Properties

Label 760.2.f.b.381.13
Level $760$
Weight $2$
Character 760.381
Analytic conductor $6.069$
Analytic rank $0$
Dimension $44$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [760,2,Mod(381,760)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(760, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("760.381"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 760 = 2^{3} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 760.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [44] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.06863055362\)
Analytic rank: \(0\)
Dimension: \(44\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 381.13
Character \(\chi\) \(=\) 760.381
Dual form 760.2.f.b.381.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.750213 - 1.19882i) q^{2} +1.80124i q^{3} +(-0.874362 + 1.79875i) q^{4} -1.00000i q^{5} +(2.15937 - 1.35131i) q^{6} +4.97691 q^{7} +(2.81234 - 0.301237i) q^{8} -0.244448 q^{9} +(-1.19882 + 0.750213i) q^{10} +5.55944i q^{11} +(-3.23997 - 1.57493i) q^{12} -5.33303i q^{13} +(-3.73374 - 5.96645i) q^{14} +1.80124 q^{15} +(-2.47098 - 3.14551i) q^{16} -0.586816 q^{17} +(0.183388 + 0.293051i) q^{18} -1.00000i q^{19} +(1.79875 + 0.874362i) q^{20} +8.96459i q^{21} +(6.66479 - 4.17076i) q^{22} +1.77875 q^{23} +(0.542599 + 5.06569i) q^{24} -1.00000 q^{25} +(-6.39337 + 4.00091i) q^{26} +4.96340i q^{27} +(-4.35162 + 8.95221i) q^{28} -7.19616i q^{29} +(-1.35131 - 2.15937i) q^{30} -2.10284 q^{31} +(-1.91715 + 5.32208i) q^{32} -10.0139 q^{33} +(0.440237 + 0.703489i) q^{34} -4.97691i q^{35} +(0.213736 - 0.439701i) q^{36} +3.39104i q^{37} +(-1.19882 + 0.750213i) q^{38} +9.60604 q^{39} +(-0.301237 - 2.81234i) q^{40} +5.88614 q^{41} +(10.7470 - 6.72535i) q^{42} +2.50471i q^{43} +(-10.0000 - 4.86096i) q^{44} +0.244448i q^{45} +(-1.33444 - 2.13241i) q^{46} +6.94927 q^{47} +(5.66581 - 4.45082i) q^{48} +17.7697 q^{49} +(0.750213 + 1.19882i) q^{50} -1.05699i q^{51} +(9.59277 + 4.66300i) q^{52} +11.8871i q^{53} +(5.95024 - 3.72360i) q^{54} +5.55944 q^{55} +(13.9968 - 1.49923i) q^{56} +1.80124 q^{57} +(-8.62694 + 5.39865i) q^{58} +5.63624i q^{59} +(-1.57493 + 3.23997i) q^{60} -2.34909i q^{61} +(1.57758 + 2.52094i) q^{62} -1.21660 q^{63} +(7.81851 - 1.69436i) q^{64} -5.33303 q^{65} +(7.51252 + 12.0049i) q^{66} -12.1321i q^{67} +(0.513089 - 1.05553i) q^{68} +3.20394i q^{69} +(-5.96645 + 3.73374i) q^{70} -6.57777 q^{71} +(-0.687472 + 0.0736369i) q^{72} -1.31957 q^{73} +(4.06526 - 2.54400i) q^{74} -1.80124i q^{75} +(1.79875 + 0.874362i) q^{76} +27.6689i q^{77} +(-7.20657 - 11.5160i) q^{78} -0.202718 q^{79} +(-3.14551 + 2.47098i) q^{80} -9.67359 q^{81} +(-4.41586 - 7.05645i) q^{82} +8.37708i q^{83} +(-16.1250 - 7.83830i) q^{84} +0.586816i q^{85} +(3.00271 - 1.87906i) q^{86} +12.9620 q^{87} +(1.67471 + 15.6350i) q^{88} -12.2197 q^{89} +(0.293051 - 0.183388i) q^{90} -26.5420i q^{91} +(-1.55527 + 3.19952i) q^{92} -3.78771i q^{93} +(-5.21343 - 8.33096i) q^{94} -1.00000 q^{95} +(-9.58632 - 3.45324i) q^{96} +12.2726 q^{97} +(-13.3310 - 21.3027i) q^{98} -1.35900i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q + 2 q^{2} - 2 q^{4} - 6 q^{6} + 4 q^{7} + 8 q^{8} - 60 q^{9} + 4 q^{12} + 4 q^{14} - 6 q^{16} + 24 q^{17} - 14 q^{18} - 4 q^{20} - 4 q^{22} + 4 q^{23} + 2 q^{24} - 44 q^{25} + 18 q^{26} - 14 q^{28}+ \cdots + 78 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/760\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(381\) \(401\) \(457\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.750213 1.19882i −0.530481 0.847697i
\(3\) 1.80124i 1.03994i 0.854183 + 0.519972i \(0.174058\pi\)
−0.854183 + 0.519972i \(0.825942\pi\)
\(4\) −0.874362 + 1.79875i −0.437181 + 0.899374i
\(5\) 1.00000i 0.447214i
\(6\) 2.15937 1.35131i 0.881557 0.551670i
\(7\) 4.97691 1.88110 0.940548 0.339660i \(-0.110312\pi\)
0.940548 + 0.339660i \(0.110312\pi\)
\(8\) 2.81234 0.301237i 0.994312 0.106503i
\(9\) −0.244448 −0.0814828
\(10\) −1.19882 + 0.750213i −0.379102 + 0.237238i
\(11\) 5.55944i 1.67623i 0.545490 + 0.838117i \(0.316343\pi\)
−0.545490 + 0.838117i \(0.683657\pi\)
\(12\) −3.23997 1.57493i −0.935298 0.454643i
\(13\) 5.33303i 1.47912i −0.673093 0.739558i \(-0.735035\pi\)
0.673093 0.739558i \(-0.264965\pi\)
\(14\) −3.73374 5.96645i −0.997885 1.59460i
\(15\) 1.80124 0.465077
\(16\) −2.47098 3.14551i −0.617746 0.786378i
\(17\) −0.586816 −0.142324 −0.0711619 0.997465i \(-0.522671\pi\)
−0.0711619 + 0.997465i \(0.522671\pi\)
\(18\) 0.183388 + 0.293051i 0.0432250 + 0.0690727i
\(19\) 1.00000i 0.229416i
\(20\) 1.79875 + 0.874362i 0.402212 + 0.195513i
\(21\) 8.96459i 1.95623i
\(22\) 6.66479 4.17076i 1.42094 0.889210i
\(23\) 1.77875 0.370895 0.185447 0.982654i \(-0.440627\pi\)
0.185447 + 0.982654i \(0.440627\pi\)
\(24\) 0.542599 + 5.06569i 0.110757 + 1.03403i
\(25\) −1.00000 −0.200000
\(26\) −6.39337 + 4.00091i −1.25384 + 0.784642i
\(27\) 4.96340i 0.955206i
\(28\) −4.35162 + 8.95221i −0.822379 + 1.69181i
\(29\) 7.19616i 1.33629i −0.744030 0.668147i \(-0.767088\pi\)
0.744030 0.668147i \(-0.232912\pi\)
\(30\) −1.35131 2.15937i −0.246714 0.394244i
\(31\) −2.10284 −0.377681 −0.188841 0.982008i \(-0.560473\pi\)
−0.188841 + 0.982008i \(0.560473\pi\)
\(32\) −1.91715 + 5.32208i −0.338908 + 0.940820i
\(33\) −10.0139 −1.74319
\(34\) 0.440237 + 0.703489i 0.0755000 + 0.120647i
\(35\) 4.97691i 0.841252i
\(36\) 0.213736 0.439701i 0.0356227 0.0732834i
\(37\) 3.39104i 0.557483i 0.960366 + 0.278742i \(0.0899173\pi\)
−0.960366 + 0.278742i \(0.910083\pi\)
\(38\) −1.19882 + 0.750213i −0.194475 + 0.121701i
\(39\) 9.60604 1.53820
\(40\) −0.301237 2.81234i −0.0476298 0.444670i
\(41\) 5.88614 0.919261 0.459631 0.888110i \(-0.347982\pi\)
0.459631 + 0.888110i \(0.347982\pi\)
\(42\) 10.7470 6.72535i 1.65829 1.03774i
\(43\) 2.50471i 0.381964i 0.981594 + 0.190982i \(0.0611673\pi\)
−0.981594 + 0.190982i \(0.938833\pi\)
\(44\) −10.0000 4.86096i −1.50756 0.732817i
\(45\) 0.244448i 0.0364402i
\(46\) −1.33444 2.13241i −0.196752 0.314406i
\(47\) 6.94927 1.01366 0.506828 0.862047i \(-0.330818\pi\)
0.506828 + 0.862047i \(0.330818\pi\)
\(48\) 5.66581 4.45082i 0.817789 0.642421i
\(49\) 17.7697 2.53852
\(50\) 0.750213 + 1.19882i 0.106096 + 0.169539i
\(51\) 1.05699i 0.148009i
\(52\) 9.59277 + 4.66300i 1.33028 + 0.646641i
\(53\) 11.8871i 1.63282i 0.577475 + 0.816409i \(0.304038\pi\)
−0.577475 + 0.816409i \(0.695962\pi\)
\(54\) 5.95024 3.72360i 0.809725 0.506718i
\(55\) 5.55944 0.749635
\(56\) 13.9968 1.49923i 1.87040 0.200343i
\(57\) 1.80124 0.238579
\(58\) −8.62694 + 5.39865i −1.13277 + 0.708878i
\(59\) 5.63624i 0.733776i 0.930265 + 0.366888i \(0.119577\pi\)
−0.930265 + 0.366888i \(0.880423\pi\)
