Properties

Label 7600.2.a.bg.1.1
Level $7600$
Weight $2$
Character 7600.1
Self dual yes
Analytic conductor $60.686$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7600,2,Mod(1,7600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7600, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7600.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7600 = 2^{4} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7600.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.6863055362\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 190)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.41421\) of defining polynomial
Character \(\chi\) \(=\) 7600.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.414214 q^{3} +4.41421 q^{7} -2.82843 q^{9} +O(q^{10})\) \(q-0.414214 q^{3} +4.41421 q^{7} -2.82843 q^{9} +1.41421 q^{11} -5.82843 q^{13} -1.00000 q^{17} +1.00000 q^{19} -1.82843 q^{21} +0.757359 q^{23} +2.41421 q^{27} -0.171573 q^{29} -6.24264 q^{31} -0.585786 q^{33} +8.48528 q^{37} +2.41421 q^{39} -4.24264 q^{41} +1.75736 q^{43} +12.4853 q^{49} +0.414214 q^{51} -5.48528 q^{53} -0.414214 q^{57} -6.89949 q^{59} +14.2426 q^{61} -12.4853 q^{63} +4.75736 q^{67} -0.313708 q^{69} +13.4142 q^{71} -11.4853 q^{73} +6.24264 q^{77} +6.48528 q^{79} +7.48528 q^{81} +14.4853 q^{83} +0.0710678 q^{87} +7.07107 q^{89} -25.7279 q^{91} +2.58579 q^{93} +0.343146 q^{97} -4.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} + 6 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{3} + 6 q^{7} - 6 q^{13} - 2 q^{17} + 2 q^{19} + 2 q^{21} + 10 q^{23} + 2 q^{27} - 6 q^{29} - 4 q^{31} - 4 q^{33} + 2 q^{39} + 12 q^{43} + 8 q^{49} - 2 q^{51} + 6 q^{53} + 2 q^{57} + 6 q^{59} + 20 q^{61} - 8 q^{63} + 18 q^{67} + 22 q^{69} + 24 q^{71} - 6 q^{73} + 4 q^{77} - 4 q^{79} - 2 q^{81} + 12 q^{83} - 14 q^{87} - 26 q^{91} + 8 q^{93} + 12 q^{97} - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.414214 −0.239146 −0.119573 0.992825i \(-0.538153\pi\)
−0.119573 + 0.992825i \(0.538153\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 4.41421 1.66842 0.834208 0.551450i \(-0.185925\pi\)
0.834208 + 0.551450i \(0.185925\pi\)
\(8\) 0 0
\(9\) −2.82843 −0.942809
\(10\) 0 0
\(11\) 1.41421 0.426401 0.213201 0.977008i \(-0.431611\pi\)
0.213201 + 0.977008i \(0.431611\pi\)
\(12\) 0 0
\(13\) −5.82843 −1.61651 −0.808257 0.588829i \(-0.799589\pi\)
−0.808257 + 0.588829i \(0.799589\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.00000 −0.242536 −0.121268 0.992620i \(-0.538696\pi\)
−0.121268 + 0.992620i \(0.538696\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) −1.82843 −0.398996
\(22\) 0 0
\(23\) 0.757359 0.157920 0.0789602 0.996878i \(-0.474840\pi\)
0.0789602 + 0.996878i \(0.474840\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 2.41421 0.464616
\(28\) 0 0
\(29\) −0.171573 −0.0318603 −0.0159301 0.999873i \(-0.505071\pi\)
−0.0159301 + 0.999873i \(0.505071\pi\)
\(30\) 0 0
\(31\) −6.24264 −1.12121 −0.560606 0.828083i \(-0.689432\pi\)
−0.560606 + 0.828083i \(0.689432\pi\)
\(32\) 0 0
\(33\) −0.585786 −0.101972
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 8.48528 1.39497 0.697486 0.716599i \(-0.254302\pi\)
0.697486 + 0.716599i \(0.254302\pi\)
\(38\) 0 0
\(39\) 2.41421 0.386584
\(40\) 0 0
\(41\) −4.24264 −0.662589 −0.331295 0.943527i \(-0.607485\pi\)
−0.331295 + 0.943527i \(0.607485\pi\)
\(42\) 0 0
\(43\) 1.75736 0.267995 0.133997 0.990982i \(-0.457219\pi\)
0.133997 + 0.990982i \(0.457219\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 12.4853 1.78361
\(50\) 0 0
\(51\) 0.414214 0.0580015
\(52\) 0 0
\(53\) −5.48528 −0.753461 −0.376731 0.926323i \(-0.622952\pi\)
−0.376731 + 0.926323i \(0.622952\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −0.414214 −0.0548639
\(58\) 0 0
\(59\) −6.89949 −0.898238 −0.449119 0.893472i \(-0.648262\pi\)
−0.449119 + 0.893472i \(0.648262\pi\)
\(60\) 0 0
\(61\) 14.2426 1.82358 0.911792 0.410653i \(-0.134699\pi\)
0.911792 + 0.410653i \(0.134699\pi\)
\(62\) 0 0
\(63\) −12.4853 −1.57300
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 4.75736 0.581204 0.290602 0.956844i \(-0.406144\pi\)
