Properties

 Label 7600.2.a.bs Level $7600$ Weight $2$ Character orbit 7600.a Self dual yes Analytic conductor $60.686$ Analytic rank $1$ Dimension $3$ CM no Inner twists $1$

Related objects

Newspace parameters

 Level: $$N$$ $$=$$ $$7600 = 2^{4} \cdot 5^{2} \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 7600.a (trivial)

Newform invariants

 Self dual: yes Analytic conductor: $$60.6863055362$$ Analytic rank: $$1$$ Dimension: $$3$$ Coefficient field: $$\Q(\zeta_{18})^+$$ Defining polynomial: $$x^{3} - 3 x - 1$$ Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 3800) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + \beta_{1} q^{3} + ( \beta_{1} - 2 \beta_{2} ) q^{7} + ( -1 + \beta_{2} ) q^{9} +O(q^{10})$$ $$q + \beta_{1} q^{3} + ( \beta_{1} - 2 \beta_{2} ) q^{7} + ( -1 + \beta_{2} ) q^{9} + ( 1 - \beta_{1} + 2 \beta_{2} ) q^{11} + ( 1 + \beta_{1} - 3 \beta_{2} ) q^{13} + ( -2 + \beta_{1} ) q^{17} - q^{19} + ( -2 \beta_{1} + \beta_{2} ) q^{21} + ( -2 - 4 \beta_{1} + \beta_{2} ) q^{23} + ( 1 - 3 \beta_{1} ) q^{27} + ( -1 - \beta_{1} + 4 \beta_{2} ) q^{29} + ( 5 + \beta_{1} + \beta_{2} ) q^{31} + ( 3 \beta_{1} - \beta_{2} ) q^{33} + ( -3 + 5 \beta_{1} - 2 \beta_{2} ) q^{37} + ( -1 - 2 \beta_{1} + \beta_{2} ) q^{39} + ( -3 - 4 \beta_{1} + \beta_{2} ) q^{41} + ( -1 - 2 \beta_{2} ) q^{43} + ( -1 - \beta_{1} + 3 \beta_{2} ) q^{47} + ( -1 - 3 \beta_{2} ) q^{49} + ( 2 - 2 \beta_{1} + \beta_{2} ) q^{51} + ( 1 - 4 \beta_{1} ) q^{53} -\beta_{1} q^{57} + ( -2 - 6 \beta_{1} + 2 \beta_{2} ) q^{59} + ( -3 + \beta_{1} + 5 \beta_{2} ) q^{61} + ( -3 - 2 \beta_{1} + 4 \beta_{2} ) q^{63} + ( 1 - \beta_{1} + 2 \beta_{2} ) q^{67} + ( -7 - \beta_{1} - 4 \beta_{2} ) q^{69} + ( 3 + 4 \beta_{2} ) q^{71} + ( 3 - 2 \beta_{1} + \beta_{2} ) q^{73} + ( -6 + \beta_{1} + \beta_{2} ) q^{77} + ( 4 - 3 \beta_{1} ) q^{79} + ( -3 + \beta_{1} - 6 \beta_{2} ) q^{81} + ( -3 + 6 \beta_{1} - 7 \beta_{2} ) q^{83} + ( 2 + 3 \beta_{1} - \beta_{2} ) q^{87} + ( 2 - 2 \beta_{1} + 3 \beta_{2} ) q^{89} + ( 9 + 2 \beta_{1} - 7 \beta_{2} ) q^{91} + ( 3 + 6 \beta_{1} + \beta_{2} ) q^{93} + ( -7 + 5 \beta_{1} - 3 \beta_{2} ) q^{97} + ( 2 + 2 \beta_{1} - 3 \beta_{2} ) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$3q - 3q^{9} + O(q^{10})$$ $$3q - 3q^{9} + 3q^{11} + 3q^{13} - 6q^{17} - 3q^{19} - 6q^{23} + 3q^{27} - 3q^{29} + 15q^{31} - 9q^{37} - 3q^{39} - 9q^{41} - 3q^{43} - 3q^{47} - 3q^{49} + 6q^{51} + 3q^{53} - 6q^{59} - 9q^{61} - 9q^{63} + 3q^{67} - 21q^{69} + 9q^{71} + 9q^{73} - 18q^{77} + 12q^{79} - 9q^{81} - 9q^{83} + 6q^{87} + 6q^{89} + 27q^{91} + 9q^{93} - 21q^{97} + 6q^{99} + O(q^{100})$$

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 −1.53209 −0.347296 1.87939
0 −1.53209 0 0 0 −2.22668 0 −0.652704 0
1.2 0 −0.347296 0 0 0 3.41147 0 −2.87939 0
1.3 0 1.87939 0 0 0 −1.18479 0 0.532089 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$1$$
$$5$$ $$1$$
$$19$$ $$1$$

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7600.2.a.bs 3
4.b odd 2 1 3800.2.a.t yes 3
5.b even 2 1 7600.2.a.br 3
20.d odd 2 1 3800.2.a.s 3
20.e even 4 2 3800.2.d.o 6

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3800.2.a.s 3 20.d odd 2 1
3800.2.a.t yes 3 4.b odd 2 1
3800.2.d.o 6 20.e even 4 2
7600.2.a.br 3 5.b even 2 1
7600.2.a.bs 3 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(7600))$$:

 $$T_{3}^{3} - 3 T_{3} - 1$$ $$T_{7}^{3} - 9 T_{7} - 9$$ $$T_{11}^{3} - 3 T_{11}^{2} - 6 T_{11} + 17$$ $$T_{13}^{3} - 3 T_{13}^{2} - 18 T_{13} - 17$$

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{3}$$
$3$ $$-1 - 3 T + T^{3}$$
$5$ $$T^{3}$$
$7$ $$-9 - 9 T + T^{3}$$
$11$ $$17 - 6 T - 3 T^{2} + T^{3}$$
$13$ $$-17 - 18 T - 3 T^{2} + T^{3}$$
$17$ $$1 + 9 T + 6 T^{2} + T^{3}$$
$19$ $$( 1 + T )^{3}$$
$23$ $$-89 - 27 T + 6 T^{2} + T^{3}$$
$29$ $$51 - 36 T + 3 T^{2} + T^{3}$$
$31$ $$-89 + 66 T - 15 T^{2} + T^{3}$$
$37$ $$-37 - 30 T + 9 T^{2} + T^{3}$$
$41$ $$-109 - 12 T + 9 T^{2} + T^{3}$$
$43$ $$-19 - 9 T + 3 T^{2} + T^{3}$$
$47$ $$17 - 18 T + 3 T^{2} + T^{3}$$
$53$ $$111 - 45 T - 3 T^{2} + T^{3}$$
$59$ $$-296 - 72 T + 6 T^{2} + T^{3}$$
$61$ $$-233 - 66 T + 9 T^{2} + T^{3}$$
$67$ $$17 - 6 T - 3 T^{2} + T^{3}$$
$71$ $$181 - 21 T - 9 T^{2} + T^{3}$$
$73$ $$-9 + 18 T - 9 T^{2} + T^{3}$$
$79$ $$71 + 21 T - 12 T^{2} + T^{3}$$
$83$ $$-289 - 102 T + 9 T^{2} + T^{3}$$
$89$ $$51 - 9 T - 6 T^{2} + T^{3}$$
$97$ $$107 + 90 T + 21 T^{2} + T^{3}$$