Properties

Label 7600.2.a.bh.1.1
Level $7600$
Weight $2$
Character 7600.1
Self dual yes
Analytic conductor $60.686$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7600,2,Mod(1,7600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7600, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7600.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7600 = 2^{4} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7600.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.6863055362\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.169.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 475)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.37720\) of defining polynomial
Character \(\chi\) \(=\) 7600.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.37720 q^{3} +0.377203 q^{7} +2.65109 q^{9} +O(q^{10})\) \(q-2.37720 q^{3} +0.377203 q^{7} +2.65109 q^{9} +1.37720 q^{11} +2.82167 q^{13} +6.37720 q^{17} -1.00000 q^{19} -0.896688 q^{21} -6.19887 q^{23} +0.829422 q^{27} -3.37720 q^{29} -2.48052 q^{31} -3.27389 q^{33} +5.58383 q^{37} -6.70769 q^{39} +8.50106 q^{41} +12.1522 q^{43} +6.87826 q^{47} -6.85772 q^{49} -15.1599 q^{51} +11.5478 q^{53} +2.37720 q^{57} -6.05659 q^{59} +5.02830 q^{61} +1.00000 q^{63} -3.22717 q^{67} +14.7360 q^{69} +2.30219 q^{71} -3.19887 q^{73} +0.519485 q^{77} +6.71836 q^{79} -9.92498 q^{81} -18.2165 q^{83} +8.02830 q^{87} +1.50106 q^{89} +1.06434 q^{91} +5.89669 q^{93} -11.7827 q^{97} +3.65109 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 2 q^{3} - 4 q^{7} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q - 2 q^{3} - 4 q^{7} + q^{9} - q^{11} + 3 q^{13} + 14 q^{17} - 3 q^{19} - 6 q^{21} - 8 q^{23} + q^{27} - 5 q^{29} + q^{31} - 8 q^{33} + 5 q^{37} + 11 q^{39} + q^{41} + 5 q^{43} - 9 q^{47} - 7 q^{49} - 18 q^{51} + 31 q^{53} + 2 q^{57} + 6 q^{59} + 3 q^{61} + 3 q^{63} + 13 q^{67} + q^{69} - 7 q^{71} + q^{73} + 10 q^{77} + 18 q^{79} - 21 q^{81} - 3 q^{83} + 12 q^{87} - 20 q^{89} - 17 q^{91} + 21 q^{93} - 13 q^{97} + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.37720 −1.37248 −0.686239 0.727376i \(-0.740740\pi\)
−0.686239 + 0.727376i \(0.740740\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 0.377203 0.142569 0.0712846 0.997456i \(-0.477290\pi\)
0.0712846 + 0.997456i \(0.477290\pi\)
\(8\) 0 0
\(9\) 2.65109 0.883698
\(10\) 0 0
\(11\) 1.37720 0.415242 0.207621 0.978209i \(-0.433428\pi\)
0.207621 + 0.978209i \(0.433428\pi\)
\(12\) 0 0
\(13\) 2.82167 0.782591 0.391295 0.920265i \(-0.372027\pi\)
0.391295 + 0.920265i \(0.372027\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.37720 1.54670 0.773349 0.633980i \(-0.218580\pi\)
0.773349 + 0.633980i \(0.218580\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) −0.896688 −0.195673
\(22\) 0 0
\(23\) −6.19887 −1.29255 −0.646277 0.763103i \(-0.723675\pi\)
−0.646277 + 0.763103i \(0.723675\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0.829422 0.159622
\(28\) 0 0
\(29\) −3.37720 −0.627131 −0.313565 0.949567i \(-0.601524\pi\)
−0.313565 + 0.949567i \(0.601524\pi\)
\(30\) 0 0
\(31\) −2.48052 −0.445514 −0.222757 0.974874i \(-0.571506\pi\)
−0.222757 + 0.974874i \(0.571506\pi\)
\(32\) 0 0
\(33\) −3.27389 −0.569911
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 5.58383 0.917976 0.458988 0.888443i \(-0.348212\pi\)
0.458988 + 0.888443i \(0.348212\pi\)
\(38\) 0 0
\(39\) −6.70769 −1.07409
\(40\) 0 0
\(41\) 8.50106 1.32764 0.663821 0.747891i \(-0.268934\pi\)
0.663821 + 0.747891i \(0.268934\pi\)
\(42\) 0 0
\(43\) 12.1522 1.85319 0.926593 0.376065i \(-0.122723\pi\)
0.926593 + 0.376065i \(0.122723\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 6.87826 1.00330 0.501649 0.865071i \(-0.332727\pi\)
0.501649 + 0.865071i \(0.332727\pi\)
\(48\) 0 0
\(49\) −6.85772 −0.979674
\(50\) 0 0
\(51\) −15.1599 −2.12281
\(52\) 0 0
\(53\) 11.5478 1.58621 0.793105 0.609085i \(-0.208463\pi\)
0.793105 + 0.609085i \(0.208463\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 2.37720 0.314868
\(58\) 0 0
\(59\) −6.05659 −0.788501 −0.394251 0.919003i \(-0.628996\pi\)
−0.394251 + 0.919003i \(0.628996\pi\)
\(60\) 0 0
\(61\) 5.02830 0.643807 0.321904 0.946772i \(-0.395677\pi\)
