Properties

Label 760.2.d.e.609.4
Level $760$
Weight $2$
Character 760.609
Analytic conductor $6.069$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [760,2,Mod(609,760)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(760, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("760.609");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 760 = 2^{3} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 760.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.06863055362\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} + 9 x^{10} - 8 x^{9} - 11 x^{8} + 60 x^{7} - 126 x^{6} + 180 x^{5} - 99 x^{4} + \cdots + 729 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{7} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 609.4
Root \(1.62784 - 0.591735i\) of defining polynomial
Character \(\chi\) \(=\) 760.609
Dual form 760.2.d.e.609.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.59277i q^{3} +(-1.59909 + 1.56299i) q^{5} -1.66290i q^{7} +0.463073 q^{9} +5.56511 q^{11} +6.31979i q^{13} +(2.48948 + 2.54698i) q^{15} -4.12142i q^{17} -1.00000 q^{19} -2.64862 q^{21} -1.82315i q^{23} +(0.114152 - 4.99870i) q^{25} -5.51589i q^{27} +4.08942 q^{29} +6.61202 q^{31} -8.86396i q^{33} +(2.59909 + 2.65912i) q^{35} -9.66787i q^{37} +10.0660 q^{39} -4.61202 q^{41} -3.75231i q^{43} +(-0.740494 + 0.723777i) q^{45} +3.85299i q^{47} +4.23477 q^{49} -6.56449 q^{51} +5.24594i q^{53} +(-8.89910 + 8.69819i) q^{55} +1.59277i q^{57} +11.5291 q^{59} +8.02587 q^{61} -0.770043i q^{63} +(-9.87775 - 10.1059i) q^{65} -0.155284i q^{67} -2.90387 q^{69} -12.1645 q^{71} +0.795627i q^{73} +(-7.96179 - 0.181818i) q^{75} -9.25422i q^{77} +7.18555 q^{79} -7.39634 q^{81} +5.88500i q^{83} +(6.44173 + 6.59051i) q^{85} -6.51351i q^{87} -18.5476 q^{89} +10.5092 q^{91} -10.5315i q^{93} +(1.59909 - 1.56299i) q^{95} -2.77634i q^{97} +2.57705 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{5} - 16 q^{9} - 4 q^{11} - 12 q^{15} - 12 q^{19} + 36 q^{21} + 18 q^{25} + 4 q^{29} + 16 q^{31} + 6 q^{35} + 36 q^{39} + 8 q^{41} - 2 q^{45} - 4 q^{49} - 68 q^{51} - 18 q^{55} + 4 q^{59} + 20 q^{61}+ \cdots + 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/760\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(381\) \(401\) \(457\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.59277i 0.919588i −0.888026 0.459794i \(-0.847923\pi\)
0.888026 0.459794i \(-0.152077\pi\)
\(4\) 0 0
\(5\) −1.59909 + 1.56299i −0.715133 + 0.698988i
\(6\) 0 0
\(7\) 1.66290i 0.628516i −0.949338 0.314258i \(-0.898244\pi\)
0.949338 0.314258i \(-0.101756\pi\)
\(8\) 0 0
\(9\) 0.463073 0.154358
\(10\) 0 0
\(11\) 5.56511 1.67794 0.838972 0.544174i \(-0.183157\pi\)
0.838972 + 0.544174i \(0.183157\pi\)
\(12\) 0 0
\(13\) 6.31979i 1.75280i 0.481588 + 0.876398i \(0.340060\pi\)
