Properties

Label 760.2.f.b.381.15
Level $760$
Weight $2$
Character 760.381
Analytic conductor $6.069$
Analytic rank $0$
Dimension $44$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [760,2,Mod(381,760)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("760.381"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(760, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 760 = 2^{3} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 760.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [44] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.06863055362\)
Analytic rank: \(0\)
Dimension: \(44\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 381.15
Character \(\chi\) \(=\) 760.381
Dual form 760.2.f.b.381.16

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.676154 - 1.24210i) q^{2} +1.70163i q^{3} +(-1.08563 + 1.67970i) q^{4} +1.00000i q^{5} +(2.11360 - 1.15057i) q^{6} +1.91794 q^{7} +(2.82042 + 0.212725i) q^{8} +0.104446 q^{9} +(1.24210 - 0.676154i) q^{10} -4.53978i q^{11} +(-2.85824 - 1.84735i) q^{12} -3.96750i q^{13} +(-1.29683 - 2.38228i) q^{14} -1.70163 q^{15} +(-1.64281 - 3.64708i) q^{16} +1.87557 q^{17} +(-0.0706218 - 0.129733i) q^{18} +1.00000i q^{19} +(-1.67970 - 1.08563i) q^{20} +3.26364i q^{21} +(-5.63886 + 3.06959i) q^{22} +5.88514 q^{23} +(-0.361980 + 4.79931i) q^{24} -1.00000 q^{25} +(-4.92804 + 2.68264i) q^{26} +5.28263i q^{27} +(-2.08218 + 3.22158i) q^{28} +9.11883i q^{29} +(1.15057 + 2.11360i) q^{30} +10.2385 q^{31} +(-3.41925 + 4.50652i) q^{32} +7.72503 q^{33} +(-1.26817 - 2.32964i) q^{34} +1.91794i q^{35} +(-0.113390 + 0.175439i) q^{36} -4.77120i q^{37} +(1.24210 - 0.676154i) q^{38} +6.75123 q^{39} +(-0.212725 + 2.82042i) q^{40} +1.03479 q^{41} +(4.05377 - 2.20672i) q^{42} -6.88595i q^{43} +(7.62548 + 4.92852i) q^{44} +0.104446i q^{45} +(-3.97926 - 7.30994i) q^{46} -8.52598 q^{47} +(6.20599 - 2.79546i) q^{48} -3.32149 q^{49} +(0.676154 + 1.24210i) q^{50} +3.19153i q^{51} +(6.66423 + 4.30724i) q^{52} +4.21648i q^{53} +(6.56156 - 3.57187i) q^{54} +4.53978 q^{55} +(5.40940 + 0.407994i) q^{56} -1.70163 q^{57} +(11.3265 - 6.16573i) q^{58} +5.57956i q^{59} +(1.84735 - 2.85824i) q^{60} +1.67139i q^{61} +(-6.92281 - 12.7173i) q^{62} +0.200322 q^{63} +(7.90950 + 1.19995i) q^{64} +3.96750 q^{65} +(-5.22331 - 9.59527i) q^{66} +8.44650i q^{67} +(-2.03617 + 3.15040i) q^{68} +10.0143i q^{69} +(2.38228 - 1.29683i) q^{70} +13.9445 q^{71} +(0.294582 + 0.0222183i) q^{72} -7.89229 q^{73} +(-5.92631 + 3.22607i) q^{74} -1.70163i q^{75} +(-1.67970 - 1.08563i) q^{76} -8.70703i q^{77} +(-4.56487 - 8.38571i) q^{78} +6.65433 q^{79} +(3.64708 - 1.64281i) q^{80} -8.67575 q^{81} +(-0.699679 - 1.28532i) q^{82} -8.65418i q^{83} +(-5.48194 - 3.54310i) q^{84} +1.87557i q^{85} +(-8.55305 + 4.65597i) q^{86} -15.5169 q^{87} +(0.965723 - 12.8041i) q^{88} -4.77053 q^{89} +(0.129733 - 0.0706218i) q^{90} -7.60944i q^{91} +(-6.38909 + 9.88529i) q^{92} +17.4222i q^{93} +(5.76488 + 10.5901i) q^{94} -1.00000 q^{95} +(-7.66845 - 5.81830i) q^{96} -3.50972 q^{97} +(2.24584 + 4.12563i) q^{98} -0.474163i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q + 2 q^{2} - 2 q^{4} - 6 q^{6} + 4 q^{7} + 8 q^{8} - 60 q^{9} + 4 q^{12} + 4 q^{14} - 6 q^{16} + 24 q^{17} - 14 q^{18} - 4 q^{20} - 4 q^{22} + 4 q^{23} + 2 q^{24} - 44 q^{25} + 18 q^{26} - 14 q^{28}+ \cdots + 78 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/760\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(381\) \(401\) \(457\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.676154 1.24210i −0.478113 0.878298i
\(3\) 1.70163i 0.982438i 0.871036 + 0.491219i \(0.163449\pi\)
−0.871036 + 0.491219i \(0.836551\pi\)
\(4\) −1.08563 + 1.67970i −0.542816 + 0.839852i
\(5\) 1.00000i 0.447214i
\(6\) 2.11360 1.15057i 0.862874 0.469717i
\(7\) 1.91794 0.724915 0.362457 0.932000i \(-0.381938\pi\)
0.362457 + 0.932000i \(0.381938\pi\)
\(8\) 2.82042 + 0.212725i 0.997168 + 0.0752096i
\(9\) 0.104446 0.0348155
\(10\) 1.24210 0.676154i 0.392787 0.213819i
\(11\) 4.53978i 1.36879i −0.729110 0.684397i \(-0.760066\pi\)
0.729110 0.684397i \(-0.239934\pi\)
\(12\) −2.85824 1.84735i −0.825103 0.533283i
\(13\) 3.96750i 1.10039i −0.835037 0.550193i \(-0.814554\pi\)
0.835037 0.550193i \(-0.185446\pi\)
\(14\) −1.29683 2.38228i −0.346591 0.636691i
\(15\) −1.70163 −0.439360
\(16\) −1.64281 3.64708i −0.410703 0.911769i
\(17\) 1.87557 0.454892 0.227446 0.973791i \(-0.426963\pi\)
0.227446 + 0.973791i \(0.426963\pi\)
\(18\) −0.0706218 0.129733i −0.0166457 0.0305784i
\(19\) 1.00000i 0.229416i
\(20\) −1.67970 1.08563i −0.375593 0.242754i
\(21\) 3.26364i 0.712184i
\(22\) −5.63886 + 3.06959i −1.20221 + 0.654438i
\(23\) 5.88514 1.22714 0.613568 0.789642i \(-0.289734\pi\)
0.613568 + 0.789642i \(0.289734\pi\)
\(24\) −0.361980 + 4.79931i −0.0738888 + 0.979656i
\(25\) −1.00000 −0.200000
\(26\) −4.92804 + 2.68264i −0.966468 + 0.526110i
\(27\) 5.28263i 1.01664i
\(28\) −2.08218 + 3.22158i −0.393495 + 0.608821i
\(29\) 9.11883i 1.69332i 0.532131 + 0.846662i \(0.321391\pi\)
−0.532131 + 0.846662i \(0.678609\pi\)
\(30\) 1.15057 + 2.11360i 0.210064 + 0.385889i
\(31\) 10.2385 1.83889 0.919446 0.393217i \(-0.128638\pi\)
0.919446 + 0.393217i \(0.128638\pi\)
\(32\) −3.41925 + 4.50652i −0.604443 + 0.796648i
\(33\) 7.72503 1.34476
\(34\) −1.26817 2.32964i −0.217490 0.399531i
\(35\) 1.91794i 0.324192i
\(36\) −0.113390 + 0.175439i −0.0188984 + 0.0292398i
\(37\) 4.77120i 0.784381i −0.919884 0.392190i \(-0.871717\pi\)
0.919884 0.392190i \(-0.128283\pi\)
\(38\) 1.24210 0.676154i 0.201495 0.109687i
\(39\) 6.75123 1.08106
\(40\) −0.212725 + 2.82042i −0.0336348 + 0.445947i
\(41\) 1.03479 0.161607 0.0808037 0.996730i \(-0.474251\pi\)
0.0808037 + 0.996730i \(0.474251\pi\)
\(42\) 4.05377 2.20672i 0.625510 0.340504i
\(43\) 6.88595i 1.05010i −0.851072 0.525049i \(-0.824047\pi\)
0.851072 0.525049i \(-0.175953\pi\)
\(44\) 7.62548 + 4.92852i 1.14958 + 0.743002i
\(45\) 0.104446i 0.0155699i
\(46\) −3.97926 7.30994i −0.586710 1.07779i
\(47\) −8.52598 −1.24364 −0.621821 0.783159i \(-0.713607\pi\)
−0.621821 + 0.783159i \(0.713607\pi\)
\(48\) 6.20599 2.79546i 0.895757 0.403490i
\(49\) −3.32149 −0.474499
\(50\) 0.676154 + 1.24210i 0.0956226 + 0.175660i
\(51\) 3.19153i 0.446903i
\(52\) 6.66423 + 4.30724i 0.924162 + 0.597307i
\(53\) 4.21648i 0.579177i 0.957151 + 0.289589i \(0.0935185\pi\)
−0.957151 + 0.289589i \(0.906481\pi\)
\(54\) 6.56156 3.57187i 0.892915 0.486070i
\(55\) 4.53978 0.612143
\(56\) 5.40940 + 0.407994i 0.722861 + 0.0545206i
\(57\) −1.70163 −0.225387
\(58\) 11.3265 6.16573i 1.48724 0.809600i
\(59\) 5.57956i 0.726397i 0.931712 + 0.363199i \(0.118315\pi\)
−0.931712 + 0.363199i \(0.881685\pi\)