0.321904 + 0.946772i \(0.395677\pi\)
\(62\) 0 0
\(63\) 1.00000 0.125988
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −3.22717 −0.394262 −0.197131 0.980377i \(-0.563162\pi\)
−0.197131 + 0.980377i \(0.563162\pi\)
\(68\) 0 0
\(69\) 14.7360 1.77400
\(70\) 0 0
\(71\) 2.30219 0.273219 0.136610 0.990625i \(-0.456379\pi\)
0.136610 + 0.990625i \(0.456379\pi\)
\(72\) 0 0
\(73\) −3.19887 −0.374400 −0.187200 0.982322i \(-0.559941\pi\)
−0.187200 + 0.982322i \(0.559941\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.519485 0.0592008
\(78\) 0 0
\(79\) 6.71836 0.755874 0.377937 0.925831i \(-0.376634\pi\)
0.377937 + 0.925831i \(0.376634\pi\)
\(80\) 0 0
\(81\) −9.92498 −1.10278
\(82\) 0 0
\(83\) −18.2165 −1.99952 −0.999760 0.0218996i \(-0.993029\pi\)
−0.999760 + 0.0218996i \(0.993029\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 8.02830 0.860724
\(88\) 0 0
\(89\) 1.50106 0.159112 0.0795561 0.996830i \(-0.474650\pi\)
0.0795561 + 0.996830i \(0.474650\pi\)
\(90\) 0 0
\(91\) 1.06434 0.111573
\(92\) 0 0
\(93\) 5.89669 0.611458
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −11.7827 −1.19635 −0.598176 0.801365i \(-0.704108\pi\)
−0.598176 + 0.801365i \(0.704108\pi\)
\(98\) 0 0
\(99\) 3.65109 0.366949
\(100\) 0 0
\(101\) −9.18820 −0.914260 −0.457130 0.889400i \(-0.651123\pi\)
−0.457130 + 0.889400i \(0.651123\pi\)
\(102\) 0 0
\(103\) 9.47277 0.933379 0.466690 0.884421i \(-0.345447\pi\)
0.466690 + 0.884421i \(0.345447\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 15.3510 1.48404 0.742020 0.670378i \(-0.233868\pi\)
0.742020 + 0.670378i \(0.233868\pi\)
\(108\) 0 0
\(109\) −16.7643 −1.60573 −0.802863 0.596163i \(-0.796691\pi\)
−0.802863 + 0.596163i \(0.796691\pi\)
\(110\) 0 0
\(111\) −13.2739 −1.25990
\(112\) 0 0
\(113\) −13.3305 −1.25403 −0.627013 0.779009i \(-0.715723\pi\)
−0.627013 + 0.779009i \(0.715723\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 7.48052 0.691574
\(118\) 0 0
\(119\) 2.40550 0.220512
\(120\) 0 0
\(121\) −9.10331 −0.827574
\(122\) 0 0
\(123\) −20.2087 −1.82216
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 3.04672 0.270353 0.135176 0.990822i \(-0.456840\pi\)
0.135176 + 0.990822i \(0.456840\pi\)
\(128\) 0 0
\(129\) −28.8881 −2.54346
\(130\) 0 0
\(131\) 8.70769 0.760794 0.380397 0.924823i \(-0.375787\pi\)
0.380397 + 0.924823i \(0.375787\pi\)
\(132\) 0 0
\(133\) −0.377203 −0.0327076
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 6.59450 0.563406 0.281703 0.959502i \(-0.409101\pi\)
0.281703 + 0.959502i \(0.409101\pi\)
\(138\) 0 0
\(139\) 10.1677 0.862409 0.431205 0.902254i \(-0.358089\pi\)
0.431205 + 0.902254i \(0.358089\pi\)
\(140\) 0 0
\(141\) −16.3510 −1.37701
\(142\) 0 0
\(143\) 3.88601 0.324965
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 16.3022 1.34458
\(148\) 0 0
\(149\) −5.54003 −0.453857 −0.226929 0.973911i \(-0.572868\pi\)
−0.226929 + 0.973911i \(0.572868\pi\)
\(150\) 0 0
\(151\) −5.12386 −0.416974 −0.208487 0.978025i \(-0.566854\pi\)
−0.208487 + 0.978025i \(0.566854\pi\)
\(152\) 0 0
\(153\) 16.9066 1.36681
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 19.7643 1.57736 0.788681 0.614803i \(-0.210765\pi\)
0.788681 + 0.614803i \(0.210765\pi\)
\(158\) 0 0
\(159\) −27.4514 −2.17704
\(160\) 0 0
\(161\) −2.33823 −0.184279
\(162\) 0 0
\(163\) −13.5195 −1.05893 −0.529464 0.848332i \(-0.677607\pi\)
−0.529464 + 0.848332i \(0.677607\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −13.1054 −1.01413 −0.507065 0.861908i \(-0.669269\pi\)
−0.507065 + 0.861908i \(0.669269\pi\)
\(168\) 0 0
\(169\) −5.03817 −0.387551
\(170\) 0 0
\(171\) −2.65109 −0.202734
\(172\) 0 0
\(173\) 1.48827 0.113151 0.0565754 0.998398i \(-0.481982\pi\)
0.0565754 + 0.998398i \(0.481982\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 14.3977 1.08220
\(178\) 0 0
\(179\) 17.1132 1.27910 0.639550 0.768750i \(-0.279121\pi\)
0.639550 + 0.768750i \(0.279121\pi\)
\(180\) 0 0
\(181\) −5.73891 −0.426569 −0.213285 0.976990i \(-0.568416\pi\)
−0.213285 + 0.976990i \(0.568416\pi\)
\(182\) 0 0
\(183\) −11.9533 −0.883612
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 8.78270 0.642255
\(188\) 0 0
\(189\) 0.312860 0.0227572
\(190\) 0 0
