Properties

Label 760.2.f.b.381.7
Level $760$
Weight $2$
Character 760.381
Analytic conductor $6.069$
Analytic rank $0$
Dimension $44$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [760,2,Mod(381,760)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(760, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("760.381"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 760 = 2^{3} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 760.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [44] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.06863055362\)
Analytic rank: \(0\)
Dimension: \(44\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 381.7
Character \(\chi\) \(=\) 760.381
Dual form 760.2.f.b.381.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.25358 - 0.654621i) q^{2} -2.81164i q^{3} +(1.14294 + 1.64124i) q^{4} +1.00000i q^{5} +(-1.84056 + 3.52463i) q^{6} -3.31936 q^{7} +(-0.358379 - 2.80563i) q^{8} -4.90534 q^{9} +(0.654621 - 1.25358i) q^{10} -2.83466i q^{11} +(4.61460 - 3.21355i) q^{12} -5.28252i q^{13} +(4.16109 + 2.17292i) q^{14} +2.81164 q^{15} +(-1.38737 + 3.75169i) q^{16} +2.60669 q^{17} +(6.14926 + 3.21114i) q^{18} +1.00000i q^{19} +(-1.64124 + 1.14294i) q^{20} +9.33286i q^{21} +(-1.85563 + 3.55348i) q^{22} -8.40647 q^{23} +(-7.88844 + 1.00763i) q^{24} -1.00000 q^{25} +(-3.45805 + 6.62208i) q^{26} +5.35715i q^{27} +(-3.79383 - 5.44788i) q^{28} +9.95431i q^{29} +(-3.52463 - 1.84056i) q^{30} +5.25911 q^{31} +(4.19512 - 3.79486i) q^{32} -7.97005 q^{33} +(-3.26770 - 1.70640i) q^{34} -3.31936i q^{35} +(-5.60652 - 8.05087i) q^{36} +10.5281i q^{37} +(0.654621 - 1.25358i) q^{38} -14.8526 q^{39} +(2.80563 - 0.358379i) q^{40} -9.40558 q^{41} +(6.10949 - 11.6995i) q^{42} +2.39830i q^{43} +(4.65237 - 3.23985i) q^{44} -4.90534i q^{45} +(10.5382 + 5.50305i) q^{46} +0.543335 q^{47} +(10.5484 + 3.90079i) q^{48} +4.01815 q^{49} +(1.25358 + 0.654621i) q^{50} -7.32908i q^{51} +(8.66991 - 6.03762i) q^{52} -0.748858i q^{53} +(3.50690 - 6.71563i) q^{54} +2.83466 q^{55} +(1.18959 + 9.31290i) q^{56} +2.81164 q^{57} +(6.51630 - 12.4786i) q^{58} -12.0213i q^{59} +(3.21355 + 4.61460i) q^{60} +8.50410i q^{61} +(-6.59273 - 3.44272i) q^{62} +16.2826 q^{63} +(-7.74313 + 2.01096i) q^{64} +5.28252 q^{65} +(9.99112 + 5.21736i) q^{66} +5.01155i q^{67} +(2.97929 + 4.27822i) q^{68} +23.6360i q^{69} +(-2.17292 + 4.16109i) q^{70} -5.99873 q^{71} +(1.75797 + 13.7626i) q^{72} -8.46514 q^{73} +(6.89190 - 13.1978i) q^{74} +2.81164i q^{75} +(-1.64124 + 1.14294i) q^{76} +9.40925i q^{77} +(18.6189 + 9.72281i) q^{78} -3.62585 q^{79} +(-3.75169 - 1.38737i) q^{80} +0.346365 q^{81} +(11.7907 + 6.15709i) q^{82} -5.76753i q^{83} +(-15.3175 + 10.6669i) q^{84} +2.60669i q^{85} +(1.56998 - 3.00646i) q^{86} +27.9880 q^{87} +(-7.95300 + 1.01588i) q^{88} +0.348473 q^{89} +(-3.21114 + 6.14926i) q^{90} +17.5346i q^{91} +(-9.60810 - 13.7971i) q^{92} -14.7867i q^{93} +(-0.681115 - 0.355679i) q^{94} -1.00000 q^{95} +(-10.6698 - 11.7952i) q^{96} +1.47141 q^{97} +(-5.03709 - 2.63037i) q^{98} +13.9050i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q + 2 q^{2} - 2 q^{4} - 6 q^{6} + 4 q^{7} + 8 q^{8} - 60 q^{9} + 4 q^{12} + 4 q^{14} - 6 q^{16} + 24 q^{17} - 14 q^{18} - 4 q^{20} - 4 q^{22} + 4 q^{23} + 2 q^{24} - 44 q^{25} + 18 q^{26} - 14 q^{28}+ \cdots + 78 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/760\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(381\) \(401\) \(457\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.25358 0.654621i −0.886417 0.462887i
\(3\) 2.81164i 1.62330i −0.584142 0.811652i \(-0.698569\pi\)
0.584142 0.811652i \(-0.301431\pi\)
\(4\) 1.14294 + 1.64124i 0.571471 + 0.820622i
\(5\) 1.00000i 0.447214i
\(6\) −1.84056 + 3.52463i −0.751406 + 1.43892i
\(7\) −3.31936 −1.25460 −0.627300 0.778778i \(-0.715840\pi\)
−0.627300 + 0.778778i \(0.715840\pi\)
\(8\) −0.358379 2.80563i −0.126706 0.991940i
\(9\) −4.90534 −1.63511
\(10\) 0.654621 1.25358i 0.207009 0.396418i
\(11\) 2.83466i 0.854681i −0.904091 0.427341i \(-0.859451\pi\)
0.904091 0.427341i \(-0.140549\pi\)
\(12\) 4.61460 3.21355i 1.33212 0.927671i
\(13\) 5.28252i 1.46511i −0.680709 0.732554i \(-0.738328\pi\)
0.680709 0.732554i \(-0.261672\pi\)
\(14\) 4.16109 + 2.17292i 1.11210 + 0.580738i
\(15\) 2.81164 0.725963
\(16\) −1.38737 + 3.75169i −0.346842 + 0.937924i
\(17\) 2.60669 0.632215 0.316108 0.948723i \(-0.397624\pi\)
0.316108 + 0.948723i \(0.397624\pi\)
\(18\) 6.14926 + 3.21114i 1.44939 + 0.756874i
\(19\) 1.00000i 0.229416i
\(20\) −1.64124 + 1.14294i −0.366993 + 0.255570i
\(21\) 9.33286i 2.03660i
\(22\) −1.85563 + 3.55348i −0.395621 + 0.757604i
\(23\) −8.40647 −1.75287 −0.876435 0.481521i \(-0.840085\pi\)
−0.876435 + 0.481521i \(0.840085\pi\)
\(24\) −7.88844 + 1.00763i −1.61022 + 0.205682i
\(25\) −1.00000 −0.200000
\(26\) −3.45805 + 6.62208i −0.678180 + 1.29870i
\(27\) 5.35715i 1.03098i
\(28\) −3.79383 5.44788i −0.716967 1.02955i
\(29\) 9.95431i 1.84847i 0.381826 + 0.924234i \(0.375295\pi\)
−0.381826 + 0.924234i \(0.624705\pi\)
\(30\) −3.52463 1.84056i −0.643506 0.336039i
\(31\) 5.25911 0.944564 0.472282 0.881448i \(-0.343430\pi\)
0.472282 + 0.881448i \(0.343430\pi\)
\(32\) 4.19512 3.79486i 0.741600 0.670843i
\(33\) −7.97005 −1.38741
\(34\) −3.26770 1.70640i −0.560406 0.292644i
\(35\) 3.31936i 0.561074i
\(36\) −5.60652 8.05087i −0.934420 1.34181i
\(37\) 10.5281i 1.73080i 0.501078 + 0.865402i \(0.332937\pi\)
−0.501078 + 0.865402i \(0.667063\pi\)
\(38\) 0.654621 1.25358i 0.106194 0.203358i
\(39\) −14.8526 −2.37832
\(40\) 2.80563 0.358379i 0.443609 0.0566646i
\(41\) −9.40558 −1.46890 −0.734452 0.678660i \(-0.762561\pi\)
−0.734452 + 0.678660i \(0.762561\pi\)
\(42\) 6.10949 11.6995i 0.942715 1.80527i
\(43\) 2.39830i 0.365737i 0.983137 + 0.182868i \(0.0585382\pi\)
−0.983137 + 0.182868i \(0.941462\pi\)
\(44\) 4.65237 3.23985i 0.701371 0.488425i
\(45\) 4.90534i 0.731245i
\(46\) 10.5382 + 5.50305i 1.55377 + 0.811381i
\(47\) 0.543335 0.0792535 0.0396268 0.999215i \(-0.487383\pi\)
0.0396268 + 0.999215i \(0.487383\pi\)
\(48\) 10.5484 + 3.90079i 1.52253 + 0.563030i
\(49\) 4.01815 0.574022
\(50\) 1.25358 + 0.654621i 0.177283 + 0.0925774i
\(51\) 7.32908i 1.02628i
\(52\) 8.66991 6.03762i 1.20230 0.837267i
\(53\) 0.748858i 0.102863i −0.998677 0.0514317i \(-0.983622\pi\)
0.998677 0.0514317i \(-0.0163785\pi\)
\(54\) 3.50690 6.71563i 0.477229 0.913882i
\(55\) 2.83466 0.382225
\(56\) 1.18959 + 9.31290i 0.158965 + 1.24449i
\(57\) 2.81164 0.372411
\(58\) 6.51630 12.4786i 0.855632 1.63851i
\(59\) 12.0213i 1.56505i −0.622622 0.782523i \(-0.713933\pi\)
0.622622 0.782523i \(-0.286067\pi\)
