Properties

Label 760.2.d.e.609.6
Level $760$
Weight $2$
Character 760.609
Analytic conductor $6.069$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [760,2,Mod(609,760)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(760, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("760.609");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 760 = 2^{3} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 760.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.06863055362\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} + 9 x^{10} - 8 x^{9} - 11 x^{8} + 60 x^{7} - 126 x^{6} + 180 x^{5} - 99 x^{4} + \cdots + 729 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{7} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 609.6
Root \(-1.72675 - 0.135465i\) of defining polynomial
Character \(\chi\) \(=\) 760.609
Dual form 760.2.d.e.609.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.366738i q^{3} +(2.20191 - 0.389375i) q^{5} -3.08675i q^{7} +2.86550 q^{9} -4.94567 q^{11} -3.79016i q^{13} +(-0.142799 - 0.807521i) q^{15} -3.97713i q^{17} -1.00000 q^{19} -1.13203 q^{21} +6.56426i q^{23} +(4.69677 - 1.71473i) q^{25} -2.15110i q^{27} -5.14084 q^{29} +4.25626 q^{31} +1.81376i q^{33} +(-1.20191 - 6.79674i) q^{35} +7.75503i q^{37} -1.39000 q^{39} -2.25626 q^{41} -10.2276i q^{43} +(6.30957 - 1.11576i) q^{45} -0.935652i q^{47} -2.52804 q^{49} -1.45856 q^{51} -7.52117i q^{53} +(-10.8899 + 1.92572i) q^{55} +0.366738i q^{57} +10.4356 q^{59} +10.9163 q^{61} -8.84510i q^{63} +(-1.47580 - 8.34558i) q^{65} +6.80924i q^{67} +2.40736 q^{69} -2.98093 q^{71} -2.19638i q^{73} +(-0.628858 - 1.72248i) q^{75} +15.2661i q^{77} +3.26652 q^{79} +7.80762 q^{81} -4.09936i q^{83} +(-1.54860 - 8.75726i) q^{85} +1.88534i q^{87} +12.4134 q^{89} -11.6993 q^{91} -1.56093i q^{93} +(-2.20191 + 0.389375i) q^{95} +10.6172i q^{97} -14.1718 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{5} - 16 q^{9} - 4 q^{11} - 12 q^{15} - 12 q^{19} + 36 q^{21} + 18 q^{25} + 4 q^{29} + 16 q^{31} + 6 q^{35} + 36 q^{39} + 8 q^{41} - 2 q^{45} - 4 q^{49} - 68 q^{51} - 18 q^{55} + 4 q^{59} + 20 q^{61}+ \cdots + 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/760\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(381\) \(401\) \(457\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.366738i 0.211736i −0.994380 0.105868i \(-0.966238\pi\)
0.994380 0.105868i \(-0.0337621\pi\)
\(4\) 0 0
\(5\) 2.20191 0.389375i 0.984722 0.174134i
\(6\) 0 0
\(7\) 3.08675i 1.16668i −0.812227 0.583341i \(-0.801745\pi\)
0.812227 0.583341i \(-0.198255\pi\)
\(8\) 0 0
\(9\) 2.86550 0.955168
\(10\) 0 0
\(11\) −4.94567 −1.49118 −0.745588 0.666407i \(-0.767831\pi\)
−0.745588 + 0.666407i \(0.767831\pi\)
\(12\) 0 0
\(13\) 3.79016i 1.05120i −0.850731 0.525601i \(-0.823840\pi\)
0.850731 0.525601i \(-0.176160\pi\)
\(14\) 0 0
\(15\) −0.142799 0.807521i −0.0368704 0.208501i
\(16\) 0 0
\(17\) 3.97713i 0.964596i −0.876007 0.482298i \(-0.839802\pi\)
0.876007 0.482298i \(-0.160198\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) −1.13203 −0.247029
\(22\) 0 0
\(23\) 6.56426i 1.36874i 0.729133 + 0.684372i \(0.239923\pi\)
−0.729133 + 0.684372i \(0.760077\pi\)
\(24\) 0 0
\(25\) 4.69677 1.71473i 0.939355 0.342947i
\(26\) 0 0
\(27\) 2.15110i 0.413980i
\(28\) 0 0
\(29\) −5.14084 −0.954630 −0.477315 0.878732i \(-0.658390\pi\)
−0.477315 + 0.878732i \(0.658390\pi\)
\(30\) 0 0
\(31\) 4.25626 0.764447 0.382224 0.924070i \(-0.375158\pi\)
0.382224 + 0.924070i \(0.375158\pi\)
\(32\) 0 0
\(33\) 1.81376i 0.315736i
\(34\) 0 0
\(35\) −1.20191 6.79674i −0.203159 1.14886i
\(36\) 0 0
\(37\) 7.75503i 1.27492i 0.770484 + 0.637459i \(0.220015\pi\)