0.290602 + 0.956844i \(0.406144\pi\)
\(68\) 0 0
\(69\) −0.313708 −0.0377661
\(70\) 0 0
\(71\) 13.4142 1.59197 0.795987 0.605314i \(-0.206952\pi\)
0.795987 + 0.605314i \(0.206952\pi\)
\(72\) 0 0
\(73\) −11.4853 −1.34425 −0.672125 0.740437i \(-0.734618\pi\)
−0.672125 + 0.740437i \(0.734618\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 6.24264 0.711415
\(78\) 0 0
\(79\) 6.48528 0.729651 0.364826 0.931076i \(-0.381129\pi\)
0.364826 + 0.931076i \(0.381129\pi\)
\(80\) 0 0
\(81\) 7.48528 0.831698
\(82\) 0 0
\(83\) 14.4853 1.58997 0.794983 0.606632i \(-0.207480\pi\)
0.794983 + 0.606632i \(0.207480\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0.0710678 0.00761927
\(88\) 0 0
\(89\) 7.07107 0.749532 0.374766 0.927119i \(-0.377723\pi\)
0.374766 + 0.927119i \(0.377723\pi\)
\(90\) 0 0
\(91\) −25.7279 −2.69702
\(92\) 0 0
\(93\) 2.58579 0.268134
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0.343146 0.0348412 0.0174206 0.999848i \(-0.494455\pi\)
0.0174206 + 0.999848i \(0.494455\pi\)
\(98\) 0 0
\(99\) −4.00000 −0.402015
\(100\) 0 0
\(101\) 13.0711 1.30062 0.650310 0.759669i \(-0.274639\pi\)
0.650310 + 0.759669i \(0.274639\pi\)
\(102\) 0 0
\(103\) 4.24264 0.418040 0.209020 0.977911i \(-0.432973\pi\)
0.209020 + 0.977911i \(0.432973\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 19.7279 1.90717 0.953585 0.301124i \(-0.0973617\pi\)
0.953585 + 0.301124i \(0.0973617\pi\)
\(108\) 0 0
\(109\) −17.9706 −1.72127 −0.860634 0.509224i \(-0.829932\pi\)
−0.860634 + 0.509224i \(0.829932\pi\)
\(110\) 0 0
\(111\) −3.51472 −0.333602
\(112\) 0 0
\(113\) 10.2426 0.963547 0.481773 0.876296i \(-0.339993\pi\)
0.481773 + 0.876296i \(0.339993\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 16.4853 1.52406
\(118\) 0 0
\(119\) −4.41421 −0.404650
\(120\) 0 0
\(121\) −9.00000 −0.818182
\(122\) 0 0
\(123\) 1.75736 0.158456
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −2.48528 −0.220533 −0.110267 0.993902i \(-0.535170\pi\)
−0.110267 + 0.993902i \(0.535170\pi\)
\(128\) 0 0
\(129\) −0.727922 −0.0640900
\(130\) 0 0
\(131\) 16.9706 1.48272 0.741362 0.671105i \(-0.234180\pi\)
0.741362 + 0.671105i \(0.234180\pi\)
\(132\) 0 0
\(133\) 4.41421 0.382761
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −13.0000 −1.11066 −0.555332 0.831628i \(-0.687409\pi\)
−0.555332 + 0.831628i \(0.687409\pi\)
\(138\) 0 0
\(139\) 12.0000 1.01783 0.508913 0.860818i \(-0.330047\pi\)
0.508913 + 0.860818i \(0.330047\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −8.24264 −0.689284
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −5.17157 −0.426544
\(148\) 0 0
\(149\) 17.6569 1.44651 0.723253 0.690583i \(-0.242646\pi\)
0.723253 + 0.690583i \(0.242646\pi\)
\(150\) 0 0
\(151\) 10.4853 0.853280 0.426640 0.904422i \(-0.359697\pi\)
0.426640 + 0.904422i \(0.359697\pi\)
\(152\) 0 0
\(153\) 2.82843 0.228665
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −11.6569 −0.930318 −0.465159 0.885227i \(-0.654003\pi\)
−0.465159 + 0.885227i \(0.654003\pi\)
\(158\) 0 0
\(159\) 2.27208 0.180188
\(160\) 0 0
\(161\) 3.34315 0.263477
\(162\) 0 0
\(163\) −10.2426 −0.802266 −0.401133 0.916020i \(-0.631383\pi\)
−0.401133 + 0.916020i \(0.631383\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −18.2426 −1.41166 −0.705829 0.708382i \(-0.749425\pi\)
−0.705829 + 0.708382i \(0.749425\pi\)
\(168\) 0 0
\(169\) 20.9706 1.61312
\(170\) 0 0
\(171\) −2.82843 −0.216295
\(172\) 0 0
\(173\) −0.485281 −0.0368953 −0.0184476 0.999830i \(-0.505872\pi\)
−0.0184476 + 0.999830i \(0.505872\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 2.85786 0.214810
\(178\) 0 0
\(179\) 11.6569 0.871274 0.435637 0.900122i \(-0.356523\pi\)
0.435637 + 0.900122i \(0.356523\pi\)
\(180\) 0 0
\(181\) −8.48528 −0.630706 −0.315353 0.948974i \(-0.602123\pi\)
−0.315353 + 0.948974i \(0.602123\pi\)
\(182\) 0 0
\(183\) −5.89949 −0.436103
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −1.41421 −0.103418
\(188\) 0 0
\(189\) 10.6569 0.775172
\(190\) 0 0
\(191\) −12.5563 −0.908546 −0.454273 0.890863i \(-0.650101\pi\)
−0.454273 + 0.890863i \(0.650101\pi\)
\(192\) 0 0