\(60\) −1.57493 + 3.23997i −0.203323 + 0.418278i
\(61\) 2.34909i 0.300770i −0.988628 0.150385i \(-0.951949\pi\)
0.988628 0.150385i \(-0.0480513\pi\)
\(62\) 1.57758 + 2.52094i 0.200352 + 0.320159i
\(63\) −1.21660 −0.153277
\(64\) 7.81851 1.69436i 0.977314 0.211795i
\(65\) −5.33303 −0.661481
\(66\) 7.51252 + 12.0049i 0.924728 + 1.47770i
\(67\) 12.1321i 1.48217i −0.671412 0.741084i \(-0.734312\pi\)
0.671412 0.741084i \(-0.265688\pi\)
\(68\) 0.513089 1.05553i 0.0622212 0.128002i
\(69\) 3.20394i 0.385710i
\(70\) −5.96645 + 3.73374i −0.713127 + 0.446268i
\(71\) −6.57777 −0.780638 −0.390319 0.920680i \(-0.627635\pi\)
−0.390319 + 0.920680i \(0.627635\pi\)
\(72\) −0.687472 + 0.0736369i −0.0810193 + 0.00867819i
\(73\) −1.31957 −0.154444 −0.0772222 0.997014i \(-0.524605\pi\)
−0.0772222 + 0.997014i \(0.524605\pi\)
\(74\) 4.06526 2.54400i 0.472577 0.295734i
\(75\) 1.80124i 0.207989i
\(76\) 1.79875 + 0.874362i 0.206330 + 0.100296i
\(77\) 27.6689i 3.15316i
\(78\) −7.20657 11.5160i −0.815984 1.30393i
\(79\) −0.202718 −0.0228076 −0.0114038 0.999935i \(-0.503630\pi\)
−0.0114038 + 0.999935i \(0.503630\pi\)
\(80\) −3.14551 + 2.47098i −0.351679 + 0.276264i
\(81\) −9.67359 −1.07484
\(82\) −4.41586 7.05645i −0.487650 0.779255i
\(83\) 8.37708i 0.919504i 0.888047 + 0.459752i \(0.152062\pi\)
−0.888047 + 0.459752i \(0.847938\pi\)
\(84\) −16.1250 7.83830i −1.75939 0.855228i
\(85\) 0.586816i 0.0636491i
\(86\) 3.00271 1.87906i 0.323790 0.202625i
\(87\) 12.9620 1.38967
\(88\) 1.67471 + 15.6350i 0.178525 + 1.66670i
\(89\) −12.2197 −1.29528 −0.647641 0.761946i \(-0.724244\pi\)
−0.647641 + 0.761946i \(0.724244\pi\)
\(90\) 0.293051 0.183388i 0.0308902 0.0193308i
\(91\) 26.5420i 2.78236i
\(92\) −1.55527 + 3.19952i −0.162148 + 0.333573i
\(93\) 3.78771i 0.392767i
\(94\) −5.21343 8.33096i −0.537725 0.859273i
\(95\) −1.00000 −0.102598
\(96\) −9.58632 3.45324i −0.978399 0.352445i
\(97\) 12.2726 1.24609 0.623045 0.782186i \(-0.285895\pi\)
0.623045 + 0.782186i \(0.285895\pi\)
\(98\) −13.3310 21.3027i −1.34664 2.15190i
\(99\) 1.35900i 0.136584i
\(100\) 0.874362 1.79875i 0.0874362 0.179875i
\(101\) 16.5155i 1.64336i 0.569952 + 0.821678i \(0.306962\pi\)
−0.569952 + 0.821678i \(0.693038\pi\)
\(102\) −1.26715 + 0.792970i −0.125467 + 0.0785157i
\(103\) 8.19759 0.807733 0.403866 0.914818i \(-0.367666\pi\)
0.403866 + 0.914818i \(0.367666\pi\)
\(104\) −1.60651 14.9983i −0.157531 1.47070i
\(105\) 8.96459 0.874855
\(106\) 14.2505 8.91785i 1.38413 0.866178i
\(107\) 1.39487i 0.134847i 0.997724 + 0.0674234i \(0.0214778\pi\)
−0.997724 + 0.0674234i \(0.978522\pi\)
\(108\) −8.92790 4.33980i −0.859087 0.417598i
\(109\) 16.0569i 1.53797i −0.639266 0.768986i \(-0.720762\pi\)
0.639266 0.768986i \(-0.279238\pi\)
\(110\) −4.17076 6.66479i −0.397667 0.635463i
\(111\) −6.10806 −0.579751
\(112\) −12.2979 15.6549i −1.16204 1.47925i
\(113\) −9.35758 −0.880287 −0.440143 0.897928i \(-0.645072\pi\)
−0.440143 + 0.897928i \(0.645072\pi\)
\(114\) −1.35131 2.15937i −0.126562 0.202243i
\(115\) 1.77875i 0.165869i
\(116\) 12.9441 + 6.29205i 1.20183 + 0.584202i
\(117\) 1.30365i 0.120522i
\(118\) 6.75687 4.22838i 0.622020 0.389254i
\(119\) −2.92053 −0.267725
\(120\) 5.06569 0.542599i 0.462432 0.0495323i
\(121\) −19.9074 −1.80976
\(122\) −2.81614 + 1.76232i −0.254962 + 0.159553i
\(123\) 10.6023i 0.955980i
\(124\) 1.83864 3.78248i 0.165115 0.339676i
\(125\) 1.00000i 0.0894427i
\(126\) 0.912707 + 1.45849i 0.0813104 + 0.129932i
\(127\) −13.4310 −1.19181 −0.595904 0.803056i \(-0.703206\pi\)
−0.595904 + 0.803056i \(0.703206\pi\)
\(128\) −7.89679 8.10189i −0.697984 0.716113i
\(129\) −4.51157 −0.397221
\(130\) 4.00091 + 6.39337i 0.350903 + 0.560735i
\(131\) 15.7227i 1.37370i −0.726800 0.686850i \(-0.758993\pi\)
0.726800 0.686850i \(-0.241007\pi\)
\(132\) 8.75573 18.0124i 0.762089 1.56778i
\(133\) 4.97691i 0.431553i
\(134\) −14.5442 + 9.10163i −1.25643 + 0.786261i
\(135\) 4.96340 0.427181
\(136\) −1.65033 + 0.176771i −0.141514 + 0.0151580i
\(137\) −19.2732 −1.64662 −0.823311 0.567591i \(-0.807876\pi\)
−0.823311 + 0.567591i \(0.807876\pi\)
\(138\) 3.84097 2.40364i 0.326965 0.204611i
\(139\) 10.5025i 0.890814i −0.895328 0.445407i \(-0.853059\pi\)
0.895328 0.445407i \(-0.146941\pi\)
\(140\) 8.95221 + 4.35162i 0.756600 + 0.367779i
\(141\) 12.5173i 1.05414i
\(142\) 4.93473 + 7.88560i 0.414113 + 0.661745i
\(143\) 29.6487 2.47934
\(144\) 0.604028 + 0.768915i 0.0503356 + 0.0640762i
\(145\) −7.19616 −0.597609
\(146\) 0.989961 + 1.58194i 0.0819298 + 0.130922i
\(147\) 32.0074i 2.63992i
\(148\) −6.09962 2.96499i −0.501386 0.243721i
\(149\) 12.1933i 0.998914i −0.866339 0.499457i \(-0.833533\pi\)
0.866339 0.499457i \(-0.166467\pi\)
\(150\) −2.15937 + 1.35131i −0.176311 + 0.110334i
\(151\) −1.41469 −0.115126 −0.0575628 0.998342i \(-0.518333\pi\)
−0.0575628 + 0.998342i \(0.518333\pi\)
\(152\) −0.301237 2.81234i −0.0244335 0.228111i
\(153\) 0.143446 0.0115969
\(154\) 33.1701 20.7575i 2.67292 1.67269i
\(155\) 2.10284i 0.168904i
\(156\) −8.39915 + 17.2788i −0.672470 + 1.38341i
\(157\) 16.4141i 1.30999i 0.755634 + 0.654994i \(0.227329\pi\)
−0.755634 + 0.654994i \(0.772671\pi\)
\(158\) 0.152082 + 0.243024i 0.0120990 + 0.0193339i
\(159\) −21.4114 −1.69804
\(160\) 5.32208 + 1.91715i 0.420747 + 0.151564i
\(161\) 8.85268 0.697689
\(162\) 7.25725 + 11.5969i 0.570183 + 0.911142i
\(163\) 8.77560i 0.687358i 0.939087 + 0.343679i \(0.111673\pi\)
−0.939087 + 0.343679i \(0.888327\pi\)
\(164\) −5.14662 + 10.5877i −0.401883 + 0.826759i
\(165\) 10.0139i 0.779578i
\(166\) 10.0426 6.28459i 0.779460 0.487779i
\(167\) −4.19020 −0.324247 −0.162124 0.986770i \(-0.551834\pi\)
−0.162124 + 0.986770i \(0.551834\pi\)
\(168\) 2.70047 + 25.2115i 0.208346 + 1.94511i
\(169\) −15.4412 −1.18778
\(170\) 0.703489 0.440237i 0.0539552 0.0337646i
\(171\) 0.244448i 0.0186934i
\(172\) −4.50534 2.19002i −0.343529 0.166987i
\(173\) 7.51333i 0.571228i 0.958345 + 0.285614i \(0.0921976\pi\)
−0.958345 + 0.285614i \(0.907802\pi\)
\(174\) −9.72424 15.5391i −0.737193 1.17802i
\(175\) −4.97691 −0.376219
\(176\) 17.4873 13.7373i 1.31815 1.03549i
\(177\) −10.1522 −0.763086
\(178\) 9.16735 + 14.6492i 0.687122 + 1.09801i
\(179\) 0.224608i 0.0167880i 0.999965 + 0.00839401i \(0.00267193\pi\)
−0.999965 + 0.00839401i \(0.997328\pi\)
\(180\) −0.439701 0.213736i −0.0327734 0.0159310i
\(181\) 12.2976i 0.914072i −0.889448 0.457036i \(-0.848911\pi\)
0.889448 0.457036i \(-0.151089\pi\)
\(182\) −31.8192 + 19.9122i −2.35860 + 1.47599i
\(183\) 4.23126 0.312784
\(184\) 5.00244 0.535825i 0.368785 0.0395015i
\(185\) 3.39104 0.249314
\(186\) −4.54080 + 2.84159i −0.332947 + 0.208355i
\(187\) 3.26237i 0.238568i
\(188\) −6.07618 + 12.5000i −0.443151 + 0.911655i
\(189\) 24.7024i 1.79684i