−0.481588 + 0.876398i \(0.659940\pi\)
\(14\) 0 0
\(15\) 2.48948 + 2.54698i 0.642781 + 0.657628i
\(16\) 0 0
\(17\) 4.12142i 0.999592i −0.866143 0.499796i \(-0.833408\pi\)
0.866143 0.499796i \(-0.166592\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) −2.64862 −0.577976
\(22\) 0 0
\(23\) 1.82315i 0.380154i −0.981769 0.190077i \(-0.939126\pi\)
0.981769 0.190077i \(-0.0608737\pi\)
\(24\) 0 0
\(25\) 0.114152 4.99870i 0.0228303 0.999739i
\(26\) 0 0
\(27\) 5.51589i 1.06153i
\(28\) 0 0
\(29\) 4.08942 0.759385 0.379693 0.925113i \(-0.376030\pi\)
0.379693 + 0.925113i \(0.376030\pi\)
\(30\) 0 0
\(31\) 6.61202 1.18755 0.593777 0.804630i \(-0.297636\pi\)
0.593777 + 0.804630i \(0.297636\pi\)
\(32\) 0 0
\(33\) 8.86396i 1.54302i
\(34\) 0 0
\(35\) 2.59909 + 2.65912i 0.439326 + 0.449473i
\(36\) 0 0
\(37\) 9.66787i 1.58939i −0.607010 0.794694i \(-0.707631\pi\)
0.607010 0.794694i \(-0.292369\pi\)
\(38\) 0 0
\(39\) 10.0660 1.61185
\(40\) 0 0
\(41\) −4.61202 −0.720277 −0.360138 0.932899i \(-0.617271\pi\)
−0.360138 + 0.932899i \(0.617271\pi\)
\(42\) 0 0
\(43\) 3.75231i 0.572222i −0.958196 0.286111i \(-0.907637\pi\)
0.958196 0.286111i \(-0.0923627\pi\)
\(44\) 0 0
\(45\) −0.740494 + 0.723777i −0.110386 + 0.107894i
\(46\) 0 0
\(47\) 3.85299i 0.562017i 0.959705 + 0.281008i \(0.0906689\pi\)
−0.959705 + 0.281008i \(0.909331\pi\)
\(48\) 0 0
\(49\) 4.23477 0.604967
\(50\) 0 0
\(51\) −6.56449 −0.919213
\(52\) 0 0
\(53\) 5.24594i 0.720585i 0.932839 + 0.360293i \(0.117323\pi\)
−0.932839 + 0.360293i \(0.882677\pi\)
\(54\) 0 0
\(55\) −8.89910 + 8.69819i −1.19995 + 1.17286i
\(56\) 0 0
\(57\) 1.59277i 0.210968i
\(58\) 0 0
\(59\) 11.5291 1.50097 0.750483 0.660890i \(-0.229821\pi\)
0.750483 + 0.660890i \(0.229821\pi\)
\(60\) 0 0
\(61\) 8.02587 1.02761 0.513804 0.857908i \(-0.328236\pi\)
0.513804 + 0.857908i \(0.328236\pi\)
\(62\) 0 0
\(63\) 0.770043i 0.0970164i
\(64\) 0 0
\(65\) −9.87775 10.1059i −1.22518 1.25348i
\(66\) 0 0
\(67\) 0.155284i 0.0189710i −0.999955 0.00948548i \(-0.996981\pi\)
0.999955 0.00948548i \(-0.00301937\pi\)
\(68\) 0 0
\(69\) −2.90387 −0.349585
\(70\) 0 0
\(71\) −12.1645 −1.44366 −0.721831 0.692069i \(-0.756699\pi\)
−0.721831 + 0.692069i \(0.756699\pi\)
\(72\) 0 0
\(73\) 0.795627i 0.0931211i 0.998915 + 0.0465606i \(0.0148261\pi\)
−0.998915 + 0.0465606i \(0.985174\pi\)
\(74\) 0 0
\(75\) −7.96179 0.181818i −0.919348 0.0209945i
\(76\) 0 0
\(77\) 9.25422i 1.05462i
\(78\) 0 0
\(79\) 7.18555 0.808437 0.404219 0.914662i \(-0.367544\pi\)
0.404219 + 0.914662i \(0.367544\pi\)
\(80\) 0 0
\(81\) −7.39634 −0.821816
\(82\) 0 0
\(83\) 5.88500i 0.645963i 0.946405 + 0.322981i \(0.104685\pi\)
−0.946405 + 0.322981i \(0.895315\pi\)
\(84\) 0 0
\(85\) 6.44173 + 6.59051i 0.698703 + 0.714841i
\(86\) 0 0