\(60\) 3.21355 + 4.61460i 0.414867 + 0.595742i
\(61\) 8.50410i 1.08884i 0.838813 + 0.544419i \(0.183250\pi\)
−0.838813 + 0.544419i \(0.816750\pi\)
\(62\) −6.59273 3.44272i −0.837277 0.437226i
\(63\) 16.2826 2.05141
\(64\) −7.74313 + 2.01096i −0.967891 + 0.251369i
\(65\) 5.28252 0.655216
\(66\) 9.99112 + 5.21736i 1.22982 + 0.642213i
\(67\) 5.01155i 0.612258i 0.951990 + 0.306129i \(0.0990338\pi\)
−0.951990 + 0.306129i \(0.900966\pi\)
\(68\) 2.97929 + 4.27822i 0.361293 + 0.518810i
\(69\) 23.6360i 2.84544i
\(70\) −2.17292 + 4.16109i −0.259714 + 0.497346i
\(71\) −5.99873 −0.711918 −0.355959 0.934502i \(-0.615846\pi\)
−0.355959 + 0.934502i \(0.615846\pi\)
\(72\) 1.75797 + 13.7626i 0.207179 + 1.62194i
\(73\) −8.46514 −0.990770 −0.495385 0.868673i \(-0.664973\pi\)
−0.495385 + 0.868673i \(0.664973\pi\)
\(74\) 6.89190 13.1978i 0.801167 1.53422i
\(75\) 2.81164i 0.324661i
\(76\) −1.64124 + 1.14294i −0.188264 + 0.131104i
\(77\) 9.40925i 1.07228i
\(78\) 18.6189 + 9.72281i 2.10818 + 1.10089i
\(79\) −3.62585 −0.407940 −0.203970 0.978977i \(-0.565384\pi\)
−0.203970 + 0.978977i \(0.565384\pi\)
\(80\) −3.75169 1.38737i −0.419452 0.155113i
\(81\) 0.346365 0.0384850
\(82\) 11.7907 + 6.15709i 1.30206 + 0.679937i
\(83\) 5.76753i 0.633069i −0.948581 0.316534i \(-0.897481\pi\)
0.948581 0.316534i \(-0.102519\pi\)
\(84\) −15.3175 + 10.6669i −1.67128 + 1.16386i
\(85\) 2.60669i 0.282735i
\(86\) 1.56998 3.00646i 0.169295 0.324195i
\(87\) 27.9880 3.00062
\(88\) −7.95300 + 1.01588i −0.847793 + 0.108293i
\(89\) 0.348473 0.0369381 0.0184690 0.999829i \(-0.494121\pi\)
0.0184690 + 0.999829i \(0.494121\pi\)
\(90\) −3.21114 + 6.14926i −0.338484 + 0.648189i
\(91\) 17.5346i 1.83813i
\(92\) −9.60810 13.7971i −1.00171 1.43844i
\(93\) 14.7867i 1.53331i
\(94\) −0.681115 0.355679i −0.0702517 0.0366854i
\(95\) −1.00000 −0.102598
\(96\) −10.6698 11.7952i −1.08898 1.20384i
\(97\) 1.47141 0.149399 0.0746996 0.997206i \(-0.476200\pi\)
0.0746996 + 0.997206i \(0.476200\pi\)
\(98\) −5.03709 2.63037i −0.508823 0.265707i
\(99\) 13.9050i 1.39750i
\(100\) −1.14294 1.64124i −0.114294 0.164124i
\(101\) 19.4328i 1.93364i −0.255461 0.966819i \(-0.582227\pi\)
0.255461 0.966819i \(-0.417773\pi\)
\(102\) −4.79778 + 9.18762i −0.475051 + 0.909710i
\(103\) 0.305852 0.0301365 0.0150683 0.999886i \(-0.495203\pi\)
0.0150683 + 0.999886i \(0.495203\pi\)
\(104\) −14.8208 + 1.89314i −1.45330 + 0.185638i
\(105\) −9.33286 −0.910794
\(106\) −0.490218 + 0.938755i −0.0476142 + 0.0911800i
\(107\) 15.4289i 1.49157i −0.666186 0.745786i \(-0.732074\pi\)
0.666186 0.745786i \(-0.267926\pi\)
\(108\) −8.79239 + 6.12291i −0.846048 + 0.589177i
\(109\) 1.73243i 0.165937i −0.996552 0.0829685i \(-0.973560\pi\)
0.996552 0.0829685i \(-0.0264401\pi\)
\(110\) −3.55348 1.85563i −0.338811 0.176927i
\(111\) 29.6012 2.80962
\(112\) 4.60518 12.4532i 0.435148 1.17672i
\(113\) 10.1330 0.953228 0.476614 0.879113i \(-0.341864\pi\)
0.476614 + 0.879113i \(0.341864\pi\)
\(114\) −3.52463 1.84056i −0.330112 0.172384i
\(115\) 8.40647i 0.783907i
\(116\) −16.3375 + 11.3772i −1.51689 + 1.05635i
\(117\) 25.9126i 2.39562i
\(118\) −7.86943 + 15.0698i −0.724440 + 1.38728i
\(119\) −8.65254 −0.793177
\(120\) −1.00763 7.88844i −0.0919839 0.720112i
\(121\) 2.96472 0.269520
\(122\) 5.56697 10.6606i 0.504010 0.965166i
\(123\) 26.4451i 2.38448i
\(124\) 6.01085 + 8.63148i 0.539791 + 0.775130i
\(125\) 1.00000i 0.0894427i
\(126\) −20.4116 10.6589i −1.81841 0.949574i
\(127\) −19.0142 −1.68724 −0.843620 0.536941i \(-0.819580\pi\)
−0.843620 + 0.536941i \(0.819580\pi\)
\(128\) 11.0231 + 2.54792i 0.974311 + 0.225206i
\(129\) 6.74316 0.593702
\(130\) −6.62208 3.45805i −0.580795 0.303291i
\(131\) 4.68843i 0.409630i 0.978801 + 0.204815i \(0.0656593\pi\)
−0.978801 + 0.204815i \(0.934341\pi\)
\(132\) −9.10930 13.0808i −0.792863 1.13854i
\(133\) 3.31936i 0.287825i
\(134\) 3.28066 6.28239i 0.283406 0.542716i
\(135\) −5.35715 −0.461070
\(136\) −0.934182 7.31341i −0.0801054 0.627120i
\(137\) −9.29846 −0.794421 −0.397211 0.917728i \(-0.630022\pi\)
−0.397211 + 0.917728i \(0.630022\pi\)
\(138\) 15.4726 29.6297i 1.31712 2.52225i
\(139\) 6.15072i 0.521697i −0.965380 0.260849i \(-0.915998\pi\)
0.965380 0.260849i \(-0.0840023\pi\)
\(140\) 5.44788 3.79383i 0.460430 0.320638i
\(141\) 1.52766i 0.128653i
\(142\) 7.51990 + 3.92690i 0.631056 + 0.329538i
\(143\) −14.9741 −1.25220
\(144\) 6.80552 18.4033i 0.567127 1.53361i
\(145\) −9.95431 −0.826660
\(146\) 10.6118 + 5.54146i 0.878236 + 0.458615i
\(147\) 11.2976i 0.931811i
\(148\) −17.2791 + 12.0330i −1.42034 + 0.989104i
\(149\) 21.3894i 1.75228i −0.482053 0.876142i \(-0.660109\pi\)
0.482053 0.876142i \(-0.339891\pi\)
\(150\) 1.84056 3.52463i 0.150281 0.287785i
\(151\) 8.98581 0.731255 0.365627 0.930761i \(-0.380854\pi\)
0.365627 + 0.930761i \(0.380854\pi\)
\(152\) 2.80563 0.358379i 0.227567 0.0290683i
\(153\) −12.7867 −1.03374
\(154\) 6.15949 11.7953i 0.496346 0.950490i
\(155\) 5.25911i 0.422422i
\(156\) −16.9756 24.3767i −1.35914 1.95170i
\(157\) 12.7403i 1.01678i −0.861125 0.508392i \(-0.830240\pi\)
0.861125 0.508392i \(-0.169760\pi\)
\(158\) 4.54530 + 2.37356i 0.361605 + 0.188830i
\(159\) −2.10552 −0.166979
\(160\) 3.79486 + 4.19512i 0.300010 + 0.331653i
\(161\) 27.9041 2.19915
\(162\) −0.434197 0.226738i −0.0341138 0.0178142i
\(163\) 14.6737i 1.14933i 0.818389 + 0.574665i \(0.194868\pi\)
−0.818389 + 0.574665i \(0.805132\pi\)
\(164\) −10.7500 15.4369i −0.839436 1.20542i
\(165\) 7.97005i 0.620467i
\(166\) −3.77555 + 7.23008i −0.293039 + 0.561163i
\(167\) −5.47101 −0.423360 −0.211680 0.977339i \(-0.567893\pi\)
−0.211680 + 0.977339i \(0.567893\pi\)
\(168\) 26.1846 3.34470i 2.02018 0.258049i
\(169\) −14.9050 −1.14654
\(170\) 1.70640 3.26770i 0.130875 0.250621i
\(171\) 4.90534i 0.375121i
\(172\) −3.93619 + 2.74111i −0.300132 + 0.209008i
\(173\) 7.26036i 0.551995i 0.961158 + 0.275998i \(0.0890082\pi\)
−0.961158 + 0.275998i \(0.910992\pi\)
\(174\) −35.0852 18.3215i −2.65981 1.38895i
\(175\) 3.31936 0.250920
\(176\) 10.6348 + 3.93271i 0.801626 + 0.296440i
\(177\) −33.7997 −2.54054
\(178\) −0.436840 0.228118i −0.0327426 0.0170982i
\(179\) 2.86114i 0.213852i 0.994267 + 0.106926i \(0.0341007\pi\)
−0.994267 + 0.106926i \(0.965899\pi\)
\(180\) 8.05087 5.60652i 0.600076 0.417885i
\(181\) 2.83734i 0.210898i 0.994425 + 0.105449i \(0.0336280\pi\)
−0.994425 + 0.105449i \(0.966372\pi\)
\(182\) 11.4785 21.9811i 0.850845 1.62935i
\(183\) 23.9105 1.76752
\(184\) 3.01270 + 23.5854i 0.222099 + 1.73874i
\(185\) −10.5281 −0.774039
\(186\) −9.67972 + 18.5364i −0.709751 + 1.35916i
\(187\) 7.38907i 0.540342i
\(188\) 0.621000 + 0.891745i 0.0452911 + 0.0650372i
\(189\) 17.7823i 1.29347i