\(190\) 0.750213 + 1.19882i 0.0544262 + 0.0869719i
\(191\) −9.08176 −0.657133 −0.328567 0.944481i \(-0.606566\pi\)
−0.328567 + 0.944481i \(0.606566\pi\)
\(192\) 3.05194 + 14.0830i 0.220255 + 1.01635i
\(193\) 20.0382 1.44238 0.721190 0.692738i \(-0.243596\pi\)
0.721190 + 0.692738i \(0.243596\pi\)
\(194\) −9.20703 14.7126i −0.661026 1.05631i
\(195\) 9.60604i 0.687903i
\(196\) −15.5371 + 31.9632i −1.10979 + 2.28308i
\(197\) 9.75114i 0.694740i −0.937728 0.347370i \(-0.887075\pi\)
0.937728 0.347370i \(-0.112925\pi\)
\(198\) −1.62920 + 1.01954i −0.115782 + 0.0724552i
\(199\) 0.526183 0.0373001 0.0186501 0.999826i \(-0.494063\pi\)
0.0186501 + 0.999826i \(0.494063\pi\)
\(200\) −2.81234 + 0.301237i −0.198862 + 0.0213007i
\(201\) 21.8527 1.54137
\(202\) 19.7992 12.3902i 1.39307 0.871768i
\(203\) 35.8147i 2.51370i
\(204\) 1.90126 + 0.924194i 0.133115 + 0.0647065i
\(205\) 5.88614i 0.411106i
\(206\) −6.14994 9.82747i −0.428486 0.684713i
\(207\) −0.434812 −0.0302215
\(208\) −16.7751 + 13.1778i −1.16314 + 0.913718i
\(209\) 5.55944 0.384554
\(210\) −6.72535 10.7470i −0.464093 0.741612i
\(211\) 9.28274i 0.639050i −0.947578 0.319525i \(-0.896477\pi\)
0.947578 0.319525i \(-0.103523\pi\)
\(212\) −21.3819 10.3936i −1.46851 0.713836i
\(213\) 11.8481i 0.811820i
\(214\) 1.67220 1.04645i 0.114309 0.0715336i
\(215\) 2.50471 0.170820
\(216\) 1.49516 + 13.9588i 0.101733 + 0.949773i
\(217\) −10.4656 −0.710455
\(218\) −19.2494 + 12.0461i −1.30373 + 0.815864i
\(219\) 2.37686i 0.160614i
\(220\) −4.86096 + 10.0000i −0.327726 + 0.674202i
\(221\) 3.12951i 0.210513i
\(222\) 4.58234 + 7.32249i 0.307547 + 0.491453i
\(223\) −21.3597 −1.43035 −0.715175 0.698946i \(-0.753653\pi\)
−0.715175 + 0.698946i \(0.753653\pi\)
\(224\) −9.54150 + 26.4875i −0.637519 + 1.76977i
\(225\) 0.244448 0.0162966
\(226\) 7.02017 + 11.2181i 0.466975 + 0.746217i
\(227\) 16.4852i 1.09416i −0.837080 0.547080i \(-0.815739\pi\)
0.837080 0.547080i \(-0.184261\pi\)
\(228\) −1.57493 + 3.23997i −0.104302 + 0.214572i
\(229\) 1.52550i 0.100808i 0.998729 + 0.0504038i \(0.0160508\pi\)
−0.998729 + 0.0504038i \(0.983949\pi\)
\(230\) −2.13241 + 1.33444i −0.140607 + 0.0879903i
\(231\) −49.8381 −3.27911
\(232\) −2.16775 20.2381i −0.142320 1.32869i
\(233\) 18.5252 1.21363 0.606814 0.794844i \(-0.292447\pi\)
0.606814 + 0.794844i \(0.292447\pi\)
\(234\) 1.56285 0.978015i 0.102167 0.0639348i
\(235\) 6.94927i 0.453321i
\(236\) −10.1382 4.92811i −0.659939 0.320793i
\(237\) 0.365143i 0.0237186i
\(238\) 2.19102 + 3.50121i 0.142023 + 0.226949i
\(239\) −21.9308 −1.41859 −0.709294 0.704913i \(-0.750986\pi\)
−0.709294 + 0.704913i \(0.750986\pi\)
\(240\) −4.45082 5.66581i −0.287299 0.365726i
\(241\) 20.9234 1.34780 0.673898 0.738824i \(-0.264619\pi\)
0.673898 + 0.738824i \(0.264619\pi\)
\(242\) 14.9348 + 23.8654i 0.960043 + 1.53413i
\(243\) 2.53422i 0.162570i
\(244\) 4.22542 + 2.05395i 0.270505 + 0.131491i
\(245\) 17.7697i 1.13526i
\(246\) 12.7103 7.95400i 0.810381 0.507129i
\(247\) −5.33303 −0.339332
\(248\) −5.91390 + 0.633453i −0.375533 + 0.0402243i
\(249\) −15.0891 −0.956232
\(250\) 1.19882 0.750213i 0.0758203 0.0474476i
\(251\) 19.5825i 1.23603i 0.786165 + 0.618017i \(0.212064\pi\)
−0.786165 + 0.618017i \(0.787936\pi\)
\(252\) 1.06375 2.18835i 0.0670097 0.137853i
\(253\) 9.88884i 0.621706i
\(254\) 10.0761 + 16.1014i 0.632231 + 1.01029i
\(255\) −1.05699 −0.0661915
\(256\) −3.78848 + 15.5450i −0.236780 + 0.971563i
\(257\) 5.40454 0.337126 0.168563 0.985691i \(-0.446087\pi\)
0.168563 + 0.985691i \(0.446087\pi\)
\(258\) 3.38464 + 5.40858i 0.210718 + 0.336723i
\(259\) 16.8769i 1.04868i
\(260\) 4.66300 9.59277i 0.289187 0.594918i
\(261\) 1.75909i 0.108885i
\(262\) −18.8488 + 11.7954i −1.16448 + 0.728721i
\(263\) 24.3152 1.49934 0.749670 0.661812i \(-0.230212\pi\)
0.749670 + 0.661812i \(0.230212\pi\)
\(264\) −28.1624 + 3.01654i −1.73327 + 0.185655i
\(265\) 11.8871 0.730218
\(266\) −5.96645 + 3.73374i −0.365826 + 0.228931i
\(267\) 22.0105i 1.34702i
\(268\) 21.8225 + 10.6078i 1.33302 + 0.647975i
\(269\) 6.48637i 0.395481i −0.980254 0.197740i \(-0.936640\pi\)
0.980254 0.197740i \(-0.0633603\pi\)
\(270\) −3.72360 5.95024i −0.226611 0.362120i
\(271\) 1.48004 0.0899058 0.0449529 0.998989i \(-0.485686\pi\)
0.0449529 + 0.998989i \(0.485686\pi\)
\(272\) 1.45001 + 1.84584i 0.0879199 + 0.111920i
\(273\) 47.8084 2.89350
\(274\) 14.4590 + 23.1052i 0.873501 + 1.39584i
\(275\) 5.55944i 0.335247i
\(276\) −5.76309 2.80141i −0.346897 0.168625i
\(277\) 6.27850i 0.377238i −0.982050 0.188619i \(-0.939599\pi\)
0.982050 0.188619i \(-0.0604012\pi\)
\(278\) −12.5907 + 7.87914i −0.755141 + 0.472560i
\(279\) 0.514035 0.0307745
\(280\) −1.49923 13.9968i −0.0895962 0.836467i
\(281\) −11.5011 −0.686101 −0.343050 0.939317i \(-0.611460\pi\)
−0.343050 + 0.939317i \(0.611460\pi\)
\(282\) 15.0060 9.39062i 0.893596 0.559203i
\(283\) 11.5769i 0.688173i 0.938938 + 0.344086i \(0.111811\pi\)
−0.938938 + 0.344086i \(0.888189\pi\)
\(284\) 5.75135 11.8318i 0.341280 0.702085i
\(285\) 1.80124i 0.106696i
\(286\) −22.2428 35.5435i −1.31524 2.10173i
\(287\) 29.2948 1.72922
\(288\) 0.468645 1.30097i 0.0276152 0.0766606i
\(289\) −16.6556 −0.979744
\(290\) 5.39865 + 8.62694i 0.317020 + 0.506591i
\(291\) 22.1058i 1.29586i
\(292\) 1.15378 2.37358i 0.0675201 0.138903i
\(293\) 4.64456i 0.271338i −0.990754 0.135669i \(-0.956682\pi\)
0.990754 0.135669i \(-0.0433184\pi\)
\(294\) 38.3712 24.0123i 2.23785 1.40043i
\(295\) 5.63624 0.328155
\(296\) 1.02151 + 9.53675i 0.0593738 + 0.554312i
\(297\) −27.5937 −1.60115
\(298\) −14.6176 + 9.14757i −0.846776 + 0.529904i
\(299\) 9.48612i 0.548596i
\(300\) 3.23997 + 1.57493i 0.187060 + 0.0909287i
\(301\) 12.4657i 0.718512i
\(302\) 1.06132 + 1.69596i 0.0610718 + 0.0975916i
\(303\) −29.7483 −1.70900
\(304\) −3.14551 + 2.47098i −0.180407 + 0.141721i
\(305\) −2.34909 −0.134508
\(306\) −0.107615 0.171967i −0.00615195 0.00983069i
\(307\) 18.8691i 1.07692i −0.842652 0.538458i \(-0.819007\pi\)
0.842652 0.538458i \(-0.180993\pi\)
\(308\) −49.7693 24.1926i −2.83587 1.37850i
\(309\) 14.7658i 0.839996i
\(310\) 2.52094 1.57758i 0.143180 0.0896003i
\(311\) −8.72224 −0.494593 −0.247296 0.968940i \(-0.579542\pi\)
−0.247296 + 0.968940i \(0.579542\pi\)
\(312\) 27.0154 2.89369i 1.52945 0.163823i
\(313\) −11.2913 −0.638224 −0.319112 0.947717i \(-0.603385\pi\)
−0.319112 + 0.947717i \(0.603385\pi\)
\(314\) 19.6776 12.3141i 1.11047 0.694923i
\(315\) 1.21660i 0.0685475i
\(316\) 0.177249 0.364639i 0.00997104 0.0205125i
\(317\) 25.4356i 1.42861i −0.699837 0.714303i \(-0.746744\pi\)
0.699837 0.714303i \(-0.253256\pi\)
\(318\) 16.0631 + 25.6686i 0.900776 + 1.43942i
\(319\) 40.0066 2.23994
\(320\) −1.69436 7.81851i −0.0947177 0.437068i