−0.770484 + 0.637459i \(0.779985\pi\)
\(38\) 0 0
\(39\) −1.39000 −0.222577
\(40\) 0 0
\(41\) −2.25626 −0.352369 −0.176184 0.984357i \(-0.556376\pi\)
−0.176184 + 0.984357i \(0.556376\pi\)
\(42\) 0 0
\(43\) 10.2276i 1.55969i −0.625971 0.779846i \(-0.715297\pi\)
0.625971 0.779846i \(-0.284703\pi\)
\(44\) 0 0
\(45\) 6.30957 1.11576i 0.940575 0.166327i
\(46\) 0 0
\(47\) 0.935652i 0.136479i −0.997669 0.0682395i \(-0.978262\pi\)
0.997669 0.0682395i \(-0.0217382\pi\)
\(48\) 0 0
\(49\) −2.52804 −0.361149
\(50\) 0 0
\(51\) −1.45856 −0.204240
\(52\) 0 0
\(53\) 7.52117i 1.03311i −0.856253 0.516556i \(-0.827214\pi\)
0.856253 0.516556i \(-0.172786\pi\)
\(54\) 0 0
\(55\) −10.8899 + 1.92572i −1.46839 + 0.259664i
\(56\) 0 0
\(57\) 0.366738i 0.0485756i
\(58\) 0 0
\(59\) 10.4356 1.35860 0.679298 0.733863i \(-0.262285\pi\)
0.679298 + 0.733863i \(0.262285\pi\)
\(60\) 0 0
\(61\) 10.9163 1.39769 0.698847 0.715271i \(-0.253697\pi\)
0.698847 + 0.715271i \(0.253697\pi\)
\(62\) 0 0
\(63\) 8.84510i 1.11438i
\(64\) 0 0
\(65\) −1.47580 8.34558i −0.183050 1.03514i
\(66\) 0 0
\(67\) 6.80924i 0.831881i 0.909392 + 0.415940i \(0.136547\pi\)
−0.909392 + 0.415940i \(0.863453\pi\)
\(68\) 0 0
\(69\) 2.40736 0.289812
\(70\) 0 0
\(71\) −2.98093 −0.353771 −0.176886 0.984231i \(-0.556602\pi\)
−0.176886 + 0.984231i \(0.556602\pi\)
\(72\) 0 0
\(73\) 2.19638i 0.257066i −0.991705 0.128533i \(-0.958973\pi\)
0.991705 0.128533i \(-0.0410269\pi\)
\(74\) 0 0
\(75\) −0.628858 1.72248i −0.0726142 0.198895i
\(76\) 0 0
\(77\) 15.2661i 1.73973i
\(78\) 0 0
\(79\) 3.26652 0.367513 0.183756 0.982972i \(-0.441174\pi\)
0.183756 + 0.982972i \(0.441174\pi\)
\(80\) 0 0
\(81\) 7.80762 0.867513
\(82\) 0 0
\(83\) 4.09936i 0.449963i −0.974363 0.224982i \(-0.927768\pi\)
0.974363 0.224982i \(-0.0722322\pi\)
\(84\) 0 0
\(85\) −1.54860 8.75726i −0.167969 0.949859i
\(86\) 0 0
\(87\) 1.88534i 0.202129i
\(88\) 0 0
\(89\) 12.4134 1.31581 0.657907 0.753099i \(-0.271442\pi\)
0.657907 + 0.753099i \(0.271442\pi\)
\(90\) 0 0
\(91\) −11.6993 −1.22642
\(92\) 0 0
\(93\) 1.56093i 0.161861i
\(94\) 0 0
\(95\) −2.20191 + 0.389375i −0.225911 + 0.0399491i
\(96\) 0 0
\(97\) 10.6172i 1.07801i 0.842302 + 0.539007i \(0.181200\pi\)
−0.842302 + 0.539007i \(0.818800\pi\)
\(98\) 0 0
\(99\) −14.1718 −1.42432
\(100\) 0 0
\(101\) −13.1119 −1.30469 −0.652343 0.757924i \(-0.726214\pi\)
−0.652343 + 0.757924i \(0.726214\pi\)
\(102\) 0 0
\(103\) 4.95691i 0.488419i −0.969723 0.244209i \(-0.921472\pi\)
0.969723 0.244209i \(-0.0785284\pi\)
\(104\) 0 0
\(105\) −2.49262 + 0.440784i −0.243255 + 0.0430161i
\(106\) 0 0
\(107\) 18.9142i 1.82850i 0.405148 + 0.914251i \(0.367220\pi\)
−0.405148 + 0.914251i \(0.632780\pi\)
\(108\) 0 0
\(109\) −8.90118 −0.852578 −0.426289 0.904587i \(-0.640179\pi\)
−0.426289 + 0.904587i \(0.640179\pi\)
\(110\) 0 0
\(111\) 2.84406 0.269946
\(112\) 0 0
\(113\) 9.85071i 0.926677i 0.886181 + 0.463339i \(0.153349\pi\)
−0.886181 + 0.463339i \(0.846651\pi\)
\(114\) 0 0
\(115\) 2.55596 + 14.4539i 0.238345 + 1.34783i
\(116\) 0 0
\(117\) 10.8607i 1.00407i
\(118\) 0 0
\(119\) −12.2764 −1.12538
\(120\) 0 0
\(121\) 13.4596 1.22360
\(122\) 0 0
\(123\) 0.827456i 0.0746092i
\(124\) 0 0
\(125\) 9.67418 5.60449i 0.865285 0.501281i
\(126\) 0 0
\(127\) 3.76384i 0.333987i −0.985958 0.166993i \(-0.946594\pi\)
0.985958 0.166993i \(-0.0534058\pi\)
\(128\) 0 0
\(129\) −3.75084 −0.330243
\(130\) 0 0
\(131\) 10.0488 0.877966 0.438983 0.898495i \(-0.355339\pi\)
0.438983 + 0.898495i \(0.355339\pi\)
\(132\) 0 0
\(133\) 3.08675i 0.267655i
\(134\) 0 0
\(135\) −0.837585 4.73652i −0.0720879 0.407655i
\(136\) 0 0
\(137\) 14.6244i 1.24945i 0.780845 + 0.624724i \(0.214789\pi\)
−0.780845 + 0.624724i \(0.785211\pi\)