\(190\) 1.25358 + 0.654621i 0.0909445 + 0.0474912i
\(191\) −13.1874 −0.954210 −0.477105 0.878846i \(-0.658314\pi\)
−0.477105 + 0.878846i \(0.658314\pi\)
\(192\) 5.65409 + 21.7709i 0.408049 + 1.57118i
\(193\) −1.50682 −0.108463 −0.0542315 0.998528i \(-0.517271\pi\)
−0.0542315 + 0.998528i \(0.517271\pi\)
\(194\) −1.84454 0.963218i −0.132430 0.0691550i
\(195\) 14.8526i 1.06362i
\(196\) 4.59251 + 6.59477i 0.328037 + 0.471055i
\(197\) 0.841859i 0.0599800i −0.999550 0.0299900i \(-0.990452\pi\)
0.999550 0.0299900i \(-0.00954754\pi\)
\(198\) 9.10249 17.4310i 0.646886 1.23877i
\(199\) 2.38747 0.169243 0.0846215 0.996413i \(-0.473032\pi\)
0.0846215 + 0.996413i \(0.473032\pi\)
\(200\) 0.358379 + 2.80563i 0.0253412 + 0.198388i
\(201\) 14.0907 0.993880
\(202\) −12.7211 + 24.3607i −0.895057 + 1.71401i
\(203\) 33.0419i 2.31909i
\(204\) 12.0288 8.37672i 0.842186 0.586487i
\(205\) 9.40558i 0.656914i
\(206\) −0.383411 0.200217i −0.0267135 0.0139498i
\(207\) 41.2366 2.86614
\(208\) 19.8184 + 7.32881i 1.37416 + 0.508161i
\(209\) 2.83466 0.196077
\(210\) 11.6995 + 6.10949i 0.807343 + 0.421595i
\(211\) 12.5085i 0.861121i −0.902562 0.430561i \(-0.858316\pi\)
0.902562 0.430561i \(-0.141684\pi\)
\(212\) 1.22906 0.855901i 0.0844121 0.0587835i
\(213\) 16.8663i 1.15566i
\(214\) −10.1001 + 19.3414i −0.690429 + 1.32215i
\(215\) −2.39830 −0.163562
\(216\) 15.0302 1.91989i 1.02267 0.130632i
\(217\) −17.4569 −1.18505
\(218\) −1.13409 + 2.17175i −0.0768101 + 0.147089i
\(219\) 23.8010i 1.60832i
\(220\) 3.23985 + 4.65237i 0.218430 + 0.313662i
\(221\) 13.7699i 0.926264i
\(222\) −37.1076 19.3776i −2.49050 1.30054i
\(223\) 6.48682 0.434390 0.217195 0.976128i \(-0.430309\pi\)
0.217195 + 0.976128i \(0.430309\pi\)
\(224\) −13.9251 + 12.5965i −0.930411 + 0.841639i
\(225\) 4.90534 0.327023
\(226\) −12.7025 6.63325i −0.844958 0.441237i
\(227\) 18.6861i 1.24024i −0.784507 0.620120i \(-0.787084\pi\)
0.784507 0.620120i \(-0.212916\pi\)
\(228\) 3.21355 + 4.61460i 0.212822 + 0.305609i
\(229\) 16.4298i 1.08571i −0.839826 0.542855i \(-0.817343\pi\)
0.839826 0.542855i \(-0.182657\pi\)
\(230\) −5.50305 + 10.5382i −0.362861 + 0.694869i
\(231\) 26.4555 1.74064
\(232\) 27.9281 3.56741i 1.83357 0.234212i
\(233\) −7.76941 −0.508991 −0.254495 0.967074i \(-0.581909\pi\)
−0.254495 + 0.967074i \(0.581909\pi\)
\(234\) 16.9629 32.4836i 1.10890 2.12352i
\(235\) 0.543335i 0.0354433i
\(236\) 19.7300 13.7397i 1.28431 0.894378i
\(237\) 10.1946i 0.662210i
\(238\) 10.8467 + 5.66414i 0.703086 + 0.367152i
\(239\) −19.4104 −1.25556 −0.627778 0.778392i \(-0.716035\pi\)
−0.627778 + 0.778392i \(0.716035\pi\)
\(240\) −3.90079 + 10.5484i −0.251795 + 0.680898i
\(241\) 14.6787 0.945541 0.472770 0.881186i \(-0.343254\pi\)
0.472770 + 0.881186i \(0.343254\pi\)
\(242\) −3.71652 1.94077i −0.238907 0.124757i
\(243\) 15.0976i 0.968511i
\(244\) −13.9573 + 9.71969i −0.893526 + 0.622240i
\(245\) 4.01815i 0.256710i
\(246\) 17.3116 33.1512i 1.10374 2.11364i
\(247\) 5.28252 0.336119
\(248\) −1.88475 14.7551i −0.119682 0.936951i
\(249\) −16.2162 −1.02766
\(250\) −0.654621 + 1.25358i −0.0414019 + 0.0792836i
\(251\) 12.8960i 0.813986i 0.913431 + 0.406993i \(0.133423\pi\)
−0.913431 + 0.406993i \(0.866577\pi\)
\(252\) 18.6101 + 26.7237i 1.17232 + 1.68344i
\(253\) 23.8294i 1.49814i
\(254\) 23.8359 + 12.4471i 1.49560 + 0.781002i
\(255\) 7.32908 0.458965
\(256\) −12.1504 10.4100i −0.759401 0.650623i
\(257\) −24.5149 −1.52919 −0.764597 0.644508i \(-0.777062\pi\)
−0.764597 + 0.644508i \(0.777062\pi\)
\(258\) −8.45311 4.41421i −0.526268 0.274817i
\(259\) 34.9465i 2.17147i
\(260\) 6.03762 + 8.66991i 0.374437 + 0.537685i
\(261\) 48.8293i 3.02246i
\(262\) 3.06915 5.87734i 0.189613 0.363103i
\(263\) −11.8823 −0.732691 −0.366346 0.930479i \(-0.619391\pi\)
−0.366346 + 0.930479i \(0.619391\pi\)
\(264\) 2.85629 + 22.3610i 0.175793 + 1.37623i
\(265\) 0.748858 0.0460020
\(266\) −2.17292 + 4.16109i −0.133231 + 0.255133i
\(267\) 0.979783i 0.0599617i
\(268\) −8.22517 + 5.72790i −0.502432 + 0.349887i
\(269\) 7.17068i 0.437204i 0.975814 + 0.218602i \(0.0701497\pi\)
−0.975814 + 0.218602i \(0.929850\pi\)
\(270\) 6.71563 + 3.50690i 0.408700 + 0.213423i
\(271\) 18.9924 1.15370 0.576852 0.816849i \(-0.304281\pi\)
0.576852 + 0.816849i \(0.304281\pi\)
\(272\) −3.61644 + 9.77950i −0.219279 + 0.592969i
\(273\) 49.3010 2.98384
\(274\) 11.6564 + 6.08697i 0.704188 + 0.367727i
\(275\) 2.83466i 0.170936i
\(276\) −38.7924 + 27.0146i −2.33503 + 1.62609i
\(277\) 21.4917i 1.29131i 0.763630 + 0.645655i \(0.223415\pi\)
−0.763630 + 0.645655i \(0.776585\pi\)
\(278\) −4.02639 + 7.71044i −0.241487 + 0.462441i
\(279\) −25.7977 −1.54447
\(280\) −9.31290 + 1.18959i −0.556552 + 0.0710914i
\(281\) 7.07129 0.421838 0.210919 0.977504i \(-0.432354\pi\)
0.210919 + 0.977504i \(0.432354\pi\)
\(282\) −1.00004 + 1.91505i −0.0595516 + 0.114040i
\(283\) 21.3693i 1.27027i −0.772400 0.635136i \(-0.780944\pi\)
0.772400 0.635136i \(-0.219056\pi\)
\(284\) −6.85620 9.84538i −0.406840 0.584216i
\(285\) 2.81164i 0.166547i
\(286\) 18.7713 + 9.80239i 1.10997 + 0.579628i
\(287\) 31.2205 1.84289
\(288\) −20.5785 + 18.6151i −1.21260 + 1.09690i
\(289\) −10.2052 −0.600304
\(290\) 12.4786 + 6.51630i 0.732766 + 0.382650i
\(291\) 4.13709i 0.242520i
\(292\) −9.67517 13.8934i −0.566196 0.813048i
\(293\) 32.7336i 1.91232i −0.292852 0.956158i \(-0.594604\pi\)
0.292852 0.956158i \(-0.405396\pi\)
\(294\) −7.39566 + 14.1625i −0.431324 + 0.825974i
\(295\) 12.0213 0.699910
\(296\) 29.5379 3.77304i 1.71686 0.219303i
\(297\) 15.1857 0.881162
\(298\) −14.0019 + 26.8133i −0.811110 + 1.55326i
\(299\) 44.4073i 2.56814i
\(300\) −4.61460 + 3.21355i −0.266424 + 0.185534i
\(301\) 7.96081i 0.458853i
\(302\) −11.2645 5.88230i −0.648197 0.338488i
\(303\) −54.6382 −3.13888
\(304\) −3.75169 1.38737i −0.215174 0.0795711i
\(305\) −8.50410 −0.486944
\(306\) 16.0292 + 8.37045i 0.916329 + 0.478507i
\(307\) 6.51210i 0.371665i −0.982581 0.185833i \(-0.940502\pi\)
0.982581 0.185833i \(-0.0594982\pi\)
\(308\) −15.4429 + 10.7542i −0.879940 + 0.612779i
\(309\) 0.859948i 0.0489207i
\(310\) 3.44272 6.59273i 0.195534 0.374442i
\(311\) −7.47578 −0.423913 −0.211956 0.977279i \(-0.567983\pi\)
−0.211956 + 0.977279i \(0.567983\pi\)
\(312\) 5.32284 + 41.6708i 0.301347 + 2.35915i
\(313\) −23.9698 −1.35485 −0.677426 0.735591i \(-0.736904\pi\)
−0.677426 + 0.735591i \(0.736904\pi\)
\(314\) −8.34006 + 15.9710i −0.470657 + 0.901296i
\(315\) 16.2826i 0.917421i
\(316\) −4.14413 5.95091i −0.233126 0.334765i
\(317\) 4.96527i 0.278877i 0.990231 + 0.139439i \(0.0445298\pi\)
−0.990231 + 0.139439i \(0.955470\pi\)
\(318\) 2.63945 + 1.37832i 0.148013 + 0.0772923i
\(319\) 28.2170 1.57985