\(193\) 0.343146 0.0247002 0.0123501 0.999924i \(-0.496069\pi\)
0.0123501 + 0.999924i \(0.496069\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 11.7574 0.837677 0.418839 0.908061i \(-0.362437\pi\)
0.418839 + 0.908061i \(0.362437\pi\)
\(198\) 0 0
\(199\) −9.24264 −0.655193 −0.327597 0.944818i \(-0.606239\pi\)
−0.327597 + 0.944818i \(0.606239\pi\)
\(200\) 0 0
\(201\) −1.97056 −0.138993
\(202\) 0 0
\(203\) −0.757359 −0.0531562
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −2.14214 −0.148889
\(208\) 0 0
\(209\) 1.41421 0.0978232
\(210\) 0 0
\(211\) 19.7279 1.35813 0.679063 0.734080i \(-0.262386\pi\)
0.679063 + 0.734080i \(0.262386\pi\)
\(212\) 0 0
\(213\) −5.55635 −0.380715
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −27.5563 −1.87065
\(218\) 0 0
\(219\) 4.75736 0.321473
\(220\) 0 0
\(221\) 5.82843 0.392062
\(222\) 0 0
\(223\) −15.1716 −1.01596 −0.507982 0.861368i \(-0.669608\pi\)
−0.507982 + 0.861368i \(0.669608\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −16.7574 −1.11223 −0.556113 0.831107i \(-0.687708\pi\)
−0.556113 + 0.831107i \(0.687708\pi\)
\(228\) 0 0
\(229\) 14.9706 0.989283 0.494641 0.869097i \(-0.335299\pi\)
0.494641 + 0.869097i \(0.335299\pi\)
\(230\) 0 0
\(231\) −2.58579 −0.170132
\(232\) 0 0
\(233\) 24.9706 1.63588 0.817938 0.575306i \(-0.195117\pi\)
0.817938 + 0.575306i \(0.195117\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −2.68629 −0.174493
\(238\) 0 0
\(239\) 6.89949 0.446291 0.223146 0.974785i \(-0.428367\pi\)
0.223146 + 0.974785i \(0.428367\pi\)
\(240\) 0 0
\(241\) 8.97056 0.577845 0.288922 0.957353i \(-0.406703\pi\)
0.288922 + 0.957353i \(0.406703\pi\)
\(242\) 0 0
\(243\) −10.3431 −0.663513
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −5.82843 −0.370854
\(248\) 0 0
\(249\) −6.00000 −0.380235
\(250\) 0 0
\(251\) −3.55635 −0.224475 −0.112237 0.993681i \(-0.535802\pi\)
−0.112237 + 0.993681i \(0.535802\pi\)
\(252\) 0 0
\(253\) 1.07107 0.0673375
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −20.7279 −1.29297 −0.646486 0.762926i \(-0.723762\pi\)
−0.646486 + 0.762926i \(0.723762\pi\)
\(258\) 0 0
\(259\) 37.4558 2.32739
\(260\) 0 0
\(261\) 0.485281 0.0300382
\(262\) 0 0
\(263\) −26.9706 −1.66308 −0.831538 0.555468i \(-0.812539\pi\)
−0.831538 + 0.555468i \(0.812539\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −2.92893 −0.179248
\(268\) 0 0
\(269\) −16.6274 −1.01379 −0.506896 0.862007i \(-0.669207\pi\)
−0.506896 + 0.862007i \(0.669207\pi\)
\(270\) 0 0
\(271\) 27.2426 1.65487 0.827436 0.561560i \(-0.189798\pi\)
0.827436 + 0.561560i \(0.189798\pi\)
\(272\) 0 0
\(273\) 10.6569 0.644982
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(278\) 0 0
\(279\) 17.6569 1.05709
\(280\) 0 0
\(281\) 4.24264 0.253095 0.126547 0.991961i \(-0.459610\pi\)
0.126547 + 0.991961i \(0.459610\pi\)
\(282\) 0 0
\(283\) 32.1421 1.91065 0.955326 0.295555i \(-0.0955045\pi\)
0.955326 + 0.295555i \(0.0955045\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −18.7279 −1.10547
\(288\) 0 0
\(289\) −16.0000 −0.941176
\(290\) 0 0
\(291\) −0.142136 −0.00833214
\(292\) 0 0
\(293\) 5.48528 0.320454 0.160227 0.987080i \(-0.448777\pi\)
0.160227 + 0.987080i \(0.448777\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 3.41421 0.198113
\(298\) 0 0
\(299\) −4.41421 −0.255281
\(300\) 0 0
\(301\) 7.75736 0.447127
\(302\) 0 0
\(303\) −5.41421 −0.311038
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −17.6569 −1.00773 −0.503865 0.863782i \(-0.668089\pi\)
−0.503865 + 0.863782i \(0.668089\pi\)
\(308\) 0 0
\(309\) −1.75736 −0.0999727
\(310\) 0 0
\(311\) 4.75736 0.269765 0.134883 0.990862i \(-0.456934\pi\)
0.134883 + 0.990862i \(0.456934\pi\)
\(312\) 0 0
\(313\) 7.97056 0.450523 0.225261 0.974298i \(-0.427676\pi\)
0.225261 + 0.974298i \(0.427676\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 9.48528 0.532746 0.266373 0.963870i \(-0.414175\pi\)
0.266373 + 0.963870i \(0.414175\pi\)
\(318\) 0 0
\(319\) −0.242641 −0.0135853
\(320\) 0 0
\(321\) −8.17157 −0.456093
\(322\) 0 0
\(323\) −1.00000 −0.0556415
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 7.44365 0.411635