\(87\) 6.51351i 0.698322i
\(88\) 0 0
\(89\) −18.5476 −1.96604 −0.983021 0.183492i \(-0.941260\pi\)
−0.983021 + 0.183492i \(0.941260\pi\)
\(90\) 0 0
\(91\) 10.5092 1.10166
\(92\) 0 0
\(93\) 10.5315i 1.09206i
\(94\) 0 0
\(95\) 1.59909 1.56299i 0.164063 0.160359i
\(96\) 0 0
\(97\) 2.77634i 0.281894i −0.990017 0.140947i \(-0.954985\pi\)
0.990017 0.140947i \(-0.0450148\pi\)
\(98\) 0 0
\(99\) 2.57705 0.259004
\(100\) 0 0
\(101\) −13.6991 −1.36311 −0.681557 0.731765i \(-0.738697\pi\)
−0.681557 + 0.731765i \(0.738697\pi\)
\(102\) 0 0
\(103\) 7.42279i 0.731389i 0.930735 + 0.365695i \(0.119169\pi\)
−0.930735 + 0.365695i \(0.880831\pi\)
\(104\) 0 0
\(105\) 4.23537 4.13975i 0.413330 0.403999i
\(106\) 0 0
\(107\) 13.8010i 1.33419i 0.744971 + 0.667097i \(0.232463\pi\)
−0.744971 + 0.667097i \(0.767537\pi\)
\(108\) 0 0
\(109\) 12.7543 1.22164 0.610818 0.791771i \(-0.290841\pi\)
0.610818 + 0.791771i \(0.290841\pi\)
\(110\) 0 0
\(111\) −15.3987 −1.46158
\(112\) 0 0
\(113\) 7.81913i 0.735562i 0.929912 + 0.367781i \(0.119882\pi\)
−0.929912 + 0.367781i \(0.880118\pi\)
\(114\) 0 0
\(115\) 2.84956 + 2.91538i 0.265723 + 0.271860i
\(116\) 0 0
\(117\) 2.92653i 0.270558i
\(118\) 0 0
\(119\) −6.85351 −0.628260
\(120\) 0 0
\(121\) 19.9705 1.81550
\(122\) 0 0
\(123\) 7.34591i 0.662358i
\(124\) 0 0
\(125\) 7.63035 + 8.17176i 0.682480 + 0.730905i
\(126\) 0 0
\(127\) 5.07017i 0.449905i −0.974370 0.224952i \(-0.927777\pi\)
0.974370 0.224952i \(-0.0722226\pi\)
\(128\) 0 0
\(129\) −5.97658 −0.526209
\(130\) 0 0
\(131\) 10.8720 0.949895 0.474947 0.880014i \(-0.342467\pi\)
0.474947 + 0.880014i \(0.342467\pi\)
\(132\) 0 0
\(133\) 1.66290i 0.144192i
\(134\) 0 0
\(135\) 8.62126 + 8.82038i 0.742000 + 0.759138i
\(136\) 0 0
\(137\) 7.53861i 0.644067i −0.946728 0.322033i \(-0.895634\pi\)
0.946728 0.322033i \(-0.104366\pi\)
\(138\) 0 0
\(139\) 0.885954 0.0751457 0.0375728 0.999294i \(-0.488037\pi\)
0.0375728 + 0.999294i \(0.488037\pi\)
\(140\) 0 0
\(141\) 6.13694 0.516824
\(142\) 0 0
\(143\) 35.1704i 2.94109i
\(144\) 0 0
\(145\) −6.53933 + 6.39170i −0.543062 + 0.530802i
\(146\) 0 0
\(147\) 6.74503i 0.556321i
\(148\) 0 0
\(149\) −12.2594 −1.00433 −0.502166 0.864771i \(-0.667463\pi\)
−0.502166 + 0.864771i \(0.667463\pi\)
\(150\) 0 0
\(151\) −2.95140 −0.240181 −0.120091 0.992763i \(-0.538319\pi\)
−0.120091 + 0.992763i \(0.538319\pi\)
\(152\) 0 0
\(153\) 1.90852i 0.154295i
\(154\) 0 0
\(155\) −10.5732 + 10.3345i −0.849259 + 0.830087i
\(156\) 0 0
\(157\) 15.7951i 1.26058i 0.776358 + 0.630292i \(0.217065\pi\)
−0.776358 + 0.630292i \(0.782935\pi\)
\(158\) 0 0
\(159\) 8.35559 0.662642
\(160\) 0 0
\(161\) −3.03172 −0.238933
\(162\) 0 0
\(163\) 20.4459i 1.60144i −0.599037 0.800721i \(-0.704450\pi\)
0.599037 0.800721i \(-0.295550\pi\)
\(164\) 0 0