\(320\) −2.01096 7.74313i −0.112416 0.432854i
\(321\) −43.3807 −2.42127
\(322\) −34.9801 18.2666i −1.94936 1.01796i
\(323\) 2.60669i 0.145040i
\(324\) 0.395875 + 0.568470i 0.0219931 + 0.0315817i
\(325\) 5.28252i 0.293022i
\(326\) 9.60569 18.3947i 0.532010 1.01879i
\(327\) −4.87099 −0.269366
\(328\) 3.37076 + 26.3886i 0.186119 + 1.45707i
\(329\) −1.80352 −0.0994315
\(330\) −5.21736 + 9.99112i −0.287206 + 0.549993i
\(331\) 18.5190i 1.01790i 0.860797 + 0.508948i \(0.169965\pi\)
−0.860797 + 0.508948i \(0.830035\pi\)
\(332\) 9.46593 6.59195i 0.519510 0.361780i
\(333\) 51.6438i 2.83006i
\(334\) 6.85837 + 3.58144i 0.375273 + 0.195968i
\(335\) −5.01155 −0.273810
\(336\) −35.0140 12.9481i −1.91017 0.706378i
\(337\) −4.76915 −0.259792 −0.129896 0.991528i \(-0.541464\pi\)
−0.129896 + 0.991528i \(0.541464\pi\)
\(338\) 18.6847 + 9.75716i 1.01631 + 0.530720i
\(339\) 28.4903i 1.54738i
\(340\) −4.27822 + 2.97929i −0.232019 + 0.161575i
\(341\) 14.9078i 0.807301i
\(342\) −3.21114 + 6.14926i −0.173639 + 0.332514i
\(343\) 9.89783 0.534433
\(344\) 6.72874 0.859498i 0.362789 0.0463410i
\(345\) −23.6360 −1.27252
\(346\) 4.75279 9.10147i 0.255512 0.489298i
\(347\) 25.4364i 1.36550i 0.730654 + 0.682748i \(0.239215\pi\)
−0.730654 + 0.682748i \(0.760785\pi\)
\(348\) 31.9886 + 45.9351i 1.71477 + 2.46238i
\(349\) 0.195250i 0.0104515i −0.999986 0.00522576i \(-0.998337\pi\)
0.999986 0.00522576i \(-0.00166342\pi\)
\(350\) −4.16109 2.17292i −0.222420 0.116148i
\(351\) 28.2993 1.51050
\(352\) −10.7571 11.8917i −0.573357 0.633831i
\(353\) 21.4626 1.14234 0.571170 0.820832i \(-0.306490\pi\)
0.571170 + 0.820832i \(0.306490\pi\)
\(354\) 42.3708 + 22.1260i 2.25198 + 1.17599i
\(355\) 5.99873i 0.318379i
\(356\) 0.398285 + 0.571930i 0.0211090 + 0.0303122i
\(357\) 24.3279i 1.28757i
\(358\) 1.87296 3.58668i 0.0989892 0.189562i
\(359\) −1.39745 −0.0737544 −0.0368772 0.999320i \(-0.511741\pi\)
−0.0368772 + 0.999320i \(0.511741\pi\)
\(360\) −13.7626 + 1.75797i −0.725352 + 0.0926531i
\(361\) −1.00000 −0.0526316
\(362\) 1.85738 3.55684i 0.0976220 0.186944i
\(363\) 8.33573i 0.437513i
\(364\) −28.7786 + 20.0410i −1.50841 + 1.05043i
\(365\) 8.46514i 0.443086i
\(366\) −29.9738 15.6523i −1.56676 0.818161i
\(367\) −4.22726 −0.220661 −0.110331 0.993895i \(-0.535191\pi\)
−0.110331 + 0.993895i \(0.535191\pi\)
\(368\) 11.6629 31.5385i 0.607969 1.64406i
\(369\) 46.1376 2.40183
\(370\) 13.1978 + 6.89190i 0.686122 + 0.358293i
\(371\) 2.48573i 0.129053i
\(372\) 24.2687 16.9004i 1.25827 0.876244i
\(373\) 16.0901i 0.833113i 0.909110 + 0.416556i \(0.136763\pi\)
−0.909110 + 0.416556i \(0.863237\pi\)
\(374\) −4.83704 + 9.26282i −0.250118 + 0.478969i
\(375\) −2.81164 −0.145193
\(376\) −0.194720 1.52440i −0.0100419 0.0786148i
\(377\) 52.5838 2.70821
\(378\) −11.6407 + 22.2916i −0.598732 + 1.14656i
\(379\) 8.13831i 0.418037i 0.977912 + 0.209019i \(0.0670269\pi\)
−0.977912 + 0.209019i \(0.932973\pi\)
\(380\) −1.14294 1.64124i −0.0586317 0.0841941i
\(381\) 53.4613i 2.73890i
\(382\) 16.5316 + 8.63279i 0.845828 + 0.441692i
\(383\) −19.6666 −1.00492 −0.502459 0.864601i \(-0.667571\pi\)
−0.502459 + 0.864601i \(0.667571\pi\)
\(384\) 7.16384 30.9930i 0.365578 1.58160i
\(385\) −9.40925 −0.479540
\(386\) 1.88892 + 0.986394i 0.0961434 + 0.0502061i
\(387\) 11.7645i 0.598022i
\(388\) 1.68174 + 2.41495i 0.0853773 + 0.122600i
\(389\) 2.16269i 0.109653i 0.998496 + 0.0548264i \(0.0174605\pi\)
−0.998496 + 0.0548264i \(0.982539\pi\)
\(390\) −9.72281 + 18.6189i −0.492334 + 0.942807i
\(391\) −21.9130 −1.10819
\(392\) −1.44002 11.2734i −0.0727319 0.569395i
\(393\) 13.1822 0.664954
\(394\) −0.551099 + 1.05534i −0.0277640 + 0.0531673i
\(395\) 3.62585i 0.182436i
\(396\) −22.8215 + 15.8926i −1.14682 + 0.798632i
\(397\) 12.8974i 0.647302i −0.946177 0.323651i \(-0.895090\pi\)
0.946177 0.323651i \(-0.104910\pi\)
\(398\) −2.99289 1.56289i −0.150020 0.0783405i
\(399\) −9.33286 −0.467227
\(400\) 1.38737 3.75169i 0.0693684 0.187585i
\(401\) −21.1857 −1.05796 −0.528981 0.848634i \(-0.677426\pi\)
−0.528981 + 0.848634i \(0.677426\pi\)
\(402\) −17.6638 9.22406i −0.880992 0.460054i
\(403\) 27.7814i 1.38389i
\(404\) 31.8940 22.2106i 1.58679 1.10502i
\(405\) 0.346365i 0.0172110i
\(406\) −21.6300 + 41.4208i −1.07348 + 2.05568i
\(407\) 29.8435 1.47929
\(408\) −20.5627 + 2.62659i −1.01801 + 0.130035i
\(409\) 25.3162 1.25181 0.625903 0.779901i \(-0.284730\pi\)
0.625903 + 0.779901i \(0.284730\pi\)
\(410\) −6.15709 + 11.7907i −0.304077 + 0.582300i
\(411\) 26.1440i 1.28959i
\(412\) 0.349571 + 0.501978i 0.0172221 + 0.0247307i
\(413\) 39.9032i 1.96351i
\(414\) −51.6935 26.9944i −2.54060 1.32670i
\(415\) 5.76753 0.283117
\(416\) −20.0464 22.1608i −0.982857 1.08652i
\(417\) −17.2936 −0.846873
\(418\) −3.55348 1.85563i −0.173806 0.0907617i
\(419\) 16.2067i 0.791748i −0.918305 0.395874i \(-0.870442\pi\)
0.918305 0.395874i \(-0.129558\pi\)
\(420\) −10.6669 15.3175i −0.520492 0.747418i
\(421\) 11.2341i 0.547516i 0.961799 + 0.273758i \(0.0882667\pi\)
−0.961799 + 0.273758i \(0.911733\pi\)
\(422\) −8.18834 + 15.6805i −0.398602 + 0.763312i
\(423\) −2.66524 −0.129589
\(424\) −2.10102 + 0.268374i −0.102034 + 0.0130334i
\(425\) −2.60669 −0.126443
\(426\) 11.0410 21.1433i 0.534940 1.02440i
\(427\) 28.2282i 1.36606i
\(428\) 25.3227 17.6344i 1.22402 0.852389i
\(429\) 42.1020i 2.03270i
\(430\) 3.00646 + 1.56998i 0.144985 + 0.0757110i
\(431\) 6.21447 0.299340 0.149670 0.988736i \(-0.452179\pi\)
0.149670 + 0.988736i \(0.452179\pi\)
\(432\) −20.0984 7.43234i −0.966984 0.357589i
\(433\) −7.21735 −0.346844 −0.173422 0.984848i \(-0.555482\pi\)
−0.173422 + 0.984848i \(0.555482\pi\)
\(434\) 21.8836 + 11.4276i 1.05045 + 0.548544i
\(435\) 27.9880i 1.34192i
\(436\) 2.84335 1.98007i 0.136172 0.0948282i
\(437\) 8.40647i 0.402136i
\(438\) 15.5806 29.8365i 0.744471 1.42564i
\(439\) 11.7060 0.558696 0.279348 0.960190i \(-0.409882\pi\)
0.279348 + 0.960190i \(0.409882\pi\)
\(440\) −1.01588 7.95300i −0.0484302 0.379144i
\(441\) −19.7104 −0.938591
\(442\) −9.01407 + 17.2617i −0.428756 + 0.821056i
\(443\) 5.52447i 0.262475i 0.991351 + 0.131238i \(0.0418951\pi\)
−0.991351 + 0.131238i \(0.958105\pi\)
\(444\) 33.8324 + 48.5828i 1.60562 + 2.30564i
\(445\) 0.348473i 0.0165192i
\(446\) −8.13177 4.24641i −0.385050 0.201073i
\(447\) −60.1393 −2.84449
\(448\) 25.7022 6.67509i 1.21432 0.315368i
\(449\) 28.2910 1.33513 0.667567 0.744550i \(-0.267336\pi\)
0.667567 + 0.744550i \(0.267336\pi\)
\(450\) −6.14926 3.21114i −0.289879 0.151375i
\(451\) 26.6616i 1.25545i
\(452\) 11.5814 + 16.6307i 0.544742 + 0.782240i
\(453\) 25.2649i 1.18705i
\(454\) −12.2323 + 23.4246i −0.574091 + 1.09937i
\(455\) −17.5346 −0.822035