\(138\) 0 0
\(139\) 12.0773 1.02438 0.512191 0.858872i \(-0.328834\pi\)
0.512191 + 0.858872i \(0.328834\pi\)
\(140\) 0 0
\(141\) −0.343139 −0.0288975
\(142\) 0 0
\(143\) 18.7449i 1.56753i
\(144\) 0 0
\(145\) −11.3196 + 2.00172i −0.940045 + 0.166233i
\(146\) 0 0
\(147\) 0.927129i 0.0764683i
\(148\) 0 0
\(149\) −12.5739 −1.03009 −0.515046 0.857162i \(-0.672225\pi\)
−0.515046 + 0.857162i \(0.672225\pi\)
\(150\) 0 0
\(151\) −0.390336 −0.0317651 −0.0158826 0.999874i \(-0.505056\pi\)
−0.0158826 + 0.999874i \(0.505056\pi\)
\(152\) 0 0
\(153\) 11.3965i 0.921351i
\(154\) 0 0
\(155\) 9.37189 1.65728i 0.752768 0.133116i
\(156\) 0 0
\(157\) 17.6517i 1.40876i 0.709824 + 0.704379i \(0.248774\pi\)
−0.709824 + 0.704379i \(0.751226\pi\)
\(158\) 0 0
\(159\) −2.75830 −0.218747
\(160\) 0 0
\(161\) 20.2623 1.59689
\(162\) 0 0
\(163\) 5.72733i 0.448599i −0.974520 0.224300i \(-0.927991\pi\)
0.974520 0.224300i \(-0.0720094\pi\)
\(164\) 0 0
\(165\) 0.706234 + 3.99373i 0.0549803 + 0.310912i
\(166\) 0 0
\(167\) 8.22343i 0.636348i 0.948032 + 0.318174i \(0.103070\pi\)
−0.948032 + 0.318174i \(0.896930\pi\)
\(168\) 0 0
\(169\) −1.36534 −0.105027
\(170\) 0 0
\(171\) −2.86550 −0.219131
\(172\) 0 0
\(173\) 15.1427i 1.15127i 0.817705 + 0.575637i \(0.195246\pi\)
−0.817705 + 0.575637i \(0.804754\pi\)
\(174\) 0 0
\(175\) −5.29296 14.4978i −0.400110 1.09593i
\(176\) 0 0
\(177\) 3.82712i 0.287664i
\(178\) 0 0
\(179\) −4.07415 −0.304516 −0.152258 0.988341i \(-0.548654\pi\)
−0.152258 + 0.988341i \(0.548654\pi\)
\(180\) 0 0
\(181\) 2.92981 0.217771 0.108885 0.994054i \(-0.465272\pi\)
0.108885 + 0.994054i \(0.465272\pi\)
\(182\) 0 0
\(183\) 4.00343i 0.295942i
\(184\) 0 0
\(185\) 3.01962 + 17.0758i 0.222007 + 1.25544i
\(186\) 0 0
\(187\) 19.6696i 1.43838i
\(188\) 0 0
\(189\) −6.63992 −0.482983
\(190\) 0 0
\(191\) −5.41644 −0.391920 −0.195960 0.980612i \(-0.562782\pi\)
−0.195960 + 0.980612i \(0.562782\pi\)
\(192\) 0 0
\(193\) 24.6275i 1.77273i 0.462991 + 0.886363i \(0.346776\pi\)
−0.462991 + 0.886363i \(0.653224\pi\)
\(194\) 0 0
\(195\) −3.06064 + 0.541230i −0.219177 + 0.0387583i
\(196\) 0 0
\(197\) 3.93923i 0.280658i −0.990105 0.140329i \(-0.955184\pi\)
0.990105 0.140329i \(-0.0448161\pi\)
\(198\) 0 0
\(199\) 20.8079 1.47504 0.737518 0.675328i \(-0.235998\pi\)
0.737518 + 0.675328i \(0.235998\pi\)
\(200\) 0 0
\(201\) 2.49720 0.176139
\(202\) 0 0
\(203\) 15.8685i 1.11375i
\(204\) 0 0
\(205\) −4.96807 + 0.878533i −0.346985 + 0.0613594i
\(206\) 0 0
\(207\) 18.8099i 1.30738i
\(208\) 0 0
\(209\) 4.94567 0.342099
\(210\) 0 0
\(211\) −22.9069 −1.57698 −0.788488 0.615050i \(-0.789136\pi\)
−0.788488 + 0.615050i \(0.789136\pi\)
\(212\) 0 0
\(213\) 1.09322i 0.0749061i
\(214\) 0 0
\(215\) −3.98237 22.5202i −0.271595 1.53586i
\(216\) 0 0
\(217\) 13.1380i 0.891868i
\(218\) 0 0
\(219\) −0.805494 −0.0544302
\(220\) 0 0
\(221\) −15.0740 −1.01399
\(222\) 0 0
\(223\) 16.6488i 1.11489i −0.830214 0.557444i \(-0.811782\pi\)
0.830214 0.557444i \(-0.188218\pi\)
\(224\) 0 0
\(225\) 13.4586 4.91358i 0.897241 0.327572i
\(226\) 0 0
\(227\) 11.8343i 0.785469i −0.919652 0.392735i \(-0.871529\pi\)
0.919652 0.392735i \(-0.128471\pi\)
\(228\) 0 0
\(229\) −4.84288 −0.320026 −0.160013 0.987115i \(-0.551154\pi\)
−0.160013 + 0.987115i \(0.551154\pi\)
\(230\) 0 0
\(231\) 5.59864 0.368363
\(232\) 0 0
\(233\) 9.60851i 0.629474i −0.949179 0.314737i \(-0.898084\pi\)
0.949179 0.314737i \(-0.101916\pi\)
\(234\) 0 0
\(235\) −0.364320 2.06022i −0.0237656 0.134394i
\(236\) 0 0
\(237\) 1.19796i 0.0778157i
\(238\) 0 0
\(239\) 9.49984 0.614493 0.307247 0.951630i \(-0.400592\pi\)
0.307247 + 0.951630i \(0.400592\pi\)
\(240\) 0 0
\(241\) −21.8687 −1.40868 −0.704342 0.709860i \(-0.748758\pi\)