\(60\) 1.84735 2.85824i 0.238491 0.368997i
\(61\) 1.67139i 0.214000i 0.994259 + 0.107000i \(0.0341245\pi\)
−0.994259 + 0.107000i \(0.965876\pi\)
\(62\) −6.92281 12.7173i −0.879198 1.61509i
\(63\) 0.200322 0.0252382
\(64\) 7.90950 + 1.19995i 0.988687 + 0.149993i
\(65\) 3.96750 0.492108
\(66\) −5.22331 9.59527i −0.642945 1.18110i
\(67\) 8.44650i 1.03190i 0.856617 + 0.515952i \(0.172562\pi\)
−0.856617 + 0.515952i \(0.827438\pi\)
\(68\) −2.03617 + 3.15040i −0.246922 + 0.382042i
\(69\) 10.0143i 1.20559i
\(70\) 2.38228 1.29683i 0.284737 0.155000i
\(71\) 13.9445 1.65491 0.827456 0.561531i \(-0.189788\pi\)
0.827456 + 0.561531i \(0.189788\pi\)
\(72\) 0.294582 + 0.0222183i 0.0347169 + 0.00261846i
\(73\) −7.89229 −0.923722 −0.461861 0.886952i \(-0.652818\pi\)
−0.461861 + 0.886952i \(0.652818\pi\)
\(74\) −5.92631 + 3.22607i −0.688920 + 0.375023i
\(75\) 1.70163i 0.196488i
\(76\) −1.67970 1.08563i −0.192675 0.124530i
\(77\) 8.70703i 0.992259i
\(78\) −4.56487 8.38571i −0.516870 0.949495i
\(79\) 6.65433 0.748671 0.374335 0.927293i \(-0.377871\pi\)
0.374335 + 0.927293i \(0.377871\pi\)
\(80\) 3.64708 1.64281i 0.407756 0.183672i
\(81\) −8.67575 −0.963972
\(82\) −0.699679 1.28532i −0.0772667 0.141940i
\(83\) 8.65418i 0.949920i −0.880007 0.474960i \(-0.842463\pi\)
0.880007 0.474960i \(-0.157537\pi\)
\(84\) −5.48194 3.54310i −0.598129 0.386584i
\(85\) 1.87557i 0.203434i
\(86\) −8.55305 + 4.65597i −0.922299 + 0.502066i
\(87\) −15.5169 −1.66359
\(88\) 0.965723 12.8041i 0.102946 1.36492i
\(89\) −4.77053 −0.505675 −0.252838 0.967509i \(-0.581364\pi\)
−0.252838 + 0.967509i \(0.581364\pi\)
\(90\) 0.129733 0.0706218i 0.0136751 0.00744420i
\(91\) 7.60944i 0.797687i
\(92\) −6.38909 + 9.88529i −0.666109 + 1.03061i
\(93\) 17.4222i 1.80660i
\(94\) 5.76488 + 10.5901i 0.594602 + 1.09229i
\(95\) −1.00000 −0.102598
\(96\) −7.66845 5.81830i −0.782658 0.593828i
\(97\) −3.50972 −0.356358 −0.178179 0.983998i \(-0.557021\pi\)
−0.178179 + 0.983998i \(0.557021\pi\)
\(98\) 2.24584 + 4.12563i 0.226864 + 0.416751i
\(99\) 0.474163i 0.0476552i
\(100\) 1.08563 1.67970i 0.108563 0.167970i
\(101\) 15.7112i 1.56332i 0.623705 + 0.781660i \(0.285627\pi\)
−0.623705 + 0.781660i \(0.714373\pi\)
\(102\) 3.96420 2.15796i 0.392514 0.213670i
\(103\) 3.48138 0.343030 0.171515 0.985181i \(-0.445134\pi\)
0.171515 + 0.985181i \(0.445134\pi\)
\(104\) 0.843987 11.1900i 0.0827597 1.09727i
\(105\) −3.26364 −0.318498
\(106\) 5.23729 2.85099i 0.508690 0.276912i
\(107\) 19.2252i 1.85857i −0.369358 0.929287i \(-0.620422\pi\)
0.369358 0.929287i \(-0.379578\pi\)
\(108\) −8.87325 5.73498i −0.853829 0.551849i
\(109\) 7.74845i 0.742167i −0.928599 0.371084i \(-0.878986\pi\)
0.928599 0.371084i \(-0.121014\pi\)
\(110\) −3.06959 5.63886i −0.292674 0.537644i
\(111\) 8.11883 0.770605
\(112\) −3.15082 6.99489i −0.297724 0.660955i
\(113\) −8.87248 −0.834652 −0.417326 0.908757i \(-0.637033\pi\)
−0.417326 + 0.908757i \(0.637033\pi\)
\(114\) 1.15057 + 2.11360i 0.107760 + 0.197957i
\(115\) 5.88514i 0.548792i
\(116\) −15.3169 9.89968i −1.42214 0.919162i
\(117\) 0.414391i 0.0383105i
\(118\) 6.93038 3.77264i 0.637993 0.347300i
\(119\) 3.59723 0.329758
\(120\) −4.79931 0.361980i −0.438115 0.0330441i
\(121\) −9.60956 −0.873596
\(122\) 2.07604 1.13012i 0.187956 0.102316i
\(123\) 1.76084i 0.158769i
\(124\) −11.1152 + 17.1977i −0.998179 + 1.54440i
\(125\) 1.00000i 0.0894427i
\(126\) −0.135449 0.248821i −0.0120667 0.0221667i
\(127\) 12.2054 1.08306 0.541528 0.840683i \(-0.317846\pi\)
0.541528 + 0.840683i \(0.317846\pi\)
\(128\) −3.85758 10.6357i −0.340966 0.940076i
\(129\) 11.7174 1.03166
\(130\) −2.68264 4.92804i −0.235283 0.432218i
\(131\) 13.1495i 1.14888i 0.818547 + 0.574440i \(0.194780\pi\)
−0.818547 + 0.574440i \(0.805220\pi\)
\(132\) −8.38653 + 12.9758i −0.729954 + 1.12940i
\(133\) 1.91794i 0.166307i
\(134\) 10.4914 5.71114i 0.906320 0.493367i
\(135\) −5.28263 −0.454656
\(136\) 5.28988 + 0.398980i 0.453603 + 0.0342122i
\(137\) 7.99518 0.683075 0.341537 0.939868i \(-0.389052\pi\)
0.341537 + 0.939868i \(0.389052\pi\)
\(138\) 12.4388 6.77124i 1.05886 0.576406i
\(139\) 22.8758i 1.94030i −0.242508 0.970149i \(-0.577970\pi\)
0.242508 0.970149i \(-0.422030\pi\)
\(140\) −3.22158 2.08218i −0.272273 0.175976i
\(141\) 14.5081i 1.22180i
\(142\) −9.42865 17.3205i −0.791235 1.45351i
\(143\) −18.0116 −1.50620
\(144\) −0.171586 0.380924i −0.0142988 0.0317437i
\(145\) −9.11883 −0.757277
\(146\) 5.33640 + 9.80302i 0.441644 + 0.811303i
\(147\) 5.65196i 0.466166i
\(148\) 8.01420 + 5.17976i 0.658764 + 0.425774i
\(149\) 23.8712i 1.95560i 0.209531 + 0.977802i \(0.432806\pi\)
−0.209531 + 0.977802i \(0.567194\pi\)
\(150\) −2.11360 + 1.15057i −0.172575 + 0.0939433i
\(151\) 10.1896 0.829215 0.414608 0.910000i \(-0.363919\pi\)
0.414608 + 0.910000i \(0.363919\pi\)
\(152\) −0.212725 + 2.82042i −0.0172543 + 0.228766i
\(153\) 0.195896 0.0158373
\(154\) −10.8150 + 5.88730i −0.871499 + 0.474412i
\(155\) 10.2385i 0.822377i
\(156\) −7.32935 + 11.3401i −0.586817 + 0.907932i
\(157\) 0.576523i 0.0460116i −0.999735 0.0230058i \(-0.992676\pi\)
0.999735 0.0230058i \(-0.00732362\pi\)
\(158\) −4.49935 8.26535i −0.357949 0.657556i
\(159\) −7.17489 −0.569006
\(160\) −4.50652 3.41925i −0.356272 0.270315i
\(161\) 11.2874 0.889569
\(162\) 5.86615 + 10.7762i 0.460888 + 0.846655i
\(163\) 17.1008i 1.33944i −0.742613 0.669720i \(-0.766414\pi\)
0.742613 0.669720i \(-0.233586\pi\)
\(164\) −1.12340 + 1.73815i −0.0877230 + 0.135726i
\(165\) 7.72503i 0.601393i
\(166\) −10.7494 + 5.85156i −0.834313 + 0.454169i
\(167\) −9.12743 −0.706302 −0.353151 0.935566i \(-0.614890\pi\)
−0.353151 + 0.935566i \(0.614890\pi\)
\(168\) −0.694257 + 9.20481i −0.0535631 + 0.710167i
\(169\) −2.74107 −0.210851
\(170\) 2.32964 1.26817i 0.178676 0.0972644i
\(171\) 0.104446i 0.00798721i
\(172\) 11.5664 + 7.47561i 0.881927 + 0.570010i
\(173\) 6.52631i 0.496186i 0.968736 + 0.248093i \(0.0798039\pi\)
−0.968736 + 0.248093i \(0.920196\pi\)
\(174\) 10.4918 + 19.2736i 0.795382 + 1.46112i
\(175\) −1.91794 −0.144983
\(176\) −16.5569 + 7.45799i −1.24802 + 0.562167i
\(177\) −9.49437 −0.713640
\(178\) 3.22561 + 5.92548i 0.241770 + 0.444134i
\(179\) 17.4355i 1.30319i 0.758568 + 0.651594i \(0.225899\pi\)
−0.758568 + 0.651594i \(0.774101\pi\)
\(180\) −0.175439 0.113390i −0.0130764 0.00845161i
\(181\) 6.35322i 0.472231i −0.971725 0.236116i \(-0.924126\pi\)
0.971725 0.236116i \(-0.0758744\pi\)
\(182\) −9.45170 + 5.14516i −0.700607 + 0.381384i
\(183\) −2.84410 −0.210242
\(184\) 16.5985 + 1.25192i 1.22366 + 0.0922925i
\(185\) 4.77120 0.350786
\(186\) 21.6401 11.7801i 1.58673 0.863758i
\(187\) 8.51465i 0.622653i
\(188\) 9.25607 14.3211i 0.675068 1.04448i
\(189\) 10.1318i 0.736979i