\(321\) −2.51248 −0.140233
\(322\) −6.64139 10.6128i −0.370110 0.591429i
\(323\) 0.586816i 0.0326513i
\(324\) 8.45821 17.4003i 0.469901 0.966686i
\(325\) 5.33303i 0.295823i
\(326\) 10.5204 6.58357i 0.582671 0.364630i
\(327\) 28.9222 1.59940
\(328\) 16.5538 1.77312i 0.914033 0.0979044i
\(329\) 34.5859 1.90678
\(330\) 12.0049 7.51252i 0.660846 0.413551i
\(331\) 8.44784i 0.464335i −0.972676 0.232168i \(-0.925418\pi\)
0.972676 0.232168i \(-0.0745818\pi\)
\(332\) −15.0682 7.32459i −0.826977 0.401989i
\(333\) 0.828933i 0.0454253i
\(334\) 3.14354 + 5.02332i 0.172007 + 0.274864i
\(335\) −12.1321 −0.662846
\(336\) 28.1982 22.1514i 1.53834 1.20846i
\(337\) −25.5142 −1.38985 −0.694925 0.719083i \(-0.744562\pi\)
−0.694925 + 0.719083i \(0.744562\pi\)
\(338\) 11.5842 + 18.5113i 0.630096 + 1.00688i
\(339\) 16.8552i 0.915449i
\(340\) −1.05553 0.513089i −0.0572443 0.0278262i
\(341\) 11.6906i 0.633082i
\(342\) 0.293051 0.183388i 0.0158464 0.00991650i
\(343\) 53.5997 2.89411
\(344\) 0.754511 + 7.04409i 0.0406805 + 0.379792i
\(345\) 3.20394 0.172495
\(346\) 9.00717 5.63660i 0.484229 0.303025i
\(347\) 1.27204i 0.0682866i −0.999417 0.0341433i \(-0.989130\pi\)
0.999417 0.0341433i \(-0.0108703\pi\)
\(348\) −11.3335 + 23.3153i −0.607537 + 1.24983i
\(349\) 27.9794i 1.49770i −0.662737 0.748852i \(-0.730605\pi\)
0.662737 0.748852i \(-0.269395\pi\)
\(350\) 3.73374 + 5.96645i 0.199577 + 0.318920i
\(351\) 26.4699 1.41286
\(352\) −29.5878 10.6583i −1.57703 0.568089i
\(353\) −23.9987 −1.27732 −0.638661 0.769488i \(-0.720511\pi\)
−0.638661 + 0.769488i \(0.720511\pi\)
\(354\) 7.61631 + 12.1707i 0.404802 + 0.646866i
\(355\) 6.57777i 0.349112i
\(356\) 10.6844 21.9801i 0.566272 1.16494i
\(357\) 5.26057i 0.278419i
\(358\) 0.269266 0.168504i 0.0142312 0.00890572i
\(359\) 31.9623 1.68691 0.843453 0.537203i \(-0.180519\pi\)
0.843453 + 0.537203i \(0.180519\pi\)
\(360\) 0.0736369 + 0.687472i 0.00388100 + 0.0362329i
\(361\) −1.00000 −0.0526316
\(362\) −14.7426 + 9.22580i −0.774856 + 0.484897i
\(363\) 35.8579i 1.88205i
\(364\) 47.7424 + 23.2073i 2.50238 + 1.21639i
\(365\) 1.31957i 0.0690697i
\(366\) −3.17435 5.07254i −0.165926 0.265146i
\(367\) −26.9571 −1.40715 −0.703575 0.710621i \(-0.748414\pi\)
−0.703575 + 0.710621i \(0.748414\pi\)
\(368\) −4.39526 5.59507i −0.229119 0.291663i
\(369\) −1.43886 −0.0749039
\(370\) −2.54400 4.06526i −0.132256 0.211343i
\(371\) 59.1610i 3.07149i
\(372\) 6.81313 + 3.31183i 0.353244 + 0.171710i
\(373\) 22.9560i 1.18862i −0.804236 0.594310i \(-0.797425\pi\)
0.804236 0.594310i \(-0.202575\pi\)
\(374\) −3.91101 + 2.44747i −0.202233 + 0.126556i
\(375\) −1.80124 −0.0930154
\(376\) 19.5437 2.09338i 1.00789 0.107958i
\(377\) −38.3773 −1.97653
\(378\) 29.6138 18.5321i 1.52317 0.953186i
\(379\) 7.27783i 0.373837i 0.982375 + 0.186918i \(0.0598500\pi\)
−0.982375 + 0.186918i \(0.940150\pi\)
\(380\) 0.874362 1.79875i 0.0448538 0.0922738i
\(381\) 24.1924i 1.23941i
\(382\) 6.81325 + 10.8874i 0.348596 + 0.557050i
\(383\) −10.4151 −0.532187 −0.266093 0.963947i \(-0.585733\pi\)
−0.266093 + 0.963947i \(0.585733\pi\)
\(384\) 14.5934 14.2240i 0.744717 0.725864i
\(385\) 27.6689 1.41014
\(386\) −15.0329 24.0223i −0.765154 1.22270i
\(387\) 0.612272i 0.0311235i
\(388\) −10.7307 + 22.0752i −0.544766 + 1.12070i
\(389\) 19.5711i 0.992295i −0.868238 0.496147i \(-0.834748\pi\)
0.868238 0.496147i \(-0.165252\pi\)
\(390\) −11.5160 + 7.20657i −0.583133 + 0.364919i
\(391\) −1.04380 −0.0527871
\(392\) 49.9744 5.35288i 2.52409 0.270361i
\(393\) 28.3203 1.42857
\(394\) −11.6899 + 7.31543i −0.588929 + 0.368546i
\(395\) 0.202718i 0.0101999i
\(396\) 2.44449 + 1.18825i 0.122840 + 0.0597120i
\(397\) 0.419562i 0.0210572i −0.999945 0.0105286i \(-0.996649\pi\)
0.999945 0.0105286i \(-0.00335142\pi\)
\(398\) −0.394749 0.630802i −0.0197870 0.0316192i
\(399\) 8.96459 0.448791
\(400\) 2.47098 + 3.14551i 0.123549 + 0.157276i
\(401\) −13.9622 −0.697237 −0.348619 0.937265i \(-0.613349\pi\)
−0.348619 + 0.937265i \(0.613349\pi\)
\(402\) −16.3942 26.1976i −0.817668 1.30662i
\(403\) 11.2145i 0.558634i
\(404\) −29.7072 14.4405i −1.47799 0.718444i
\(405\) 9.67359i 0.480685i
\(406\) −42.9355 + 26.8686i −2.13085 + 1.33347i
\(407\) −18.8523 −0.934472
\(408\) −0.318406 2.97262i −0.0157634 0.147167i
\(409\) −2.89534 −0.143166 −0.0715828 0.997435i \(-0.522805\pi\)
−0.0715828 + 0.997435i \(0.522805\pi\)
\(410\) −7.05645 + 4.41586i −0.348493 + 0.218084i
\(411\) 34.7156i 1.71239i
\(412\) −7.16766 + 14.7454i −0.353125 + 0.726453i
\(413\) 28.0511i 1.38030i
\(414\) 0.326201 + 0.521263i 0.0160319 + 0.0256187i
\(415\) 8.37708 0.411214
\(416\) 28.3828 + 10.2242i 1.39158 + 0.501284i
\(417\) 18.9176 0.926397
\(418\) −4.17076 6.66479i −0.203999 0.325986i
\(419\) 16.6884i 0.815284i −0.913142 0.407642i \(-0.866351\pi\)
0.913142 0.407642i \(-0.133649\pi\)
\(420\) −7.83830 + 16.1250i −0.382470 + 0.786821i
\(421\) 25.5257i 1.24405i 0.782998 + 0.622024i \(0.213689\pi\)
−0.782998 + 0.622024i \(0.786311\pi\)
\(422\) −11.1284 + 6.96403i −0.541721 + 0.339004i
\(423\) −1.69874 −0.0825955
\(424\) 3.58083 + 33.4305i 0.173901 + 1.62353i
\(425\) 0.586816 0.0284647
\(426\) −14.2038 + 8.88861i −0.688177 + 0.430655i
\(427\) 11.6912i 0.565777i
\(428\) −2.50901 1.21962i −0.121278 0.0589524i
\(429\) 53.4042i 2.57838i
\(430\) −1.87906 3.00271i −0.0906165 0.144803i
\(431\) −12.6662 −0.610107 −0.305054 0.952335i \(-0.598674\pi\)
−0.305054 + 0.952335i \(0.598674\pi\)
\(432\) 15.6124 12.2645i 0.751153 0.590075i
\(433\) −6.03137 −0.289849 −0.144925 0.989443i \(-0.546294\pi\)
−0.144925 + 0.989443i \(0.546294\pi\)
\(434\) 7.85146 + 12.5465i 0.376882 + 0.602250i
\(435\) 12.9620i 0.621479i
\(436\) 28.8823 + 14.0395i 1.38321 + 0.672371i
\(437\) 1.77875i 0.0850891i
\(438\) −2.84944 + 1.78315i −0.136152 + 0.0852023i
\(439\) −21.4871 −1.02552 −0.512762 0.858531i \(-0.671378\pi\)
−0.512762 + 0.858531i \(0.671378\pi\)
\(440\) 15.6350 1.67471i 0.745371 0.0798386i
\(441\) −4.34377 −0.206846
\(442\) 3.75173 2.34780i 0.178452 0.111673i
\(443\) 23.6389i 1.12312i −0.827436 0.561560i \(-0.810201\pi\)
0.827436 0.561560i \(-0.189799\pi\)
\(444\) 5.34065 10.9869i 0.253456 0.521413i
\(445\) 12.2197i 0.579268i
\(446\) 16.0243 + 25.6065i 0.758773 + 1.21250i
\(447\) 21.9630 1.03881
\(448\) 38.9121 8.43269i 1.83842 0.398407i
\(449\) 10.5806 0.499329 0.249665 0.968332i \(-0.419680\pi\)
0.249665 + 0.968332i \(0.419680\pi\)
\(450\) −0.183388 0.293051i −0.00864500 0.0138145i
\(451\) 32.7237i 1.54090i
\(452\) 8.18191 16.8319i 0.384844 0.791707i
\(453\) 2.54818i 0.119724i
\(454\) −19.7629 + 12.3674i −0.927517 + 0.580431i
\(455\) −26.5420 −1.24431
\(456\) 5.06569 0.542599i 0.237222 0.0254095i