−0.704342 + 0.709860i \(0.748758\pi\)
\(242\) 0 0
\(243\) 9.31665i 0.597663i
\(244\) 0 0
\(245\) −5.56651 + 0.984358i −0.355632 + 0.0628883i
\(246\) 0 0
\(247\) 3.79016i 0.241162i
\(248\) 0 0
\(249\) −1.50339 −0.0952734
\(250\) 0 0
\(251\) 2.03109 0.128201 0.0641007 0.997943i \(-0.479582\pi\)
0.0641007 + 0.997943i \(0.479582\pi\)
\(252\) 0 0
\(253\) 32.4647i 2.04104i
\(254\) 0 0
\(255\) −3.21162 + 0.567928i −0.201119 + 0.0355651i
\(256\) 0 0
\(257\) 7.62917i 0.475894i 0.971278 + 0.237947i \(0.0764745\pi\)
−0.971278 + 0.237947i \(0.923525\pi\)
\(258\) 0 0
\(259\) 23.9379 1.48743
\(260\) 0 0
\(261\) −14.7311 −0.911831
\(262\) 0 0
\(263\) 30.3299i 1.87022i 0.354352 + 0.935112i \(0.384702\pi\)
−0.354352 + 0.935112i \(0.615298\pi\)
\(264\) 0 0
\(265\) −2.92856 16.5609i −0.179900 1.01733i
\(266\) 0 0
\(267\) 4.55245i 0.278605i
\(268\) 0 0
\(269\) −24.3382 −1.48393 −0.741963 0.670441i \(-0.766105\pi\)
−0.741963 + 0.670441i \(0.766105\pi\)
\(270\) 0 0
\(271\) 3.62084 0.219951 0.109975 0.993934i \(-0.464923\pi\)
0.109975 + 0.993934i \(0.464923\pi\)
\(272\) 0 0
\(273\) 4.29057i 0.259677i
\(274\) 0 0
\(275\) −23.2287 + 8.48051i −1.40074 + 0.511394i
\(276\) 0 0
\(277\) 29.6842i 1.78355i −0.452477 0.891776i \(-0.649459\pi\)
0.452477 0.891776i \(-0.350541\pi\)
\(278\) 0 0
\(279\) 12.1963 0.730175
\(280\) 0 0
\(281\) 29.1363 1.73813 0.869064 0.494700i \(-0.164722\pi\)
0.869064 + 0.494700i \(0.164722\pi\)
\(282\) 0 0
\(283\) 24.2081i 1.43902i −0.694481 0.719511i \(-0.744366\pi\)
0.694481 0.719511i \(-0.255634\pi\)
\(284\) 0 0
\(285\) 0.142799 + 0.807521i 0.00845866 + 0.0478334i
\(286\) 0 0
\(287\) 6.96452i 0.411103i
\(288\) 0 0
\(289\) 1.18244 0.0695551
\(290\) 0 0
\(291\) 3.89373 0.228254
\(292\) 0 0
\(293\) 15.9338i 0.930865i 0.885083 + 0.465433i \(0.154101\pi\)
−0.885083 + 0.465433i \(0.845899\pi\)
\(294\) 0 0
\(295\) 22.9781 4.06335i 1.33784 0.236578i
\(296\) 0 0
\(297\) 10.6386i 0.617316i
\(298\) 0 0
\(299\) 24.8796 1.43883
\(300\) 0 0
\(301\) −31.5700 −1.81967
\(302\) 0 0
\(303\) 4.80864i 0.276249i
\(304\) 0 0
\(305\) 24.0367 4.25055i 1.37634 0.243386i
\(306\) 0 0
\(307\) 25.9373i 1.48032i 0.672429 + 0.740161i \(0.265251\pi\)
−0.672429 + 0.740161i \(0.734749\pi\)
\(308\) 0 0
\(309\) −1.81788 −0.103416
\(310\) 0 0
\(311\) −2.58526 −0.146597 −0.0732983 0.997310i \(-0.523353\pi\)
−0.0732983 + 0.997310i \(0.523353\pi\)
\(312\) 0 0
\(313\) 17.1027i 0.966701i −0.875427 0.483351i \(-0.839420\pi\)
0.875427 0.483351i \(-0.160580\pi\)
\(314\) 0 0
\(315\) −3.44406 19.4761i −0.194051 1.09735i
\(316\) 0 0
\(317\) 24.5591i 1.37938i 0.724105 + 0.689690i \(0.242253\pi\)
−0.724105 + 0.689690i \(0.757747\pi\)
\(318\) 0 0
\(319\) 25.4249 1.42352
\(320\) 0 0
\(321\) 6.93654 0.387160
\(322\) 0 0
\(323\) 3.97713i 0.221293i
\(324\) 0 0
\(325\) −6.49913 17.8015i −0.360507 0.987452i
\(326\) 0 0
\(327\) 3.26440i 0.180522i
\(328\) 0 0
\(329\) −2.88813 −0.159228
\(330\) 0 0
\(331\) 16.4328 0.903227 0.451614 0.892214i \(-0.350849\pi\)
0.451614 + 0.892214i \(0.350849\pi\)
\(332\) 0 0
\(333\) 22.2221i 1.21776i
\(334\) 0 0
\(335\) 2.65135 + 14.9933i 0.144859 + 0.819171i
\(336\) 0 0
\(337\) 12.0174i 0.654627i −0.944916 0.327314i \(-0.893857\pi\)
0.944916 0.327314i \(-0.106143\pi\)
\(338\) 0 0
\(339\) 3.61263 0.196211
\(340\) 0 0
\(341\) −21.0501 −1.13992
\(342\) 0 0
\(343\) 13.8038i 0.745336i
\(344\) 0 0
\(345\) 5.30078 0.937367i 0.285385 0.0504662i
\(346\) 0 0
\(347\) 28.3681i 1.52288i 0.648236 + 0.761439i \(0.275507\pi\)
−0.648236 + 0.761439i \(0.724493\pi\)
\(348\) 0 0
\(349\) −33.9733 −1.81855 −0.909275 0.416195i \(-0.863363\pi\)
−0.909275 + 0.416195i \(0.863363\pi\)
\(350\) 0 0
\(351\) −8.15302 −0.435176