\(190\) 0.676154 + 1.24210i 0.0490534 + 0.0901115i
\(191\) −19.9186 −1.44126 −0.720631 0.693319i \(-0.756148\pi\)
−0.720631 + 0.693319i \(0.756148\pi\)
\(192\) −2.04187 + 13.4591i −0.147359 + 0.971324i
\(193\) 3.18031 0.228923 0.114462 0.993428i \(-0.463486\pi\)
0.114462 + 0.993428i \(0.463486\pi\)
\(194\) 2.37311 + 4.35942i 0.170379 + 0.312988i
\(195\) 6.75123i 0.483466i
\(196\) 3.60591 5.57912i 0.257565 0.398509i
\(197\) 11.3656i 0.809768i −0.914368 0.404884i \(-0.867312\pi\)
0.914368 0.404884i \(-0.132688\pi\)
\(198\) −0.588958 + 0.320607i −0.0418555 + 0.0227846i
\(199\) −18.3116 −1.29807 −0.649037 0.760757i \(-0.724828\pi\)
−0.649037 + 0.760757i \(0.724828\pi\)
\(200\) −2.82042 0.212725i −0.199434 0.0150419i
\(201\) −14.3728 −1.01378
\(202\) 19.5149 10.6232i 1.37306 0.747444i
\(203\) 17.4894i 1.22751i
\(204\) −5.36082 3.46482i −0.375332 0.242586i
\(205\) 1.03479i 0.0722731i
\(206\) −2.35395 4.32422i −0.164007 0.301283i
\(207\) 0.614681 0.0427233
\(208\) −14.4698 + 6.51785i −1.00330 + 0.451932i
\(209\) 4.53978 0.314023
\(210\) 2.20672 + 4.05377i 0.152278 + 0.279736i
\(211\) 7.65690i 0.527122i 0.964643 + 0.263561i \(0.0848971\pi\)
−0.964643 + 0.263561i \(0.915103\pi\)
\(212\) −7.08243 4.57754i −0.486423 0.314387i
\(213\) 23.7285i 1.62585i
\(214\) −23.8797 + 12.9992i −1.63238 + 0.888609i
\(215\) 6.88595 0.469618
\(216\) −1.12375 + 14.8992i −0.0764613 + 1.01376i
\(217\) 19.6369 1.33304
\(218\) −9.62436 + 5.23915i −0.651844 + 0.354840i
\(219\) 13.4298i 0.907500i
\(220\) −4.92852 + 7.62548i −0.332281 + 0.514110i
\(221\) 7.44131i 0.500557i
\(222\) −5.48958 10.0844i −0.368437 0.676821i
\(223\) −21.1092 −1.41358 −0.706788 0.707425i \(-0.749857\pi\)
−0.706788 + 0.707425i \(0.749857\pi\)
\(224\) −6.55792 + 8.64326i −0.438170 + 0.577502i
\(225\) −0.104446 −0.00696309
\(226\) 5.99916 + 11.0205i 0.399058 + 0.733074i
\(227\) 10.3489i 0.686877i −0.939175 0.343439i \(-0.888408\pi\)
0.939175 0.343439i \(-0.111592\pi\)
\(228\) 1.84735 2.85824i 0.122343 0.189291i
\(229\) 1.52423i 0.100724i −0.998731 0.0503621i \(-0.983962\pi\)
0.998731 0.0503621i \(-0.0160375\pi\)
\(230\) 7.30994 3.97926i 0.482003 0.262385i
\(231\) 14.8162 0.974833
\(232\) −1.93980 + 25.7189i −0.127354 + 1.68853i
\(233\) −25.5868 −1.67625 −0.838123 0.545481i \(-0.816347\pi\)
−0.838123 + 0.545481i \(0.816347\pi\)
\(234\) −0.514716 + 0.280192i −0.0336480 + 0.0183167i
\(235\) 8.52598i 0.556174i
\(236\) −9.37201 6.05735i −0.610066 0.394300i
\(237\) 11.3232i 0.735523i
\(238\) −2.43228 4.46813i −0.157662 0.289626i
\(239\) 6.58822 0.426157 0.213078 0.977035i \(-0.431651\pi\)
0.213078 + 0.977035i \(0.431651\pi\)
\(240\) 2.79546 + 6.20599i 0.180446 + 0.400595i
\(241\) 15.0024 0.966387 0.483194 0.875514i \(-0.339477\pi\)
0.483194 + 0.875514i \(0.339477\pi\)
\(242\) 6.49754 + 11.9360i 0.417678 + 0.767278i
\(243\) 1.08494i 0.0695989i
\(244\) −2.80745 1.81452i −0.179728 0.116163i
\(245\) 3.32149i 0.212202i
\(246\) 2.18714 1.19060i 0.139447 0.0759097i
\(247\) 3.96750 0.252446
\(248\) 28.8769 + 2.17799i 1.83368 + 0.138302i
\(249\) 14.7262 0.933237
\(250\) −1.24210 + 0.676154i −0.0785574 + 0.0427637i
\(251\) 22.6661i 1.43067i −0.698782 0.715334i \(-0.746274\pi\)
0.698782 0.715334i \(-0.253726\pi\)
\(252\) −0.217476 + 0.336482i −0.0136997 + 0.0211964i
\(253\) 26.7172i 1.67970i
\(254\) −8.25275 15.1604i −0.517824 0.951247i
\(255\) −3.19153 −0.199861
\(256\) −10.6023 + 11.9829i −0.662647 + 0.748932i
\(257\) −19.7457 −1.23170 −0.615851 0.787862i \(-0.711188\pi\)
−0.615851 + 0.787862i \(0.711188\pi\)
\(258\) −7.92274 14.5542i −0.493248 0.906102i
\(259\) 9.15089i 0.568609i
\(260\) −4.30724 + 6.66423i −0.267124 + 0.413298i
\(261\) 0.952428i 0.0589538i
\(262\) 16.3330 8.89111i 1.00906 0.549295i
\(263\) 7.50344 0.462682 0.231341 0.972873i \(-0.425689\pi\)
0.231341 + 0.972873i \(0.425689\pi\)
\(264\) 21.7878 + 1.64331i 1.34095 + 0.101139i
\(265\) −4.21648 −0.259016
\(266\) 2.38228 1.29683i 0.146067 0.0795135i
\(267\) 8.11769i 0.496794i
\(268\) −14.1876 9.16978i −0.866647 0.560134i
\(269\) 0.0408937i 0.00249333i −0.999999 0.00124667i \(-0.999603\pi\)
0.999999 0.00124667i \(-0.000396826\pi\)
\(270\) 3.57187 + 6.56156i 0.217377 + 0.399324i
\(271\) 8.31371 0.505022 0.252511 0.967594i \(-0.418744\pi\)
0.252511 + 0.967594i \(0.418744\pi\)
\(272\) −3.08120 6.84034i −0.186825 0.414756i
\(273\) 12.9485 0.783678
\(274\) −5.40598 9.93083i −0.326587 0.599943i
\(275\) 4.53978i 0.273759i
\(276\) −16.8211 10.8719i −1.01251 0.654411i
\(277\) 8.11160i 0.487379i −0.969853 0.243689i \(-0.921642\pi\)
0.969853 0.243689i \(-0.0783578\pi\)
\(278\) −28.4140 + 15.4676i −1.70416 + 0.927682i
\(279\) 1.06938 0.0640218
\(280\) −0.407994 + 5.40940i −0.0243823 + 0.323273i
\(281\) −13.4028 −0.799546 −0.399773 0.916614i \(-0.630911\pi\)
−0.399773 + 0.916614i \(0.630911\pi\)
\(282\) −18.0205 + 9.80970i −1.07311 + 0.584159i
\(283\) 0.522506i 0.0310598i 0.999879 + 0.0155299i \(0.00494351\pi\)
−0.999879 + 0.0155299i \(0.995056\pi\)
\(284\) −15.1386 + 23.4227i −0.898311 + 1.38988i
\(285\) 1.70163i 0.100796i
\(286\) 12.1786 + 22.3722i 0.720135 + 1.32290i
\(287\) 1.98467 0.117152
\(288\) −0.357128 + 0.470690i −0.0210440 + 0.0277357i
\(289\) −13.4822 −0.793073
\(290\) 6.16573 + 11.3265i 0.362064 + 0.665115i
\(291\) 5.97225i 0.350099i
\(292\) 8.56811 13.2567i 0.501411 0.775790i
\(293\) 20.2544i 1.18327i −0.806205 0.591637i \(-0.798482\pi\)
0.806205 0.591637i \(-0.201518\pi\)
\(294\) −7.02031 + 3.82160i −0.409433 + 0.222880i
\(295\) −5.57956 −0.324855
\(296\) 1.01495 13.4568i 0.0589930 0.782159i
\(297\) 23.9819 1.39157
\(298\) 29.6504 16.1406i 1.71760 0.935000i
\(299\) 23.3493i 1.35032i
\(300\) 2.85824 + 1.84735i 0.165021 + 0.106657i
\(301\) 13.2069i 0.761231i
\(302\) −6.88972 12.6565i −0.396459 0.728298i
\(303\) −26.7346 −1.53587
\(304\) 3.64708 1.64281i 0.209174 0.0942216i
\(305\) −1.67139 −0.0957037
\(306\) −0.132456 0.243323i −0.00757201 0.0139098i
\(307\) 9.17726i 0.523774i 0.965099 + 0.261887i \(0.0843448\pi\)
−0.965099 + 0.261887i \(0.915655\pi\)
\(308\) 14.6252 + 9.45263i 0.833350 + 0.538613i
\(309\) 5.92402i 0.337006i
\(310\) 12.7173 6.92281i 0.722292 0.393189i
\(311\) −4.99647 −0.283324 −0.141662 0.989915i \(-0.545245\pi\)
−0.141662 + 0.989915i \(0.545245\pi\)
\(312\) 19.0413 + 1.43616i 1.07800 + 0.0813063i
\(313\) −8.99280 −0.508303 −0.254152 0.967164i \(-0.581796\pi\)
−0.254152 + 0.967164i \(0.581796\pi\)
\(314\) −0.716100 + 0.389819i −0.0404119 + 0.0219987i
\(315\) 0.200322i 0.0112869i
\(316\) −7.22415 + 11.1773i −0.406390 + 0.628773i
\(317\) 29.7313i 1.66987i 0.550346 + 0.834937i \(0.314496\pi\)
−0.550346 + 0.834937i \(0.685504\pi\)
\(318\) 4.85133 + 8.91194i 0.272049 + 0.499757i
\(319\) 41.3974 2.31781