\(191\) −22.3948 −1.62043 −0.810216 0.586131i \(-0.800650\pi\)
−0.810216 + 0.586131i \(0.800650\pi\)
\(192\) 0 0
\(193\) −21.3687 −1.53815 −0.769075 0.639159i \(-0.779283\pi\)
−0.769075 + 0.639159i \(0.779283\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1.11399 0.0793682 0.0396841 0.999212i \(-0.487365\pi\)
0.0396841 + 0.999212i \(0.487365\pi\)
\(198\) 0 0
\(199\) 2.22505 0.157729 0.0788647 0.996885i \(-0.474870\pi\)
0.0788647 + 0.996885i \(0.474870\pi\)
\(200\) 0 0
\(201\) 7.67164 0.541116
\(202\) 0 0
\(203\) −1.27389 −0.0894096
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −16.4338 −1.14223
\(208\) 0 0
\(209\) −1.37720 −0.0952631
\(210\) 0 0
\(211\) 9.75441 0.671521 0.335760 0.941947i \(-0.391007\pi\)
0.335760 + 0.941947i \(0.391007\pi\)
\(212\) 0 0
\(213\) −5.47277 −0.374988
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −0.935657 −0.0635166
\(218\) 0 0
\(219\) 7.60437 0.513856
\(220\) 0 0
\(221\) 17.9944 1.21043
\(222\) 0 0
\(223\) 18.6433 1.24845 0.624225 0.781244i \(-0.285415\pi\)
0.624225 + 0.781244i \(0.285415\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 8.04672 0.534080 0.267040 0.963686i \(-0.413954\pi\)
0.267040 + 0.963686i \(0.413954\pi\)
\(228\) 0 0
\(229\) 20.1415 1.33099 0.665493 0.746404i \(-0.268221\pi\)
0.665493 + 0.746404i \(0.268221\pi\)
\(230\) 0 0
\(231\) −1.23492 −0.0812518
\(232\) 0 0
\(233\) −1.73386 −0.113589 −0.0567945 0.998386i \(-0.518088\pi\)
−0.0567945 + 0.998386i \(0.518088\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −15.9709 −1.03742
\(238\) 0 0
\(239\) 18.3150 1.18470 0.592349 0.805682i \(-0.298201\pi\)
0.592349 + 0.805682i \(0.298201\pi\)
\(240\) 0 0
\(241\) −2.19675 −0.141505 −0.0707526 0.997494i \(-0.522540\pi\)
−0.0707526 + 0.997494i \(0.522540\pi\)
\(242\) 0 0
\(243\) 21.1054 1.35391
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −2.82167 −0.179539
\(248\) 0 0
\(249\) 43.3043 2.74430
\(250\) 0 0
\(251\) 13.6716 0.862946 0.431473 0.902126i \(-0.357994\pi\)
0.431473 + 0.902126i \(0.357994\pi\)
\(252\) 0 0
\(253\) −8.53711 −0.536723
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 28.4904 1.77718 0.888591 0.458701i \(-0.151685\pi\)
0.888591 + 0.458701i \(0.151685\pi\)
\(258\) 0 0
\(259\) 2.10624 0.130875
\(260\) 0 0
\(261\) −8.95328 −0.554194
\(262\) 0 0
\(263\) −5.36945 −0.331095 −0.165547 0.986202i \(-0.552939\pi\)
−0.165547 + 0.986202i \(0.552939\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −3.56833 −0.218378
\(268\) 0 0
\(269\) 7.06727 0.430899 0.215449 0.976515i \(-0.430878\pi\)
0.215449 + 0.976515i \(0.430878\pi\)
\(270\) 0 0
\(271\) −21.6970 −1.31800 −0.659000 0.752143i \(-0.729020\pi\)
−0.659000 + 0.752143i \(0.729020\pi\)
\(272\) 0 0
\(273\) −2.53016 −0.153132
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 25.1132 1.50891 0.754453 0.656355i \(-0.227902\pi\)
0.754453 + 0.656355i \(0.227902\pi\)
\(278\) 0 0
\(279\) −6.57608 −0.393699
\(280\) 0 0
\(281\) −10.0411 −0.599001 −0.299501 0.954096i \(-0.596820\pi\)
−0.299501 + 0.954096i \(0.596820\pi\)
\(282\) 0 0
\(283\) 20.9143 1.24323 0.621613 0.783324i \(-0.286478\pi\)
0.621613 + 0.783324i \(0.286478\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 3.20662 0.189281
\(288\) 0 0
\(289\) 23.6687 1.39228
\(290\) 0 0
\(291\) 28.0099 1.64197
\(292\) 0 0
\(293\) −0.818748 −0.0478318 −0.0239159 0.999714i \(-0.507613\pi\)
−0.0239159 + 0.999714i \(0.507613\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 1.14228 0.0662819
\(298\) 0 0
\(299\) −17.4912 −1.01154
\(300\) 0 0
\(301\) 4.58383 0.264207
\(302\) 0 0
\(303\) 21.8422 1.25480
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 7.44447 0.424878 0.212439 0.977174i \(-0.431859\pi\)
0.212439 + 0.977174i \(0.431859\pi\)
\(308\) 0 0
\(309\) −22.5187 −1.28104
\(310\) 0 0
\(311\) 0.956204 0.0542213 0.0271107 0.999632i \(-0.491369\pi\)
0.0271107 + 0.999632i \(0.491369\pi\)
\(312\) 0 0
\(313\) 5.98158 0.338099 0.169049 0.985608i \(-0.445930\pi\)
0.169049 + 0.985608i \(0.445930\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 22.6511 1.27221 0.636106 0.771602i \(-0.280544\pi\)
0.636106 + 0.771602i \(0.280544\pi\)
\(318\) 0 0
\(319\) −4.65109 −0.260411
