Newspace parameters
Level: | \( N \) | \(=\) | \( 760 = 2^{3} \cdot 5 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 760.e (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(6.06863055362\) |
Analytic rank: | \(0\) |
Dimension: | \(80\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
531.1 | −1.40987 | − | 0.110740i | 1.77027i | 1.97547 | + | 0.312257i | − | 1.00000i | 0.196039 | − | 2.49585i | − | 0.723208i | −2.75058 | − | 0.659005i | −0.133844 | −0.110740 | + | 1.40987i | ||||||
531.2 | −1.40987 | + | 0.110740i | − | 1.77027i | 1.97547 | − | 0.312257i | 1.00000i | 0.196039 | + | 2.49585i | 0.723208i | −2.75058 | + | 0.659005i | −0.133844 | −0.110740 | − | 1.40987i | |||||||
531.3 | −1.39730 | − | 0.218062i | 0.523219i | 1.90490 | + | 0.609397i | 1.00000i | 0.114094 | − | 0.731094i | − | 3.38603i | −2.52883 | − | 1.26690i | 2.72624 | 0.218062 | − | 1.39730i | |||||||
531.4 | −1.39730 | + | 0.218062i | − | 0.523219i | 1.90490 | − | 0.609397i | − | 1.00000i | 0.114094 | + | 0.731094i | 3.38603i | −2.52883 | + | 1.26690i | 2.72624 | 0.218062 | + | 1.39730i | ||||||
531.5 | −1.37636 | − | 0.325005i | − | 1.49424i | 1.78874 | + | 0.894649i | − | 1.00000i | −0.485636 | + | 2.05662i | − | 4.01304i | −2.17119 | − | 1.81271i | 0.767241 | −0.325005 | + | 1.37636i | |||||
531.6 | −1.37636 | + | 0.325005i | 1.49424i | 1.78874 | − | 0.894649i | 1.00000i | −0.485636 | − | 2.05662i | 4.01304i | −2.17119 | + | 1.81271i | 0.767241 | −0.325005 | − | 1.37636i | ||||||||
531.7 | −1.35069 | − | 0.419085i | − | 3.23880i | 1.64874 | + | 1.13211i | 1.00000i | −1.35733 | + | 4.37462i | − | 0.457390i | −1.75248 | − | 2.22009i | −7.48983 | 0.419085 | − | 1.35069i | ||||||
531.8 | −1.35069 | + | 0.419085i | 3.23880i | 1.64874 | − | 1.13211i | − | 1.00000i | −1.35733 | − | 4.37462i | 0.457390i | −1.75248 | + | 2.22009i | −7.48983 | 0.419085 | + | 1.35069i | |||||||
531.9 | −1.34496 | − | 0.437133i | − | 1.08908i | 1.61783 | + | 1.17585i | − | 1.00000i | −0.476071 | + | 1.46477i | 1.26860i | −1.66191 | − | 2.28868i | 1.81391 | −0.437133 | + | 1.34496i | ||||||
531.10 | −1.34496 | + | 0.437133i | 1.08908i | 1.61783 | − | 1.17585i | 1.00000i | −0.476071 | − | 1.46477i | − | 1.26860i | −1.66191 | + | 2.28868i | 1.81391 | −0.437133 | − | 1.34496i | |||||||
531.11 | −1.29307 | − | 0.572689i | 2.70495i | 1.34405 | + | 1.48105i | 1.00000i | 1.54909 | − | 3.49768i | 3.65554i | −0.889770 | − | 2.68483i | −4.31673 | 0.572689 | − | 1.29307i | ||||||||
531.12 | −1.29307 | + | 0.572689i | − | 2.70495i | 1.34405 | − | 1.48105i | − | 1.00000i | 1.54909 | + | 3.49768i | − | 3.65554i | −0.889770 | + | 2.68483i | −4.31673 | 0.572689 | + | 1.29307i | |||||