\(320\) −1.19995 + 7.90950i −0.0670790 + 0.442154i
\(321\) 32.7143 1.82593
\(322\) −7.63200 14.0201i −0.425315 0.781307i
\(323\) 1.87557i 0.104359i
\(324\) 9.41867 14.5727i 0.523259 0.809594i
\(325\) 3.96750i 0.220077i
\(326\) −21.2410 + 11.5628i −1.17643 + 0.640404i
\(327\) 13.1850 0.729133
\(328\) 2.91855 + 0.220126i 0.161150 + 0.0121544i
\(329\) −16.3523 −0.901534
\(330\) 9.59527 5.22331i 0.528202 0.287534i
\(331\) 15.0825i 0.829011i −0.910047 0.414505i \(-0.863955\pi\)
0.910047 0.414505i \(-0.136045\pi\)
\(332\) 14.5365 + 9.39525i 0.797792 + 0.515631i
\(333\) 0.498335i 0.0273086i
\(334\) 6.17155 + 11.3372i 0.337692 + 0.620344i
\(335\) −8.44650 −0.461482
\(336\) 11.9027 5.36153i 0.649347 0.292496i
\(337\) 25.6306 1.39619 0.698093 0.716007i \(-0.254032\pi\)
0.698093 + 0.716007i \(0.254032\pi\)
\(338\) 1.85338 + 3.40468i 0.100811 + 0.185190i
\(339\) 15.0977i 0.819994i
\(340\) −3.15040 2.03617i −0.170854 0.110427i
\(341\) 46.4805i 2.51706i
\(342\) 0.129733 0.0706218i 0.00701516 0.00381879i
\(343\) −19.7960 −1.06889
\(344\) 1.46481 19.4213i 0.0789775 1.04712i
\(345\) −10.0143 −0.539154
\(346\) 8.10634 4.41279i 0.435800 0.237233i
\(347\) 8.17009i 0.438594i 0.975658 + 0.219297i \(0.0703763\pi\)
−0.975658 + 0.219297i \(0.929624\pi\)
\(348\) 16.8456 26.0638i 0.903020 1.39717i
\(349\) 26.9479i 1.44249i 0.692681 + 0.721244i \(0.256430\pi\)
−0.692681 + 0.721244i \(0.743570\pi\)
\(350\) 1.29683 + 2.38228i 0.0693182 + 0.127338i
\(351\) 20.9588 1.11870
\(352\) 20.4586 + 15.5226i 1.09045 + 0.827358i
\(353\) −17.8408 −0.949570 −0.474785 0.880102i \(-0.657474\pi\)
−0.474785 + 0.880102i \(0.657474\pi\)
\(354\) 6.41965 + 11.7930i 0.341201 + 0.626789i
\(355\) 13.9445i 0.740099i
\(356\) 5.17903 8.01308i 0.274488 0.424692i
\(357\) 6.12117i 0.323967i
\(358\) 21.6566 11.7891i 1.14459 0.623071i
\(359\) −17.1567 −0.905497 −0.452748 0.891638i \(-0.649556\pi\)
−0.452748 + 0.891638i \(0.649556\pi\)
\(360\) −0.0222183 + 0.294582i −0.00117101 + 0.0155258i
\(361\) −1.00000 −0.0526316
\(362\) −7.89135 + 4.29576i −0.414760 + 0.225780i
\(363\) 16.3519i 0.858254i
\(364\) 12.7816 + 8.26105i 0.669939 + 0.432997i
\(365\) 7.89229i 0.413101i
\(366\) 1.92305 + 3.53266i 0.100519 + 0.184655i
\(367\) 8.13127 0.424449 0.212224 0.977221i \(-0.431929\pi\)
0.212224 + 0.977221i \(0.431929\pi\)
\(368\) −9.66817 21.4636i −0.503988 1.11887i
\(369\) 0.108080 0.00562644
\(370\) −3.22607 5.92631i −0.167715 0.308094i
\(371\) 8.08696i 0.419854i
\(372\) −29.2641 18.9141i −1.51727 0.980649i
\(373\) 13.9581i 0.722722i −0.932426 0.361361i \(-0.882312\pi\)
0.932426 0.361361i \(-0.117688\pi\)
\(374\) −10.5761 + 5.75722i −0.546875 + 0.297699i
\(375\) 1.70163 0.0878719
\(376\) −24.0468 1.81369i −1.24012 0.0935338i
\(377\) 36.1790 1.86331
\(378\) 12.5847 6.85065i 0.647287 0.352359i
\(379\) 19.5799i 1.00575i 0.864359 + 0.502875i \(0.167724\pi\)
−0.864359 + 0.502875i \(0.832276\pi\)
\(380\) 1.08563 1.67970i 0.0556917 0.0861670i
\(381\) 20.7692i 1.06404i
\(382\) 13.4681 + 24.7410i 0.689086 + 1.26586i
\(383\) 5.33999 0.272861 0.136430 0.990650i \(-0.456437\pi\)
0.136430 + 0.990650i \(0.456437\pi\)
\(384\) 18.0981 6.56419i 0.923566 0.334978i
\(385\) 8.70703 0.443751
\(386\) −2.15038 3.95026i −0.109451 0.201063i
\(387\) 0.719213i 0.0365596i
\(388\) 3.81026 5.89529i 0.193437 0.299288i
\(389\) 34.6720i 1.75794i −0.476875 0.878971i \(-0.658231\pi\)
0.476875 0.878971i \(-0.341769\pi\)
\(390\) 8.38571 4.56487i 0.424627 0.231151i
\(391\) 11.0380 0.558214
\(392\) −9.36799 0.706564i −0.473155 0.0356869i
\(393\) −22.3757 −1.12870
\(394\) −14.1173 + 7.68492i −0.711218 + 0.387161i
\(395\) 6.65433i 0.334816i
\(396\) 0.796453 + 0.514766i 0.0400233 + 0.0258680i
\(397\) 13.3397i 0.669503i −0.942306 0.334751i \(-0.891348\pi\)
0.942306 0.334751i \(-0.108652\pi\)
\(398\) 12.3815 + 22.7448i 0.620626 + 1.14010i
\(399\) −3.26364 −0.163386
\(400\) 1.64281 + 3.64708i 0.0821405 + 0.182354i
\(401\) −14.5196 −0.725076 −0.362538 0.931969i \(-0.618090\pi\)
−0.362538 + 0.931969i \(0.618090\pi\)
\(402\) 9.71826 + 17.8525i 0.484703 + 0.890403i
\(403\) 40.6213i 2.02349i
\(404\) −26.3901 17.0565i −1.31296 0.848595i
\(405\) 8.67575i 0.431102i
\(406\) 21.7236 11.8255i 1.07812 0.586891i
\(407\) −21.6602 −1.07366
\(408\) −0.678917 + 9.00143i −0.0336114 + 0.445637i
\(409\) −17.3406 −0.857438 −0.428719 0.903438i \(-0.641035\pi\)
−0.428719 + 0.903438i \(0.641035\pi\)
\(410\) 1.28532 0.699679i 0.0634773 0.0345547i
\(411\) 13.6049i 0.671078i
\(412\) −3.77949 + 5.84768i −0.186202 + 0.288095i
\(413\) 10.7013i 0.526576i
\(414\) −0.415619 0.763497i −0.0204266 0.0375238i
\(415\) 8.65418 0.424817
\(416\) 17.8796 + 13.5659i 0.876621 + 0.665121i
\(417\) 38.9262 1.90622
\(418\) −3.06959 5.63886i −0.150138 0.275806i
\(419\) 21.8769i 1.06876i 0.845245 + 0.534379i \(0.179454\pi\)
−0.845245 + 0.534379i \(0.820546\pi\)
\(420\) 3.54310 5.48194i 0.172886 0.267491i
\(421\) 24.8520i 1.21121i −0.795764 0.605607i \(-0.792930\pi\)
0.795764 0.605607i \(-0.207070\pi\)
\(422\) 9.51064 5.17724i 0.462971 0.252024i
\(423\) −0.890508 −0.0432980
\(424\) −0.896949 + 11.8922i −0.0435597 + 0.577537i
\(425\) −1.87557 −0.0909784
\(426\) 29.4732 16.0441i 1.42798 0.777339i
\(427\) 3.20564i 0.155132i
\(428\) 32.2927 + 20.8715i 1.56093 + 1.00886i
\(429\) 30.6491i 1.47975i
\(430\) −4.65597 8.55305i −0.224531 0.412465i
\(431\) 34.9062 1.68137 0.840687 0.541521i \(-0.182152\pi\)
0.840687 + 0.541521i \(0.182152\pi\)
\(432\) 19.2662 8.67835i 0.926943 0.417538i
\(433\) −8.13382 −0.390886 −0.195443 0.980715i \(-0.562615\pi\)
−0.195443 + 0.980715i \(0.562615\pi\)
\(434\) −13.2776 24.3910i −0.637344 1.17081i
\(435\) 15.5169i 0.743978i
\(436\) 13.0151 + 8.41196i 0.623311 + 0.402860i
\(437\) 5.88514i 0.281524i
\(438\) −16.6811 + 9.08060i −0.797055 + 0.433888i
\(439\) −28.3815 −1.35457 −0.677287 0.735719i \(-0.736844\pi\)
−0.677287 + 0.735719i \(0.736844\pi\)
\(440\) 12.8041 + 0.965723i 0.610409 + 0.0460391i
\(441\) −0.346918 −0.0165199
\(442\) −9.24287 + 5.03148i −0.439638 + 0.239323i
\(443\) 7.03515i 0.334250i 0.985936 + 0.167125i \(0.0534483\pi\)
−0.985936 + 0.167125i \(0.946552\pi\)
\(444\) −8.81406 + 13.6372i −0.418297 + 0.647194i
\(445\) 4.77053i 0.226145i
\(446\) 14.2731 + 26.2198i 0.675850 + 1.24154i
\(447\) −40.6200 −1.92126
\(448\) 15.1700 + 2.30143i 0.716714 + 0.108732i
\(449\) 30.0184 1.41666 0.708328 0.705884i \(-0.249450\pi\)
0.708328 + 0.705884i \(0.249450\pi\)
\(450\) 0.0706218 + 0.129733i 0.00332915 + 0.00611567i
\(451\) 4.69773i 0.221207i
\(452\) 9.63224 14.9031i 0.453062 0.700985i
\(453\) 17.3389i 0.814652i
\(454\) −12.8543 + 6.99742i −0.603283 + 0.328405i
\(455\) 7.60944 0.356736
\(456\) −4.79931 0.361980i −0.224748 0.0169513i