\(457\) −9.95196 −0.465533 −0.232767 0.972533i \(-0.574778\pi\)
−0.232767 + 0.972533i \(0.574778\pi\)
\(458\) 1.82880 1.14445i 0.0854543 0.0534765i
\(459\) 2.91260i 0.135949i
\(460\) 3.19952 + 1.55527i 0.149178 + 0.0725148i
\(461\) 17.7564i 0.826998i −0.910505 0.413499i \(-0.864307\pi\)
0.910505 0.413499i \(-0.135693\pi\)
\(462\) 37.3892 + 59.7472i 1.73950 + 2.77969i
\(463\) −7.30430 −0.339460 −0.169730 0.985491i \(-0.554290\pi\)
−0.169730 + 0.985491i \(0.554290\pi\)
\(464\) −22.6356 + 17.7816i −1.05083 + 0.825490i
\(465\) −3.78771 −0.175651
\(466\) −13.8979 22.2085i −0.643806 1.02879i
\(467\) 36.1163i 1.67126i 0.549292 + 0.835631i \(0.314898\pi\)
−0.549292 + 0.835631i \(0.685102\pi\)
\(468\) −2.34494 1.13986i −0.108395 0.0526901i
\(469\) 60.3803i 2.78810i
\(470\) −8.33096 + 5.21343i −0.384279 + 0.240478i
\(471\) −29.5656 −1.36231
\(472\) 1.69784 + 15.8510i 0.0781496 + 0.729603i
\(473\) −13.9248 −0.640262
\(474\) −0.437743 + 0.273935i −0.0201062 + 0.0125823i
\(475\) 1.00000i 0.0458831i
\(476\) 2.55360 5.25330i 0.117044 0.240785i
\(477\) 2.90578i 0.133046i
\(478\) 16.4528 + 26.2912i 0.752533 + 1.20253i
\(479\) −3.43156 −0.156792 −0.0783961 0.996922i \(-0.524980\pi\)
−0.0783961 + 0.996922i \(0.524980\pi\)
\(480\) −3.45324 + 9.58632i −0.157618 + 0.437553i
\(481\) 18.0845 0.824582
\(482\) −15.6970 25.0835i −0.714980 1.14252i
\(483\) 15.9458i 0.725557i
\(484\) 17.4062 35.8083i 0.791193 1.62765i
\(485\) 12.2726i 0.557268i
\(486\) −3.03809 + 1.90120i −0.137810 + 0.0862404i
\(487\) 39.1218 1.77278 0.886390 0.462939i \(-0.153205\pi\)
0.886390 + 0.462939i \(0.153205\pi\)
\(488\) −0.707632 6.60643i −0.0320330 0.299059i
\(489\) −15.8069 −0.714814
\(490\) −21.3027 + 13.3310i −0.962359 + 0.602235i
\(491\) 3.47805i 0.156962i 0.996916 + 0.0784812i \(0.0250071\pi\)
−0.996916 + 0.0784812i \(0.974993\pi\)
\(492\) −19.0709 9.27027i −0.859783 0.417936i
\(493\) 4.22282i 0.190186i
\(494\) 4.00091 + 6.39337i 0.180009 + 0.287651i
\(495\) −1.35900 −0.0610823
\(496\) 5.19608 + 6.61450i 0.233311 + 0.297000i
\(497\) −32.7370 −1.46846
\(498\) 11.3200 + 18.0892i 0.507262 + 0.810595i
\(499\) 22.2374i 0.995484i −0.867325 0.497742i \(-0.834163\pi\)
0.867325 0.497742i \(-0.165837\pi\)
\(500\) −1.79875 0.874362i −0.0804424 0.0391026i
\(501\) 7.54754i 0.337199i
\(502\) 23.4759 14.6910i 1.04778 0.655692i
\(503\) 11.2855 0.503196 0.251598 0.967832i \(-0.419044\pi\)
0.251598 + 0.967832i \(0.419044\pi\)
\(504\) −3.42149 + 0.366484i −0.152405 + 0.0163245i
\(505\) 16.5155 0.734931
\(506\) 11.8550 7.41874i 0.527019 0.329803i
\(507\) 27.8132i 1.23523i
\(508\) 11.7435 24.1590i 0.521036 1.07188i
\(509\) 29.6354i 1.31356i −0.754080 0.656782i \(-0.771917\pi\)
0.754080 0.656782i \(-0.228083\pi\)
\(510\) 0.792970 + 1.26715i 0.0351133 + 0.0561103i
\(511\) −6.56741 −0.290525
\(512\) 21.4779 7.12035i 0.949199 0.314678i
\(513\) 4.96340 0.219139
\(514\) −4.05456 6.47910i −0.178839 0.285781i
\(515\) 8.19759i 0.361229i
\(516\) 3.94474 8.11517i 0.173658 0.357250i
\(517\) 38.6341i 1.69912i
\(518\) 20.2325 12.6613i 0.888963 0.556304i
\(519\) −13.5333 −0.594045
\(520\) −14.9983 + 1.60651i −0.657719 + 0.0704499i
\(521\) −13.2542 −0.580679 −0.290339 0.956924i \(-0.593768\pi\)
−0.290339 + 0.956924i \(0.593768\pi\)
\(522\) 2.10884 1.31969i 0.0923014 0.0577613i
\(523\) 6.95400i 0.304077i −0.988375 0.152039i \(-0.951416\pi\)
0.988375 0.152039i \(-0.0485838\pi\)
\(524\) 28.2812 + 13.7473i 1.23547 + 0.600555i
\(525\) 8.96459i 0.391247i
\(526\) −18.2416 29.1497i −0.795371 1.27099i
\(527\) 1.23398 0.0537530
\(528\) 24.7441 + 31.4987i 1.07685 + 1.37080i
\(529\) −19.8361 −0.862437
\(530\) −8.91785 14.2505i −0.387366 0.619004i
\(531\) 1.37777i 0.0597901i
\(532\) 8.95221 + 4.35162i 0.388128 + 0.188667i
\(533\) 31.3910i 1.35969i
\(534\) −26.3867 + 16.5126i −1.14187 + 0.714568i
\(535\) 1.39487 0.0603053
\(536\) −3.65463 34.1195i −0.157856 1.47374i
\(537\) −0.404573 −0.0174586
\(538\) −7.77602 + 4.86616i −0.335248 + 0.209795i
\(539\) 98.7894i 4.25516i
\(540\) −4.33980 + 8.92790i −0.186755 + 0.384196i
\(541\) 24.3877i 1.04851i 0.851561 + 0.524255i \(0.175656\pi\)
−0.851561 + 0.524255i \(0.824344\pi\)
\(542\) −1.11034 1.77430i −0.0476933 0.0762129i
\(543\) 22.1508 0.950583
\(544\) 1.12502 3.12308i 0.0482346 0.133901i
\(545\) −16.0569 −0.687802
\(546\) −35.8665 57.3139i −1.53494 2.45281i
\(547\) 23.4628i 1.00320i 0.865100 + 0.501599i \(0.167255\pi\)
−0.865100 + 0.501599i \(0.832745\pi\)
\(548\) 16.8518 34.6676i 0.719871 1.48093i
\(549\) 0.574231i 0.0245076i
\(550\) −6.66479 + 4.17076i −0.284188 + 0.177842i
\(551\) −7.19616 −0.306567
\(552\) 0.965146 + 9.01058i 0.0410794 + 0.383516i
\(553\) −1.00891 −0.0429033
\(554\) −7.52682 + 4.71021i −0.319784 + 0.200118i
\(555\) 6.10806i 0.259273i
\(556\) 18.8914 + 9.18302i 0.801175 + 0.389447i
\(557\) 9.51132i 0.403007i −0.979488 0.201504i \(-0.935417\pi\)
0.979488 0.201504i \(-0.0645828\pi\)
\(558\) −0.385636 0.616238i −0.0163253 0.0260874i
\(559\) 13.3577 0.564970
\(560\) −15.6549 + 12.2979i −0.661542 + 0.519680i
\(561\) 5.87629 0.248097
\(562\) 8.62831 + 13.7879i 0.363963 + 0.581606i
\(563\) 14.9643i 0.630668i 0.948981 + 0.315334i \(0.102117\pi\)
−0.948981 + 0.315334i \(0.897883\pi\)
\(564\) −22.5154 10.9446i −0.948070 0.460852i
\(565\) 9.35758i 0.393676i
\(566\) 13.8786 8.68511i 0.583362 0.365062i
\(567\) −48.1446 −2.02188
\(568\) −18.4989 + 1.98147i −0.776198 + 0.0831406i
\(569\) 0.281236 0.0117900 0.00589501 0.999983i \(-0.498124\pi\)
0.00589501 + 0.999983i \(0.498124\pi\)
\(570\) −2.15937 + 1.35131i −0.0904459 + 0.0566001i
\(571\) 4.96274i 0.207684i −0.994594 0.103842i \(-0.966886\pi\)
0.994594 0.103842i \(-0.0331137\pi\)
\(572\) −25.9236 + 53.3304i −1.08392 + 2.22986i
\(573\) 16.3584i 0.683382i
\(574\) −21.9774 35.1194i −0.917317 1.46585i
\(575\) −1.77875 −0.0741789
\(576\) −1.91122 + 0.414184i −0.0796342 + 0.0172577i
\(577\) 3.65475 0.152149 0.0760747 0.997102i \(-0.475761\pi\)
0.0760747 + 0.997102i \(0.475761\pi\)
\(578\) 12.4953 + 19.9672i 0.519735 + 0.830526i
\(579\) 36.0935i 1.49999i
\(580\) 6.29205 12.9441i 0.261263 0.537473i
\(581\) 41.6920i 1.72968i
\(582\) 26.5009 16.5840i 1.09850 0.687430i
\(583\) −66.0855 −2.73698
\(584\) −3.71109 + 0.397504i −0.153566 + 0.0164489i
\(585\) 1.30365 0.0538993
\(586\) −5.56802 + 3.48441i −0.230013 + 0.143940i
\(587\) 36.7537i 1.51699i 0.651680 + 0.758494i \(0.274065\pi\)
−0.651680 + 0.758494i \(0.725935\pi\)
\(588\) −57.5732 27.9860i −2.37428 1.15412i
\(589\) 2.10284i 0.0866460i
\(590\) −4.22838 6.75687i −0.174080 0.278176i
\(591\) 17.5641 0.722490
\(592\) 10.6665 8.37920i 0.438392 0.344383i
\(593\) 44.9393 1.84543 0.922717 0.385478i \(-0.125963\pi\)
0.922717 + 0.385478i \(0.125963\pi\)