\(165\) 13.8542 + 14.1742i 1.07855 + 1.10346i
\(166\) 0 0
\(167\) 14.6083i 1.13043i −0.824945 0.565213i \(-0.808794\pi\)
0.824945 0.565213i \(-0.191206\pi\)
\(168\) 0 0
\(169\) −26.9398 −2.07229
\(170\) 0 0
\(171\) −0.463073 −0.0354121
\(172\) 0 0
\(173\) 19.4244i 1.47681i 0.674356 + 0.738406i \(0.264421\pi\)
−0.674356 + 0.738406i \(0.735579\pi\)
\(174\) 0 0
\(175\) −8.31232 0.189823i −0.628353 0.0143492i
\(176\) 0 0
\(177\) 18.3633i 1.38027i
\(178\) 0 0
\(179\) 7.21080 0.538960 0.269480 0.963006i \(-0.413148\pi\)
0.269480 + 0.963006i \(0.413148\pi\)
\(180\) 0 0
\(181\) −10.1237 −0.752488 −0.376244 0.926521i \(-0.622785\pi\)
−0.376244 + 0.926521i \(0.622785\pi\)
\(182\) 0 0
\(183\) 12.7834i 0.944976i
\(184\) 0 0
\(185\) 15.1107 + 15.4598i 1.11096 + 1.13662i
\(186\) 0 0
\(187\) 22.9362i 1.67726i
\(188\) 0 0
\(189\) −9.17236 −0.667191
\(190\) 0 0
\(191\) −24.4017 −1.76564 −0.882821 0.469709i \(-0.844359\pi\)
−0.882821 + 0.469709i \(0.844359\pi\)
\(192\) 0 0
\(193\) 19.1845i 1.38093i 0.723366 + 0.690465i \(0.242594\pi\)
−0.723366 + 0.690465i \(0.757406\pi\)
\(194\) 0 0
\(195\) −16.0964 + 15.7330i −1.15269 + 1.12666i
\(196\) 0 0
\(197\) 11.9453i 0.851066i −0.904943 0.425533i \(-0.860087\pi\)
0.904943 0.425533i \(-0.139913\pi\)
\(198\) 0 0
\(199\) −9.20530 −0.652546 −0.326273 0.945276i \(-0.605793\pi\)
−0.326273 + 0.945276i \(0.605793\pi\)
\(200\) 0 0
\(201\) −0.247332 −0.0174455
\(202\) 0 0
\(203\) 6.80028i 0.477286i
\(204\) 0 0
\(205\) 7.37502 7.20852i 0.515094 0.503465i
\(206\) 0 0
\(207\) 0.844253i 0.0586796i
\(208\) 0 0
\(209\) −5.56511 −0.384947
\(210\) 0 0
\(211\) 18.2971 1.25962 0.629811 0.776749i \(-0.283133\pi\)
0.629811 + 0.776749i \(0.283133\pi\)
\(212\) 0 0
\(213\) 19.3753i 1.32757i
\(214\) 0 0
\(215\) 5.86481 + 6.00027i 0.399977 + 0.409215i
\(216\) 0 0
\(217\) 10.9951i 0.746397i
\(218\) 0 0
\(219\) 1.26725 0.0856331
\(220\) 0 0
\(221\) 26.0466 1.75208
\(222\) 0 0
\(223\) 1.57405i 0.105406i −0.998610 0.0527032i \(-0.983216\pi\)
0.998610 0.0527032i \(-0.0167837\pi\)
\(224\) 0 0
\(225\) 0.0528606 2.31476i 0.00352404 0.154317i
\(226\) 0 0
\(227\) 14.6034i 0.969260i 0.874719 + 0.484630i \(0.161046\pi\)
−0.874719 + 0.484630i \(0.838954\pi\)
\(228\) 0 0
\(229\) −9.33328 −0.616761 −0.308380 0.951263i \(-0.599787\pi\)
−0.308380 + 0.951263i \(0.599787\pi\)
\(230\) 0 0
\(231\) −14.7399 −0.969812
\(232\) 0 0
\(233\) 1.02066i 0.0668658i 0.999441 + 0.0334329i \(0.0106440\pi\)
−0.999441 + 0.0334329i \(0.989356\pi\)
\(234\) 0 0
\(235\) −6.02217 6.16127i −0.392843 0.401917i
\(236\) 0 0
\(237\) 11.4449i 0.743429i
\(238\) 0 0
\(239\) −3.66778 −0.237249 −0.118624 0.992939i \(-0.537848\pi\)
−0.118624 + 0.992939i \(0.537848\pi\)
\(240\) 0 0
\(241\) −23.1700 −1.49251 −0.746254 0.665661i \(-0.768150\pi\)
−0.746254 + 0.665661i \(0.768150\pi\)