\(320\) 0 0
\(321\) −36.4925 −2.03681
\(322\) 0 0
\(323\) −6.37720 −0.354837
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 39.8521 2.20383
\(328\) 0 0
\(329\) 2.59450 0.143039
\(330\) 0 0
\(331\) −4.16283 −0.228810 −0.114405 0.993434i \(-0.536496\pi\)
−0.114405 + 0.993434i \(0.536496\pi\)
\(332\) 0 0
\(333\) 14.8032 0.811213
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −18.0304 −0.982180 −0.491090 0.871109i \(-0.663401\pi\)
−0.491090 + 0.871109i \(0.663401\pi\)
\(338\) 0 0
\(339\) 31.6893 1.72112
\(340\) 0 0
\(341\) −3.41617 −0.184996
\(342\) 0 0
\(343\) −5.22717 −0.282241
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −7.43380 −0.399067 −0.199534 0.979891i \(-0.563943\pi\)
−0.199534 + 0.979891i \(0.563943\pi\)
\(348\) 0 0
\(349\) 21.9194 1.17332 0.586658 0.809835i \(-0.300443\pi\)
0.586658 + 0.809835i \(0.300443\pi\)
\(350\) 0 0
\(351\) 2.34036 0.124919
\(352\) 0 0
\(353\) 10.3695 0.551910 0.275955 0.961171i \(-0.411006\pi\)
0.275955 + 0.961171i \(0.411006\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −5.71836 −0.302648
\(358\) 0 0
\(359\) 23.9893 1.26611 0.633054 0.774108i \(-0.281801\pi\)
0.633054 + 0.774108i \(0.281801\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 21.6404 1.13583
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −35.0275 −1.82842 −0.914210 0.405240i \(-0.867188\pi\)
−0.914210 + 0.405240i \(0.867188\pi\)
\(368\) 0 0
\(369\) 22.5371 1.17323
\(370\) 0 0
\(371\) 4.35586 0.226145
\(372\) 0 0
\(373\) 30.8003 1.59478 0.797390 0.603464i \(-0.206213\pi\)
0.797390 + 0.603464i \(0.206213\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −9.52936 −0.490787
\(378\) 0 0
\(379\) −0.671640 −0.0344998 −0.0172499 0.999851i \(-0.505491\pi\)
−0.0172499 + 0.999851i \(0.505491\pi\)
\(380\) 0 0
\(381\) −7.24267 −0.371053
\(382\) 0 0
\(383\) 30.1805 1.54215 0.771075 0.636745i \(-0.219720\pi\)
0.771075 + 0.636745i \(0.219720\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 32.2165 1.63766
\(388\) 0 0
\(389\) −31.5109 −1.59767 −0.798834 0.601552i \(-0.794549\pi\)
−0.798834 + 0.601552i \(0.794549\pi\)
\(390\) 0 0
\(391\) −39.5315 −1.99919
\(392\) 0 0
\(393\) −20.6999 −1.04417
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −12.5761 −0.631175 −0.315588 0.948896i \(-0.602202\pi\)
−0.315588 + 0.948896i \(0.602202\pi\)
\(398\) 0 0
\(399\) 0.896688 0.0448905
\(400\) 0 0
\(401\) 24.6036 1.22864 0.614322 0.789056i \(-0.289430\pi\)
0.614322 + 0.789056i \(0.289430\pi\)
\(402\) 0 0
\(403\) −6.99920 −0.348655
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 7.69006 0.381182
\(408\) 0 0
\(409\) 13.6666 0.675770 0.337885 0.941187i \(-0.390289\pi\)
0.337885 + 0.941187i \(0.390289\pi\)
\(410\) 0 0
\(411\) −15.6765 −0.773263
\(412\) 0 0
\(413\) −2.28456 −0.112416
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −24.1706 −1.18364
\(418\) 0 0
\(419\) −12.6893 −0.619911 −0.309956 0.950751i \(-0.600314\pi\)
−0.309956 + 0.950751i \(0.600314\pi\)
\(420\) 0 0
\(421\) 29.1826 1.42227 0.711136 0.703055i \(-0.248181\pi\)
0.711136 + 0.703055i \(0.248181\pi\)
\(422\) 0 0
\(423\) 18.2349 0.886612
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 1.89669 0.0917872
\(428\) 0 0
\(429\) −9.23784 −0.446007
\(430\) 0 0
\(431\) 29.9816 1.44416 0.722081 0.691809i \(-0.243186\pi\)
0.722081 + 0.691809i \(0.243186\pi\)
\(432\) 0 0
\(433\) −4.76216 −0.228855 −0.114427 0.993432i \(-0.536503\pi\)
−0.114427 + 0.993432i \(0.536503\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 6.19887 0.296532
\(438\) 0 0
\(439\) −6.88601 −0.328652 −0.164326 0.986406i \(-0.552545\pi\)
−0.164326 + 0.986406i \(0.552545\pi\)
\(440\) 0 0
\(441\) −18.1805 −0.865736
\(442\) 0 0
\(443\) −8.65109 −0.411026 −0.205513 0.978654i \(-0.565886\pi\)
−0.205513 + 0.978654i \(0.565886\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 13.1698 0.622909
\(448\) 0 0
\(449\) 8.63055 0.407301 0.203650 0.979044i \(-0.434719\pi\)
0.203650 + 0.979044i \(0.434719\pi\)
\(450\) 0 0
\(451\) 11.7077 0.551293
\(452\) 0 0
\(453\) 12.1805 0.572288
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −28.6092 −1.33828 −0.669141 0.743135i \(-0.733338\pi\)
−0.669141 + 0.743135i \(0.733338\pi\)