\(352\) 0 0
\(353\) 26.6181i 1.41674i −0.705842 0.708369i \(-0.749431\pi\)
0.705842 0.708369i \(-0.250569\pi\)
\(354\) 0 0
\(355\) −6.56372 + 1.16070i −0.348366 + 0.0616035i
\(356\) 0 0
\(357\) 4.50222i 0.238283i
\(358\) 0 0
\(359\) −5.84964 −0.308732 −0.154366 0.988014i \(-0.549334\pi\)
−0.154366 + 0.988014i \(0.549334\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 4.93616i 0.259081i
\(364\) 0 0
\(365\) −0.855215 4.83621i −0.0447640 0.253139i
\(366\) 0 0
\(367\) 2.41146i 0.125877i 0.998017 + 0.0629385i \(0.0200472\pi\)
−0.998017 + 0.0629385i \(0.979953\pi\)
\(368\) 0 0
\(369\) −6.46533 −0.336571
\(370\) 0 0
\(371\) −23.2160 −1.20531
\(372\) 0 0
\(373\) 27.2074i 1.40874i −0.709831 0.704372i \(-0.751229\pi\)
0.709831 0.704372i \(-0.248771\pi\)
\(374\) 0 0
\(375\) −2.05538 3.54788i −0.106139 0.183212i
\(376\) 0 0
\(377\) 19.4846i 1.00351i
\(378\) 0 0
\(379\) 37.0749 1.90441 0.952204 0.305461i \(-0.0988107\pi\)
0.952204 + 0.305461i \(0.0988107\pi\)
\(380\) 0 0
\(381\) −1.38034 −0.0707170
\(382\) 0 0
\(383\) 0.238749i 0.0121995i 0.999981 + 0.00609975i \(0.00194162\pi\)
−0.999981 + 0.00609975i \(0.998058\pi\)
\(384\) 0 0
\(385\) 5.94423 + 33.6144i 0.302946 + 1.71315i
\(386\) 0 0
\(387\) 29.3072i 1.48977i
\(388\) 0 0
\(389\) −21.3399 −1.08197 −0.540987 0.841031i \(-0.681949\pi\)
−0.540987 + 0.841031i \(0.681949\pi\)
\(390\) 0 0
\(391\) 26.1069 1.32028
\(392\) 0 0
\(393\) 3.68527i 0.185897i
\(394\) 0 0
\(395\) 7.19258 1.27190i 0.361898 0.0639964i
\(396\) 0 0
\(397\) 17.7416i 0.890424i −0.895425 0.445212i \(-0.853128\pi\)
0.895425 0.445212i \(-0.146872\pi\)
\(398\) 0 0
\(399\) 1.13203 0.0566723
\(400\) 0 0
\(401\) 36.4310 1.81928 0.909638 0.415401i \(-0.136359\pi\)
0.909638 + 0.415401i \(0.136359\pi\)
\(402\) 0 0
\(403\) 16.1319i 0.803589i
\(404\) 0 0
\(405\) 17.1916 3.04009i 0.854260 0.151064i
\(406\) 0 0
\(407\) 38.3538i 1.90113i
\(408\) 0 0
\(409\) 0.530833 0.0262480 0.0131240 0.999914i \(-0.495822\pi\)
0.0131240 + 0.999914i \(0.495822\pi\)
\(410\) 0 0
\(411\) 5.36332 0.264553
\(412\) 0 0
\(413\) 32.2120i 1.58505i
\(414\) 0 0
\(415\) −1.59619 9.02640i −0.0783539 0.443089i
\(416\) 0 0
\(417\) 4.42919i 0.216898i
\(418\) 0 0
\(419\) −29.3816 −1.43538 −0.717692 0.696361i \(-0.754801\pi\)
−0.717692 + 0.696361i \(0.754801\pi\)
\(420\) 0 0
\(421\) 2.95912 0.144219 0.0721093 0.997397i \(-0.477027\pi\)
0.0721093 + 0.997397i \(0.477027\pi\)
\(422\) 0 0
\(423\) 2.68112i 0.130360i
\(424\) 0 0
\(425\) −6.81972 18.6797i −0.330805 0.906098i
\(426\) 0 0
\(427\) 33.6960i 1.63067i
\(428\) 0 0
\(429\) 6.87446 0.331902
\(430\) 0 0
\(431\) −32.4518 −1.56315 −0.781573 0.623814i \(-0.785582\pi\)
−0.781573 + 0.623814i \(0.785582\pi\)
\(432\) 0 0
\(433\) 27.7821i 1.33512i −0.744554 0.667562i \(-0.767338\pi\)
0.744554 0.667562i \(-0.232662\pi\)
\(434\) 0 0
\(435\) 0.734104 + 4.15134i 0.0351976 + 0.199041i
\(436\) 0 0
\(437\) 6.56426i 0.314011i
\(438\) 0 0
\(439\) 0.0388357 0.00185352 0.000926762 1.00000i \(-0.499705\pi\)
0.000926762 1.00000i \(0.499705\pi\)
\(440\) 0 0
\(441\) −7.24412 −0.344958
\(442\) 0 0
\(443\) 3.98842i 0.189496i −0.995501 0.0947479i \(-0.969796\pi\)
0.995501 0.0947479i \(-0.0302045\pi\)
\(444\) 0 0
\(445\) 27.3330 4.83346i 1.29571 0.229128i
\(446\) 0 0
\(447\) 4.61132i 0.218108i
\(448\) 0 0
\(449\) −23.1695 −1.09343 −0.546717 0.837317i \(-0.684123\pi\)
−0.546717 + 0.837317i \(0.684123\pi\)
\(450\) 0 0
\(451\) 11.1587 0.525444
\(452\) 0 0
\(453\) 0.143151i 0.00672582i
\(454\) 0 0
\(455\) −25.7608 + 4.55542i −1.20768 + 0.213561i
\(456\) 0 0
\(457\) 11.5398i 0.539811i 0.962887 + 0.269905i \(0.0869925\pi\)
−0.962887 + 0.269905i \(0.913008\pi\)
\(458\) 0 0
\(459\) −8.55521 −0.399323