531.13 | −1.28866 | − | 0.582537i | − | 0.0430597i | 1.32130 | + | 1.50139i | 1.00000i | −0.0250839 | + | 0.0554895i | 3.49579i | −0.828098 | − | 2.70449i | 2.99815 | 0.582537 | − | 1.28866i | |||||||
531.14 | −1.28866 | + | 0.582537i | 0.0430597i | 1.32130 | − | 1.50139i | − | 1.00000i | −0.0250839 | − | 0.0554895i | − | 3.49579i | −0.828098 | + | 2.70449i | 2.99815 | 0.582537 | + | 1.28866i | ||||||
531.15 | −1.08362 | − | 0.908720i | 2.06995i | 0.348457 | + | 1.96941i | − | 1.00000i | 1.88100 | − | 2.24303i | − | 4.61911i | 1.41205 | − | 2.45074i | −1.28468 | −0.908720 | + | 1.08362i | ||||||
531.16 | −1.08362 | + | 0.908720i | − | 2.06995i | 0.348457 | − | 1.96941i | 1.00000i | 1.88100 | + | 2.24303i | 4.61911i | 1.41205 | + | 2.45074i | −1.28468 | −0.908720 | − | 1.08362i | |||||||
531.17 | −1.04999 | − | 0.947380i | − | 0.242176i | 0.204944 | + | 1.98947i | 1.00000i | −0.229432 | + | 0.254281i | − | 0.0837738i | 1.66960 | − | 2.28308i | 2.94135 | 0.947380 | − | 1.04999i | ||||||
531.18 | −1.04999 | + | 0.947380i | 0.242176i | 0.204944 | − | 1.98947i | − | 1.00000i | −0.229432 | − | 0.254281i | 0.0837738i | 1.66960 | + | 2.28308i | 2.94135 | 0.947380 | + | 1.04999i | |||||||
531.19 | −0.984479 | − | 1.01528i | − | 2.38464i | −0.0616041 | + | 1.99905i | − | 1.00000i | −2.42109 | + | 2.34763i | 4.57467i | 2.09025 | − | 1.90548i | −2.68651 | −1.01528 | + | 0.984479i | ||||||
531.20 | −0.984479 | + | 1.01528i | 2.38464i | −0.0616041 | − | 1.99905i | 1.00000i | −2.42109 | − | 2.34763i | − | 4.57467i | 2.09025 | + | 1.90548i | −2.68651 | −1.01528 | − | 0.984479i | |||||||
See all 80 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
8.d | odd | 2 | 1 | inner |
19.b | odd | 2 | 1 | inner |
152.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 760.2.e.a | ✓ | 80 |
4.b | odd | 2 | 1 | 3040.2.e.a | 80 | ||
8.b | even | 2 | 1 | 3040.2.e.a | 80 | ||
8.d | odd | 2 | 1 | inner | 760.2.e.a | ✓ | 80 |
19.b | odd | 2 | 1 | inner | 760.2.e.a | ✓ | 80 |
76.d | even | 2 | 1 | 3040.2.e.a | 80 | ||
152.b | even | 2 | 1 | inner | 760.2.e.a | ✓ | 80 |
152.g | odd | 2 | 1 | 3040.2.e.a | 80 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
760.2.e.a | ✓ | 80 | 1.a | even | 1 | 1 | trivial |
760.2.e.a | ✓ | 80 | 8.d | odd | 2 | 1 | inner |
760.2.e.a | ✓ | 80 | 19.b | odd | 2 | 1 | inner |
760.2.e.a | ✓ | 80 | 152.b | even | 2 | 1 | inner |
3040.2.e.a | 80 | 4.b | odd | 2 | 1 | ||
3040.2.e.a | 80 | 8.b | even | 2 | 1 | ||
3040.2.e.a | 80 | 76.d | even | 2 | 1 | ||
3040.2.e.a | 80 | 152.g | odd | 2 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(760, [\chi])\).