\(456\) −1.00763 7.88844i −0.0471867 0.369410i
\(457\) 24.1741 1.13082 0.565408 0.824811i \(-0.308719\pi\)
0.565408 + 0.824811i \(0.308719\pi\)
\(458\) −10.7553 + 20.5961i −0.502561 + 0.962392i
\(459\) 13.9644i 0.651804i
\(460\) 13.7971 9.60810i 0.643292 0.447980i
\(461\) 16.4899i 0.768011i 0.923331 + 0.384005i \(0.125456\pi\)
−0.923331 + 0.384005i \(0.874544\pi\)
\(462\) −33.1641 17.3183i −1.54293 0.805721i
\(463\) −17.6034 −0.818100 −0.409050 0.912512i \(-0.634140\pi\)
−0.409050 + 0.912512i \(0.634140\pi\)
\(464\) −37.3455 13.8103i −1.73372 0.641127i
\(465\) 14.7867 0.685719
\(466\) 9.73960 + 5.08602i 0.451178 + 0.235605i
\(467\) 5.05294i 0.233822i −0.993142 0.116911i \(-0.962701\pi\)
0.993142 0.116911i \(-0.0372992\pi\)
\(468\) −42.5289 + 29.6166i −1.96590 + 1.36903i
\(469\) 16.6351i 0.768139i
\(470\) 0.355679 0.681115i 0.0164062 0.0314175i
\(471\) −35.8211 −1.65055
\(472\) −33.7275 + 4.30819i −1.55243 + 0.198301i
\(473\) 6.79835 0.312588
\(474\) 6.67360 12.7798i 0.306529 0.586995i
\(475\) 1.00000i 0.0458831i
\(476\) −9.88935 14.2009i −0.453278 0.650899i
\(477\) 3.67340i 0.168194i
\(478\) 24.3326 + 12.7065i 1.11295 + 0.581181i
\(479\) −27.8345 −1.27179 −0.635896 0.771775i \(-0.719369\pi\)
−0.635896 + 0.771775i \(0.719369\pi\)
\(480\) 11.7952 10.6698i 0.538374 0.487007i
\(481\) 55.6148 2.53582
\(482\) −18.4010 9.60902i −0.838144 0.437679i
\(483\) 78.4564i 3.56989i
\(484\) 3.38850 + 4.86583i 0.154023 + 0.221174i
\(485\) 1.47141i 0.0668134i
\(486\) 9.88321 18.9261i 0.448311 0.858505i
\(487\) −10.5772 −0.479298 −0.239649 0.970860i \(-0.577032\pi\)
−0.239649 + 0.970860i \(0.577032\pi\)
\(488\) 23.8594 3.04769i 1.08006 0.137962i
\(489\) 41.2571 1.86571
\(490\) 2.63037 5.03709i 0.118828 0.227552i
\(491\) 17.8052i 0.803535i 0.915742 + 0.401768i \(0.131604\pi\)
−0.915742 + 0.401768i \(0.868396\pi\)
\(492\) −43.4029 + 30.2253i −1.95676 + 1.36266i
\(493\) 25.9478i 1.16863i
\(494\) −6.62208 3.45805i −0.297942 0.155585i
\(495\) −13.9050 −0.624982
\(496\) −7.29632 + 19.7306i −0.327615 + 0.885928i
\(497\) 19.9119 0.893172
\(498\) 20.3284 + 10.6155i 0.910938 + 0.475692i
\(499\) 6.46483i 0.289406i −0.989475 0.144703i \(-0.953777\pi\)
0.989475 0.144703i \(-0.0462226\pi\)
\(500\) 1.64124 1.14294i 0.0733987 0.0511139i
\(501\) 15.3825i 0.687241i
\(502\) 8.44198 16.1662i 0.376784 0.721532i
\(503\) 3.89673 0.173747 0.0868734 0.996219i \(-0.472312\pi\)
0.0868734 + 0.996219i \(0.472312\pi\)
\(504\) −5.83533 45.6830i −0.259926 2.03488i
\(505\) 19.4328 0.864750
\(506\) 15.5993 29.8722i 0.693472 1.32798i
\(507\) 41.9077i 1.86119i
\(508\) −21.7322 31.2070i −0.964209 1.38459i
\(509\) 36.7308i 1.62806i −0.580820 0.814032i \(-0.697268\pi\)
0.580820 0.814032i \(-0.302732\pi\)
\(510\) −9.18762 4.79778i −0.406835 0.212449i
\(511\) 28.0989 1.24302
\(512\) 8.41697 + 21.0037i 0.371981 + 0.928240i
\(513\) −5.35715 −0.236524
\(514\) 30.7314 + 16.0479i 1.35550 + 0.707845i
\(515\) 0.305852i 0.0134775i
\(516\) 7.70703 + 11.0672i 0.339283 + 0.487205i
\(517\) 1.54017i 0.0677365i
\(518\) −22.8767 + 43.8083i −1.00514 + 1.92483i
\(519\) 20.4136 0.896056
\(520\) −1.89314 14.8208i −0.0830198 0.649936i
\(521\) −25.3304 −1.10974 −0.554872 0.831936i \(-0.687233\pi\)
−0.554872 + 0.831936i \(0.687233\pi\)
\(522\) −31.9647 + 61.2116i −1.39906 + 2.67916i
\(523\) 16.7701i 0.733303i 0.930358 + 0.366652i \(0.119496\pi\)
−0.930358 + 0.366652i \(0.880504\pi\)
\(524\) −7.69486 + 5.35860i −0.336152 + 0.234092i
\(525\) 9.33286i 0.407319i
\(526\) 14.8954 + 7.77838i 0.649470 + 0.339153i
\(527\) 13.7089 0.597167
\(528\) 11.0574 29.9012i 0.481211 1.30128i
\(529\) 47.6687 2.07255
\(530\) −0.938755 0.490218i −0.0407769 0.0212937i
\(531\) 58.9688i 2.55903i
\(532\) 5.44788 3.79383i 0.236196 0.164484i
\(533\) 49.6852i 2.15210i
\(534\) −0.641387 + 1.22824i −0.0277555 + 0.0531511i
\(535\) 15.4289 0.667051
\(536\) 14.0605 1.79603i 0.607323 0.0775767i
\(537\) 8.04451 0.347146
\(538\) 4.69408 8.98905i 0.202376 0.387545i
\(539\) 11.3901i 0.490606i
\(540\) −6.12291 8.79239i −0.263488 0.378364i
\(541\) 39.1226i 1.68201i −0.541025 0.841006i \(-0.681964\pi\)
0.541025 0.841006i \(-0.318036\pi\)
\(542\) −23.8085 12.4328i −1.02266 0.534035i
\(543\) 7.97760 0.342351
\(544\) 10.9354 9.89202i 0.468851 0.424117i
\(545\) 1.73243 0.0742093
\(546\) −61.8030 32.2735i −2.64492 1.38118i
\(547\) 40.8808i 1.74794i −0.485981 0.873969i \(-0.661538\pi\)
0.485981 0.873969i \(-0.338462\pi\)
\(548\) −10.6276 15.2610i −0.453988 0.651920i
\(549\) 41.7156i 1.78038i
\(550\) 1.85563 3.55348i 0.0791242 0.151521i
\(551\) −9.95431 −0.424068
\(552\) 66.3139 8.47063i 2.82251 0.360534i
\(553\) 12.0355 0.511802
\(554\) 14.0689 26.9416i 0.597731 1.14464i
\(555\) 29.6012i 1.25650i
\(556\) 10.0948 7.02991i 0.428116 0.298135i
\(557\) 6.69684i 0.283754i −0.989884 0.141877i \(-0.954686\pi\)
0.989884 0.141877i \(-0.0453138\pi\)
\(558\) 32.3396 + 16.8877i 1.36904 + 0.714915i
\(559\) 12.6691 0.535844
\(560\) 12.4532 + 4.60518i 0.526245 + 0.194604i
\(561\) −20.7754 −0.877140
\(562\) −8.86445 4.62902i −0.373924 0.195263i
\(563\) 5.11081i 0.215395i 0.994184 + 0.107697i \(0.0343478\pi\)
−0.994184 + 0.107697i \(0.965652\pi\)
\(564\) 2.50727 1.74603i 0.105575 0.0735212i
\(565\) 10.1330i 0.426297i
\(566\) −13.9888 + 26.7882i −0.587993 + 1.12599i
\(567\) −1.14971 −0.0482833
\(568\) 2.14982 + 16.8302i 0.0902042 + 0.706180i
\(569\) 5.42508 0.227431 0.113716 0.993513i \(-0.463725\pi\)
0.113716 + 0.993513i \(0.463725\pi\)
\(570\) 1.84056 3.52463i 0.0770927 0.147631i
\(571\) 12.7480i 0.533487i −0.963768 0.266743i \(-0.914052\pi\)
0.963768 0.266743i \(-0.0859476\pi\)
\(572\) −17.1146 24.5762i −0.715596 1.02758i
\(573\) 37.0784i 1.54897i
\(574\) −39.1375 20.4376i −1.63357 0.853049i
\(575\) 8.40647 0.350574
\(576\) 37.9827 9.86443i 1.58261 0.411018i
\(577\) 30.0526 1.25111 0.625554 0.780181i \(-0.284873\pi\)
0.625554 + 0.780181i \(0.284873\pi\)
\(578\) 12.7930 + 6.68052i 0.532120 + 0.277873i
\(579\) 4.23663i 0.176068i
\(580\) −11.3772 16.3375i −0.472412 0.678376i
\(581\) 19.1445i 0.794248i
\(582\) −2.70823 + 5.18618i −0.112260 + 0.214974i
\(583\) −2.12275 −0.0879155
\(584\) 3.03373 + 23.7501i 0.125536 + 0.982785i
\(585\) −25.9126 −1.07135
\(586\) −21.4281 + 41.0343i −0.885186 + 1.69511i
\(587\) 25.0796i 1.03514i −0.855640 0.517572i \(-0.826836\pi\)
0.855640 0.517572i \(-0.173164\pi\)
\(588\) 18.5421 12.9125i 0.764665 0.532503i
\(589\) 5.25911i 0.216698i
\(590\) −15.0698 7.86943i −0.620412 0.323979i
\(591\) −2.36701 −0.0973657
\(592\) −39.4981 14.6063i −1.62336 0.600316i
\(593\) −20.4193 −0.838519 −0.419260 0.907866i \(-0.637710\pi\)
−0.419260 + 0.907866i \(0.637710\pi\)