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 19.2426 1.05767 0.528836 0.848724i \(-0.322629\pi\)
0.528836 + 0.848724i \(0.322629\pi\)
\(332\) 0 0
\(333\) −24.0000 −1.31519
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −14.1005 −0.768103 −0.384052 0.923312i \(-0.625472\pi\)
−0.384052 + 0.923312i \(0.625472\pi\)
\(338\) 0 0
\(339\) −4.24264 −0.230429
\(340\) 0 0
\(341\) −8.82843 −0.478086
\(342\) 0 0
\(343\) 24.2132 1.30739
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −5.51472 −0.296046 −0.148023 0.988984i \(-0.547291\pi\)
−0.148023 + 0.988984i \(0.547291\pi\)
\(348\) 0 0
\(349\) 6.00000 0.321173 0.160586 0.987022i \(-0.448662\pi\)
0.160586 + 0.987022i \(0.448662\pi\)
\(350\) 0 0
\(351\) −14.0711 −0.751058
\(352\) 0 0
\(353\) 2.51472 0.133845 0.0669225 0.997758i \(-0.478682\pi\)
0.0669225 + 0.997758i \(0.478682\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 1.82843 0.0967706
\(358\) 0 0
\(359\) 22.7574 1.20109 0.600544 0.799592i \(-0.294951\pi\)
0.600544 + 0.799592i \(0.294951\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 3.72792 0.195665
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −25.4558 −1.32878 −0.664392 0.747384i \(-0.731309\pi\)
−0.664392 + 0.747384i \(0.731309\pi\)
\(368\) 0 0
\(369\) 12.0000 0.624695
\(370\) 0 0
\(371\) −24.2132 −1.25709
\(372\) 0 0
\(373\) −9.00000 −0.466002 −0.233001 0.972476i \(-0.574855\pi\)
−0.233001 + 0.972476i \(0.574855\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1.00000 0.0515026
\(378\) 0 0
\(379\) −11.2426 −0.577496 −0.288748 0.957405i \(-0.593239\pi\)
−0.288748 + 0.957405i \(0.593239\pi\)
\(380\) 0 0
\(381\) 1.02944 0.0527397
\(382\) 0 0
\(383\) 12.2426 0.625570 0.312785 0.949824i \(-0.398738\pi\)
0.312785 + 0.949824i \(0.398738\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −4.97056 −0.252668
\(388\) 0 0
\(389\) 22.9289 1.16254 0.581272 0.813710i \(-0.302555\pi\)
0.581272 + 0.813710i \(0.302555\pi\)
\(390\) 0 0
\(391\) −0.757359 −0.0383013
\(392\) 0 0
\(393\) −7.02944 −0.354588
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −24.0000 −1.20453 −0.602263 0.798298i \(-0.705734\pi\)
−0.602263 + 0.798298i \(0.705734\pi\)
\(398\) 0 0
\(399\) −1.82843 −0.0915358
\(400\) 0 0
\(401\) −25.4142 −1.26913 −0.634563 0.772871i \(-0.718820\pi\)
−0.634563 + 0.772871i \(0.718820\pi\)
\(402\) 0 0
\(403\) 36.3848 1.81245
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 12.0000 0.594818
\(408\) 0 0
\(409\) 25.2132 1.24671 0.623356 0.781938i \(-0.285769\pi\)
0.623356 + 0.781938i \(0.285769\pi\)
\(410\) 0 0
\(411\) 5.38478 0.265611
\(412\) 0 0
\(413\) −30.4558 −1.49863
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −4.97056 −0.243410
\(418\) 0 0
\(419\) −19.4142 −0.948446 −0.474223 0.880405i \(-0.657271\pi\)
−0.474223 + 0.880405i \(0.657271\pi\)
\(420\) 0 0
\(421\) 19.4853 0.949655 0.474827 0.880079i \(-0.342511\pi\)
0.474827 + 0.880079i \(0.342511\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 62.8701 3.04250
\(428\) 0 0
\(429\) 3.41421 0.164840
\(430\) 0 0
\(431\) 6.38478 0.307544 0.153772 0.988106i \(-0.450858\pi\)
0.153772 + 0.988106i \(0.450858\pi\)
\(432\) 0 0
\(433\) 9.55635 0.459249 0.229624 0.973279i \(-0.426250\pi\)
0.229624 + 0.973279i \(0.426250\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0.757359 0.0362294
\(438\) 0 0
\(439\) 5.75736 0.274784 0.137392 0.990517i \(-0.456128\pi\)
0.137392 + 0.990517i \(0.456128\pi\)
\(440\) 0 0
\(441\) −35.3137 −1.68161
\(442\) 0 0
\(443\) 4.24264 0.201574 0.100787 0.994908i \(-0.467864\pi\)
0.100787 + 0.994908i \(0.467864\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −7.31371 −0.345927
\(448\) 0 0
\(449\) 17.3137 0.817084 0.408542 0.912739i \(-0.366037\pi\)
0.408542 + 0.912739i \(0.366037\pi\)
\(450\) 0 0
\(451\) −6.00000 −0.282529
\(452\) 0 0
\(453\) −4.34315 −0.204059
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 3.00000 0.140334 0.0701670 0.997535i \(-0.477647\pi\)
0.0701670 + 0.997535i \(0.477647\pi\)
\(458\) 0 0
\(459\) −2.41421 −0.112686
\(460\) 0 0
\(461\) −3.55635 −0.165636 −0.0828178 0.996565i \(-0.526392\pi\)
−0.0828178 + 0.996565i \(0.526392\pi\)