\(458\) 0 0
\(459\) 5.28939 0.246888
\(460\) 0 0
\(461\) −39.1025 −1.82119 −0.910593 0.413305i \(-0.864374\pi\)
−0.910593 + 0.413305i \(0.864374\pi\)
\(462\) 0 0
\(463\) 8.04380 0.373827 0.186913 0.982376i \(-0.440152\pi\)
0.186913 + 0.982376i \(0.440152\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −17.0488 −0.788926 −0.394463 0.918912i \(-0.629069\pi\)
−0.394463 + 0.918912i \(0.629069\pi\)
\(468\) 0 0
\(469\) −1.21730 −0.0562096
\(470\) 0 0
\(471\) −46.9837 −2.16489
\(472\) 0 0
\(473\) 16.7360 0.769521
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 30.6142 1.40173
\(478\) 0 0
\(479\) −22.5478 −1.03023 −0.515117 0.857120i \(-0.672252\pi\)
−0.515117 + 0.857120i \(0.672252\pi\)
\(480\) 0 0
\(481\) 15.7557 0.718399
\(482\) 0 0
\(483\) 5.55845 0.252918
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 24.5577 1.11281 0.556407 0.830910i \(-0.312180\pi\)
0.556407 + 0.830910i \(0.312180\pi\)
\(488\) 0 0
\(489\) 32.1386 1.45336
\(490\) 0 0
\(491\) 16.9298 0.764032 0.382016 0.924156i \(-0.375230\pi\)
0.382016 + 0.924156i \(0.375230\pi\)
\(492\) 0 0
\(493\) −21.5371 −0.969983
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0.868391 0.0389527
\(498\) 0 0
\(499\) −0.418295 −0.0187255 −0.00936273 0.999956i \(-0.502980\pi\)
−0.00936273 + 0.999956i \(0.502980\pi\)
\(500\) 0 0
\(501\) 31.1543 1.39187
\(502\) 0 0
\(503\) 12.5993 0.561776 0.280888 0.959741i \(-0.409371\pi\)
0.280888 + 0.959741i \(0.409371\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 11.9767 0.531906
\(508\) 0 0
\(509\) 12.8209 0.568275 0.284138 0.958784i \(-0.408293\pi\)
0.284138 + 0.958784i \(0.408293\pi\)
\(510\) 0 0
\(511\) −1.20662 −0.0533779
\(512\) 0 0
\(513\) −0.829422 −0.0366199
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 9.47277 0.416612
\(518\) 0 0
\(519\) −3.53791 −0.155297
\(520\) 0 0
\(521\) 11.3743 0.498316 0.249158 0.968463i \(-0.419846\pi\)
0.249158 + 0.968463i \(0.419846\pi\)
\(522\) 0 0
\(523\) −33.0948 −1.44713 −0.723566 0.690255i \(-0.757498\pi\)
−0.723566 + 0.690255i \(0.757498\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −15.8187 −0.689075
\(528\) 0 0
\(529\) 15.4260 0.670698
\(530\) 0 0
\(531\) −16.0566 −0.696797
\(532\) 0 0
\(533\) 23.9872 1.03900
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −40.6815 −1.75554
\(538\) 0 0
\(539\) −9.44447 −0.406802
\(540\) 0 0
\(541\) 31.4338 1.35144 0.675722 0.737156i \(-0.263832\pi\)
0.675722 + 0.737156i \(0.263832\pi\)
\(542\) 0 0
\(543\) 13.6425 0.585458
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 23.3460 0.998202 0.499101 0.866544i \(-0.333664\pi\)
0.499101 + 0.866544i \(0.333664\pi\)
\(548\) 0 0
\(549\) 13.3305 0.568931
\(550\) 0 0
\(551\) 3.37720 0.143874
\(552\) 0 0
\(553\) 2.53418 0.107764
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 15.9229 0.674673 0.337337 0.941384i \(-0.390474\pi\)
0.337337 + 0.941384i \(0.390474\pi\)
\(558\) 0 0
\(559\) 34.2894 1.45029
\(560\) 0 0
\(561\) −20.8783 −0.881481
\(562\) 0 0
\(563\) 29.6404 1.24919 0.624597 0.780947i \(-0.285263\pi\)
0.624597 + 0.780947i \(0.285263\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −3.74373 −0.157222
\(568\) 0 0
\(569\) −7.64334 −0.320426 −0.160213 0.987082i \(-0.551218\pi\)
−0.160213 + 0.987082i \(0.551218\pi\)
\(570\) 0 0
\(571\) 10.5577 0.441824 0.220912 0.975294i \(-0.429097\pi\)
0.220912 + 0.975294i \(0.429097\pi\)
\(572\) 0 0
\(573\) 53.2370 2.22401
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 38.9447 1.62129 0.810645 0.585538i \(-0.199117\pi\)
0.810645 + 0.585538i \(0.199117\pi\)
\(578\) 0 0
\(579\) 50.7976 2.11108
\(580\) 0 0
\(581\) −6.87131 −0.285070
\(582\) 0 0
\(583\) 15.9036 0.658661
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 10.9992 0.453986 0.226993 0.973896i \(-0.427111\pi\)
0.226993 + 0.973896i \(0.427111\pi\)
\(588\) 0 0
\(589\) 2.48052 0.102208
\(590\) 0 0
\(591\) −2.64817 −0.108931
\(592\) 0 0
\(593\) 26.7848 1.09992 0.549960 0.835191i \(-0.314643\pi\)
0.549960 + 0.835191i \(0.314643\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −5.28939 −0.216480
\(598\) 0 0
\(599\) 3.44930 0.140934 0.0704672 0.997514i \(-0.477551\pi\)
0.0704672 + 0.997514i \(0.477551\pi\)