\(460\) 0 0
\(461\) 8.96090 0.417351 0.208675 0.977985i \(-0.433085\pi\)
0.208675 + 0.977985i \(0.433085\pi\)
\(462\) 0 0
\(463\) 4.43012i 0.205885i 0.994687 + 0.102943i \(0.0328258\pi\)
−0.994687 + 0.102943i \(0.967174\pi\)
\(464\) 0 0
\(465\) −0.607788 3.43702i −0.0281855 0.159388i
\(466\) 0 0
\(467\) 30.6874i 1.42004i −0.704180 0.710021i \(-0.748685\pi\)
0.704180 0.710021i \(-0.251315\pi\)
\(468\) 0 0
\(469\) 21.0184 0.970541
\(470\) 0 0
\(471\) 6.47354 0.298285
\(472\) 0 0
\(473\) 50.5823i 2.32578i
\(474\) 0 0
\(475\) −4.69677 + 1.71473i −0.215503 + 0.0786774i
\(476\) 0 0
\(477\) 21.5519i 0.986796i
\(478\) 0 0
\(479\) 18.0047 0.822657 0.411328 0.911487i \(-0.365065\pi\)
0.411328 + 0.911487i \(0.365065\pi\)
\(480\) 0 0
\(481\) 29.3928 1.34020
\(482\) 0 0
\(483\) 7.43093i 0.338119i
\(484\) 0 0
\(485\) 4.13407 + 23.3781i 0.187719 + 1.06154i
\(486\) 0 0
\(487\) 14.7434i 0.668087i −0.942558 0.334043i \(-0.891587\pi\)
0.942558 0.334043i \(-0.108413\pi\)
\(488\) 0 0
\(489\) −2.10043 −0.0949847
\(490\) 0 0
\(491\) 40.0805 1.80881 0.904404 0.426677i \(-0.140316\pi\)
0.904404 + 0.426677i \(0.140316\pi\)
\(492\) 0 0
\(493\) 20.4458i 0.920832i
\(494\) 0 0
\(495\) −31.2050 + 5.51816i −1.40256 + 0.248023i
\(496\) 0 0
\(497\) 9.20139i 0.412739i
\(498\) 0 0
\(499\) −12.7838 −0.572282 −0.286141 0.958188i \(-0.592373\pi\)
−0.286141 + 0.958188i \(0.592373\pi\)
\(500\) 0 0
\(501\) 3.01584 0.134738
\(502\) 0 0
\(503\) 11.9101i 0.531046i 0.964105 + 0.265523i \(0.0855446\pi\)
−0.964105 + 0.265523i \(0.914455\pi\)
\(504\) 0 0
\(505\) −28.8712 + 5.10546i −1.28475 + 0.227190i
\(506\) 0 0
\(507\) 0.500723i 0.0222379i
\(508\) 0 0
\(509\) −15.7374 −0.697549 −0.348775 0.937207i \(-0.613402\pi\)
−0.348775 + 0.937207i \(0.613402\pi\)
\(510\) 0 0
\(511\) −6.77967 −0.299915
\(512\) 0 0
\(513\) 2.15110i 0.0949734i
\(514\) 0 0
\(515\) −1.93010 10.9146i −0.0850502 0.480956i
\(516\) 0 0
\(517\) 4.62743i 0.203514i
\(518\) 0 0
\(519\) 5.55338 0.243766
\(520\) 0 0
\(521\) 5.67909 0.248806 0.124403 0.992232i \(-0.460299\pi\)
0.124403 + 0.992232i \(0.460299\pi\)
\(522\) 0 0
\(523\) 36.8094i 1.60956i 0.593572 + 0.804781i \(0.297717\pi\)
−0.593572 + 0.804781i \(0.702283\pi\)
\(524\) 0 0
\(525\) −5.31688 + 1.94113i −0.232048 + 0.0847178i
\(526\) 0 0
\(527\) 16.9277i 0.737382i
\(528\) 0 0
\(529\) −20.0896 −0.873459
\(530\) 0 0
\(531\) 29.9032 1.29769
\(532\) 0 0
\(533\) 8.55160i 0.370411i
\(534\) 0 0
\(535\) 7.36471 + 41.6472i 0.318404 + 1.80057i
\(536\) 0 0
\(537\) 1.49414i 0.0644770i
\(538\) 0 0
\(539\) 12.5029 0.538537
\(540\) 0 0
\(541\) −24.9051 −1.07076 −0.535378 0.844613i \(-0.679831\pi\)
−0.535378 + 0.844613i \(0.679831\pi\)
\(542\) 0 0
\(543\) 1.07447i 0.0461100i
\(544\) 0 0
\(545\) −19.5996 + 3.46590i −0.839553 + 0.148463i
\(546\) 0 0
\(547\) 9.17066i 0.392109i 0.980593 + 0.196055i \(0.0628130\pi\)
−0.980593 + 0.196055i \(0.937187\pi\)
\(548\) 0 0
\(549\) 31.2808 1.33503
\(550\) 0 0
\(551\) 5.14084 0.219007
\(552\) 0 0
\(553\) 10.0830i 0.428771i
\(554\) 0 0
\(555\) 6.26235 1.10741i 0.265822 0.0470068i
\(556\) 0 0
\(557\) 16.3168i 0.691364i −0.938352 0.345682i \(-0.887648\pi\)
0.938352 0.345682i \(-0.112352\pi\)
\(558\) 0 0
\(559\) −38.7642 −1.63955
\(560\) 0 0
\(561\) 7.21357 0.304557
\(562\) 0 0
\(563\) 23.4254i 0.987264i −0.869671 0.493632i \(-0.835669\pi\)
0.869671 0.493632i \(-0.164331\pi\)
\(564\) 0 0
\(565\) 3.83562 + 21.6903i 0.161366 + 0.912519i
\(566\) 0 0
\(567\) 24.1002i 1.01211i
\(568\) 0 0
\(569\) 21.5994 0.905495 0.452748 0.891639i \(-0.350444\pi\)
0.452748 + 0.891639i \(0.350444\pi\)
\(570\) 0 0
\(571\) −13.9099 −0.582111 −0.291055 0.956706i \(-0.594006\pi\)
−0.291055 + 0.956706i \(0.594006\pi\)