\(462\) 0 0
\(463\) 14.1421 0.657241 0.328620 0.944462i \(-0.393416\pi\)
0.328620 + 0.944462i \(0.393416\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0.727922 0.0336842 0.0168421 0.999858i \(-0.494639\pi\)
0.0168421 + 0.999858i \(0.494639\pi\)
\(468\) 0 0
\(469\) 21.0000 0.969690
\(470\) 0 0
\(471\) 4.82843 0.222482
\(472\) 0 0
\(473\) 2.48528 0.114273
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 15.5147 0.710370
\(478\) 0 0
\(479\) 31.1127 1.42158 0.710788 0.703407i \(-0.248339\pi\)
0.710788 + 0.703407i \(0.248339\pi\)
\(480\) 0 0
\(481\) −49.4558 −2.25499
\(482\) 0 0
\(483\) −1.38478 −0.0630095
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 37.7990 1.71284 0.856418 0.516283i \(-0.172685\pi\)
0.856418 + 0.516283i \(0.172685\pi\)
\(488\) 0 0
\(489\) 4.24264 0.191859
\(490\) 0 0
\(491\) 33.5563 1.51438 0.757188 0.653197i \(-0.226572\pi\)
0.757188 + 0.653197i \(0.226572\pi\)
\(492\) 0 0
\(493\) 0.171573 0.00772725
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 59.2132 2.65608
\(498\) 0 0
\(499\) 25.7574 1.15306 0.576529 0.817077i \(-0.304407\pi\)
0.576529 + 0.817077i \(0.304407\pi\)
\(500\) 0 0
\(501\) 7.55635 0.337593
\(502\) 0 0
\(503\) 14.2721 0.636361 0.318180 0.948030i \(-0.396928\pi\)
0.318180 + 0.948030i \(0.396928\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −8.68629 −0.385772
\(508\) 0 0
\(509\) 28.9706 1.28410 0.642049 0.766664i \(-0.278085\pi\)
0.642049 + 0.766664i \(0.278085\pi\)
\(510\) 0 0
\(511\) −50.6985 −2.24277
\(512\) 0 0
\(513\) 2.41421 0.106590
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0.201010 0.00882337
\(520\) 0 0
\(521\) 23.3137 1.02139 0.510696 0.859761i \(-0.329388\pi\)
0.510696 + 0.859761i \(0.329388\pi\)
\(522\) 0 0
\(523\) −2.27208 −0.0993510 −0.0496755 0.998765i \(-0.515819\pi\)
−0.0496755 + 0.998765i \(0.515819\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 6.24264 0.271934
\(528\) 0 0
\(529\) −22.4264 −0.975061
\(530\) 0 0
\(531\) 19.5147 0.846867
\(532\) 0 0
\(533\) 24.7279 1.07109
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −4.82843 −0.208362
\(538\) 0 0
\(539\) 17.6569 0.760535
\(540\) 0 0
\(541\) 9.75736 0.419502 0.209751 0.977755i \(-0.432735\pi\)
0.209751 + 0.977755i \(0.432735\pi\)
\(542\) 0 0
\(543\) 3.51472 0.150831
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −17.3137 −0.740281 −0.370140 0.928976i \(-0.620690\pi\)
−0.370140 + 0.928976i \(0.620690\pi\)
\(548\) 0 0
\(549\) −40.2843 −1.71929
\(550\) 0 0
\(551\) −0.171573 −0.00730925
\(552\) 0 0
\(553\) 28.6274 1.21736
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −16.0000 −0.677942 −0.338971 0.940797i \(-0.610079\pi\)
−0.338971 + 0.940797i \(0.610079\pi\)
\(558\) 0 0
\(559\) −10.2426 −0.433218
\(560\) 0 0
\(561\) 0.585786 0.0247319
\(562\) 0 0
\(563\) 4.97056 0.209484 0.104742 0.994499i \(-0.466598\pi\)
0.104742 + 0.994499i \(0.466598\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 33.0416 1.38762
\(568\) 0 0
\(569\) −28.2843 −1.18574 −0.592869 0.805299i \(-0.702005\pi\)
−0.592869 + 0.805299i \(0.702005\pi\)
\(570\) 0 0
\(571\) 2.24264 0.0938516 0.0469258 0.998898i \(-0.485058\pi\)
0.0469258 + 0.998898i \(0.485058\pi\)
\(572\) 0 0
\(573\) 5.20101 0.217275
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 20.3137 0.845671 0.422835 0.906207i \(-0.361035\pi\)
0.422835 + 0.906207i \(0.361035\pi\)
\(578\) 0 0
\(579\) −0.142136 −0.00590695
\(580\) 0 0
\(581\) 63.9411 2.65272
\(582\) 0 0
\(583\) −7.75736 −0.321277
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 30.2426 1.24825 0.624124 0.781326i \(-0.285456\pi\)
0.624124 + 0.781326i \(0.285456\pi\)
\(588\) 0 0
\(589\) −6.24264 −0.257224
\(590\) 0 0
\(591\) −4.87006 −0.200327
\(592\) 0 0
\(593\) −22.0000 −0.903432 −0.451716 0.892162i \(-0.649188\pi\)
−0.451716 + 0.892162i \(0.649188\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 3.82843 0.156687
\(598\) 0 0
\(599\) 15.2132 0.621595 0.310797 0.950476i \(-0.399404\pi\)
0.310797 + 0.950476i \(0.399404\pi\)
\(600\) 0 0
\(601\) −20.2426 −0.825715 −0.412857 0.910796i \(-0.635469\pi\)
−0.412857 + 0.910796i \(0.635469\pi\)