\(600\) 0 0
\(601\) −37.0686 −1.51206 −0.756030 0.654537i \(-0.772863\pi\)
−0.756030 + 0.654537i \(0.772863\pi\)
\(602\) 0 0
\(603\) −8.55553 −0.348408
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 14.8732 0.603685 0.301843 0.953358i \(-0.402398\pi\)
0.301843 + 0.953358i \(0.402398\pi\)
\(608\) 0 0
\(609\) 3.02830 0.122713
\(610\) 0 0
\(611\) 19.4082 0.785172
\(612\) 0 0
\(613\) −40.4671 −1.63445 −0.817226 0.576317i \(-0.804489\pi\)
−0.817226 + 0.576317i \(0.804489\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 8.76991 0.353063 0.176532 0.984295i \(-0.443512\pi\)
0.176532 + 0.984295i \(0.443512\pi\)
\(618\) 0 0
\(619\) −32.0510 −1.28824 −0.644119 0.764926i \(-0.722776\pi\)
−0.644119 + 0.764926i \(0.722776\pi\)
\(620\) 0 0
\(621\) −5.14148 −0.206321
\(622\) 0 0
\(623\) 0.566205 0.0226845
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 3.27389 0.130747
\(628\) 0 0
\(629\) 35.6092 1.41983
\(630\) 0 0
\(631\) 18.9709 0.755220 0.377610 0.925965i \(-0.376746\pi\)
0.377610 + 0.925965i \(0.376746\pi\)
\(632\) 0 0
\(633\) −23.1882 −0.921648
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −19.3502 −0.766684
\(638\) 0 0
\(639\) 6.10331 0.241443
\(640\) 0 0
\(641\) −44.3433 −1.75145 −0.875727 0.482806i \(-0.839617\pi\)
−0.875727 + 0.482806i \(0.839617\pi\)
\(642\) 0 0
\(643\) −42.9397 −1.69338 −0.846688 0.532090i \(-0.821407\pi\)
−0.846688 + 0.532090i \(0.821407\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −17.9864 −0.707118 −0.353559 0.935412i \(-0.615029\pi\)
−0.353559 + 0.935412i \(0.615029\pi\)
\(648\) 0 0
\(649\) −8.34116 −0.327419
\(650\) 0 0
\(651\) 2.22425 0.0871751
\(652\) 0 0
\(653\) −21.7274 −0.850260 −0.425130 0.905132i \(-0.639772\pi\)
−0.425130 + 0.905132i \(0.639772\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −8.48052 −0.330856
\(658\) 0 0
\(659\) 40.8590 1.59164 0.795821 0.605532i \(-0.207040\pi\)
0.795821 + 0.605532i \(0.207040\pi\)
\(660\) 0 0
\(661\) 33.7282 1.31188 0.655938 0.754815i \(-0.272273\pi\)
0.655938 + 0.754815i \(0.272273\pi\)
\(662\) 0 0
\(663\) −42.7763 −1.66129
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 20.9349 0.810601
\(668\) 0 0
\(669\) −44.3190 −1.71347
\(670\) 0 0
\(671\) 6.92498 0.267336
\(672\) 0 0
\(673\) −11.0622 −0.426417 −0.213209 0.977007i \(-0.568391\pi\)
−0.213209 + 0.977007i \(0.568391\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −6.14711 −0.236253 −0.118126 0.992999i \(-0.537689\pi\)
−0.118126 + 0.992999i \(0.537689\pi\)
\(678\) 0 0
\(679\) −4.44447 −0.170563
\(680\) 0 0
\(681\) −19.1287 −0.733013
\(682\) 0 0
\(683\) 13.6073 0.520669 0.260334 0.965519i \(-0.416167\pi\)
0.260334 + 0.965519i \(0.416167\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −47.8804 −1.82675
\(688\) 0 0
\(689\) 32.5840 1.24135
\(690\) 0 0
\(691\) 40.3043 1.53325 0.766624 0.642096i \(-0.221935\pi\)
0.766624 + 0.642096i \(0.221935\pi\)
\(692\) 0 0
\(693\) 1.37720 0.0523156
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 54.2130 2.05346
\(698\) 0 0
\(699\) 4.12174 0.155898
\(700\) 0 0
\(701\) −3.23704 −0.122261 −0.0611307 0.998130i \(-0.519471\pi\)
−0.0611307 + 0.998130i \(0.519471\pi\)
\(702\) 0 0
\(703\) −5.58383 −0.210598
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −3.46582 −0.130345
\(708\) 0 0
\(709\) 20.2370 0.760018 0.380009 0.924983i \(-0.375921\pi\)
0.380009 + 0.924983i \(0.375921\pi\)
\(710\) 0 0
\(711\) 17.8110 0.667965
\(712\) 0 0
\(713\) 15.3764 0.575851
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −43.5384 −1.62597
\(718\) 0 0
\(719\) −47.8804 −1.78564 −0.892819 0.450416i \(-0.851276\pi\)
−0.892819 + 0.450416i \(0.851276\pi\)
\(720\) 0 0
\(721\) 3.57315 0.133071
\(722\) 0 0
\(723\) 5.22212 0.194213
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −17.7926 −0.659890 −0.329945 0.944000i \(-0.607030\pi\)
−0.329945 + 0.944000i \(0.607030\pi\)
\(728\) 0 0
\(729\) −20.3969 −0.755443
\(730\) 0 0
\(731\) 77.4968 2.86632
\(732\) 0 0
\(733\) −5.66097 −0.209093 −0.104546 0.994520i \(-0.533339\pi\)
−0.104546 + 0.994520i \(0.533339\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −4.44447 −0.163714
\(738\) 0 0
\(739\) 5.59955 0.205983 0.102991 0.994682i \(-0.467159\pi\)