\(572\) 0 0
\(573\) 1.98641i 0.0829836i
\(574\) 0 0
\(575\) 11.2560 + 30.8309i 0.469407 + 1.28574i
\(576\) 0 0
\(577\) 27.0208i 1.12489i −0.826834 0.562445i \(-0.809861\pi\)
0.826834 0.562445i \(-0.190139\pi\)
\(578\) 0 0
\(579\) 9.03183 0.375350
\(580\) 0 0
\(581\) −12.6537 −0.524964
\(582\) 0 0
\(583\) 37.1972i 1.54055i
\(584\) 0 0
\(585\) −4.22890 23.9143i −0.174843 0.988734i
\(586\) 0 0
\(587\) 2.29463i 0.0947096i 0.998878 + 0.0473548i \(0.0150791\pi\)
−0.998878 + 0.0473548i \(0.984921\pi\)
\(588\) 0 0
\(589\) −4.25626 −0.175376
\(590\) 0 0
\(591\) −1.44466 −0.0594255
\(592\) 0 0
\(593\) 22.6929i 0.931888i 0.884814 + 0.465944i \(0.154285\pi\)
−0.884814 + 0.465944i \(0.845715\pi\)
\(594\) 0 0
\(595\) −27.0315 + 4.78013i −1.10818 + 0.195966i
\(596\) 0 0
\(597\) 7.63105i 0.312318i
\(598\) 0 0
\(599\) 4.95675 0.202527 0.101264 0.994860i \(-0.467711\pi\)
0.101264 + 0.994860i \(0.467711\pi\)
\(600\) 0 0
\(601\) −33.5372 −1.36801 −0.684005 0.729477i \(-0.739763\pi\)
−0.684005 + 0.729477i \(0.739763\pi\)
\(602\) 0 0
\(603\) 19.5119i 0.794586i
\(604\) 0 0
\(605\) 29.6369 5.24085i 1.20491 0.213071i
\(606\) 0 0
\(607\) 32.9103i 1.33579i 0.744257 + 0.667893i \(0.232804\pi\)
−0.744257 + 0.667893i \(0.767196\pi\)
\(608\) 0 0
\(609\) 5.81957 0.235821
\(610\) 0 0
\(611\) −3.54628 −0.143467
\(612\) 0 0
\(613\) 44.4090i 1.79366i 0.442374 + 0.896831i \(0.354137\pi\)
−0.442374 + 0.896831i \(0.645863\pi\)
\(614\) 0 0
\(615\) 0.322191 + 1.82198i 0.0129920 + 0.0734693i
\(616\) 0 0
\(617\) 18.2962i 0.736579i 0.929711 + 0.368290i \(0.120056\pi\)
−0.929711 + 0.368290i \(0.879944\pi\)
\(618\) 0 0
\(619\) −2.76770 −0.111243 −0.0556216 0.998452i \(-0.517714\pi\)
−0.0556216 + 0.998452i \(0.517714\pi\)
\(620\) 0 0
\(621\) 14.1204 0.566632
\(622\) 0 0
\(623\) 38.3170i 1.53514i
\(624\) 0 0
\(625\) 19.1194 16.1074i 0.764775 0.644298i
\(626\) 0 0
\(627\) 1.81376i 0.0724347i
\(628\) 0 0
\(629\) 30.8428 1.22978
\(630\) 0 0
\(631\) −5.74488 −0.228700 −0.114350 0.993441i \(-0.536479\pi\)
−0.114350 + 0.993441i \(0.536479\pi\)
\(632\) 0 0
\(633\) 8.40083i 0.333903i
\(634\) 0 0
\(635\) −1.46555 8.28761i −0.0581584 0.328884i
\(636\) 0 0
\(637\) 9.58170i 0.379641i
\(638\) 0 0
\(639\) −8.54186 −0.337911
\(640\) 0 0
\(641\) 19.3436 0.764028 0.382014 0.924157i \(-0.375231\pi\)
0.382014 + 0.924157i \(0.375231\pi\)
\(642\) 0 0
\(643\) 11.0400i 0.435375i 0.976019 + 0.217687i \(0.0698513\pi\)
−0.976019 + 0.217687i \(0.930149\pi\)
\(644\) 0 0
\(645\) −8.25900 + 1.46049i −0.325198 + 0.0575065i
\(646\) 0 0
\(647\) 3.35938i 0.132071i 0.997817 + 0.0660353i \(0.0210350\pi\)
−0.997817 + 0.0660353i \(0.978965\pi\)
\(648\) 0 0
\(649\) −51.6109 −2.02590
\(650\) 0 0
\(651\) −4.81821 −0.188841
\(652\) 0 0
\(653\) 44.1434i 1.72747i −0.503950 0.863733i \(-0.668121\pi\)
0.503950 0.863733i \(-0.331879\pi\)
\(654\) 0 0
\(655\) 22.1265 3.91275i 0.864553 0.152884i
\(656\) 0 0
\(657\) 6.29372i 0.245542i
\(658\) 0 0
\(659\) −35.1874 −1.37071 −0.685354 0.728210i \(-0.740352\pi\)
−0.685354 + 0.728210i \(0.740352\pi\)
\(660\) 0 0
\(661\) 10.3574 0.402855 0.201428 0.979503i \(-0.435442\pi\)
0.201428 + 0.979503i \(0.435442\pi\)
\(662\) 0 0
\(663\) 5.52819i 0.214697i
\(664\) 0 0
\(665\) 1.20191 + 6.79674i 0.0466079 + 0.263566i
\(666\) 0 0
\(667\) 33.7458i 1.30664i
\(668\) 0 0
\(669\) −6.10575 −0.236062
\(670\) 0 0
\(671\) −53.9886 −2.08421
\(672\) 0 0
\(673\) 36.0384i 1.38918i −0.719407 0.694589i \(-0.755586\pi\)
0.719407 0.694589i \(-0.244414\pi\)
\(674\) 0 0
\(675\) −3.68857 10.1032i −0.141973 0.388874i
\(676\) 0 0
\(677\) 11.4531i 0.440177i 0.975480 + 0.220089i \(0.0706347\pi\)
−0.975480 + 0.220089i \(0.929365\pi\)
\(678\) 0 0