\(602\) 0 0
\(603\) −13.4558 −0.547964
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 3.17157 0.128730 0.0643651 0.997926i \(-0.479498\pi\)
0.0643651 + 0.997926i \(0.479498\pi\)
\(608\) 0 0
\(609\) 0.313708 0.0127121
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 11.6985 0.472497 0.236249 0.971693i \(-0.424082\pi\)
0.236249 + 0.971693i \(0.424082\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 4.48528 0.180571 0.0902853 0.995916i \(-0.471222\pi\)
0.0902853 + 0.995916i \(0.471222\pi\)
\(618\) 0 0
\(619\) −7.75736 −0.311795 −0.155897 0.987773i \(-0.549827\pi\)
−0.155897 + 0.987773i \(0.549827\pi\)
\(620\) 0 0
\(621\) 1.82843 0.0733723
\(622\) 0 0
\(623\) 31.2132 1.25053
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −0.585786 −0.0233941
\(628\) 0 0
\(629\) −8.48528 −0.338330
\(630\) 0 0
\(631\) 38.9706 1.55139 0.775697 0.631106i \(-0.217399\pi\)
0.775697 + 0.631106i \(0.217399\pi\)
\(632\) 0 0
\(633\) −8.17157 −0.324791
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −72.7696 −2.88323
\(638\) 0 0
\(639\) −37.9411 −1.50093
\(640\) 0 0
\(641\) −18.0416 −0.712602 −0.356301 0.934371i \(-0.615962\pi\)
−0.356301 + 0.934371i \(0.615962\pi\)
\(642\) 0 0
\(643\) −14.4853 −0.571244 −0.285622 0.958342i \(-0.592200\pi\)
−0.285622 + 0.958342i \(0.592200\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −18.7574 −0.737428 −0.368714 0.929543i \(-0.620202\pi\)
−0.368714 + 0.929543i \(0.620202\pi\)
\(648\) 0 0
\(649\) −9.75736 −0.383010
\(650\) 0 0
\(651\) 11.4142 0.447358
\(652\) 0 0
\(653\) 28.9706 1.13371 0.566853 0.823819i \(-0.308161\pi\)
0.566853 + 0.823819i \(0.308161\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 32.4853 1.26737
\(658\) 0 0
\(659\) −18.8995 −0.736220 −0.368110 0.929782i \(-0.619995\pi\)
−0.368110 + 0.929782i \(0.619995\pi\)
\(660\) 0 0
\(661\) −18.4558 −0.717849 −0.358925 0.933367i \(-0.616856\pi\)
−0.358925 + 0.933367i \(0.616856\pi\)
\(662\) 0 0
\(663\) −2.41421 −0.0937603
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −0.129942 −0.00503139
\(668\) 0 0
\(669\) 6.28427 0.242964
\(670\) 0 0
\(671\) 20.1421 0.777579
\(672\) 0 0
\(673\) 12.0000 0.462566 0.231283 0.972887i \(-0.425708\pi\)
0.231283 + 0.972887i \(0.425708\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 40.9411 1.57350 0.786748 0.617275i \(-0.211763\pi\)
0.786748 + 0.617275i \(0.211763\pi\)
\(678\) 0 0
\(679\) 1.51472 0.0581296
\(680\) 0 0
\(681\) 6.94113 0.265985
\(682\) 0 0
\(683\) 12.0000 0.459167 0.229584 0.973289i \(-0.426264\pi\)
0.229584 + 0.973289i \(0.426264\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −6.20101 −0.236583
\(688\) 0 0
\(689\) 31.9706 1.21798
\(690\) 0 0
\(691\) −22.4853 −0.855380 −0.427690 0.903925i \(-0.640673\pi\)
−0.427690 + 0.903925i \(0.640673\pi\)
\(692\) 0 0
\(693\) −17.6569 −0.670728
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 4.24264 0.160701
\(698\) 0 0
\(699\) −10.3431 −0.391214
\(700\) 0 0
\(701\) 16.9706 0.640969 0.320485 0.947254i \(-0.396154\pi\)
0.320485 + 0.947254i \(0.396154\pi\)
\(702\) 0 0
\(703\) 8.48528 0.320028
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 57.6985 2.16997
\(708\) 0 0
\(709\) −34.0000 −1.27690 −0.638448 0.769665i \(-0.720423\pi\)
−0.638448 + 0.769665i \(0.720423\pi\)
\(710\) 0 0
\(711\) −18.3431 −0.687922
\(712\) 0 0
\(713\) −4.72792 −0.177062
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −2.85786 −0.106729
\(718\) 0 0
\(719\) 5.10051 0.190217 0.0951084 0.995467i \(-0.469680\pi\)
0.0951084 + 0.995467i \(0.469680\pi\)
\(720\) 0 0
\(721\) 18.7279 0.697464
\(722\) 0 0
\(723\) −3.71573 −0.138189
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 9.72792 0.360789 0.180394 0.983594i \(-0.442263\pi\)
0.180394 + 0.983594i \(0.442263\pi\)
\(728\) 0 0
\(729\) −18.1716 −0.673021
\(730\) 0 0
\(731\) −1.75736 −0.0649983
\(732\) 0 0
\(733\) −12.0000 −0.443230 −0.221615 0.975134i \(-0.571133\pi\)
−0.221615 + 0.975134i \(0.571133\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 6.72792 0.247826
\(738\) 0 0
\(739\) −1.27208 −0.0467941 −0.0233971 0.999726i \(-0.507448\pi\)
−0.0233971 + 0.999726i \(0.507448\pi\)