0.102991 + 0.994682i \(0.467159\pi\)
\(740\) 0 0
\(741\) 6.70769 0.246413
\(742\) 0 0
\(743\) −5.81663 −0.213391 −0.106696 0.994292i \(-0.534027\pi\)
−0.106696 + 0.994292i \(0.534027\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −48.2936 −1.76697
\(748\) 0 0
\(749\) 5.79045 0.211579
\(750\) 0 0
\(751\) 41.1797 1.50267 0.751333 0.659923i \(-0.229411\pi\)
0.751333 + 0.659923i \(0.229411\pi\)
\(752\) 0 0
\(753\) −32.5003 −1.18438
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −33.5208 −1.21833 −0.609167 0.793042i \(-0.708496\pi\)
−0.609167 + 0.793042i \(0.708496\pi\)
\(758\) 0 0
\(759\) 20.2944 0.736641
\(760\) 0 0
\(761\) 31.5032 1.14199 0.570995 0.820954i \(-0.306558\pi\)
0.570995 + 0.820954i \(0.306558\pi\)
\(762\) 0 0
\(763\) −6.32353 −0.228927
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −17.0897 −0.617074
\(768\) 0 0
\(769\) −1.22425 −0.0441475 −0.0220737 0.999756i \(-0.507027\pi\)
−0.0220737 + 0.999756i \(0.507027\pi\)
\(770\) 0 0
\(771\) −67.7274 −2.43914
\(772\) 0 0
\(773\) 40.6687 1.46275 0.731376 0.681974i \(-0.238878\pi\)
0.731376 + 0.681974i \(0.238878\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −5.00695 −0.179623
\(778\) 0 0
\(779\) −8.50106 −0.304582
\(780\) 0 0
\(781\) 3.17058 0.113452
\(782\) 0 0
\(783\) −2.80113 −0.100104
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 39.9525 1.42415 0.712076 0.702102i \(-0.247755\pi\)
0.712076 + 0.702102i \(0.247755\pi\)
\(788\) 0 0
\(789\) 12.7643 0.454420
\(790\) 0 0
\(791\) −5.02830 −0.178786
\(792\) 0 0
\(793\) 14.1882 0.503838
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −4.53791 −0.160741 −0.0803705 0.996765i \(-0.525610\pi\)
−0.0803705 + 0.996765i \(0.525610\pi\)
\(798\) 0 0
\(799\) 43.8641 1.55180
\(800\) 0 0
\(801\) 3.97945 0.140607
\(802\) 0 0
\(803\) −4.40550 −0.155467
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −16.8003 −0.591399
\(808\) 0 0
\(809\) 55.5958 1.95465 0.977323 0.211756i \(-0.0679183\pi\)
0.977323 + 0.211756i \(0.0679183\pi\)
\(810\) 0 0
\(811\) −42.3326 −1.48650 −0.743249 0.669014i \(-0.766716\pi\)
−0.743249 + 0.669014i \(0.766716\pi\)
\(812\) 0 0
\(813\) 51.5782 1.80893
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −12.1522 −0.425150
\(818\) 0 0
\(819\) 2.82167 0.0985972
\(820\) 0 0
\(821\) −3.10543 −0.108380 −0.0541902 0.998531i \(-0.517258\pi\)
−0.0541902 + 0.998531i \(0.517258\pi\)
\(822\) 0 0
\(823\) 45.2002 1.57558 0.787790 0.615944i \(-0.211225\pi\)
0.787790 + 0.615944i \(0.211225\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 35.6503 1.23968 0.619841 0.784727i \(-0.287197\pi\)
0.619841 + 0.784727i \(0.287197\pi\)
\(828\) 0 0
\(829\) −18.4330 −0.640204 −0.320102 0.947383i \(-0.603717\pi\)
−0.320102 + 0.947383i \(0.603717\pi\)
\(830\) 0 0
\(831\) −59.6991 −2.07094
\(832\) 0 0
\(833\) −43.7331 −1.51526
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −2.05739 −0.0711139
\(838\) 0 0
\(839\) 14.1805 0.489564 0.244782 0.969578i \(-0.421284\pi\)
0.244782 + 0.969578i \(0.421284\pi\)
\(840\) 0 0
\(841\) −17.5945 −0.606707
\(842\) 0 0
\(843\) 23.8697 0.822117
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −3.43380 −0.117987
\(848\) 0 0
\(849\) −49.7176 −1.70630
\(850\) 0 0
\(851\) −34.6134 −1.18653
\(852\) 0 0
\(853\) 42.6639 1.46078 0.730392 0.683028i \(-0.239337\pi\)
0.730392 + 0.683028i \(0.239337\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −1.42392 −0.0486403 −0.0243201 0.999704i \(-0.507742\pi\)
−0.0243201 + 0.999704i \(0.507742\pi\)
\(858\) 0 0
\(859\) 8.27894 0.282474 0.141237 0.989976i \(-0.454892\pi\)
0.141237 + 0.989976i \(0.454892\pi\)
\(860\) 0 0
\(861\) −7.62280 −0.259784
\(862\) 0 0
\(863\) −30.4154 −1.03535 −0.517676 0.855577i \(-0.673203\pi\)
−0.517676 + 0.855577i \(0.673203\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −56.2653 −1.91087
\(868\) 0 0
\(869\) 9.25254 0.313871
\(870\) 0 0
\(871\) −9.10602 −0.308546
\(872\) 0 0
\(873\) −31.2370 −1.05721
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 57.8484 1.95340 0.976700 0.214608i \(-0.0688474\pi\)
0.976700 + 0.214608i \(0.0688474\pi\)
\(878\) 0 0
\(879\) 1.94633 0.0656481
\(880\) 0 0