\(594\) 20.7011 + 33.0800i 0.849378 + 1.35729i
\(595\) 2.92053i 0.119730i
\(596\) 21.9327 + 10.6614i 0.898397 + 0.436706i
\(597\) 0.947780i 0.0387900i
\(598\) −11.3722 + 7.11661i −0.465043 + 0.291020i
\(599\) −22.3983 −0.915168 −0.457584 0.889166i \(-0.651285\pi\)
−0.457584 + 0.889166i \(0.651285\pi\)
\(600\) −0.542599 5.06569i −0.0221515 0.206806i
\(601\) −18.3927 −0.750252 −0.375126 0.926974i \(-0.622401\pi\)
−0.375126 + 0.926974i \(0.622401\pi\)
\(602\) 14.9442 9.35194i 0.609081 0.381157i
\(603\) 2.96566i 0.120771i
\(604\) 1.23695 2.54466i 0.0503307 0.103541i
\(605\) 19.9074i 0.809350i
\(606\) 22.3176 + 35.6630i 0.906590 + 1.44871i
\(607\) 23.4700 0.952617 0.476309 0.879278i \(-0.341975\pi\)
0.476309 + 0.879278i \(0.341975\pi\)
\(608\) 5.32208 + 1.91715i 0.215839 + 0.0777508i
\(609\) 64.5107 2.61410
\(610\) 1.76232 + 2.81614i 0.0713541 + 0.114022i
\(611\) 37.0607i 1.49931i
\(612\) −0.125424 + 0.258023i −0.00506996 + 0.0104300i
\(613\) 1.30553i 0.0527297i 0.999652 + 0.0263649i \(0.00839317\pi\)
−0.999652 + 0.0263649i \(0.991607\pi\)
\(614\) −22.6208 + 14.1558i −0.912899 + 0.571283i
\(615\) 10.6023 0.427527
\(616\) 8.33488 + 77.8142i 0.335822 + 3.13522i
\(617\) −8.36103 −0.336602 −0.168301 0.985736i \(-0.553828\pi\)
−0.168301 + 0.985736i \(0.553828\pi\)
\(618\) 17.7016 11.0775i 0.712063 0.445602i
\(619\) 31.8606i 1.28059i 0.768130 + 0.640293i \(0.221187\pi\)
−0.768130 + 0.640293i \(0.778813\pi\)
\(620\) −3.78248 1.83864i −0.151908 0.0738416i
\(621\) 8.82863i 0.354281i
\(622\) 6.54354 + 10.4564i 0.262372 + 0.419265i
\(623\) −60.8162 −2.43655
\(624\) −23.7364 30.2159i −0.950215 1.20960i
\(625\) 1.00000 0.0400000
\(626\) 8.47090 + 13.5363i 0.338565 + 0.541020i
\(627\) 10.0139i 0.399915i
\(628\) −29.5248 14.3519i −1.17817 0.572701i
\(629\) 1.98991i 0.0793431i
\(630\) 1.45849 0.912707i 0.0581075 0.0363631i
\(631\) −19.6579 −0.782567 −0.391284 0.920270i \(-0.627969\pi\)
−0.391284 + 0.920270i \(0.627969\pi\)
\(632\) −0.570113 + 0.0610662i −0.0226779 + 0.00242908i
\(633\) 16.7204 0.664576
\(634\) −30.4928 + 19.0821i −1.21102 + 0.757847i
\(635\) 13.4310i 0.532993i
\(636\) 18.7213 38.5138i 0.742349 1.52717i
\(637\) 94.7662i 3.75477i
\(638\) −30.0135 47.9609i −1.18824 1.89879i
\(639\) 1.60793 0.0636085
\(640\) −8.10189 + 7.89679i −0.320255 + 0.312148i
\(641\) −15.7895 −0.623648 −0.311824 0.950140i \(-0.600940\pi\)
−0.311824 + 0.950140i \(0.600940\pi\)
\(642\) 1.88490 + 3.01203i 0.0743909 + 0.118875i
\(643\) 26.9723i 1.06368i 0.846844 + 0.531841i \(0.178500\pi\)
−0.846844 + 0.531841i \(0.821500\pi\)
\(644\) −7.74044 + 15.9237i −0.305016 + 0.627483i
\(645\) 4.51157i 0.177643i
\(646\) 0.703489 0.440237i 0.0276784 0.0173209i
\(647\) −0.997247 −0.0392058 −0.0196029 0.999808i \(-0.506240\pi\)
−0.0196029 + 0.999808i \(0.506240\pi\)
\(648\) −27.2054 + 2.91404i −1.06873 + 0.114474i
\(649\) −31.3343 −1.22998
\(650\) 6.39337 4.00091i 0.250768 0.156928i
\(651\) 18.8511i 0.738833i
\(652\) −15.7851 7.67305i −0.618192 0.300500i
\(653\) 19.4317i 0.760419i −0.924900 0.380210i \(-0.875852\pi\)
0.924900 0.380210i \(-0.124148\pi\)
\(654\) −21.6978 34.6727i −0.848452 1.35581i
\(655\) −15.7227 −0.614337
\(656\) −14.5446 18.5149i −0.567870 0.722887i
\(657\) 0.322568 0.0125846
\(658\) −25.9468 41.4625i −1.01151 1.61638i
\(659\) 4.99649i 0.194636i 0.995253 + 0.0973179i \(0.0310263\pi\)
−0.995253 + 0.0973179i \(0.968974\pi\)
\(660\) −18.0124 8.75573i −0.701132 0.340816i
\(661\) 30.5171i 1.18698i 0.804843 + 0.593488i \(0.202250\pi\)
−0.804843 + 0.593488i \(0.797750\pi\)
\(662\) −10.1275 + 6.33768i −0.393616 + 0.246321i
\(663\) −5.63698 −0.218922
\(664\) 2.52349 + 23.5592i 0.0979302 + 0.914274i
\(665\) −4.97691 −0.192996
\(666\) −0.993746 + 0.621876i −0.0385069 + 0.0240972i
\(667\) 12.8002i 0.495624i
\(668\) 3.66375 7.53711i 0.141755 0.291620i
\(669\) 38.4738i 1.48748i
\(670\) 9.10163 + 14.5442i 0.351627 + 0.561892i
\(671\) 13.0596 0.504161
\(672\) −47.7103 17.1865i −1.84046 0.662983i
\(673\) 23.2380 0.895760 0.447880 0.894094i \(-0.352179\pi\)
0.447880 + 0.894094i \(0.352179\pi\)
\(674\) 19.1411 + 30.5871i 0.737288 + 1.17817i
\(675\) 4.96340i 0.191041i
\(676\) 13.5012 27.7748i 0.519276 1.06826i
\(677\) 15.6525i 0.601576i 0.953691 + 0.300788i \(0.0972496\pi\)
−0.953691 + 0.300788i \(0.902750\pi\)
\(678\) −20.2064 + 12.6450i −0.776023 + 0.485628i
\(679\) 61.0795 2.34401
\(680\) 0.176771 + 1.65033i 0.00677884 + 0.0632871i
\(681\) 29.6937 1.13787
\(682\) −14.0150 + 8.77044i −0.536662 + 0.335838i
\(683\) 13.5590i 0.518819i 0.965767 + 0.259410i \(0.0835280\pi\)
−0.965767 + 0.259410i \(0.916472\pi\)
\(684\) −0.439701 0.213736i −0.0168124 0.00817241i
\(685\) 19.2732i 0.736392i
\(686\) −40.2112 64.2567i −1.53527 2.45333i
\(687\) −2.74778 −0.104834
\(688\) 7.87859 6.18909i 0.300368 0.235957i
\(689\) 63.3942 2.41513
\(690\) −2.40364 3.84097i −0.0915050 0.146223i
\(691\) 7.61615i 0.289732i −0.989451 0.144866i \(-0.953725\pi\)
0.989451 0.144866i \(-0.0462751\pi\)
\(692\) −13.5146 6.56937i −0.513748 0.249730i
\(693\) 6.76360i 0.256928i
\(694\) −1.52495 + 0.954300i −0.0578864 + 0.0362247i
\(695\) −10.5025 −0.398384
\(696\) 36.4535 3.90463i 1.38177 0.148005i
\(697\) −3.45408 −0.130833
\(698\) −33.5424 + 20.9905i −1.26960 + 0.794503i
\(699\) 33.3683i 1.26211i
\(700\) 4.35162 8.95221i 0.164476 0.338362i
\(701\) 4.07911i 0.154066i 0.997029 + 0.0770330i \(0.0245447\pi\)
−0.997029 + 0.0770330i \(0.975455\pi\)
\(702\) −19.8581 31.7328i −0.749495 1.19768i
\(703\) 3.39104 0.127895
\(704\) 9.41970 + 43.4665i 0.355018 + 1.63821i
\(705\) 12.5173 0.471428
\(706\) 18.0041 + 28.7702i 0.677594 + 1.08278i
\(707\) 82.1963i 3.09131i
\(708\) 8.87669 18.2612i 0.333606 0.686299i
\(709\) 26.3975i 0.991378i 0.868500 + 0.495689i \(0.165084\pi\)
−0.868500 + 0.495689i \(0.834916\pi\)
\(710\) 7.88560 4.93473i 0.295941 0.185197i
\(711\) 0.0495541 0.00185842
\(712\) −34.3659 + 3.68102i −1.28791 + 0.137952i
\(713\) −3.74042 −0.140080
\(714\) −6.30650 + 3.94654i −0.236015 + 0.147696i
\(715\) 29.6487i 1.10880i
\(716\) −0.404014 0.196389i −0.0150987 0.00733940i
\(717\) 39.5026i 1.47525i
\(718\) −23.9785 38.3172i −0.894871 1.42999i
\(719\) 10.7686 0.401601 0.200800 0.979632i \(-0.435646\pi\)
0.200800 + 0.979632i \(0.435646\pi\)
\(720\) 0.768915 0.604028i 0.0286558 0.0225108i
\(721\) 40.7987 1.51942
\(722\) 0.750213 + 1.19882i 0.0279200 + 0.0446156i
\(723\) 37.6880i 1.40163i
\(724\) 22.1202 + 10.7525i 0.822092 + 0.399615i
\(725\) 7.19616i 0.267259i
\(726\) −42.9873 + 26.9010i −1.59541 + 0.998390i
\(727\) 26.0101 0.964661 0.482331 0.875989i \(-0.339790\pi\)
0.482331 + 0.875989i \(0.339790\pi\)
\(728\) −7.99544 74.6452i −0.296331 2.76654i
\(729\) −24.4560 −0.905779
\(730\) 1.58194 0.989961i 0.0585501 0.0366401i