\(740\) 0 0
\(741\) 2.41421 0.0886884
\(742\) 0 0
\(743\) 6.72792 0.246824 0.123412 0.992356i \(-0.460616\pi\)
0.123412 + 0.992356i \(0.460616\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −40.9706 −1.49903
\(748\) 0 0
\(749\) 87.0833 3.18195
\(750\) 0 0
\(751\) 26.7279 0.975316 0.487658 0.873035i \(-0.337851\pi\)
0.487658 + 0.873035i \(0.337851\pi\)
\(752\) 0 0
\(753\) 1.47309 0.0536823
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −12.3431 −0.448619 −0.224310 0.974518i \(-0.572013\pi\)
−0.224310 + 0.974518i \(0.572013\pi\)
\(758\) 0 0
\(759\) −0.443651 −0.0161035
\(760\) 0 0
\(761\) 43.9706 1.59393 0.796966 0.604024i \(-0.206437\pi\)
0.796966 + 0.604024i \(0.206437\pi\)
\(762\) 0 0
\(763\) −79.3259 −2.87179
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 40.2132 1.45201
\(768\) 0 0
\(769\) −36.4558 −1.31463 −0.657316 0.753615i \(-0.728308\pi\)
−0.657316 + 0.753615i \(0.728308\pi\)
\(770\) 0 0
\(771\) 8.58579 0.309210
\(772\) 0 0
\(773\) −13.9706 −0.502486 −0.251243 0.967924i \(-0.580839\pi\)
−0.251243 + 0.967924i \(0.580839\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −15.5147 −0.556587
\(778\) 0 0
\(779\) −4.24264 −0.152008
\(780\) 0 0
\(781\) 18.9706 0.678820
\(782\) 0 0
\(783\) −0.414214 −0.0148028
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −41.1838 −1.46804 −0.734021 0.679126i \(-0.762359\pi\)
−0.734021 + 0.679126i \(0.762359\pi\)
\(788\) 0 0
\(789\) 11.1716 0.397719
\(790\) 0 0
\(791\) 45.2132 1.60760
\(792\) 0 0
\(793\) −83.0122 −2.94785
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 47.4853 1.68201 0.841007 0.541023i \(-0.181963\pi\)
0.841007 + 0.541023i \(0.181963\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −20.0000 −0.706665
\(802\) 0 0
\(803\) −16.2426 −0.573190
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 6.88730 0.242444
\(808\) 0 0
\(809\) −28.7990 −1.01252 −0.506259 0.862381i \(-0.668972\pi\)
−0.506259 + 0.862381i \(0.668972\pi\)
\(810\) 0 0
\(811\) −52.6985 −1.85049 −0.925247 0.379365i \(-0.876142\pi\)
−0.925247 + 0.379365i \(0.876142\pi\)
\(812\) 0 0
\(813\) −11.2843 −0.395757
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 1.75736 0.0614822
\(818\) 0 0
\(819\) 72.7696 2.54277
\(820\) 0 0
\(821\) 6.34315 0.221377 0.110689 0.993855i \(-0.464694\pi\)
0.110689 + 0.993855i \(0.464694\pi\)
\(822\) 0 0
\(823\) −15.7279 −0.548241 −0.274120 0.961695i \(-0.588387\pi\)
−0.274120 + 0.961695i \(0.588387\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −20.6985 −0.719757 −0.359878 0.932999i \(-0.617182\pi\)
−0.359878 + 0.932999i \(0.617182\pi\)
\(828\) 0 0
\(829\) 10.4558 0.363146 0.181573 0.983377i \(-0.441881\pi\)
0.181573 + 0.983377i \(0.441881\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −12.4853 −0.432589
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −15.0711 −0.520932
\(838\) 0 0
\(839\) −22.6274 −0.781185 −0.390593 0.920564i \(-0.627730\pi\)
−0.390593 + 0.920564i \(0.627730\pi\)
\(840\) 0 0
\(841\) −28.9706 −0.998985
\(842\) 0 0
\(843\) −1.75736 −0.0605267
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −39.7279 −1.36507
\(848\) 0 0
\(849\) −13.3137 −0.456925
\(850\) 0 0
\(851\) 6.42641 0.220294
\(852\) 0 0
\(853\) 27.9411 0.956686 0.478343 0.878173i \(-0.341238\pi\)
0.478343 + 0.878173i \(0.341238\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) −4.72792 −0.161315 −0.0806573 0.996742i \(-0.525702\pi\)
−0.0806573 + 0.996742i \(0.525702\pi\)
\(860\) 0 0
\(861\) 7.75736 0.264370
\(862\) 0 0
\(863\) 0.727922 0.0247788 0.0123894 0.999923i \(-0.496056\pi\)
0.0123894 + 0.999923i \(0.496056\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 6.62742 0.225079
\(868\) 0 0
\(869\) 9.17157 0.311124
\(870\) 0 0
\(871\) −27.7279 −0.939525
\(872\) 0 0
\(873\) −0.970563 −0.0328486
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 18.8579 0.636785 0.318392 0.947959i \(-0.396857\pi\)
0.318392 + 0.947959i \(0.396857\pi\)
\(878\) 0 0
\(879\) −2.27208 −0.0766353
\(880\) 0 0
\(881\) −39.5980 −1.33409 −0.667045 0.745018i \(-0.732441\pi\)
−0.667045 + 0.745018i \(0.732441\pi\)
\(882\) 0 0
