 0.270324
\(897\) 0 0
\(898\) −16.4584 −0.549223
\(899\) 32.8444 1.09542
\(900\) 0 0
\(901\) 4.42221 0.147325
\(902\) 21.9083 0.729467
\(903\) 0 0
\(904\) −16.8167 −0.559314
\(905\) −25.6333 −0.852080
\(906\) 0 0
\(907\) 48.2666 1.60267 0.801333 0.598218i \(-0.204124\pi\)
0.801333 + 0.598218i \(0.204124\pi\)
\(908\) 0.430609 0.0142903
\(909\) 0 0
\(910\) 0 0
\(911\) 36.0000 1.19273 0.596367 0.802712i \(-0.296610\pi\)
0.596367 + 0.802712i \(0.296610\pi\)
\(912\) 0 0
\(913\) −29.2111 −0.966746
\(914\) 6.75274 0.223361
\(915\) 0 0
\(916\) −4.23886 −0.140056
\(917\) −6.78890 −0.224189
\(918\) 0 0
\(919\) −17.1833 −0.566826 −0.283413 0.958998i \(-0.591467\pi\)
−0.283413 + 0.958998i \(0.591467\pi\)
\(920\) 9.00000 0.296721
\(921\) 0 0
\(922\) 28.3860 0.934845
\(923\) 0 0
\(924\) 0 0
\(925\) −3.60555 −0.118550
\(926\) 7.26662 0.238796
\(927\) 0 0
\(928\) 13.9361 0.457474
\(929\) −13.4222 −0.440368 −0.220184 0.975458i \(-0.570666\pi\)
−0.220184 + 0.975458i \(0.570666\pi\)
\(930\) 0 0
\(931\) −9.63331 −0.315719
\(932\) 0.238859 0.00782408
\(933\) 0 0
\(934\) 22.4222 0.733677
\(935\) −2.21110 −0.0723108
\(936\) 0 0
\(937\) −46.4777 −1.51836 −0.759180 0.650880i \(-0.774400\pi\)
−0.759180 + 0.650880i \(0.774400\pi\)
\(938\) −9.11943 −0.297760
\(939\) 0 0
\(940\) −1.57779 −0.0514620
\(941\) −33.6333 −1.09641 −0.548207 0.836343i \(-0.684689\pi\)
−0.548207 + 0.836343i \(0.684689\pi\)
\(942\) 0 0
\(943\) −9.00000 −0.293080
\(944\) 35.7250 1.16275
\(945\) 0 0
\(946\) −30.7527 −0.999858
\(947\) −24.6333 −0.800475 −0.400237 0.916411i \(-0.631072\pi\)
−0.400237 + 0.916411i \(0.631072\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −2.09167 −0.0678628
\(951\) 0 0
\(952\) 1.18335 0.0383525
\(953\) −50.4500 −1.63423 −0.817117 0.576471i \(-0.804429\pi\)
−0.817117 + 0.576471i \(0.804429\pi\)
\(954\) 0 0
\(955\) 4.81665 0.155863
\(956\) 0 0
\(957\) 0 0
\(958\) −9.35829 −0.302353
\(959\) 5.60555 0.181013
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) 0 0
\(964\) −4.90833 −0.158087
\(965\) 8.39445 0.270227
\(966\) 0 0
\(967\) 56.4777 1.81620 0.908100 0.418752i \(-0.137532\pi\)
0.908100 + 0.418752i \(0.137532\pi\)
\(968\) 61.2666 1.96918
\(969\) 0 0
\(970\) 20.3305 0.652774
\(971\) 7.97224 0.255841 0.127921 0.991784i \(-0.459170\pi\)
0.127921 + 0.991784i \(0.459170\pi\)
\(972\) 0 0
\(973\) −13.6056 −0.436174
\(974\) 1.30278 0.0417436
\(975\) 0 0
\(976\) 3.30278 0.105719