\(242\) 0 0
\(243\) 4.76697i 0.305801i
\(244\) 0 0
\(245\) −6.77176 + 6.61888i −0.432632 + 0.422865i
\(246\) 0 0
\(247\) 6.31979i 0.402119i
\(248\) 0 0
\(249\) 9.37347 0.594020
\(250\) 0 0
\(251\) −29.6256 −1.86995 −0.934977 0.354709i \(-0.884580\pi\)
−0.934977 + 0.354709i \(0.884580\pi\)
\(252\) 0 0
\(253\) 10.1461i 0.637877i
\(254\) 0 0
\(255\) 10.4972 10.2602i 0.657360 0.642519i
\(256\) 0 0
\(257\) 13.9768i 0.871848i 0.899984 + 0.435924i \(0.143578\pi\)
−0.899984 + 0.435924i \(0.856422\pi\)
\(258\) 0 0
\(259\) −16.0767 −0.998956
\(260\) 0 0
\(261\) 1.89370 0.117217
\(262\) 0 0
\(263\) 11.4699i 0.707264i −0.935385 0.353632i \(-0.884947\pi\)
0.935385 0.353632i \(-0.115053\pi\)
\(264\) 0 0
\(265\) −8.19933 8.38871i −0.503681 0.515314i
\(266\) 0 0
\(267\) 29.5421i 1.80795i
\(268\) 0 0
\(269\) −16.0864 −0.980808 −0.490404 0.871495i \(-0.663151\pi\)
−0.490404 + 0.871495i \(0.663151\pi\)
\(270\) 0 0
\(271\) 15.3369 0.931649 0.465824 0.884877i \(-0.345758\pi\)
0.465824 + 0.884877i \(0.345758\pi\)
\(272\) 0 0
\(273\) 16.7387i 1.01307i
\(274\) 0 0
\(275\) 0.635267 27.8183i 0.0383081 1.67751i
\(276\) 0 0
\(277\) 0.0546196i 0.00328177i 0.999999 + 0.00164089i \(0.000522311\pi\)
−0.999999 + 0.00164089i \(0.999478\pi\)
\(278\) 0 0
\(279\) 3.06185 0.183308
\(280\) 0 0
\(281\) 20.3315 1.21288 0.606438 0.795130i \(-0.292598\pi\)
0.606438 + 0.795130i \(0.292598\pi\)
\(282\) 0 0
\(283\) 22.3909i 1.33100i −0.746397 0.665501i \(-0.768218\pi\)
0.746397 0.665501i \(-0.231782\pi\)
\(284\) 0 0
\(285\) −2.48948 2.54698i −0.147464 0.150870i
\(286\) 0 0
\(287\) 7.66932i 0.452706i
\(288\) 0 0
\(289\) 0.0138666 0.000815685
\(290\) 0 0
\(291\) −4.42208 −0.259227
\(292\) 0 0
\(293\) 13.3983i 0.782736i 0.920234 + 0.391368i \(0.127998\pi\)
−0.920234 + 0.391368i \(0.872002\pi\)
\(294\) 0 0
\(295\) −18.4361 + 18.0199i −1.07339 + 1.04916i
\(296\) 0 0
\(297\) 30.6966i 1.78119i
\(298\) 0 0
\(299\) 11.5219 0.666332
\(300\) 0 0
\(301\) −6.23971 −0.359651
\(302\) 0 0
\(303\) 21.8196i 1.25350i
\(304\) 0 0
\(305\) −12.8341 + 12.5443i −0.734876 + 0.718286i
\(306\) 0 0
\(307\) 7.60404i 0.433985i −0.976173 0.216993i \(-0.930375\pi\)
0.976173 0.216993i \(-0.0696248\pi\)
\(308\) 0 0
\(309\) 11.8228 0.672577
\(310\) 0 0
\(311\) 31.7283 1.79915 0.899573 0.436770i \(-0.143877\pi\)
0.899573 + 0.436770i \(0.143877\pi\)
\(312\) 0 0
\(313\) 26.2396i 1.48315i 0.670870 + 0.741575i \(0.265921\pi\)
−0.670870 + 0.741575i \(0.734079\pi\)
\(314\) 0 0
\(315\) 1.20357 + 1.23137i 0.0678133 + 0.0693796i
\(316\) 0 0
\(317\) 0.269210i 0.0151203i −0.999971 0.00756016i \(-0.997594\pi\)
0.999971 0.00756016i \(-0.00240650\pi\)
\(318\) 0 0
\(319\) 22.7581 1.27421
\(320\) 0 0
\(321\) 21.9819 1.22691
\(322\) 0 0
\(323\) 4.12142i 0.229322i
\(324\) 0 0