\(731\) 1.46980i 0.0543626i
\(732\) −3.69965 + 7.61097i −0.136743 + 0.281309i
\(733\) 4.15957i 0.153637i 0.997045 + 0.0768186i \(0.0244762\pi\)
−0.997045 + 0.0768186i \(0.975524\pi\)
\(734\) 20.2236 + 32.3169i 0.746466 + 1.19284i
\(735\) 32.0074 1.18061
\(736\) −3.41013 + 9.46664i −0.125699 + 0.348945i
\(737\) 67.4475 2.48446
\(738\) 1.07945 + 1.72494i 0.0397351 + 0.0634958i
\(739\) 46.7464i 1.71959i −0.510636 0.859797i \(-0.670590\pi\)
0.510636 0.859797i \(-0.329410\pi\)
\(740\) −2.96499 + 6.09962i −0.108995 + 0.224227i
\(741\) 9.60604i 0.352887i
\(742\) 70.9237 44.3834i 2.60369 1.62936i
\(743\) −32.7727 −1.20231 −0.601156 0.799131i \(-0.705293\pi\)
−0.601156 + 0.799131i \(0.705293\pi\)
\(744\) −1.14100 10.6523i −0.0418310 0.390533i
\(745\) −12.1933 −0.446728
\(746\) −27.5203 + 17.2219i −1.00759 + 0.630539i
\(747\) 2.04776i 0.0749237i
\(748\) 5.86817 + 2.85249i 0.214562 + 0.104297i
\(749\) 6.94213i 0.253660i
\(750\) 1.35131 + 2.15937i 0.0493429 + 0.0788489i
\(751\) 30.7417 1.12178 0.560891 0.827890i \(-0.310459\pi\)
0.560891 + 0.827890i \(0.310459\pi\)
\(752\) −17.1715 21.8590i −0.626182 0.797116i
\(753\) −35.2726 −1.28541
\(754\) 28.7912 + 46.0077i 1.04851 + 1.67550i
\(755\) 1.41469i 0.0514857i
\(756\) −44.4334 21.5988i −1.61603 0.785542i
\(757\) 49.5932i 1.80249i −0.433306 0.901247i \(-0.642653\pi\)
0.433306 0.901247i \(-0.357347\pi\)
\(758\) 8.72484 5.45992i 0.316900 0.198313i
\(759\) −17.8121 −0.646539
\(760\) −2.81234 + 0.301237i −0.102014 + 0.0109270i
\(761\) 13.2743 0.481193 0.240597 0.970625i \(-0.422657\pi\)
0.240597 + 0.970625i \(0.422657\pi\)
\(762\) −29.0024 + 18.1494i −1.05065 + 0.657485i
\(763\) 79.9138i 2.89307i
\(764\) 7.94074 16.3358i 0.287286 0.591008i
\(765\) 0.143446i 0.00518631i
\(766\) 7.81354 + 12.4859i 0.282315 + 0.451133i
\(767\) 30.0582 1.08534
\(768\) −28.0002 6.82394i −1.01037 0.246238i
\(769\) −41.9713 −1.51352 −0.756762 0.653690i \(-0.773220\pi\)
−0.756762 + 0.653690i \(0.773220\pi\)
\(770\) −20.7575 33.1701i −0.748049 1.19537i
\(771\) 9.73485i 0.350592i
\(772\) −17.5206 + 36.0436i −0.630581 + 1.29724i
\(773\) 5.38445i 0.193665i −0.995301 0.0968327i \(-0.969129\pi\)
0.995301 0.0968327i \(-0.0308712\pi\)
\(774\) −0.734006 + 0.459334i −0.0263833 + 0.0165104i
\(775\) 2.10284 0.0755362
\(776\) 34.5146 3.69695i 1.23900 0.132713i
\(777\) −30.3993 −1.09057
\(778\) −23.4623 + 14.6825i −0.841165 + 0.526393i
\(779\) 5.88614i 0.210893i
\(780\) 17.2788 + 8.39915i 0.618682 + 0.300738i
\(781\) 36.5687i 1.30853i
\(782\) 0.783070 + 1.25133i 0.0280025 + 0.0447475i
\(783\) 35.7174 1.27644
\(784\) −43.9086 55.8947i −1.56816 1.99624i
\(785\) 16.4141 0.585844
\(786\) −21.2462 33.9511i −0.757829 1.21099i
\(787\) 8.87276i 0.316280i 0.987417 + 0.158140i \(0.0505497\pi\)
−0.987417 + 0.158140i \(0.949450\pi\)
\(788\) 17.5398 + 8.52602i 0.624831 + 0.303727i
\(789\) 43.7974i 1.55923i
\(790\) 0.243024 0.152082i 0.00864639 0.00541083i
\(791\) −46.5719 −1.65590
\(792\) −0.409380 3.82196i −0.0145467 0.135807i
\(793\) −12.5278 −0.444874
\(794\) −0.502981 + 0.314761i −0.0178501 + 0.0111704i
\(795\) 21.4114i 0.759386i
\(796\) −0.460074 + 0.946471i −0.0163069 + 0.0335468i
\(797\) 37.5180i 1.32896i −0.747307 0.664479i \(-0.768654\pi\)
0.747307 0.664479i \(-0.231346\pi\)
\(798\) −6.72535 10.7470i −0.238075 0.380439i
\(799\) −4.07794 −0.144267
\(800\) 1.91715 5.32208i 0.0677816 0.188164i
\(801\) 2.98708 0.105543
\(802\) 10.4746 + 16.7382i 0.369871 + 0.591046i
\(803\) 7.33609i 0.258885i
\(804\) −19.1072 + 39.3075i −0.673858 + 1.38627i
\(805\) 8.85268i 0.312016i
\(806\) 13.4442 8.41326i 0.473552 0.296344i
\(807\) 11.6835 0.411278
\(808\) 4.97509 + 46.4473i 0.175023 + 1.63401i
\(809\) 11.8562 0.416842 0.208421 0.978039i \(-0.433168\pi\)
0.208421 + 0.978039i \(0.433168\pi\)
\(810\) 11.5969 7.25725i 0.407475 0.254994i
\(811\) 28.7564i 1.00977i 0.863186 + 0.504886i \(0.168466\pi\)
−0.863186 + 0.504886i \(0.831534\pi\)
\(812\) 64.4215 + 31.3150i 2.26075 + 1.09894i
\(813\) 2.66589i 0.0934969i
\(814\) 14.1432 + 22.6006i 0.495719 + 0.792150i
\(815\) 8.77560 0.307396
\(816\) −3.32478 + 2.61181i −0.116391 + 0.0914318i
\(817\) 2.50471 0.0876286
\(818\) 2.17212 + 3.47101i 0.0759466 + 0.121361i
\(819\) 6.48815i 0.226714i
\(820\) 10.5877 + 5.14662i 0.369738 + 0.179728i
\(821\) 25.0626i 0.874690i −0.899294 0.437345i \(-0.855919\pi\)
0.899294 0.437345i \(-0.144081\pi\)
\(822\) −41.6179 + 26.0441i −1.45159 + 0.908392i
\(823\) 54.6661 1.90554 0.952769 0.303695i \(-0.0982202\pi\)
0.952769 + 0.303695i \(0.0982202\pi\)
\(824\) 23.0544 2.46942i 0.803139 0.0860262i
\(825\) 10.0139 0.348638
\(826\) 33.6283 21.0443i 1.17008 0.732224i
\(827\) 0.0672364i 0.00233804i 0.999999 + 0.00116902i \(0.000372110\pi\)
−0.999999 + 0.00116902i \(0.999628\pi\)
\(828\) 0.380183 0.782117i 0.0132123 0.0271804i
\(829\) 25.7086i 0.892897i 0.894809 + 0.446449i \(0.147311\pi\)
−0.894809 + 0.446449i \(0.852689\pi\)
\(830\) −6.28459 10.0426i −0.218141 0.348585i
\(831\) 11.3090 0.392307
\(832\) −9.03608 41.6964i −0.313270 1.44556i
\(833\) −10.4275 −0.361292
\(834\) −14.1922 22.6788i −0.491435 0.785304i
\(835\) 4.19020i 0.145008i
\(836\) −4.86096 + 10.0000i −0.168120 + 0.345858i
\(837\) 10.4372i 0.360763i
\(838\) −20.0065 + 12.5199i −0.691114 + 0.432492i
\(839\) −39.1907 −1.35301 −0.676507 0.736436i \(-0.736507\pi\)
−0.676507 + 0.736436i \(0.736507\pi\)
\(840\) 25.2115 2.70047i 0.869879 0.0931750i
\(841\) −22.7847 −0.785680
\(842\) 30.6009 19.1497i 1.05458 0.659943i
\(843\) 20.7163i 0.713506i
\(844\) 16.6973 + 8.11647i 0.574745 + 0.279380i
\(845\) 15.4412i 0.531193i
\(846\) 1.27442 + 2.03649i 0.0438153 + 0.0700159i
\(847\) −99.0773 −3.40433
\(848\) 37.3910 29.3728i 1.28401 1.00867i
\(849\) −20.8526 −0.715661
\(850\) −0.440237 0.703489i −0.0151000 0.0241295i
\(851\) 6.03180i 0.206768i
\(852\) 21.3118 + 10.3595i 0.730129 + 0.354912i
\(853\) 33.9517i 1.16249i 0.813730 + 0.581243i \(0.197433\pi\)
−0.813730 + 0.581243i \(0.802567\pi\)
\(854\) −14.0157 + 8.77089i −0.479608 + 0.300134i
\(855\) 0.244448 0.00835995
\(856\) 0.420185 + 3.92284i 0.0143616 + 0.134080i
\(857\) −32.7122 −1.11743 −0.558714 0.829360i \(-0.688705\pi\)
−0.558714 + 0.829360i \(0.688705\pi\)
\(858\) 64.0223 40.0645i 2.18568 1.36778i
\(859\) 13.1984i 0.450324i −0.974321 0.225162i \(-0.927709\pi\)
0.974321 0.225162i \(-0.0722911\pi\)
\(860\) −2.19002 + 4.50534i −0.0746791 + 0.153631i
\(861\) 52.7669i 1.79829i
\(862\) 9.50231 + 15.1845i 0.323650 + 0.517186i
\(863\) 50.0256 1.70289 0.851445 0.524444i \(-0.175727\pi\)
0.851445 + 0.524444i \(0.175727\pi\)
\(864\) −26.4156 9.51559i −0.898677 0.323727i
\(865\) 7.51333 0.255461
\(866\) 4.52481 + 7.23056i 0.153759 + 0.245704i