\(457\) −3.70017 −0.173087 −0.0865433 0.996248i \(-0.527582\pi\)
−0.0865433 + 0.996248i \(0.527582\pi\)
\(458\) −1.89325 + 1.03062i −0.0884659 + 0.0481576i
\(459\) 9.90792i 0.462462i
\(460\) −9.88529 6.38909i −0.460904 0.297893i
\(461\) 6.34216i 0.295384i 0.989033 + 0.147692i \(0.0471844\pi\)
−0.989033 + 0.147692i \(0.952816\pi\)
\(462\) −10.0180 18.4032i −0.466080 0.856194i
\(463\) 12.0989 0.562285 0.281143 0.959666i \(-0.409287\pi\)
0.281143 + 0.959666i \(0.409287\pi\)
\(464\) 33.2571 14.9805i 1.54392 0.695452i
\(465\) −17.4222 −0.807935
\(466\) 17.3006 + 31.7814i 0.801435 + 1.47224i
\(467\) 20.5836i 0.952494i −0.879311 0.476247i \(-0.841997\pi\)
0.879311 0.476247i \(-0.158003\pi\)
\(468\) 0.696054 + 0.449876i 0.0321751 + 0.0207955i
\(469\) 16.1999i 0.748042i
\(470\) −10.5901 + 5.76488i −0.488486 + 0.265914i
\(471\) 0.981031 0.0452035
\(472\) −1.18691 + 15.7367i −0.0546321 + 0.724340i
\(473\) −31.2607 −1.43737
\(474\) 14.0646 7.65625i 0.646008 0.351663i
\(475\) 1.00000i 0.0458831i
\(476\) −3.90527 + 6.04228i −0.178998 + 0.276948i
\(477\) 0.440396i 0.0201643i
\(478\) −4.45466 8.18324i −0.203751 0.374293i
\(479\) −8.55049 −0.390682 −0.195341 0.980735i \(-0.562581\pi\)
−0.195341 + 0.980735i \(0.562581\pi\)
\(480\) 5.81830 7.66845i 0.265568 0.350015i
\(481\) −18.9297 −0.863122
\(482\) −10.1439 18.6345i −0.462042 0.848776i
\(483\) 19.2070i 0.873947i
\(484\) 10.4324 16.1412i 0.474202 0.733691i
\(485\) 3.50972i 0.159368i
\(486\) 1.34760 0.733586i 0.0611286 0.0332761i
\(487\) −8.59813 −0.389619 −0.194809 0.980841i \(-0.562409\pi\)
−0.194809 + 0.980841i \(0.562409\pi\)
\(488\) −0.355547 + 4.71403i −0.0160949 + 0.213394i
\(489\) 29.0993 1.31592
\(490\) −4.12563 + 2.24584i −0.186377 + 0.101457i
\(491\) 8.36945i 0.377708i 0.982005 + 0.188854i \(0.0604773\pi\)
−0.982005 + 0.188854i \(0.939523\pi\)
\(492\) −2.95768 1.91162i −0.133343 0.0861825i
\(493\) 17.1030i 0.770279i
\(494\) −2.68264 4.92804i −0.120698 0.221723i
\(495\) 0.474163 0.0213120
\(496\) −16.8199 37.3407i −0.755237 1.67664i
\(497\) 26.7448 1.19967
\(498\) −9.95721 18.2915i −0.446193 0.819661i
\(499\) 19.8968i 0.890705i −0.895355 0.445352i \(-0.853078\pi\)
0.895355 0.445352i \(-0.146922\pi\)
\(500\) 1.67970 + 1.08563i 0.0751186 + 0.0485509i
\(501\) 15.5315i 0.693898i
\(502\) −28.1535 + 15.3257i −1.25655 + 0.684022i
\(503\) 22.8495 1.01881 0.509405 0.860527i \(-0.329865\pi\)
0.509405 + 0.860527i \(0.329865\pi\)
\(504\) 0.564992 + 0.0426135i 0.0251668 + 0.00189816i
\(505\) −15.7112 −0.699138
\(506\) −33.1855 + 18.0650i −1.47527 + 0.803085i
\(507\) 4.66429i 0.207148i
\(508\) −13.2506 + 20.5015i −0.587900 + 0.909607i
\(509\) 12.3733i 0.548435i 0.961668 + 0.274218i \(0.0884189\pi\)
−0.961668 + 0.274218i \(0.911581\pi\)
\(510\) 2.15796 + 3.96420i 0.0955562 + 0.175538i
\(511\) −15.1370 −0.669620
\(512\) 22.0528 + 5.06689i 0.974606 + 0.223927i
\(513\) −5.28263 −0.233234
\(514\) 13.3511 + 24.5262i 0.588893 + 1.08180i
\(515\) 3.48138i 0.153408i
\(516\) −12.7207 + 19.6817i −0.559999 + 0.866439i
\(517\) 38.7060i 1.70229i
\(518\) −11.3663 + 6.18742i −0.499408 + 0.271859i
\(519\) −11.1054 −0.487472
\(520\) 11.1900 + 0.843987i 0.490714 + 0.0370113i
\(521\) −6.60286 −0.289277 −0.144638 0.989485i \(-0.546202\pi\)
−0.144638 + 0.989485i \(0.546202\pi\)
\(522\) 1.18301 0.643988i 0.0517790 0.0281866i
\(523\) 38.7033i 1.69238i 0.532884 + 0.846189i \(0.321108\pi\)
−0.532884 + 0.846189i \(0.678892\pi\)
\(524\) −22.0873 14.2755i −0.964889 0.623630i
\(525\) 3.26364i 0.142437i
\(526\) −5.07349 9.32004i −0.221214 0.406373i
\(527\) 19.2030 0.836497
\(528\) −12.6908 28.1738i −0.552294 1.22611i
\(529\) 11.6349 0.505864
\(530\) 2.85099 + 5.23729i 0.123839 + 0.227493i
\(531\) 0.582765i 0.0252898i
\(532\) −3.22158 2.08218i −0.139673 0.0902739i
\(533\) 4.10554i 0.177831i
\(534\) −10.0830 + 5.48881i −0.436334 + 0.237524i
\(535\) 19.2252 0.831180
\(536\) −1.79678 + 23.8226i −0.0776091 + 1.02898i
\(537\) −29.6688 −1.28030
\(538\) −0.0507941 + 0.0276504i −0.00218989 + 0.00119209i
\(539\) 15.0788i 0.649491i
\(540\) 5.73498 8.87325i 0.246794 0.381844i
\(541\) 22.2218i 0.955389i −0.878526 0.477694i \(-0.841473\pi\)
0.878526 0.477694i \(-0.158527\pi\)
\(542\) −5.62135 10.3265i −0.241458 0.443560i
\(543\) 10.8109 0.463938
\(544\) −6.41303 + 8.45229i −0.274956 + 0.362389i
\(545\) 7.74845 0.331907
\(546\) −8.75517 16.0833i −0.374687 0.688303i
\(547\) 17.9175i 0.766097i 0.923728 + 0.383048i \(0.125126\pi\)
−0.923728 + 0.383048i \(0.874874\pi\)
\(548\) −8.67982 + 13.4295i −0.370783 + 0.573682i
\(549\) 0.174571i 0.00745051i
\(550\) 5.63886 3.06959i 0.240442 0.130888i
\(551\) −9.11883 −0.388475
\(552\) −2.13030 + 28.2446i −0.0906716 + 1.20217i
\(553\) 12.7626 0.542722
\(554\) −10.0754 + 5.48469i −0.428064 + 0.233022i
\(555\) 8.11883i 0.344625i
\(556\) 38.4245 + 24.8347i 1.62956 + 1.05322i
\(557\) 40.4579i 1.71426i −0.515104 0.857128i \(-0.672247\pi\)
0.515104 0.857128i \(-0.327753\pi\)
\(558\) −0.723063 1.32827i −0.0306097 0.0562303i
\(559\) −27.3200 −1.15551
\(560\) 6.99489 3.15082i 0.295588 0.133146i
\(561\) 14.4888 0.611718
\(562\) 9.06238 + 16.6477i 0.382273 + 0.702240i
\(563\) 44.1290i 1.85982i 0.367793 + 0.929908i \(0.380113\pi\)
−0.367793 + 0.929908i \(0.619887\pi\)
\(564\) 24.3693 + 15.7504i 1.02613 + 0.663213i
\(565\) 8.87248i 0.373268i
\(566\) 0.649005 0.353295i 0.0272797 0.0148501i
\(567\) −16.6396 −0.698798
\(568\) 39.3294 + 2.96635i 1.65022 + 0.124465i
\(569\) −40.9226 −1.71556 −0.857782 0.514014i \(-0.828158\pi\)
−0.857782 + 0.514014i \(0.828158\pi\)
\(570\) −2.11360 + 1.15057i −0.0885290 + 0.0481919i
\(571\) 17.5592i 0.734832i −0.930057 0.367416i \(-0.880243\pi\)
0.930057 0.367416i \(-0.119757\pi\)
\(572\) 19.5539 30.2541i 0.817590 1.26499i
\(573\) 33.8942i 1.41595i
\(574\) −1.34195 2.46517i −0.0560117 0.102894i
\(575\) −5.88514 −0.245427
\(576\) 0.826118 + 0.125330i 0.0344216 + 0.00522208i
\(577\) −9.76320 −0.406447 −0.203224 0.979132i \(-0.565142\pi\)
−0.203224 + 0.979132i \(0.565142\pi\)
\(578\) 9.11608 + 16.7463i 0.379179 + 0.696555i
\(579\) 5.41171i 0.224903i
\(580\) 9.89968 15.3169i 0.411062 0.636001i
\(581\) 16.5982i 0.688611i
\(582\) −7.41814 + 4.03816i −0.307492 + 0.167387i
\(583\) 19.1418 0.792774
\(584\) −22.2595 1.67889i −0.921106 0.0694728i
\(585\) 0.414391 0.0171330
\(586\) −25.1580 + 13.6951i −1.03927 + 0.565739i
\(587\) 25.4596i 1.05083i 0.850845 + 0.525416i \(0.176090\pi\)
−0.850845 + 0.525416i \(0.823910\pi\)
\(588\) 9.49362 + 6.13594i 0.391510 + 0.253042i
\(589\) 10.2385i 0.421871i
\(590\) 3.77264 + 6.93038i 0.155317 + 0.285319i
\(591\) 19.3401 0.795547
\(592\) −17.4009 + 7.83818i −0.715174 + 0.322147i
\(593\) 44.8209 1.84057 0.920287 0.391244i \(-0.127955\pi\)