\(325\) 31.5907 + 0.721415i 1.75234 + 0.0400169i
\(326\) 0 0
\(327\) 20.3146i 1.12340i
\(328\) 0 0
\(329\) 6.40713 0.353237
\(330\) 0 0
\(331\) −9.69472 −0.532870 −0.266435 0.963853i \(-0.585846\pi\)
−0.266435 + 0.963853i \(0.585846\pi\)
\(332\) 0 0
\(333\) 4.47693i 0.245334i
\(334\) 0 0
\(335\) 0.242707 + 0.248313i 0.0132605 + 0.0135668i
\(336\) 0 0
\(337\) 18.4219i 1.00350i 0.865012 + 0.501751i \(0.167311\pi\)
−0.865012 + 0.501751i \(0.832689\pi\)
\(338\) 0 0
\(339\) 12.4541 0.676414
\(340\) 0 0
\(341\) 36.7967 1.99265
\(342\) 0 0
\(343\) 18.6823i 1.00875i
\(344\) 0 0
\(345\) 4.64354 4.53870i 0.250000 0.244356i
\(346\) 0 0
\(347\) 8.85913i 0.475583i 0.971316 + 0.237791i \(0.0764235\pi\)
−0.971316 + 0.237791i \(0.923577\pi\)
\(348\) 0 0
\(349\) 6.36382 0.340647 0.170324 0.985388i \(-0.445519\pi\)
0.170324 + 0.985388i \(0.445519\pi\)
\(350\) 0 0
\(351\) 34.8593 1.86065
\(352\) 0 0
\(353\) 26.4213i 1.40627i −0.711058 0.703133i \(-0.751784\pi\)
0.711058 0.703133i \(-0.248216\pi\)
\(354\) 0 0
\(355\) 19.4521 19.0130i 1.03241 1.00910i
\(356\) 0 0
\(357\) 10.9161i 0.577740i
\(358\) 0 0
\(359\) −0.904490 −0.0477372 −0.0238686 0.999715i \(-0.507598\pi\)
−0.0238686 + 0.999715i \(0.507598\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 31.8085i 1.66951i
\(364\) 0 0
\(365\) −1.24355 1.27228i −0.0650906 0.0665940i
\(366\) 0 0
\(367\) 20.6657i 1.07874i −0.842069 0.539370i \(-0.818662\pi\)
0.842069 0.539370i \(-0.181338\pi\)
\(368\) 0 0
\(369\) −2.13570 −0.111180
\(370\) 0 0
\(371\) 8.72347 0.452900
\(372\) 0 0
\(373\) 23.7919i 1.23190i 0.787786 + 0.615949i \(0.211227\pi\)
−0.787786 + 0.615949i \(0.788773\pi\)
\(374\) 0 0
\(375\) 13.0158 12.1534i 0.672131 0.627600i
\(376\) 0 0
\(377\) 25.8443i 1.33105i
\(378\) 0 0
\(379\) −27.9667 −1.43655 −0.718276 0.695758i \(-0.755069\pi\)
−0.718276 + 0.695758i \(0.755069\pi\)
\(380\) 0 0
\(381\) −8.07563 −0.413727
\(382\) 0 0
\(383\) 12.1083i 0.618707i 0.950947 + 0.309353i \(0.100113\pi\)
−0.950947 + 0.309353i \(0.899887\pi\)
\(384\) 0 0
\(385\) 14.4642 + 14.7983i 0.737164 + 0.754191i
\(386\) 0 0
\(387\) 1.73760i 0.0883269i
\(388\) 0 0
\(389\) −0.871634 −0.0441936 −0.0220968 0.999756i \(-0.507034\pi\)
−0.0220968 + 0.999756i \(0.507034\pi\)
\(390\) 0 0
\(391\) −7.51398 −0.379998
\(392\) 0 0
\(393\) 17.3167i 0.873512i
\(394\) 0 0
\(395\) −11.4903 + 11.2309i −0.578140 + 0.565088i
\(396\) 0 0
\(397\) 20.7833i 1.04308i 0.853226 + 0.521542i \(0.174643\pi\)
−0.853226 + 0.521542i \(0.825357\pi\)
\(398\) 0 0
\(399\) 2.64862 0.132597
\(400\) 0 0
\(401\) −16.0237 −0.800184 −0.400092 0.916475i \(-0.631022\pi\)
−0.400092 + 0.916475i \(0.631022\pi\)
\(402\) 0 0
\(403\) 41.7866i 2.08154i
\(404\) 0 0
\(405\) 11.8274 11.5604i 0.587708 0.574440i
\(406\) 0 0
\(407\) 53.8028i 2.66691i
\(408\) 0 0