\(867\) 30.0007i 1.01888i
\(868\) 9.15076 18.8251i 0.310597 0.638964i
\(869\) 1.12700i 0.0382308i
\(870\) −15.5391 + 9.72424i −0.526826 + 0.329683i
\(871\) −64.7007 −2.19230
\(872\) −4.83693 45.1574i −0.163799 1.52922i
\(873\) −3.00001 −0.101535
\(874\) −2.13241 + 1.33444i −0.0721298 + 0.0451381i
\(875\) 4.97691i 0.168250i
\(876\) 4.27538 + 2.07824i 0.144452 + 0.0702171i
\(877\) 43.3237i 1.46294i 0.681875 + 0.731468i \(0.261165\pi\)
−0.681875 + 0.731468i \(0.738835\pi\)
\(878\) 16.1199 + 25.7593i 0.544020 + 0.869333i
\(879\) 8.36595 0.282177
\(880\) −13.7373 17.4873i −0.463084 0.589496i
\(881\) 36.6786 1.23573 0.617867 0.786282i \(-0.287997\pi\)
0.617867 + 0.786282i \(0.287997\pi\)
\(882\) 3.25875 + 5.20741i 0.109728 + 0.175343i
\(883\) 31.5830i 1.06285i 0.847104 + 0.531427i \(0.178344\pi\)
−0.847104 + 0.531427i \(0.821656\pi\)
\(884\) −5.62919 2.73632i −0.189330 0.0920324i
\(885\) 10.1522i 0.341262i
\(886\) −28.3390 + 17.7342i −0.952066 + 0.595793i
\(887\) −14.6563 −0.492110 −0.246055 0.969256i \(-0.579134\pi\)
−0.246055 + 0.969256i \(0.579134\pi\)
\(888\) −17.1779 + 1.83997i −0.576454 + 0.0617454i
\(889\) −66.8449 −2.24191
\(890\) 14.6492 9.16735i 0.491044 0.307290i
\(891\) 53.7797i 1.80169i
\(892\) 18.6761 38.4207i 0.625321 1.28642i
\(893\) 6.94927i 0.232549i
\(894\) −16.4769 26.3298i −0.551071 0.880600i
\(895\) 0.224608 0.00750783
\(896\) −39.3017 40.3224i −1.31298 1.34708i
\(897\) 17.0867 0.570509
\(898\) −7.93770 12.6843i −0.264885 0.423280i
\(899\) 15.1324i 0.504693i
\(900\) −0.213736 + 0.439701i −0.00712454 + 0.0146567i
\(901\) 6.97553i 0.232389i
\(902\) 39.2299 24.5497i 1.30621 0.817416i
\(903\) −22.4537 −0.747212
\(904\) −26.3167 + 2.81885i −0.875280 + 0.0937535i
\(905\) −12.2976 −0.408785
\(906\) −3.05482 + 1.91168i −0.101490 + 0.0635113i
\(907\) 3.17938i 0.105570i −0.998606 0.0527848i \(-0.983190\pi\)
0.998606 0.0527848i \(-0.0168097\pi\)
\(908\) 29.6527 + 14.4140i 0.984059 + 0.478346i
\(909\) 4.03719i 0.133905i
\(910\) 19.9122 + 31.8192i 0.660082 + 1.05480i
\(911\) 48.2520 1.59866 0.799331 0.600891i \(-0.205188\pi\)
0.799331 + 0.600891i \(0.205188\pi\)
\(912\) −4.45082 5.66581i −0.147381 0.187614i
\(913\) −46.5718 −1.54130
\(914\) 7.46609 + 11.9307i 0.246956 + 0.394631i
\(915\) 4.23126i 0.139881i
\(916\) −2.74398 1.33384i −0.0906637 0.0440712i
\(917\) 78.2506i 2.58406i
\(918\) −3.49170 + 2.18507i −0.115243 + 0.0721180i
\(919\) 11.6699 0.384953 0.192477 0.981302i \(-0.438348\pi\)
0.192477 + 0.981302i \(0.438348\pi\)
\(920\) −0.535825 5.00244i −0.0176656 0.164926i
\(921\) 33.9877 1.11993
\(922\) −21.2868 + 13.3211i −0.701044 + 0.438706i
\(923\) 35.0795i 1.15465i
\(924\) 43.5765 89.6462i 1.43356 2.94914i
\(925\) 3.39104i 0.111497i
\(926\) 5.47978 + 8.75658i 0.180077 + 0.287759i
\(927\) −2.00389 −0.0658163
\(928\) 38.2985 + 13.7961i 1.25721 + 0.452880i
\(929\) 23.1765 0.760395 0.380197 0.924905i \(-0.375856\pi\)
0.380197 + 0.924905i \(0.375856\pi\)
\(930\) 2.84159 + 4.54080i 0.0931793 + 0.148899i
\(931\) 17.7697i 0.582378i
\(932\) −16.1978 + 33.3222i −0.530575 + 1.09151i
\(933\) 15.7108i 0.514349i
\(934\) 43.2971 27.0949i 1.41672 0.886572i
\(935\) −3.26237 −0.106691
\(936\) 0.392708 + 3.66631i 0.0128360 + 0.119837i
\(937\) 41.2136 1.34639 0.673194 0.739466i \(-0.264922\pi\)
0.673194 + 0.739466i \(0.264922\pi\)
\(938\) −72.3854 + 45.2980i −2.36347 + 1.47903i
\(939\) 20.3383i 0.663717i
\(940\) 12.5000 + 6.07618i 0.407705 + 0.198183i
\(941\) 33.3470i 1.08708i 0.839383 + 0.543540i \(0.182916\pi\)
−0.839383 + 0.543540i \(0.817084\pi\)
\(942\) 22.1805 + 35.4440i 0.722681 + 1.15483i
\(943\) 10.4700 0.340949
\(944\) 17.7289 13.9271i 0.577025 0.453287i
\(945\) 24.7024 0.803569
\(946\) 10.4465 + 16.6934i 0.339646 + 0.542748i
\(947\) 9.76298i 0.317254i −0.987339 0.158627i \(-0.949293\pi\)
0.987339 0.158627i \(-0.0507068\pi\)
\(948\) 0.656800 + 0.319267i 0.0213319 + 0.0103693i
\(949\) 7.03733i 0.228441i
\(950\) 1.19882 0.750213i 0.0388950 0.0243401i
\(951\) 45.8155 1.48567
\(952\) −8.21353 + 0.879772i −0.266202 + 0.0285136i
\(953\) −16.5110 −0.534842 −0.267421 0.963580i \(-0.586171\pi\)
−0.267421 + 0.963580i \(0.586171\pi\)
\(954\) −3.48352 + 2.17995i −0.112783 + 0.0705786i
\(955\) 9.08176i 0.293879i
\(956\) 19.1755 39.4480i 0.620179 1.27584i
\(957\) 72.0613i 2.32941i
\(958\) 2.57440 + 4.11384i 0.0831752 + 0.132912i
\(959\) −95.9211 −3.09745
\(960\) 14.0830 3.05194i 0.454526 0.0985011i
\(961\) −26.5781 −0.857357
\(962\) −13.5672 21.6802i −0.437425 0.698996i
\(963\) 0.340973i 0.0109877i
\(964\) −18.2946 + 37.6360i −0.589231 + 1.21217i
\(965\) 20.0382i 0.645052i
\(966\) 19.1162 11.9627i 0.615053 0.384894i
\(967\) −4.50738 −0.144948 −0.0724738 0.997370i \(-0.523089\pi\)
−0.0724738 + 0.997370i \(0.523089\pi\)
\(968\) −55.9863 + 5.99684i −1.79947 + 0.192746i
\(969\) −1.05699 −0.0339555
\(970\) −14.7126 + 9.20703i −0.472395 + 0.295620i
\(971\) 39.1846i 1.25749i 0.777611 + 0.628746i \(0.216432\pi\)
−0.777611 + 0.628746i \(0.783568\pi\)
\(972\) 4.55842 + 2.21582i 0.146211 + 0.0710726i
\(973\) 52.2703i 1.67571i
\(974\) −29.3497 46.9002i −0.940425 1.50278i
\(975\) −9.60604 −0.307639
\(976\) −7.38908 + 5.80456i −0.236519 + 0.185799i
\(977\) 44.1693 1.41310 0.706551 0.707662i \(-0.250250\pi\)
0.706551 + 0.707662i \(0.250250\pi\)
\(978\) 11.8586 + 18.9497i 0.379195 + 0.605945i
\(979\) 67.9345i 2.17120i
\(980\) 31.9632 + 15.5371i 1.02103 + 0.496315i
\(981\) 3.92508i 0.125318i
\(982\) 4.16958 2.60928i 0.133057 0.0832655i
\(983\) 24.5139 0.781873 0.390936 0.920418i \(-0.372151\pi\)
0.390936 + 0.920418i \(0.372151\pi\)
\(984\) 3.19381 + 29.8174i 0.101815 + 0.950543i
\(985\) −9.75114 −0.310697
\(986\) 5.06242 3.16801i 0.161220 0.100890i
\(987\) 62.2974i 1.98295i
\(988\) 4.66300 9.59277i 0.148350 0.305187i
\(989\) 4.45524i 0.141669i
\(990\) 1.01954 + 1.62920i 0.0324030 + 0.0517793i
\(991\) 12.4774 0.396357 0.198179 0.980166i \(-0.436497\pi\)
0.198179 + 0.980166i \(0.436497\pi\)
\(992\) 4.03146 11.1915i 0.127999 0.355330i
\(993\) 15.2165 0.482882
\(994\) 24.5597 + 39.2459i 0.778987 + 1.24481i
\(995\) 0.526183i 0.0166811i
\(996\) 13.1933 27.1414i 0.418046 0.860010i
\(997\) 55.2170i 1.74874i 0.485261 + 0.874369i \(0.338725\pi\)
−0.485261 + 0.874369i \(0.661275\pi\)
\(998\) −26.6588 + 16.6828i −0.843869 + 0.528085i
\(999\) −16.8311 −0.532511
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 760.2.f.b.381.13 44
4.3 odd 2 3040.2.f.b.1521.12 44
8.3 odd 2 3040.2.f.b.1521.33 44
8.5 even 2 inner 760.2.f.b.381.14 yes 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
760.2.f.b.381.13 44 1.1 even 1 trivial
760.2.f.b.381.14 yes 44 8.5 even 2 inner
3040.2.f.b.1521.12 44 4.3 odd 2
3040.2.f.b.1521.33 44 8.3 odd 2