0.920287 + 0.391244i \(0.127955\pi\)
\(594\) −16.2155 29.7880i −0.665330 1.22222i
\(595\) 3.59723i 0.147472i
\(596\) −40.0965 25.9153i −1.64242 1.06153i
\(597\) 31.1596i 1.27528i
\(598\) −29.0022 + 15.7877i −1.18599 + 0.645608i
\(599\) 11.5281 0.471025 0.235512 0.971871i \(-0.424323\pi\)
0.235512 + 0.971871i \(0.424323\pi\)
\(600\) 0.361980 4.79931i 0.0147778 0.195931i
\(601\) −35.1911 −1.43548 −0.717738 0.696313i \(-0.754822\pi\)
−0.717738 + 0.696313i \(0.754822\pi\)
\(602\) −16.4043 + 8.92988i −0.668588 + 0.363955i
\(603\) 0.882206i 0.0359262i
\(604\) −11.0621 + 17.1155i −0.450111 + 0.696418i
\(605\) 9.60956i 0.390684i
\(606\) 18.0767 + 33.2071i 0.734317 + 1.34895i
\(607\) 8.60565 0.349292 0.174646 0.984631i \(-0.444122\pi\)
0.174646 + 0.984631i \(0.444122\pi\)
\(608\) −4.50652 3.41925i −0.182764 0.138669i
\(609\) −29.7605 −1.20596
\(610\) 1.13012 + 2.07604i 0.0457572 + 0.0840564i
\(611\) 33.8268i 1.36849i
\(612\) −0.212671 + 0.329048i −0.00859671 + 0.0133010i
\(613\) 46.2101i 1.86641i 0.359345 + 0.933205i \(0.383000\pi\)
−0.359345 + 0.933205i \(0.617000\pi\)
\(614\) 11.3991 6.20525i 0.460030 0.250423i
\(615\) −1.76084 −0.0710038
\(616\) 1.85220 24.5575i 0.0746274 0.989448i
\(617\) −15.2660 −0.614588 −0.307294 0.951615i \(-0.599423\pi\)
−0.307294 + 0.951615i \(0.599423\pi\)
\(618\) 7.35824 4.00555i 0.295992 0.161127i
\(619\) 5.30696i 0.213305i −0.994296 0.106652i \(-0.965987\pi\)
0.994296 0.106652i \(-0.0340132\pi\)
\(620\) −17.1977 11.1152i −0.690675 0.446399i
\(621\) 31.0890i 1.24756i
\(622\) 3.37839 + 6.20613i 0.135461 + 0.248843i
\(623\) −9.14961 −0.366571
\(624\) −11.0910 24.6223i −0.443995 0.985679i
\(625\) 1.00000 0.0400000
\(626\) 6.08052 + 11.1700i 0.243027 + 0.446442i
\(627\) 7.72503i 0.308508i
\(628\) 0.968389 + 0.625892i 0.0386429 + 0.0249758i
\(629\) 8.94871i 0.356808i
\(630\) 0.248821 0.135449i 0.00991325 0.00539641i
\(631\) 10.8330 0.431254 0.215627 0.976476i \(-0.430821\pi\)
0.215627 + 0.976476i \(0.430821\pi\)
\(632\) 18.7680 + 1.41554i 0.746550 + 0.0563072i
\(633\) −13.0292 −0.517865
\(634\) 36.9292 20.1029i 1.46665 0.798389i
\(635\) 12.2054i 0.484358i
\(636\) 7.78929 12.0517i 0.308865 0.477881i
\(637\) 13.1780i 0.522132i
\(638\) −27.9910 51.4198i −1.10818 2.03573i
\(639\) 1.45646 0.0576165
\(640\) 10.6357 3.85758i 0.420415 0.152484i
\(641\) −43.5708 −1.72094 −0.860472 0.509498i \(-0.829831\pi\)
−0.860472 + 0.509498i \(0.829831\pi\)
\(642\) −22.1199 40.6345i −0.873003 1.60372i
\(643\) 24.5170i 0.966857i 0.875384 + 0.483428i \(0.160609\pi\)
−0.875384 + 0.483428i \(0.839391\pi\)
\(644\) −12.2539 + 18.9594i −0.482872 + 0.747106i
\(645\) 11.7174i 0.461371i
\(646\) 2.32964 1.26817i 0.0916586 0.0498956i
\(647\) −13.3298 −0.524048 −0.262024 0.965061i \(-0.584390\pi\)
−0.262024 + 0.965061i \(0.584390\pi\)
\(648\) −24.4692 1.84555i −0.961242 0.0725000i
\(649\) 25.3300 0.994288
\(650\) 4.92804 2.68264i 0.193294 0.105222i
\(651\) 33.4148i 1.30963i
\(652\) 28.7243 + 18.5652i 1.12493 + 0.727069i
\(653\) 11.3684i 0.444879i 0.974947 + 0.222439i \(0.0714020\pi\)
−0.974947 + 0.222439i \(0.928598\pi\)
\(654\) −8.91511 16.3771i −0.348608 0.640396i
\(655\) −13.1495 −0.513795
\(656\) −1.69997 3.77397i −0.0663726 0.147349i
\(657\) −0.824321 −0.0321598
\(658\) 11.0567 + 20.3113i 0.431035 + 0.791816i
\(659\) 16.3793i 0.638049i 0.947747 + 0.319024i \(0.103355\pi\)
−0.947747 + 0.319024i \(0.896645\pi\)
\(660\) −12.9758 8.38653i −0.505081 0.326445i
\(661\) 2.05089i 0.0797705i −0.999204 0.0398852i \(-0.987301\pi\)
0.999204 0.0398852i \(-0.0126992\pi\)
\(662\) −18.7340 + 10.1981i −0.728119 + 0.396361i
\(663\) 12.6624 0.491766
\(664\) 1.84096 24.4084i 0.0714431 0.947229i
\(665\) −1.91794 −0.0743747
\(666\) −0.618982 + 0.336951i −0.0239851 + 0.0130566i
\(667\) 53.6656i 2.07794i
\(668\) 9.90902 15.3314i 0.383392 0.593189i
\(669\) 35.9201i 1.38875i
\(670\) 5.71114 + 10.4914i 0.220640 + 0.405318i
\(671\) 7.58775 0.292922
\(672\) −14.7077 11.1592i −0.567360 0.430475i
\(673\) −12.5634 −0.484285 −0.242143 0.970241i \(-0.577850\pi\)
−0.242143 + 0.970241i \(0.577850\pi\)
\(674\) −17.3302 31.8358i −0.667535 1.22627i
\(675\) 5.28263i 0.203328i
\(676\) 2.97579 4.60418i 0.114453 0.177084i
\(677\) 0.535951i 0.0205983i −0.999947 0.0102991i \(-0.996722\pi\)
0.999947 0.0102991i \(-0.00327837\pi\)
\(678\) −18.7529 + 10.2084i −0.720200 + 0.392050i
\(679\) −6.73144 −0.258329
\(680\) −0.398980 + 5.28988i −0.0153002 + 0.202858i
\(681\) 17.6099 0.674815
\(682\) −57.7335 + 31.4280i −2.21073 + 1.20344i
\(683\) 11.5114i 0.440470i 0.975447 + 0.220235i \(0.0706825\pi\)
−0.975447 + 0.220235i \(0.929318\pi\)
\(684\) −0.175439 0.113390i −0.00670808 0.00433558i
\(685\) 7.99518i 0.305480i
\(686\) 13.3852 + 24.5887i 0.511048 + 0.938800i
\(687\) 2.59369 0.0989554
\(688\) −25.1136 + 11.3123i −0.957447 + 0.431278i
\(689\) 16.7289 0.637319
\(690\) 6.77124 + 12.4388i 0.257777 + 0.473538i
\(691\) 12.7408i 0.484681i −0.970191 0.242341i \(-0.922085\pi\)
0.970191 0.242341i \(-0.0779151\pi\)
\(692\) −10.9623 7.08517i −0.416723 0.269338i
\(693\) 0.909418i 0.0345459i
\(694\) 10.1481 5.52424i 0.385216 0.209697i
\(695\) 22.8758 0.867728
\(696\) −43.7641 3.30083i −1.65887 0.125118i
\(697\) 1.94082 0.0735139
\(698\) 33.4720 18.2209i 1.26694 0.689673i
\(699\) 43.5393i 1.64681i
\(700\) 2.08218 3.22158i 0.0786990 0.121764i
\(701\) 1.28507i 0.0485366i −0.999705 0.0242683i \(-0.992274\pi\)
0.999705 0.0242683i \(-0.00772559\pi\)
\(702\) −14.1714 26.0330i −0.534865 0.982552i
\(703\) 4.77120 0.179949
\(704\) 5.44748 35.9073i 0.205310 1.35331i
\(705\) 14.5081 0.546406
\(706\) 12.0631 + 22.1601i 0.454002 + 0.834005i
\(707\) 30.1331i 1.13327i
\(708\) 10.3074 15.9477i 0.387375 0.599352i
\(709\) 7.21375i 0.270918i −0.990783 0.135459i \(-0.956749\pi\)
0.990783 0.135459i \(-0.0432509\pi\)
\(710\) 17.3205 9.42865i 0.650027 0.353851i
\(711\) 0.695021 0.0260653
\(712\) −13.4549 1.01481i −0.504243 0.0380316i
\(713\) 60.2551 2.25657
\(714\) 7.60311 4.13885i 0.284539 0.154893i
\(715\) 18.0116i 0.673594i
\(716\) −29.2864 18.9285i −1.09448 0.707391i
\(717\) 11.2107i 0.418673i
\(718\) 11.6006 + 21.3104i 0.432930 + 0.795296i
\(719\) −39.5034 −1.47323 −0.736613 0.676314i \(-0.763576\pi\)
−0.736613 + 0.676314i \(0.763576\pi\)
\(720\) 0.380924 0.171586i 0.0141962 0.00639462i
\(721\) 6.67709 0.248668
\(722\) 0.676154 + 1.24210i 0.0251639 + 0.0462262i
\(723\) 25.5285i 0.949415i
\(724\) 10.6715 + 6.89726i 0.396604 + 0.256334i
\(725\) 9.11883i 0.338665i
\(726\) −20.3108 + 11.0564i −0.753803 + 0.410343i
\(727\) −8.48094 −0.314541 −0.157270 0.987556i \(-0.550269\pi\)
−0.157270 + 0.987556i \(0.550269\pi\)
\(728\) 1.61872 21.4618i 0.0599937 0.795427i
\(729\) −27.8734 −1.03235