\(594\) −19.0365 9.94087i −0.781078 0.407879i
\(595\) 8.65254i 0.354720i
\(596\) 35.1052 24.4468i 1.43796 1.00138i
\(597\) 6.71271i 0.274733i
\(598\) 29.0700 55.6683i 1.18876 2.27645i
\(599\) 37.1592 1.51828 0.759142 0.650925i \(-0.225619\pi\)
0.759142 + 0.650925i \(0.225619\pi\)
\(600\) 7.88844 1.00763i 0.322044 0.0411364i
\(601\) 28.3830 1.15777 0.578884 0.815410i \(-0.303488\pi\)
0.578884 + 0.815410i \(0.303488\pi\)
\(602\) −5.21132 + 9.97954i −0.212397 + 0.406736i
\(603\) 24.5834i 1.00111i
\(604\) 10.2703 + 14.7479i 0.417891 + 0.600084i
\(605\) 2.96472i 0.120533i
\(606\) 68.4935 + 35.7673i 2.78236 + 1.45295i
\(607\) −15.2365 −0.618432 −0.309216 0.950992i \(-0.600067\pi\)
−0.309216 + 0.950992i \(0.600067\pi\)
\(608\) 3.79486 + 4.19512i 0.153902 + 0.170135i
\(609\) −92.9021 −3.76458
\(610\) 10.6606 + 5.56697i 0.431635 + 0.225400i
\(611\) 2.87018i 0.116115i
\(612\) −14.6145 20.9861i −0.590755 0.848314i
\(613\) 48.0846i 1.94212i −0.238840 0.971059i \(-0.576767\pi\)
0.238840 0.971059i \(-0.423233\pi\)
\(614\) −4.26296 + 8.16346i −0.172039 + 0.329450i
\(615\) −26.4451 −1.06637
\(616\) 26.3989 3.37207i 1.06364 0.135865i
\(617\) 36.1598 1.45574 0.727870 0.685716i \(-0.240511\pi\)
0.727870 + 0.685716i \(0.240511\pi\)
\(618\) −0.562940 + 1.07802i −0.0226448 + 0.0433642i
\(619\) 11.2173i 0.450862i −0.974259 0.225431i \(-0.927621\pi\)
0.974259 0.225431i \(-0.0723790\pi\)
\(620\) −8.63148 + 6.01085i −0.346649 + 0.241402i
\(621\) 45.0347i 1.80718i
\(622\) 9.37152 + 4.89381i 0.375764 + 0.196224i
\(623\) −1.15671 −0.0463425
\(624\) 20.6060 55.7223i 0.824900 2.23068i
\(625\) 1.00000 0.0400000
\(626\) 30.0481 + 15.6911i 1.20096 + 0.627143i
\(627\) 7.97005i 0.318293i
\(628\) 20.9099 14.5614i 0.834397 0.581063i
\(629\) 27.4434i 1.09424i
\(630\) 10.6589 20.4116i 0.424662 0.813217i
\(631\) −39.9837 −1.59172 −0.795862 0.605478i \(-0.792982\pi\)
−0.795862 + 0.605478i \(0.792982\pi\)
\(632\) 1.29943 + 10.1728i 0.0516884 + 0.404652i
\(633\) −35.1695 −1.39786
\(634\) 3.25037 6.22438i 0.129089 0.247202i
\(635\) 19.0142i 0.754557i
\(636\) −2.40649 3.45568i −0.0954234 0.137026i
\(637\) 21.2260i 0.841004i
\(638\) −35.3724 18.4715i −1.40041 0.731293i
\(639\) 29.4258 1.16407
\(640\) −2.54792 + 11.0231i −0.100715 + 0.435725i
\(641\) 45.4061 1.79343 0.896717 0.442605i \(-0.145945\pi\)
0.896717 + 0.442605i \(0.145945\pi\)
\(642\) 54.3813 + 28.3979i 2.14626 + 1.12078i
\(643\) 24.4753i 0.965212i 0.875838 + 0.482606i \(0.160310\pi\)
−0.875838 + 0.482606i \(0.839690\pi\)
\(644\) 31.8927 + 45.7974i 1.25675 + 1.80467i
\(645\) 6.74316i 0.265512i
\(646\) 1.70640 3.26770i 0.0671372 0.128566i
\(647\) −7.35538 −0.289170 −0.144585 0.989492i \(-0.546185\pi\)
−0.144585 + 0.989492i \(0.546185\pi\)
\(648\) −0.124130 0.971772i −0.00487628 0.0381748i
\(649\) −34.0764 −1.33762
\(650\) 3.45805 6.62208i 0.135636 0.259739i
\(651\) 49.0825i 1.92370i
\(652\) −24.0831 + 16.7711i −0.943166 + 0.656808i
\(653\) 17.7124i 0.693138i −0.938024 0.346569i \(-0.887347\pi\)
0.938024 0.346569i \(-0.112653\pi\)
\(654\) 6.10619 + 3.18865i 0.238771 + 0.124686i
\(655\) −4.68843 −0.183192
\(656\) 13.0490 35.2868i 0.509478 1.37772i
\(657\) 41.5244 1.62002
\(658\) 2.26087 + 1.18063i 0.0881378 + 0.0460256i
\(659\) 16.7955i 0.654259i −0.944980 0.327129i \(-0.893919\pi\)
0.944980 0.327129i \(-0.106081\pi\)
\(660\) 13.0808 9.10930i 0.509169 0.354579i
\(661\) 24.1089i 0.937729i 0.883270 + 0.468864i \(0.155337\pi\)
−0.883270 + 0.468864i \(0.844663\pi\)
\(662\) 12.1229 23.2151i 0.471171 0.902280i
\(663\) −38.7161 −1.50361
\(664\) −16.1816 + 2.06696i −0.627966 + 0.0802136i
\(665\) 3.31936 0.128719
\(666\) −33.8072 + 64.7398i −1.31000 + 2.50862i
\(667\) 83.6805i 3.24012i
\(668\) −6.25305 8.97927i −0.241938 0.347418i
\(669\) 18.2386i 0.705146i
\(670\) 6.28239 + 3.28066i 0.242710 + 0.126743i
\(671\) 24.1062 0.930610
\(672\) 35.4169 + 39.1525i 1.36624 + 1.51034i
\(673\) −45.9583 −1.77156 −0.885780 0.464105i \(-0.846376\pi\)
−0.885780 + 0.464105i \(0.846376\pi\)
\(674\) 5.97853 + 3.12199i 0.230284 + 0.120255i
\(675\) 5.35715i 0.206197i
\(676\) −17.0356 24.4628i −0.655215 0.940878i
\(677\) 3.33276i 0.128088i −0.997947 0.0640441i \(-0.979600\pi\)
0.997947 0.0640441i \(-0.0203998\pi\)
\(678\) −18.6503 + 35.7149i −0.716262 + 1.37162i
\(679\) −4.88415 −0.187436
\(680\) 7.31341 0.934182i 0.280456 0.0358242i
\(681\) −52.5386 −2.01328
\(682\) −9.75894 + 18.6881i −0.373689 + 0.715605i
\(683\) 12.8851i 0.493034i 0.969139 + 0.246517i \(0.0792860\pi\)
−0.969139 + 0.246517i \(0.920714\pi\)
\(684\) 8.05087 5.60652i 0.307833 0.214371i
\(685\) 9.29846i 0.355276i
\(686\) −12.4078 6.47933i −0.473730 0.247382i
\(687\) −46.1947 −1.76244
\(688\) −8.99767 3.32732i −0.343033 0.126853i
\(689\) −3.95586 −0.150706
\(690\) 29.6297 + 15.4726i 1.12798 + 0.589033i
\(691\) 3.25907i 0.123981i 0.998077 + 0.0619904i \(0.0197448\pi\)
−0.998077 + 0.0619904i \(0.980255\pi\)
\(692\) −11.9160 + 8.29817i −0.452980 + 0.315449i
\(693\) 46.1556i 1.75331i
\(694\) 16.6512 31.8866i 0.632071 1.21040i
\(695\) 6.15072 0.233310
\(696\) −10.0303 78.5239i −0.380197 2.97644i
\(697\) −24.5174 −0.928664
\(698\) −0.127815 + 0.244763i −0.00483787 + 0.00926440i
\(699\) 21.8448i 0.826247i
\(700\) 3.79383 + 5.44788i 0.143393 + 0.205911i
\(701\) 20.7425i 0.783435i 0.920085 + 0.391718i \(0.128119\pi\)
−0.920085 + 0.391718i \(0.871881\pi\)
\(702\) −35.4755 18.5253i −1.33894 0.699192i
\(703\) −10.5281 −0.397074
\(704\) 5.70037 + 21.9491i 0.214841 + 0.827239i
\(705\) 1.52766 0.0575352
\(706\) −26.9052 14.0499i −1.01259 0.528775i
\(707\) 64.5046i 2.42594i
\(708\) −38.6311 55.4736i −1.45185 2.08483i
\(709\) 10.5229i 0.395195i 0.980283 + 0.197598i \(0.0633139\pi\)
−0.980283 + 0.197598i \(0.936686\pi\)
\(710\) −3.92690 + 7.51990i −0.147374 + 0.282217i
\(711\) 17.7860 0.667029
\(712\) −0.124885 0.977687i −0.00468028 0.0366404i
\(713\) −44.2105 −1.65570
\(714\) 15.9255 30.4970i 0.595999 1.14132i
\(715\) 14.9741i 0.560001i
\(716\) −4.69583 + 3.27012i −0.175491 + 0.122210i
\(717\) 54.5752i 2.03815i
\(718\) 1.75181 + 0.914798i 0.0653771 + 0.0341400i
\(719\) −33.5457 −1.25104 −0.625521 0.780207i \(-0.715114\pi\)
−0.625521 + 0.780207i \(0.715114\pi\)
\(720\) 18.4033 + 6.80552i 0.685852 + 0.253627i
\(721\) −1.01523 −0.0378093
\(722\) 1.25358 + 0.654621i 0.0466535 + 0.0243625i
\(723\) 41.2714i 1.53490i
\(724\) −4.65677 + 3.24292i −0.173068 + 0.120522i
\(725\) 9.95431i 0.369694i
\(726\) −5.45675 + 10.4495i −0.202519 + 0.387819i
\(727\) −18.7931 −0.696999 −0.348499 0.937309i \(-0.613309\pi\)
−0.348499 + 0.937309i \(0.613309\pi\)
\(728\) 49.1956 6.28402i 1.82331 0.232901i
\(729\) 43.4881 1.61067
\(730\) −5.54146 + 10.6118i −0.205099 + 0.392759i