\(881\) 18.4055 0.620097 0.310049 0.950721i \(-0.399655\pi\)
0.310049 + 0.950721i \(0.399655\pi\)
\(882\) 0 0
\(883\) 18.7947 0.632492 0.316246 0.948677i \(-0.397578\pi\)
0.316246 + 0.948677i \(0.397578\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 11.1471 0.374283 0.187142 0.982333i \(-0.440078\pi\)
0.187142 + 0.982333i \(0.440078\pi\)
\(888\) 0 0
\(889\) 1.14923 0.0385440
\(890\) 0 0
\(891\) −13.6687 −0.457919
\(892\) 0 0
\(893\) −6.87826 −0.230172
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 41.5801 1.38832
\(898\) 0 0
\(899\) 8.37720 0.279395
\(900\) 0 0
\(901\) 73.6425 2.45339
\(902\) 0 0
\(903\) −10.8967 −0.362619
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −38.5598 −1.28036 −0.640178 0.768226i \(-0.721139\pi\)
−0.640178 + 0.768226i \(0.721139\pi\)
\(908\) 0 0
\(909\) −24.3588 −0.807930
\(910\) 0 0
\(911\) 1.79820 0.0595771 0.0297885 0.999556i \(-0.490517\pi\)
0.0297885 + 0.999556i \(0.490517\pi\)
\(912\) 0 0
\(913\) −25.0878 −0.830285
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 3.28456 0.108466
\(918\) 0 0
\(919\) 32.4458 1.07029 0.535144 0.844761i \(-0.320257\pi\)
0.535144 + 0.844761i \(0.320257\pi\)
\(920\) 0 0
\(921\) −17.6970 −0.583136
\(922\) 0 0
\(923\) 6.49602 0.213819
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 25.1132 0.824825
\(928\) 0 0
\(929\) −18.4231 −0.604443 −0.302222 0.953238i \(-0.597728\pi\)
−0.302222 + 0.953238i \(0.597728\pi\)
\(930\) 0 0
\(931\) 6.85772 0.224753
\(932\) 0 0
\(933\) −2.27309 −0.0744176
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 8.29926 0.271125 0.135563 0.990769i \(-0.456716\pi\)
0.135563 + 0.990769i \(0.456716\pi\)
\(938\) 0 0
\(939\) −14.2194 −0.464033
\(940\) 0 0
\(941\) 33.6687 1.09757 0.548784 0.835964i \(-0.315091\pi\)
0.548784 + 0.835964i \(0.315091\pi\)
\(942\) 0 0
\(943\) −52.6970 −1.71605
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1.35103 −0.0439026 −0.0219513 0.999759i \(-0.506988\pi\)
−0.0219513 + 0.999759i \(0.506988\pi\)
\(948\) 0 0
\(949\) −9.02617 −0.293002
\(950\) 0 0
\(951\) −53.8462 −1.74608
\(952\) 0 0
\(953\) −6.70769 −0.217283 −0.108642 0.994081i \(-0.534650\pi\)
−0.108642 + 0.994081i \(0.534650\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 11.0566 0.357409
\(958\) 0 0
\(959\) 2.48746 0.0803244
\(960\) 0 0
\(961\) −24.8470 −0.801518
\(962\) 0 0
\(963\) 40.6970 1.31144
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −19.5174 −0.627636 −0.313818 0.949483i \(-0.601608\pi\)
−0.313818 + 0.949483i \(0.601608\pi\)
\(968\) 0 0
\(969\) 15.1599 0.487006
\(970\) 0 0
\(971\) 8.50669 0.272993 0.136496 0.990641i \(-0.456416\pi\)
0.136496 + 0.990641i \(0.456416\pi\)
\(972\) 0 0
\(973\) 3.83527 0.122953
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 19.7048 0.630411 0.315206 0.949023i \(-0.397927\pi\)
0.315206 + 0.949023i \(0.397927\pi\)
\(978\) 0 0
\(979\) 2.06727 0.0660701
\(980\) 0 0
\(981\) −44.4437 −1.41898
\(982\) 0 0
\(983\) 12.4677 0.397658 0.198829 0.980034i \(-0.436286\pi\)
0.198829 + 0.980034i \(0.436286\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −6.16765 −0.196319
\(988\) 0 0
\(989\) −75.3297 −2.39534
\(990\) 0 0
\(991\) −25.0841 −0.796822 −0.398411 0.917207i \(-0.630438\pi\)
−0.398411 + 0.917207i \(0.630438\pi\)
\(992\) 0 0
\(993\) 9.89589 0.314036
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 11.8775 0.376163 0.188082 0.982153i \(-0.439773\pi\)
0.188082 + 0.982153i \(0.439773\pi\)
\(998\) 0 0
\(999\) 4.63135 0.146529
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7600.2.a.bh.1.1 3
4.3 odd 2 475.2.a.g.1.1 yes 3
5.4 even 2 7600.2.a.cc.1.3 3
12.11 even 2 4275.2.a.ba.1.3 3
20.3 even 4 475.2.b.b.324.5 6
20.7 even 4 475.2.b.b.324.2 6
20.19 odd 2 475.2.a.e.1.3 3
60.59 even 2 4275.2.a.bm.1.1 3
76.75 even 2 9025.2.a.y.1.3 3
380.379 even 2 9025.2.a.bc.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
475.2.a.e.1.3 3 20.19 odd 2
475.2.a.g.1.1 yes 3 4.3 odd 2
475.2.b.b.324.2 6 20.7 even 4
475.2.b.b.324.5 6 20.3 even 4
4275.2.a.ba.1.3 3 12.11 even 2
4275.2.a.bm.1.1 3 60.59 even 2
7600.2.a.bh.1.1 3 1.1 even 1 trivial
7600.2.a.cc.1.3 3 5.4 even 2
9025.2.a.y.1.3 3 76.75 even 2
9025.2.a.bc.1.1 3 380.379 even 2