\(730\) −9.80302 + 5.33640i −0.362826 + 0.197509i
\(731\) 12.9151i 0.477681i
\(732\) 3.08764 4.77724i 0.114123 0.176572i
\(733\) 7.62376i 0.281590i −0.990039 0.140795i \(-0.955034\pi\)
0.990039 0.140795i \(-0.0449658\pi\)
\(734\) −5.49799 10.0999i −0.202935 0.372793i
\(735\) 5.65196 0.208476
\(736\) −20.1227 + 26.5215i −0.741734 + 0.977596i
\(737\) 38.3452 1.41246
\(738\) −0.0730790 0.134247i −0.00269007 0.00494169i
\(739\) 24.3473i 0.895630i −0.894126 0.447815i \(-0.852202\pi\)
0.894126 0.447815i \(-0.147798\pi\)
\(740\) −5.17976 + 8.01420i −0.190412 + 0.294608i
\(741\) 6.75123i 0.248013i
\(742\) 10.0448 5.46803i 0.368757 0.200738i
\(743\) −41.5194 −1.52320 −0.761599 0.648048i \(-0.775586\pi\)
−0.761599 + 0.648048i \(0.775586\pi\)
\(744\) −3.70613 + 49.1378i −0.135873 + 1.80148i
\(745\) −23.8712 −0.874573
\(746\) −17.3373 + 9.43781i −0.634765 + 0.345543i
\(747\) 0.903898i 0.0330719i
\(748\) 14.3021 + 9.24377i 0.522936 + 0.337986i
\(749\) 36.8729i 1.34731i
\(750\) −1.15057 2.11360i −0.0420127 0.0771778i
\(751\) −24.8532 −0.906906 −0.453453 0.891280i \(-0.649808\pi\)
−0.453453 + 0.891280i \(0.649808\pi\)
\(752\) 14.0066 + 31.0949i 0.510767 + 1.13391i
\(753\) 38.5693 1.40554
\(754\) −24.4626 44.9379i −0.890874 1.63654i
\(755\) 10.1896i 0.370836i
\(756\) −17.0184 10.9994i −0.618953 0.400043i
\(757\) 25.6490i 0.932227i −0.884725 0.466114i \(-0.845654\pi\)
0.884725 0.466114i \(-0.154346\pi\)
\(758\) 24.3202 13.2390i 0.883348 0.480862i
\(759\) 45.4629 1.65020
\(760\) −2.82042 0.212725i −0.102307 0.00771634i
\(761\) 12.5388 0.454530 0.227265 0.973833i \(-0.427022\pi\)
0.227265 + 0.973833i \(0.427022\pi\)
\(762\) 25.7974 14.0431i 0.934541 0.508730i
\(763\) 14.8611i 0.538008i
\(764\) 21.6243 33.4574i 0.782339 1.21045i
\(765\) 0.195896i 0.00708264i
\(766\) −3.61065 6.63281i −0.130458 0.239653i
\(767\) 22.1369 0.799318
\(768\) −20.3905 18.0413i −0.735779 0.651009i
\(769\) 38.0665 1.37271 0.686356 0.727266i \(-0.259209\pi\)
0.686356 + 0.727266i \(0.259209\pi\)
\(770\) −5.88730 10.8150i −0.212163 0.389746i
\(771\) 33.5999i 1.21007i
\(772\) −3.45264 + 5.34197i −0.124263 + 0.192262i
\(773\) 4.22947i 0.152123i 0.997103 + 0.0760617i \(0.0242346\pi\)
−0.997103 + 0.0760617i \(0.975765\pi\)
\(774\) −0.893335 + 0.486299i −0.0321103 + 0.0174796i
\(775\) −10.2385 −0.367778
\(776\) −9.89886 0.746604i −0.355349 0.0268015i
\(777\) 15.5715 0.558623
\(778\) −43.0662 + 23.4436i −1.54400 + 0.840495i
\(779\) 1.03479i 0.0370753i
\(780\) −11.3401 7.32935i −0.406040 0.262433i
\(781\) 63.3050i 2.26523i
\(782\) −7.46337 13.7103i −0.266890 0.490279i
\(783\) −48.1714 −1.72150
\(784\) 5.45658 + 12.1137i 0.194878 + 0.432634i
\(785\) 0.576523 0.0205770
\(786\) 15.1294 + 27.7928i 0.539648 + 0.991338i
\(787\) 28.3598i 1.01092i −0.862850 0.505460i \(-0.831323\pi\)
0.862850 0.505460i \(-0.168677\pi\)
\(788\) 19.0909 + 12.3389i 0.680085 + 0.439555i
\(789\) 12.7681i 0.454557i
\(790\) 8.26535 4.49935i 0.294068 0.160080i
\(791\) −17.0169 −0.605052
\(792\) 0.100866 1.33734i 0.00358413 0.0475202i
\(793\) 6.63126 0.235483
\(794\) −16.5693 + 9.01973i −0.588023 + 0.320098i
\(795\) 7.17489i 0.254467i
\(796\) 19.8796 30.7580i 0.704615 1.09019i
\(797\) 28.4360i 1.00726i −0.863921 0.503628i \(-0.831998\pi\)
0.863921 0.503628i \(-0.168002\pi\)
\(798\) 2.20672 + 4.05377i 0.0781171 + 0.143502i
\(799\) −15.9910 −0.565723
\(800\) 3.41925 4.50652i 0.120889 0.159330i
\(801\) −0.498264 −0.0176053
\(802\) 9.81751 + 18.0349i 0.346668 + 0.636833i
\(803\) 35.8292i 1.26439i
\(804\) 15.6036 24.1421i 0.550297 0.851427i
\(805\) 11.2874i 0.397827i
\(806\) −50.4558 + 27.4663i −1.77723 + 0.967458i
\(807\) 0.0695860 0.00244954
\(808\) −3.34216 + 44.3121i −0.117577 + 1.55889i
\(809\) 54.9575 1.93220 0.966101 0.258164i \(-0.0831176\pi\)
0.966101 + 0.258164i \(0.0831176\pi\)
\(810\) −10.7762 + 5.86615i −0.378636 + 0.206115i
\(811\) 27.7581i 0.974717i 0.873202 + 0.487359i \(0.162040\pi\)
−0.873202 + 0.487359i \(0.837960\pi\)
\(812\) −29.3770 18.9870i −1.03093 0.666314i
\(813\) 14.1469i 0.496153i
\(814\) 14.6456 + 26.9041i 0.513329 + 0.942989i
\(815\) 17.1008 0.599016
\(816\) 11.6397 5.24307i 0.407473 0.183544i
\(817\) 6.88595 0.240909
\(818\) 11.7249 + 21.5388i 0.409953 + 0.753087i
\(819\) 0.794779i 0.0277718i
\(820\) −1.73815 1.12340i −0.0606987 0.0392309i
\(821\) 1.68746i 0.0588927i 0.999566 + 0.0294463i \(0.00937441\pi\)
−0.999566 + 0.0294463i \(0.990626\pi\)
\(822\) 16.8986 9.19899i 0.589407 0.320851i
\(823\) −15.9961 −0.557591 −0.278795 0.960351i \(-0.589935\pi\)
−0.278795 + 0.960351i \(0.589935\pi\)
\(824\) 9.81893 + 0.740576i 0.342059 + 0.0257992i
\(825\) −7.72503 −0.268951
\(826\) 13.2921 7.23572i 0.462491 0.251763i
\(827\) 23.8803i 0.830398i −0.909731 0.415199i \(-0.863712\pi\)
0.909731 0.415199i \(-0.136288\pi\)
\(828\) −0.667317 + 1.03248i −0.0231909 + 0.0358813i
\(829\) 41.1168i 1.42805i 0.700122 + 0.714023i \(0.253129\pi\)
−0.700122 + 0.714023i \(0.746871\pi\)
\(830\) −5.85156 10.7494i −0.203111 0.373116i
\(831\) 13.8030 0.478820
\(832\) 4.76079 31.3809i 0.165051 1.08794i
\(833\) −6.22968 −0.215846
\(834\) −26.3201 48.3503i −0.911391 1.67423i
\(835\) 9.12743i 0.315868i
\(836\) −4.92852 + 7.62548i −0.170456 + 0.263733i
\(837\) 54.0863i 1.86949i
\(838\) 27.1734 14.7922i 0.938688 0.510987i
\(839\) 13.5553 0.467981 0.233990 0.972239i \(-0.424822\pi\)
0.233990 + 0.972239i \(0.424822\pi\)
\(840\) −9.20481 0.694257i −0.317596 0.0239541i
\(841\) −54.1530 −1.86734
\(842\) −30.8688 + 16.8038i −1.06381 + 0.579098i
\(843\) 22.8067i 0.785504i
\(844\) −12.8613 8.31256i −0.442705 0.286130i
\(845\) 2.74107i 0.0942956i
\(846\) 0.602120 + 1.10610i 0.0207013 + 0.0380285i
\(847\) −18.4306 −0.633283
\(848\) 15.3778 6.92687i 0.528076 0.237870i
\(849\) −0.889113 −0.0305143
\(850\) 1.26817 + 2.32964i 0.0434980 + 0.0799061i
\(851\) 28.0792i 0.962542i
\(852\) −39.8568 25.7604i −1.36547 0.882535i
\(853\) 4.56005i 0.156133i −0.996948 0.0780665i \(-0.975125\pi\)
0.996948 0.0780665i \(-0.0248746\pi\)
\(854\) 3.98173 2.16751i 0.136252 0.0741705i
\(855\) −0.104446 −0.00357199
\(856\) 4.08969 54.2232i 0.139783 1.85331i
\(857\) 5.48833 0.187478 0.0937389 0.995597i \(-0.470118\pi\)
0.0937389 + 0.995597i \(0.470118\pi\)
\(858\) −38.0692 + 20.7235i −1.29966 + 0.707488i
\(859\) 8.03552i 0.274168i −0.990559 0.137084i \(-0.956227\pi\)
0.990559 0.137084i \(-0.0437731\pi\)
\(860\) −7.47561 + 11.5664i −0.254916 + 0.394410i
\(861\) 3.37719i 0.115094i
\(862\) −23.6020 43.3571i −0.803887 1.47675i
\(863\) 0.335470 0.0114195 0.00570976 0.999984i \(-0.498183\pi\)
0.00570976 + 0.999984i \(0.498183\pi\)
\(864\) −23.8063 18.0626i −0.809906 0.614502i
\(865\) −6.52631 −0.221901
\(866\) 5.49972 + 10.1030i 0.186888 + 0.343315i