\(977\) −7.18335 −0.229816 −0.114908 0.993376i \(-0.536657\pi\)
−0.114908 + 0.993376i \(0.536657\pi\)
\(978\) 0 0
\(979\) −46.0278 −1.47105
\(980\) 1.81665 0.0580309
\(981\) 0 0
\(982\) 6.27502 0.200244
\(983\) 10.4222 0.332417 0.166208 0.986091i \(-0.446848\pi\)
0.166208 + 0.986091i \(0.446848\pi\)
\(984\) 0 0
\(985\) −22.8167 −0.726999
\(986\) −4.21951 −0.134376
\(987\) 0 0
\(988\) 0 0
\(989\) 12.6333 0.401716
\(990\) 0 0
\(991\) 3.97224 0.126182 0.0630912 0.998008i \(-0.479904\pi\)
0.0630912 + 0.998008i \(0.479904\pi\)
\(992\) 6.78890 0.215548
\(993\) 0 0
\(994\) 21.9083 0.694890
\(995\) −8.81665 −0.279507
\(996\) 0 0
\(997\) 46.4500 1.47109 0.735543 0.677479i \(-0.236927\pi\)
0.735543 + 0.677479i \(0.236927\pi\)
\(998\) 34.4222 1.08962
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7605.2.a.bg.1.1 2
3.2 odd 2 845.2.a.c.1.2 2
13.3 even 3 585.2.j.d.451.2 4
13.9 even 3 585.2.j.d.406.2 4
13.12 even 2 7605.2.a.bb.1.2 2
15.14 odd 2 4225.2.a.x.1.1 2
39.2 even 12 845.2.m.d.316.3 8
39.5 even 4 845.2.c.d.506.2 4
39.8 even 4 845.2.c.d.506.3 4
39.11 even 12 845.2.m.d.316.2 8
39.17 odd 6 845.2.e.d.146.2 4
39.20 even 12 845.2.m.d.361.3 8
39.23 odd 6 845.2.e.d.191.2 4
39.29 odd 6 65.2.e.b.61.1 yes 4
39.32 even 12 845.2.m.d.361.2 8
39.35 odd 6 65.2.e.b.16.1 4
39.38 odd 2 845.2.a.f.1.1 2
156.35 even 6 1040.2.q.o.81.1 4
156.107 even 6 1040.2.q.o.321.1 4
195.29 odd 6 325.2.e.a.126.2 4
195.68 even 12 325.2.o.b.74.3 8
195.74 odd 6 325.2.e.a.276.2 4
195.107 even 12 325.2.o.b.74.2 8
195.113 even 12 325.2.o.b.224.2 8
195.152 even 12 325.2.o.b.224.3 8
195.194 odd 2 4225.2.a.t.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.e.b.16.1 4 39.35 odd 6
65.2.e.b.61.1 yes 4 39.29 odd 6
325.2.e.a.126.2 4 195.29 odd 6
325.2.e.a.276.2 4 195.74 odd 6
325.2.o.b.74.2 8 195.107 even 12
325.2.o.b.74.3 8 195.68 even 12
325.2.o.b.224.2 8 195.113 even 12
325.2.o.b.224.3 8 195.152 even 12
585.2.j.d.406.2 4 13.9 even 3
585.2.j.d.451.2 4 13.3 even 3
845.2.a.c.1.2 2 3.2 odd 2
845.2.a.f.1.1 2 39.38 odd 2
845.2.c.d.506.2 4 39.5 even 4
845.2.c.d.506.3 4 39.8 even 4
845.2.e.d.146.2 4 39.17 odd 6
845.2.e.d.191.2 4 39.23 odd 6
845.2.m.d.316.2 8 39.11 even 12
845.2.m.d.316.3 8 39.2 even 12
845.2.m.d.361.2 8 39.32 even 12
845.2.m.d.361.3 8 39.20 even 12
1040.2.q.o.81.1 4 156.35 even 6
1040.2.q.o.321.1 4 156.107 even 6
4225.2.a.t.1.2 2 195.194 odd 2
4225.2.a.x.1.1 2 15.14 odd 2
7605.2.a.bb.1.2 2 13.12 even 2
7605.2.a.bg.1.1 2 1.1 even 1 trivial