\(679\) 32.7727 1.25770
\(680\) 0 0
\(681\) −4.34008 −0.166312
\(682\) 0 0
\(683\) 42.9554i 1.64364i 0.569745 + 0.821821i \(0.307042\pi\)
−0.569745 + 0.821821i \(0.692958\pi\)
\(684\) 0 0
\(685\) 5.69439 + 32.2016i 0.217571 + 1.23036i
\(686\) 0 0
\(687\) 1.77607i 0.0677611i
\(688\) 0 0
\(689\) −28.5065 −1.08601
\(690\) 0 0
\(691\) 5.23235 0.199048 0.0995241 0.995035i \(-0.468268\pi\)
0.0995241 + 0.995035i \(0.468268\pi\)
\(692\) 0 0
\(693\) 43.7449i 1.66173i
\(694\) 0 0
\(695\) 26.5930 4.70259i 1.00873 0.178380i
\(696\) 0 0
\(697\) 8.97345i 0.339894i
\(698\) 0 0
\(699\) −3.52380 −0.133282
\(700\) 0 0
\(701\) −17.3930 −0.656925 −0.328463 0.944517i \(-0.606531\pi\)
−0.328463 + 0.944517i \(0.606531\pi\)
\(702\) 0 0
\(703\) 7.75503i 0.292486i
\(704\) 0 0
\(705\) −0.755559 + 0.133610i −0.0284560 + 0.00503204i
\(706\) 0 0
\(707\) 40.4733i 1.52215i
\(708\) 0 0
\(709\) 21.5383 0.808888 0.404444 0.914563i \(-0.367465\pi\)
0.404444 + 0.914563i \(0.367465\pi\)
\(710\) 0 0
\(711\) 9.36024 0.351036
\(712\) 0 0
\(713\) 27.9392i 1.04633i
\(714\) 0 0
\(715\) 7.29880 + 41.2745i 0.272960 + 1.54358i
\(716\) 0 0
\(717\) 3.48395i 0.130110i
\(718\) 0 0
\(719\) −30.8923 −1.15209 −0.576044 0.817418i \(-0.695404\pi\)
−0.576044 + 0.817418i \(0.695404\pi\)
\(720\) 0 0
\(721\) −15.3007 −0.569830
\(722\) 0 0
\(723\) 8.02006i 0.298269i
\(724\) 0 0
\(725\) −24.1454 + 8.81517i −0.896736 + 0.327387i
\(726\) 0 0
\(727\) 20.9947i 0.778649i 0.921101 + 0.389325i \(0.127292\pi\)
−0.921101 + 0.389325i \(0.872708\pi\)
\(728\) 0 0
\(729\) 20.0061 0.740967
\(730\) 0 0
\(731\) −40.6765 −1.50447
\(732\) 0 0
\(733\) 22.0911i 0.815955i 0.912992 + 0.407978i \(0.133766\pi\)
−0.912992 + 0.407978i \(0.866234\pi\)
\(734\) 0 0
\(735\) 0.361001 + 2.04145i 0.0133157 + 0.0753000i
\(736\) 0 0
\(737\) 33.6762i 1.24048i
\(738\) 0 0
\(739\) 7.81209 0.287372 0.143686 0.989623i \(-0.454104\pi\)
0.143686 + 0.989623i \(0.454104\pi\)
\(740\) 0 0
\(741\) 1.39000 0.0510628
\(742\) 0 0
\(743\) 17.9012i 0.656731i 0.944551 + 0.328365i \(0.106498\pi\)
−0.944551 + 0.328365i \(0.893502\pi\)
\(744\) 0 0
\(745\) −27.6865 + 4.89596i −1.01436 + 0.179374i
\(746\) 0 0
\(747\) 11.7467i 0.429790i
\(748\) 0 0
\(749\) 58.3834 2.13328
\(750\) 0 0
\(751\) −48.8802 −1.78366 −0.891832 0.452367i \(-0.850580\pi\)
−0.891832 + 0.452367i \(0.850580\pi\)
\(752\) 0 0
\(753\) 0.744878i 0.0271449i
\(754\) 0 0
\(755\) −0.859484 + 0.151987i −0.0312798 + 0.00553138i
\(756\) 0 0
\(757\) 6.75011i 0.245337i −0.992448 0.122668i \(-0.960855\pi\)
0.992448 0.122668i \(-0.0391452\pi\)
\(758\) 0 0
\(759\) −11.9060 −0.432161
\(760\) 0 0
\(761\) 47.5563 1.72392 0.861958 0.506980i \(-0.169238\pi\)
0.861958 + 0.506980i \(0.169238\pi\)
\(762\) 0 0
\(763\) 27.4757i 0.994689i
\(764\) 0 0
\(765\) −4.43751 25.0940i −0.160438 0.907274i
\(766\) 0 0
\(767\) 39.5525i 1.42816i
\(768\) 0 0
\(769\) 0.849714 0.0306415 0.0153207 0.999883i \(-0.495123\pi\)
0.0153207 + 0.999883i \(0.495123\pi\)
\(770\) 0 0
\(771\) 2.79790 0.100764
\(772\) 0 0
\(773\) 4.74109i 0.170525i −0.996359 0.0852627i \(-0.972827\pi\)
0.996359 0.0852627i \(-0.0271729\pi\)
\(774\) 0 0
\(775\) 19.9907 7.29836i 0.718087 0.262165i
\(776\) 0 0
\(777\) 8.77891i 0.314942i
\(778\) 0 0
\(779\) 2.25626 0.0808390
\(780\) 0 0
\(781\) 14.7427 0.527535
\(782\) 0 0
\(783\) 11.0585i 0.395197i
\(784\) 0 0
\(785\) 6.87313 + 38.8673i 0.245312 + 1.38723i
\(786\) 0 0
\(787\) 19.0208i 0.678018i 0.940783 + 0.339009i \(0.110092\pi\)
−0.940783 + 0.339009i \(0.889908\pi\)
\(788\) 0 0
\(789\) 11.1231 0.395994
\(790\) 0 0
\(791\) 30.4067 1.08114
\(792\) 0 0
\(793\) 41.3747i 1.46926i
\(794\) 0 0
\(795\) −6.07351 + 1.07401i −0.215405 + 0.0380913i
\(796\) 0 0
\(797\)