\(409\) −20.1554 −0.996621 −0.498311 0.866999i \(-0.666046\pi\)
−0.498311 + 0.866999i \(0.666046\pi\)
\(410\) 0 0
\(411\) −12.0073 −0.592276
\(412\) 0 0
\(413\) 19.1718i 0.943382i
\(414\) 0 0
\(415\) −9.19817 9.41062i −0.451520 0.461949i
\(416\) 0 0
\(417\) 1.41112i 0.0691031i
\(418\) 0 0
\(419\) −5.15507 −0.251842 −0.125921 0.992040i \(-0.540189\pi\)
−0.125921 + 0.992040i \(0.540189\pi\)
\(420\) 0 0
\(421\) 26.5417 1.29356 0.646781 0.762676i \(-0.276115\pi\)
0.646781 + 0.762676i \(0.276115\pi\)
\(422\) 0 0
\(423\) 1.78422i 0.0867516i
\(424\) 0 0
\(425\) −20.6017 0.470468i −0.999332 0.0228210i
\(426\) 0 0
\(427\) 13.3462i 0.645868i
\(428\) 0 0
\(429\) 56.0184 2.70460
\(430\) 0 0
\(431\) −21.2788 −1.02496 −0.512481 0.858699i \(-0.671274\pi\)
−0.512481 + 0.858699i \(0.671274\pi\)
\(432\) 0 0
\(433\) 6.44963i 0.309949i −0.987918 0.154975i \(-0.950470\pi\)
0.987918 0.154975i \(-0.0495296\pi\)
\(434\) 0 0
\(435\) 10.1805 + 10.4157i 0.488119 + 0.499393i
\(436\) 0 0
\(437\) 1.82315i 0.0872132i
\(438\) 0 0
\(439\) −22.2324 −1.06110 −0.530548 0.847655i \(-0.678014\pi\)
−0.530548 + 0.847655i \(0.678014\pi\)
\(440\) 0 0
\(441\) 1.96101 0.0933813
\(442\) 0 0
\(443\) 7.56611i 0.359477i 0.983714 + 0.179738i \(0.0575251\pi\)
−0.983714 + 0.179738i \(0.942475\pi\)
\(444\) 0 0
\(445\) 29.6592 28.9896i 1.40598 1.37424i
\(446\) 0 0
\(447\) 19.5265i 0.923571i
\(448\) 0 0
\(449\) −22.5411 −1.06378 −0.531891 0.846813i \(-0.678518\pi\)
−0.531891 + 0.846813i \(0.678518\pi\)
\(450\) 0 0
\(451\) −25.6664 −1.20858
\(452\) 0 0
\(453\) 4.70091i 0.220868i
\(454\) 0 0
\(455\) −16.8051 + 16.4257i −0.787834 + 0.770048i
\(456\) 0 0
\(457\) 29.9942i 1.40307i −0.712634 0.701536i \(-0.752498\pi\)
0.712634 0.701536i \(-0.247502\pi\)
\(458\) 0 0
\(459\) −22.7333 −1.06110
\(460\) 0 0
\(461\) −35.7493 −1.66501 −0.832506 0.554016i \(-0.813095\pi\)
−0.832506 + 0.554016i \(0.813095\pi\)
\(462\) 0 0
\(463\) 9.81829i 0.456295i −0.973627 0.228147i \(-0.926733\pi\)
0.973627 0.228147i \(-0.0732668\pi\)
\(464\) 0 0
\(465\) 16.4605 + 16.8407i 0.763338 + 0.780969i
\(466\) 0 0
\(467\) 1.96046i 0.0907194i −0.998971 0.0453597i \(-0.985557\pi\)
0.998971 0.0453597i \(-0.0144434\pi\)
\(468\) 0 0
\(469\) −0.258222 −0.0119236
\(470\) 0 0
\(471\) 25.1580 1.15922
\(472\) 0 0
\(473\) 20.8821i 0.960158i
\(474\) 0 0
\(475\) −0.114152 + 4.99870i −0.00523764 + 0.229356i
\(476\) 0 0
\(477\) 2.42925i 0.111228i
\(478\) 0 0
\(479\) 9.88045 0.451450 0.225725 0.974191i \(-0.427525\pi\)
0.225725 + 0.974191i \(0.427525\pi\)
\(480\) 0 0
\(481\) 61.0989 2.78587
\(482\) 0 0
\(483\) 4.82884i 0.219720i
\(484\) 0 0
\(485\) 4.33937 + 4.43960i 0.197041 + 0.201592i
\(486\) 0 0
\(487\) 9.03706i 0.409508i −0.978813 0.204754i \(-0.934361\pi\)
0.978813 0.204754i \(-0.0656395\pi\)