\(867\) 22.9418i 0.779146i
\(868\) −21.3184 + 32.9842i −0.723594 + 1.11956i
\(869\) 30.2092i 1.02478i
\(870\) −19.2736 + 10.4918i −0.653435 + 0.355706i
\(871\) 33.5115 1.13549
\(872\) 1.64829 21.8539i 0.0558181 0.740065i
\(873\) −0.366577 −0.0124068
\(874\) 7.30994 3.97926i 0.247262 0.134601i
\(875\) 1.91794i 0.0648383i
\(876\) 22.5580 + 14.5798i 0.762165 + 0.492605i
\(877\) 17.0173i 0.574633i 0.957836 + 0.287317i \(0.0927632\pi\)
−0.957836 + 0.287317i \(0.907237\pi\)
\(878\) 19.1902 + 35.2527i 0.647640 + 1.18972i
\(879\) 34.4655 1.16249
\(880\) −7.45799 16.5569i −0.251409 0.558133i
\(881\) −5.24994 −0.176875 −0.0884375 0.996082i \(-0.528187\pi\)
−0.0884375 + 0.996082i \(0.528187\pi\)
\(882\) 0.234570 + 0.430907i 0.00789838 + 0.0145094i
\(883\) 12.9814i 0.436860i 0.975853 + 0.218430i \(0.0700936\pi\)
−0.975853 + 0.218430i \(0.929906\pi\)
\(884\) 12.4992 + 8.07852i 0.420394 + 0.271710i
\(885\) 9.49437i 0.319150i
\(886\) 8.73836 4.75684i 0.293571 0.159809i
\(887\) −14.0639 −0.472220 −0.236110 0.971726i \(-0.575873\pi\)
−0.236110 + 0.971726i \(0.575873\pi\)
\(888\) 22.8985 + 1.72708i 0.768423 + 0.0579569i
\(889\) 23.4093 0.785123
\(890\) −5.92548 + 3.22561i −0.198623 + 0.108123i
\(891\) 39.3860i 1.31948i
\(892\) 22.9168 35.4572i 0.767311 1.18720i
\(893\) 8.52598i 0.285311i
\(894\) 27.4654 + 50.4541i 0.918580 + 1.68744i
\(895\) −17.4355 −0.582803
\(896\) −7.39863 20.3988i −0.247171 0.681475i
\(897\) 39.7319 1.32661
\(898\) −20.2971 37.2859i −0.677322 1.24425i
\(899\) 93.3632i 3.11384i
\(900\) 0.113390 0.175439i 0.00377967 0.00584797i
\(901\) 7.90828i 0.263463i
\(902\) −5.83505 + 3.17639i −0.194286 + 0.105762i
\(903\) 22.4732 0.747863
\(904\) −25.0241 1.88740i −0.832289 0.0627739i
\(905\) 6.35322 0.211188
\(906\) 21.5367 11.7238i 0.715508 0.389496i
\(907\) 35.0794i 1.16479i −0.812905 0.582396i \(-0.802115\pi\)
0.812905 0.582396i \(-0.197885\pi\)
\(908\) 17.3830 + 11.2350i 0.576875 + 0.372848i
\(909\) 1.64098i 0.0544277i
\(910\) −5.14516 9.45170i −0.170560 0.313321i
\(911\) 15.6792 0.519474 0.259737 0.965679i \(-0.416364\pi\)
0.259737 + 0.965679i \(0.416364\pi\)
\(912\) 2.79546 + 6.20599i 0.0925669 + 0.205501i
\(913\) −39.2880 −1.30024
\(914\) 2.50188 + 4.59598i 0.0827550 + 0.152022i
\(915\) 2.84410i 0.0940230i
\(916\) 2.56026 + 1.65476i 0.0845935 + 0.0546747i
\(917\) 25.2201i 0.832840i
\(918\) 12.3066 6.69928i 0.406180 0.221109i
\(919\) −34.2297 −1.12913 −0.564566 0.825388i \(-0.690956\pi\)
−0.564566 + 0.825388i \(0.690956\pi\)
\(920\) −1.25192 + 16.5985i −0.0412744 + 0.547238i
\(921\) −15.6163 −0.514576
\(922\) 7.87761 4.28828i 0.259435 0.141227i
\(923\) 55.3249i 1.82104i
\(924\) −16.0849 + 24.8868i −0.529154 + 0.818715i
\(925\) 4.77120i 0.156876i
\(926\) −8.18074 15.0281i −0.268836 0.493854i
\(927\) 0.363617 0.0119428
\(928\) −41.0942 31.1795i −1.34898 1.02352i
\(929\) 20.9733 0.688113 0.344056 0.938949i \(-0.388199\pi\)
0.344056 + 0.938949i \(0.388199\pi\)
\(930\) 11.7801 + 21.6401i 0.386284 + 0.709608i
\(931\) 3.32149i 0.108858i
\(932\) 27.7778 42.9782i 0.909892 1.40780i
\(933\) 8.50216i 0.278348i
\(934\) −25.5669 + 13.9177i −0.836574 + 0.455400i
\(935\) 8.51465 0.278459
\(936\) 0.0881513 1.16876i 0.00288132 0.0382020i
\(937\) −46.8424 −1.53027 −0.765137 0.643868i \(-0.777329\pi\)
−0.765137 + 0.643868i \(0.777329\pi\)
\(938\) 20.1219 10.9536i 0.657004 0.357649i
\(939\) 15.3024i 0.499376i
\(940\) 14.3211 + 9.25607i 0.467103 + 0.301900i
\(941\) 59.6047i 1.94306i 0.236919 + 0.971529i \(0.423862\pi\)
−0.236919 + 0.971529i \(0.576138\pi\)
\(942\) −0.663328 1.21854i −0.0216124 0.0397022i
\(943\) 6.08990 0.198314
\(944\) 20.3491 9.16616i 0.662307 0.298333i
\(945\) −10.1318 −0.329587
\(946\) 21.1370 + 38.8289i 0.687224 + 1.26244i
\(947\) 14.1256i 0.459020i −0.973306 0.229510i \(-0.926288\pi\)
0.973306 0.229510i \(-0.0737124\pi\)
\(948\) −19.0197 12.2928i −0.617730 0.399253i
\(949\) 31.3127i 1.01645i
\(950\) −1.24210 + 0.676154i −0.0402991 + 0.0219373i
\(951\) −50.5917 −1.64055
\(952\) 10.1457 + 0.765221i 0.328824 + 0.0248010i
\(953\) 51.9713 1.68351 0.841757 0.539856i \(-0.181521\pi\)
0.841757 + 0.539856i \(0.181521\pi\)
\(954\) 0.547016 0.297775i 0.0177103 0.00964083i
\(955\) 19.9186i 0.644552i
\(956\) −7.15238 + 11.0663i −0.231325 + 0.357909i
\(957\) 70.4432i 2.27711i
\(958\) 5.78145 + 10.6206i 0.186790 + 0.343135i
\(959\) 15.3343 0.495171
\(960\) −13.4591 2.04187i −0.434389 0.0659010i
\(961\) 73.8272 2.38152
\(962\) 12.7994 + 23.5127i 0.412670 + 0.758079i
\(963\) 2.00801i 0.0647071i
\(964\) −16.2870 + 25.1995i −0.524570 + 0.811622i
\(965\) 3.18031i 0.102378i
\(966\) 23.8570 12.9869i 0.767586 0.417845i
\(967\) −39.6770 −1.27593 −0.637963 0.770067i \(-0.720223\pi\)
−0.637963 + 0.770067i \(0.720223\pi\)
\(968\) −27.1030 2.04419i −0.871122 0.0657028i
\(969\) −3.19153 −0.102527
\(970\) −4.35942 + 2.37311i −0.139973 + 0.0761960i
\(971\) 40.1418i 1.28821i 0.764936 + 0.644106i \(0.222771\pi\)
−0.764936 + 0.644106i \(0.777229\pi\)
\(972\) −1.82238 1.17784i −0.0584528 0.0377794i
\(973\) 43.8745i 1.40655i
\(974\) 5.81366 + 10.6798i 0.186282 + 0.342201i
\(975\) −6.75123 −0.216212
\(976\) 6.09570 2.74578i 0.195119 0.0878904i
\(977\) 13.4151 0.429187 0.214594 0.976703i \(-0.431157\pi\)
0.214594 + 0.976703i \(0.431157\pi\)
\(978\) −19.6756 36.1443i −0.629158 1.15577i
\(979\) 21.6571i 0.692165i
\(980\) 5.57912 + 3.60591i 0.178219 + 0.115187i
\(981\) 0.809298i 0.0258389i
\(982\) 10.3957 5.65904i 0.331740 0.180587i
\(983\) −20.7083 −0.660494 −0.330247 0.943895i \(-0.607132\pi\)
−0.330247 + 0.943895i \(0.607132\pi\)
\(984\) −0.374574 + 4.96629i −0.0119410 + 0.158320i
\(985\) 11.3656 0.362139
\(986\) 21.2436 11.5642i 0.676535 0.368281i
\(987\) 27.8257i 0.885702i
\(988\) −4.30724 + 6.66423i −0.137032 + 0.212017i
\(989\) 40.5248i 1.28861i
\(990\) −0.320607 0.588958i −0.0101896 0.0187183i
\(991\) −0.521289 −0.0165593 −0.00827965 0.999966i \(-0.502636\pi\)
−0.00827965 + 0.999966i \(0.502636\pi\)
\(992\) −35.0080 + 46.1401i −1.11151 + 1.46495i
\(993\) 25.6649 0.814452
\(994\) −18.0836 33.2198i −0.573578 1.05367i
\(995\) 18.3116i 0.580516i
\(996\) −15.9873 + 24.7357i −0.506576 + 0.783781i
\(997\) 8.52842i 0.270098i 0.990839 + 0.135049i \(0.0431191\pi\)
−0.990839 + 0.135049i \(0.956881\pi\)
\(998\) −24.7139 + 13.4533i −0.782305 + 0.425858i
\(999\) 25.2045 0.797434
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 760.2.f.b.381.15 44
4.3 odd 2 3040.2.f.b.1521.13 44
8.3 odd 2 3040.2.f.b.1521.32 44
8.5 even 2 inner 760.2.f.b.381.16 yes 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
760.2.f.b.381.15 44 1.1 even 1 trivial
760.2.f.b.381.16 yes 44 8.5 even 2 inner
3040.2.f.b.1521.13 44 4.3 odd 2
3040.2.f.b.1521.32 44 8.3 odd 2