\(731\) 6.25162i 0.231224i
\(732\) 27.3283 + 39.2430i 1.01008 + 1.45046i
\(733\) 45.0389i 1.66355i −0.555114 0.831775i \(-0.687325\pi\)
0.555114 0.831775i \(-0.312675\pi\)
\(734\) 5.29923 + 2.76726i 0.195598 + 0.102141i
\(735\) 11.2976 0.416719
\(736\) −35.2661 + 31.9014i −1.29993 + 1.17590i
\(737\) 14.2060 0.523285
\(738\) −57.8373 30.2027i −2.12902 1.11178i
\(739\) 13.2938i 0.489019i −0.969647 0.244509i \(-0.921373\pi\)
0.969647 0.244509i \(-0.0786269\pi\)
\(740\) −12.0330 17.2791i −0.442341 0.635194i
\(741\) 14.8526i 0.545623i
\(742\) 1.62721 3.11607i 0.0597368 0.114394i
\(743\) 15.3277 0.562319 0.281159 0.959661i \(-0.409281\pi\)
0.281159 + 0.959661i \(0.409281\pi\)
\(744\) −41.4861 + 5.29925i −1.52096 + 0.194280i
\(745\) 21.3894 0.783645
\(746\) 10.5329 20.1702i 0.385637 0.738485i
\(747\) 28.2917i 1.03514i
\(748\) 12.1273 8.44528i 0.443417 0.308790i
\(749\) 51.2142i 1.87133i
\(750\) 3.52463 + 1.84056i 0.128701 + 0.0672078i
\(751\) −47.2604 −1.72456 −0.862278 0.506436i \(-0.830963\pi\)
−0.862278 + 0.506436i \(0.830963\pi\)
\(752\) −0.753806 + 2.03843i −0.0274885 + 0.0743337i
\(753\) 36.2589 1.32135
\(754\) −65.9182 34.4225i −2.40060 1.25359i
\(755\) 8.98581i 0.327027i
\(756\) 29.1851 20.3241i 1.06145 0.739182i
\(757\) 18.8829i 0.686312i 0.939279 + 0.343156i \(0.111496\pi\)
−0.939279 + 0.343156i \(0.888504\pi\)
\(758\) 5.32751 10.2021i 0.193504 0.370555i
\(759\) 66.9999 2.43194
\(760\) 0.358379 + 2.80563i 0.0129998 + 0.101771i
\(761\) −52.4552 −1.90150 −0.950749 0.309961i \(-0.899684\pi\)
−0.950749 + 0.309961i \(0.899684\pi\)
\(762\) 34.9969 67.0181i 1.26780 2.42781i
\(763\) 5.75057i 0.208185i
\(764\) −15.0725 21.6438i −0.545303 0.783046i
\(765\) 12.7867i 0.462304i
\(766\) 24.6538 + 12.8742i 0.890776 + 0.465164i
\(767\) −63.5030 −2.29296
\(768\) −29.2691 + 34.1626i −1.05616 + 1.23274i
\(769\) −7.79501 −0.281095 −0.140548 0.990074i \(-0.544886\pi\)
−0.140548 + 0.990074i \(0.544886\pi\)
\(770\) 11.7953 + 6.15949i 0.425072 + 0.221973i
\(771\) 68.9270i 2.48235i
\(772\) −1.72220 2.47305i −0.0619834 0.0890071i
\(773\) 1.94467i 0.0699447i −0.999388 0.0349724i \(-0.988866\pi\)
0.999388 0.0349724i \(-0.0111343\pi\)
\(774\) −7.70127 + 14.7477i −0.276817 + 0.530097i
\(775\) −5.25911 −0.188913
\(776\) −0.527322 4.12824i −0.0189298 0.148195i
\(777\) −98.2570 −3.52495
\(778\) 1.41574 2.71111i 0.0507569 0.0971981i
\(779\) 9.40558i 0.336990i
\(780\) 24.3767 16.9756i 0.872826 0.607825i
\(781\) 17.0043i 0.608463i
\(782\) 27.4698 + 14.3448i 0.982319 + 0.512967i
\(783\) −53.3267 −1.90574
\(784\) −5.57466 + 15.0749i −0.199095 + 0.538388i
\(785\) 12.7403 0.454720
\(786\) −16.5250 8.62935i −0.589427 0.307799i
\(787\) 7.81971i 0.278742i −0.990240 0.139371i \(-0.955492\pi\)
0.990240 0.139371i \(-0.0445081\pi\)
\(788\) 1.38170 0.962196i 0.0492209 0.0342768i
\(789\) 33.4087i 1.18938i
\(790\) −2.37356 + 4.54530i −0.0844474 + 0.161715i
\(791\) −33.6349 −1.19592
\(792\) 39.0122 4.98324i 1.38624 0.177072i
\(793\) 44.9231 1.59527
\(794\) −8.44291 + 16.1680i −0.299628 + 0.573779i
\(795\) 2.10552i 0.0746751i
\(796\) 2.72874 + 3.91842i 0.0967175 + 0.138885i
\(797\) 6.59089i 0.233461i −0.993164 0.116731i \(-0.962759\pi\)
0.993164 0.116731i \(-0.0372414\pi\)
\(798\) 11.6995 + 6.10949i 0.414158 + 0.216274i
\(799\) 1.41631 0.0501053
\(800\) −4.19512 + 3.79486i −0.148320 + 0.134169i
\(801\) −1.70938 −0.0603980
\(802\) 26.5580 + 13.8686i 0.937795 + 0.489717i
\(803\) 23.9958i 0.846793i
\(804\) 16.1048 + 23.1263i 0.567973 + 0.815600i
\(805\) 27.9041i 0.983490i
\(806\) −18.1863 + 34.8262i −0.640584 + 1.22670i
\(807\) 20.1614 0.709715
\(808\) −54.5213 + 6.96431i −1.91805 + 0.245004i
\(809\) 5.89457 0.207242 0.103621 0.994617i \(-0.466957\pi\)
0.103621 + 0.994617i \(0.466957\pi\)
\(810\) 0.226738 0.434197i 0.00796676 0.0152561i
\(811\) 35.8912i 1.26031i 0.776469 + 0.630156i \(0.217009\pi\)
−0.776469 + 0.630156i \(0.782991\pi\)
\(812\) 54.2299 37.7650i 1.90310 1.32529i
\(813\) 53.3998i 1.87281i
\(814\) −37.4113 19.5362i −1.31126 0.684743i
\(815\) −14.6737 −0.513996
\(816\) 27.4965 + 10.1681i 0.962569 + 0.355956i
\(817\) −2.39830 −0.0839058
\(818\) −31.7360 16.5725i −1.10962 0.579445i
\(819\) 86.0132i 3.00555i
\(820\) 15.4369 10.7500i 0.539078 0.375407i
\(821\) 35.6458i 1.24405i −0.782999 0.622023i \(-0.786311\pi\)
0.782999 0.622023i \(-0.213689\pi\)
\(822\) 17.1144 32.7736i 0.596933 1.14311i
\(823\) 14.0411 0.489444 0.244722 0.969593i \(-0.421303\pi\)
0.244722 + 0.969593i \(0.421303\pi\)
\(824\) −0.109611 0.858109i −0.00381848 0.0298936i
\(825\) 7.97005 0.277481
\(826\) 26.1215 50.0219i 0.908882 1.74049i
\(827\) 6.38058i 0.221874i −0.993827 0.110937i \(-0.964615\pi\)
0.993827 0.110937i \(-0.0353853\pi\)
\(828\) 47.1310 + 67.6794i 1.63792 + 2.35202i
\(829\) 20.3087i 0.705351i 0.935746 + 0.352675i \(0.114728\pi\)
−0.935746 + 0.352675i \(0.885272\pi\)
\(830\) −7.23008 3.77555i −0.250960 0.131051i
\(831\) 60.4269 2.09619
\(832\) 10.6229 + 40.9033i 0.368283 + 1.41807i
\(833\) 10.4741 0.362905
\(834\) 21.6790 + 11.3208i 0.750683 + 0.392007i
\(835\) 5.47101i 0.189332i
\(836\) 3.23985 + 4.65237i 0.112052 + 0.160905i
\(837\) 28.1738i 0.973830i
\(838\) −10.6092 + 20.3164i −0.366490 + 0.701819i
\(839\) 10.2876 0.355168 0.177584 0.984106i \(-0.443172\pi\)
0.177584 + 0.984106i \(0.443172\pi\)
\(840\) 3.34470 + 26.1846i 0.115403 + 0.903453i
\(841\) −70.0882 −2.41683
\(842\) 7.35407 14.0829i 0.253438 0.485327i
\(843\) 19.8819i 0.684771i
\(844\) 20.5295 14.2965i 0.706655 0.492106i
\(845\) 14.9050i 0.512749i
\(846\) 3.34110 + 1.74473i 0.114870 + 0.0599849i
\(847\) −9.84097 −0.338140
\(848\) 2.80948 + 1.03894i 0.0964781 + 0.0356774i
\(849\) −60.0828 −2.06204
\(850\) 3.26770 + 1.70640i 0.112081 + 0.0585289i
\(851\) 88.5039i 3.03387i
\(852\) −27.6817 + 19.2772i −0.948360 + 0.660425i
\(853\) 20.5672i 0.704208i 0.935961 + 0.352104i \(0.114534\pi\)
−0.935961 + 0.352104i \(0.885466\pi\)
\(854\) −18.4788 + 35.3864i −0.632331 + 1.21090i
\(855\) 4.90534 0.167759
\(856\) −43.2879 + 5.52940i −1.47955 + 0.188991i
\(857\) 26.6763 0.911245 0.455623 0.890173i \(-0.349417\pi\)
0.455623 + 0.890173i \(0.349417\pi\)
\(858\) 27.5608 52.7783i 0.940912 1.80182i
\(859\) 5.04151i 0.172014i 0.996295 + 0.0860071i \(0.0274108\pi\)
−0.996295 + 0.0860071i \(0.972589\pi\)
\(860\) −2.74111 3.93619i −0.0934712 0.134223i
\(861\) 87.7809i 2.99157i
\(862\) −7.79035 4.06812i −0.265341 0.138561i
\(863\) 29.8424 1.01585 0.507923 0.861402i \(-0.330413\pi\)
0.507923 + 0.861402i \(0.330413\pi\)
\(864\) 20.3296 + 22.4739i 0.691628 + 0.764577i
\(865\) −7.26036 −0.246860
\(866\) 9.04754 + 4.72463i 0.307448 + 0.160549i