\(883\) 14.4853 0.487469 0.243734 0.969842i \(-0.421628\pi\)
0.243734 + 0.969842i \(0.421628\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −45.2132 −1.51811 −0.759055 0.651026i \(-0.774339\pi\)
−0.759055 + 0.651026i \(0.774339\pi\)
\(888\) 0 0
\(889\) −10.9706 −0.367941
\(890\) 0 0
\(891\) 10.5858 0.354637
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 1.82843 0.0610494
\(898\) 0 0
\(899\) 1.07107 0.0357221
\(900\) 0 0
\(901\) 5.48528 0.182741
\(902\) 0 0
\(903\) −3.21320 −0.106929
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 38.6985 1.28496 0.642481 0.766302i \(-0.277905\pi\)
0.642481 + 0.766302i \(0.277905\pi\)
\(908\) 0 0
\(909\) −36.9706 −1.22624
\(910\) 0 0
\(911\) −40.2843 −1.33468 −0.667339 0.744754i \(-0.732567\pi\)
−0.667339 + 0.744754i \(0.732567\pi\)
\(912\) 0 0
\(913\) 20.4853 0.677964
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 74.9117 2.47380
\(918\) 0 0
\(919\) 6.21320 0.204955 0.102477 0.994735i \(-0.467323\pi\)
0.102477 + 0.994735i \(0.467323\pi\)
\(920\) 0 0
\(921\) 7.31371 0.240995
\(922\) 0 0
\(923\) −78.1838 −2.57345
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −12.0000 −0.394132
\(928\) 0 0
\(929\) −12.1716 −0.399336 −0.199668 0.979864i \(-0.563986\pi\)
−0.199668 + 0.979864i \(0.563986\pi\)
\(930\) 0 0
\(931\) 12.4853 0.409189
\(932\) 0 0
\(933\) −1.97056 −0.0645133
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −27.0000 −0.882052 −0.441026 0.897494i \(-0.645385\pi\)
−0.441026 + 0.897494i \(0.645385\pi\)
\(938\) 0 0
\(939\) −3.30152 −0.107741
\(940\) 0 0
\(941\) 53.1421 1.73238 0.866192 0.499711i \(-0.166561\pi\)
0.866192 + 0.499711i \(0.166561\pi\)
\(942\) 0 0
\(943\) −3.21320 −0.104636
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −12.0000 −0.389948 −0.194974 0.980808i \(-0.562462\pi\)
−0.194974 + 0.980808i \(0.562462\pi\)
\(948\) 0 0
\(949\) 66.9411 2.17300
\(950\) 0 0
\(951\) −3.92893 −0.127404
\(952\) 0 0
\(953\) −18.7279 −0.606657 −0.303328 0.952886i \(-0.598098\pi\)
−0.303328 + 0.952886i \(0.598098\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0.100505 0.00324887
\(958\) 0 0
\(959\) −57.3848 −1.85305
\(960\) 0 0
\(961\) 7.97056 0.257115
\(962\) 0 0
\(963\) −55.7990 −1.79810
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 43.1127 1.38641 0.693205 0.720740i \(-0.256198\pi\)
0.693205 + 0.720740i \(0.256198\pi\)
\(968\) 0 0
\(969\) 0.414214 0.0133065
\(970\) 0 0
\(971\) −41.6569 −1.33683 −0.668416 0.743788i \(-0.733027\pi\)
−0.668416 + 0.743788i \(0.733027\pi\)
\(972\) 0 0
\(973\) 52.9706 1.69816
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −0.242641 −0.00776276 −0.00388138 0.999992i \(-0.501235\pi\)
−0.00388138 + 0.999992i \(0.501235\pi\)
\(978\) 0 0
\(979\) 10.0000 0.319601
\(980\) 0 0
\(981\) 50.8284 1.62283
\(982\) 0 0
\(983\) −51.4558 −1.64119 −0.820593 0.571513i \(-0.806357\pi\)
−0.820593 + 0.571513i \(0.806357\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1.33095 0.0423218
\(990\) 0 0
\(991\) −13.7574 −0.437017 −0.218508 0.975835i \(-0.570119\pi\)
−0.218508 + 0.975835i \(0.570119\pi\)
\(992\) 0 0
\(993\) −7.97056 −0.252938
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −48.7279 −1.54323 −0.771614 0.636091i \(-0.780550\pi\)
−0.771614 + 0.636091i \(0.780550\pi\)
\(998\) 0 0
\(999\) 20.4853 0.648126
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7600.2.a.bg.1.1 2
4.3 odd 2 950.2.a.g.1.2 2
5.2 odd 4 1520.2.d.e.609.3 4
5.3 odd 4 1520.2.d.e.609.2 4
5.4 even 2 7600.2.a.v.1.2 2
12.11 even 2 8550.2.a.bn.1.1 2
20.3 even 4 190.2.b.a.39.2 4
20.7 even 4 190.2.b.a.39.3 yes 4
20.19 odd 2 950.2.a.f.1.1 2
60.23 odd 4 1710.2.d.c.1369.3 4
60.47 odd 4 1710.2.d.c.1369.1 4
60.59 even 2 8550.2.a.cb.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
190.2.b.a.39.2 4 20.3 even 4
190.2.b.a.39.3 yes 4 20.7 even 4
950.2.a.f.1.1 2 20.19 odd 2
950.2.a.g.1.2 2 4.3 odd 2
1520.2.d.e.609.2 4 5.3 odd 4
1520.2.d.e.609.3 4 5.2 odd 4
1710.2.d.c.1369.1 4 60.47 odd 4
1710.2.d.c.1369.3 4 60.23 odd 4
7600.2.a.v.1.2 2 5.4 even 2
7600.2.a.bg.1.1 2 1.1 even 1 trivial
8550.2.a.bn.1.1 2 12.11 even 2
8550.2.a.cb.1.2 2 60.59 even 2