\(867\) 28.6933i 0.974476i
\(868\) −19.9522 28.6510i −0.677221 0.972478i
\(869\) 10.2780i 0.348659i
\(870\) 18.3215 35.0852i 0.621158 1.18950i
\(871\) 26.4736 0.897024
\(872\) −4.86057 + 0.620867i −0.164600 + 0.0210252i
\(873\) −7.21778 −0.244285
\(874\) −5.50305 + 10.5382i −0.186144 + 0.356460i
\(875\) 3.31936i 0.112215i
\(876\) −39.0632 + 27.2031i −1.31982 + 0.919108i
\(877\) 38.9434i 1.31502i −0.753444 0.657512i \(-0.771609\pi\)
0.753444 0.657512i \(-0.228391\pi\)
\(878\) −14.6744 7.66299i −0.495238 0.258613i
\(879\) −92.0352 −3.10427
\(880\) −3.93271 + 10.6348i −0.132572 + 0.358498i
\(881\) −5.08894 −0.171451 −0.0857253 0.996319i \(-0.527321\pi\)
−0.0857253 + 0.996319i \(0.527321\pi\)
\(882\) 24.7086 + 12.9029i 0.831983 + 0.434462i
\(883\) 32.1786i 1.08290i 0.840734 + 0.541448i \(0.182124\pi\)
−0.840734 + 0.541448i \(0.817876\pi\)
\(884\) 22.5998 15.7382i 0.760113 0.529333i
\(885\) 33.7997i 1.13617i
\(886\) 3.61643 6.92538i 0.121496 0.232663i
\(887\) 11.3435 0.380877 0.190439 0.981699i \(-0.439009\pi\)
0.190439 + 0.981699i \(0.439009\pi\)
\(888\) −10.6084 83.0500i −0.355996 2.78698i
\(889\) 63.1151 2.11681
\(890\) 0.228118 0.436840i 0.00764653 0.0146429i
\(891\) 0.981826i 0.0328924i
\(892\) 7.41406 + 10.6465i 0.248241 + 0.356470i
\(893\) 0.543335i 0.0181820i
\(894\) 75.3896 + 39.3684i 2.52140 + 1.31668i
\(895\) −2.86114 −0.0956374
\(896\) −36.5895 8.45746i −1.22237 0.282544i
\(897\) 124.858 4.16888
\(898\) −35.4651 18.5199i −1.18349 0.618016i
\(899\) 52.3508i 1.74600i
\(900\) 5.60652 + 8.05087i 0.186884 + 0.268362i
\(901\) 1.95204i 0.0650319i
\(902\) 17.4532 33.4225i 0.581130 1.11285i
\(903\) −22.3830 −0.744858
\(904\) −3.63143 28.4293i −0.120780 0.945545i
\(905\) −2.83734 −0.0943164
\(906\) −16.5389 + 31.6716i −0.549469 + 1.05222i
\(907\) 28.4150i 0.943504i 0.881731 + 0.471752i \(0.156378\pi\)
−0.881731 + 0.471752i \(0.843622\pi\)
\(908\) 30.6684 21.3571i 1.01777 0.708761i
\(909\) 95.3247i 3.16172i
\(910\) 21.9811 + 11.4785i 0.728666 + 0.380509i
\(911\) −36.4986 −1.20925 −0.604627 0.796509i \(-0.706678\pi\)
−0.604627 + 0.796509i \(0.706678\pi\)
\(912\) −3.90079 + 10.5484i −0.129168 + 0.349293i
\(913\) −16.3490 −0.541072
\(914\) −30.3042 15.8249i −1.00238 0.523441i
\(915\) 23.9105i 0.790457i
\(916\) 26.9653 18.7783i 0.890958 0.620452i
\(917\) 15.5626i 0.513922i
\(918\) 9.14141 17.5056i 0.301712 0.577770i
\(919\) −7.16571 −0.236375 −0.118187 0.992991i \(-0.537708\pi\)
−0.118187 + 0.992991i \(0.537708\pi\)
\(920\) −23.5854 + 3.01270i −0.777589 + 0.0993257i
\(921\) −18.3097 −0.603326
\(922\) 10.7946 20.6714i 0.355502 0.680778i
\(923\) 31.6884i 1.04304i
\(924\) 30.2370 + 43.4199i 0.994726 + 1.42841i
\(925\) 10.5281i 0.346161i
\(926\) 22.0673 + 11.5236i 0.725178 + 0.378688i
\(927\) −1.50031 −0.0492767
\(928\) 37.7752 + 41.7595i 1.24003 + 1.37082i
\(929\) 5.27223 0.172976 0.0864881 0.996253i \(-0.472436\pi\)
0.0864881 + 0.996253i \(0.472436\pi\)
\(930\) −18.5364 9.67972i −0.607833 0.317410i
\(931\) 4.01815i 0.131690i
\(932\) −8.87998 12.7515i −0.290873 0.417689i
\(933\) 21.0192i 0.688139i
\(934\) −3.30776 + 6.33428i −0.108233 + 0.207264i
\(935\) 7.38907 0.241649
\(936\) 72.7012 9.28652i 2.37631 0.303539i
\(937\) 0.678255 0.0221576 0.0110788 0.999939i \(-0.496473\pi\)
0.0110788 + 0.999939i \(0.496473\pi\)
\(938\) −10.8897 + 20.8535i −0.355562 + 0.680891i
\(939\) 67.3945i 2.19934i
\(940\) −0.891745 + 0.621000i −0.0290855 + 0.0202548i
\(941\) 16.1758i 0.527317i 0.964616 + 0.263658i \(0.0849292\pi\)
−0.964616 + 0.263658i \(0.915071\pi\)
\(942\) 44.9048 + 23.4493i 1.46308 + 0.764019i
\(943\) 79.0677 2.57480
\(944\) 45.1004 + 16.6780i 1.46789 + 0.542824i
\(945\) 17.7823 0.578458
\(946\) −8.52230 4.45034i −0.277084 0.144693i
\(947\) 32.6924i 1.06236i 0.847259 + 0.531179i \(0.178251\pi\)
−0.847259 + 0.531179i \(0.821749\pi\)
\(948\) −16.7318 + 11.6518i −0.543425 + 0.378434i
\(949\) 44.7173i 1.45159i
\(950\) −0.654621 + 1.25358i −0.0212387 + 0.0406716i
\(951\) 13.9606 0.452703
\(952\) 3.10089 + 24.2758i 0.100500 + 0.786785i
\(953\) 14.0549 0.455284 0.227642 0.973745i \(-0.426898\pi\)
0.227642 + 0.973745i \(0.426898\pi\)
\(954\) 2.40469 4.60492i 0.0778547 0.149090i
\(955\) 13.1874i 0.426736i
\(956\) −22.1850 31.8573i −0.717514 1.03034i
\(957\) 79.3363i 2.56458i
\(958\) 34.8929 + 18.2211i 1.12734 + 0.588696i
\(959\) 30.8649 0.996681
\(960\) −21.7709 + 5.65409i −0.702654 + 0.182485i
\(961\) −3.34178 −0.107799
\(962\) −69.7178 36.4066i −2.24779 1.17380i
\(963\) 75.6842i 2.43889i
\(964\) 16.7769 + 24.0914i 0.540349 + 0.775932i
\(965\) 1.50682i 0.0485061i
\(966\) −51.3592 + 98.3516i −1.65246 + 3.16441i
\(967\) −1.84780 −0.0594213 −0.0297107 0.999559i \(-0.509459\pi\)
−0.0297107 + 0.999559i \(0.509459\pi\)
\(968\) −1.06249 8.31791i −0.0341498 0.267348i
\(969\) 7.32908 0.235444
\(970\) 0.963218 1.84454i 0.0309271 0.0592245i
\(971\) 23.1458i 0.742785i 0.928476 + 0.371392i \(0.121119\pi\)
−0.928476 + 0.371392i \(0.878881\pi\)
\(972\) −24.7788 + 17.2557i −0.794782 + 0.553476i
\(973\) 20.4165i 0.654521i
\(974\) 13.2594 + 6.92405i 0.424858 + 0.221861i
\(975\) 14.8526 0.475663
\(976\) −31.9048 11.7983i −1.02125 0.377655i
\(977\) 32.5595 1.04167 0.520835 0.853657i \(-0.325621\pi\)
0.520835 + 0.853657i \(0.325621\pi\)
\(978\) −51.7192 27.0078i −1.65380 0.863614i
\(979\) 0.987802i 0.0315703i
\(980\) −6.59477 + 4.59251i −0.210662 + 0.146702i
\(981\) 8.49818i 0.271326i
\(982\) 11.6556 22.3202i 0.371946 0.712268i
\(983\) −55.6094 −1.77366 −0.886832 0.462092i \(-0.847099\pi\)
−0.886832 + 0.462092i \(0.847099\pi\)
\(984\) 74.1953 9.47737i 2.36526 0.302128i
\(985\) 0.841859 0.0268239
\(986\) 16.9860 32.5277i 0.540944 1.03589i
\(987\) 5.07087i 0.161407i
\(988\) 6.03762 + 8.66991i 0.192082 + 0.275827i
\(989\) 20.1612i 0.641089i
\(990\) 17.4310 + 9.10249i 0.553995 + 0.289296i
\(991\) 21.1785 0.672756 0.336378 0.941727i \(-0.390798\pi\)
0.336378 + 0.941727i \(0.390798\pi\)
\(992\) 22.0626 19.9576i 0.700488 0.633654i
\(993\) 52.0688 1.65235
\(994\) −24.9613 13.0348i −0.791723 0.413438i
\(995\) 2.38747i 0.0756878i
\(996\) −18.5342 26.6148i −0.587279 0.843323i
\(997\) 10.7365i 0.340028i −0.985442 0.170014i \(-0.945619\pi\)
0.985442 0.170014i \(-0.0543814\pi\)
\(998\) −4.23202 + 8.10421i −0.133962 + 0.256534i
\(999\) −56.4005 −1.78443
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 760.2.f.b.381.7 44
4.3 odd 2 3040.2.f.b.1521.39 44
8.3 odd 2 3040.2.f.b.1521.6 44
8.5 even 2 inner 760.2.f.b.381.8 yes 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
760.2.f.b.381.7 44 1.1 even 1 trivial
760.2.f.b.381.8 yes 44 8.5 even 2 inner
3040.2.f.b.1521.6 44 8.3 odd 2
3040.2.f.b.1521.39 44 4.3 odd 2