\(488\) 0 0
\(489\) −32.5656 −1.47267
\(490\) 0 0
\(491\) −20.3715 −0.919353 −0.459676 0.888086i \(-0.652035\pi\)
−0.459676 + 0.888086i \(0.652035\pi\)
\(492\) 0 0
\(493\) 16.8542i 0.759076i
\(494\) 0 0
\(495\) −4.12093 + 4.02790i −0.185222 + 0.181041i
\(496\) 0 0
\(497\) 20.2283i 0.907365i
\(498\) 0 0
\(499\) 13.9386 0.623979 0.311990 0.950086i \(-0.399005\pi\)
0.311990 + 0.950086i \(0.399005\pi\)
\(500\) 0 0
\(501\) −23.2678 −1.03953
\(502\) 0 0
\(503\) 39.7299i 1.77147i −0.464192 0.885735i \(-0.653655\pi\)
0.464192 0.885735i \(-0.346345\pi\)
\(504\) 0 0
\(505\) 21.9061 21.4115i 0.974807 0.952801i
\(506\) 0 0
\(507\) 42.9090i 1.90566i
\(508\) 0 0
\(509\) 12.5200 0.554941 0.277471 0.960734i \(-0.410504\pi\)
0.277471 + 0.960734i \(0.410504\pi\)
\(510\) 0 0
\(511\) 1.32305 0.0585282
\(512\) 0 0
\(513\) 5.51589i 0.243533i
\(514\) 0 0
\(515\) −11.6017 11.8697i −0.511232 0.523040i
\(516\) 0 0
\(517\) 21.4423i 0.943033i
\(518\) 0 0
\(519\) 30.9387 1.35806
\(520\) 0 0
\(521\) −0.0426487 −0.00186847 −0.000934237 1.00000i \(-0.500297\pi\)
−0.000934237 1.00000i \(0.500297\pi\)
\(522\) 0 0
\(523\) 29.4459i 1.28758i 0.765203 + 0.643789i \(0.222639\pi\)
−0.765203 + 0.643789i \(0.777361\pi\)
\(524\) 0 0
\(525\) −0.302344 + 13.2396i −0.0131954 + 0.577826i
\(526\) 0 0
\(527\) 27.2509i 1.18707i
\(528\) 0 0
\(529\) 19.6761 0.855483
\(530\) 0 0
\(531\) 5.33883 0.231686
\(532\) 0 0
\(533\) 29.1470i 1.26250i
\(534\) 0 0
\(535\) −21.5708 22.0690i −0.932586 0.954126i
\(536\) 0 0
\(537\) 11.4852i 0.495621i
\(538\) 0 0
\(539\) 23.5670 1.01510
\(540\) 0 0
\(541\) −20.0558 −0.862264 −0.431132 0.902289i \(-0.641886\pi\)
−0.431132 + 0.902289i \(0.641886\pi\)
\(542\) 0 0
\(543\) 16.1248i 0.691979i
\(544\) 0 0
\(545\) −20.3951 + 19.9347i −0.873632 + 0.853909i
\(546\) 0 0
\(547\) 14.8952i 0.636874i −0.947944 0.318437i \(-0.896842\pi\)
0.947944 0.318437i \(-0.103158\pi\)
\(548\) 0 0
\(549\) 3.71657 0.158619
\(550\) 0 0
\(551\) −4.08942 −0.174215
\(552\) 0 0
\(553\) 11.9488i 0.508116i
\(554\) 0 0
\(555\) 24.6239 24.0680i 1.04523 1.02163i
\(556\) 0 0
\(557\) 9.26068i 0.392388i −0.980565 0.196194i \(-0.937142\pi\)
0.980565 0.196194i \(-0.0628582\pi\)
\(558\) 0 0
\(559\) 23.7138 1.00299
\(560\) 0 0
\(561\) −36.5322 −1.54239
\(562\) 0 0
\(563\) 12.9472i 0.545661i 0.962062 + 0.272830i \(0.0879598\pi\)
−0.962062 + 0.272830i \(0.912040\pi\)
\(564\) 0 0
\(565\) −12.2212 12.5035i −0.514149 0.526025i
\(566\) 0 0
\(567\) 12.2994i 0.516525i
\(568\) 0 0
\(569\) −20.0593 −0.840929 −0.420464 0.907309i \(-0.638133\pi\)
−0.420464 + 0.907309i \(0.638133\pi\)
\(570\) 0 0
\(571\) −5.64571 −0.236266 −0.118133 0.992998i \(-0.537691\pi\)
−0.118133 + 0.992998i \(0.537691\pi\)
\(572\) 0 0
\(573\) 38.8663i 1.62366i
\(574\) 0 0
\(575\) −9.11339 0.208116i −0.380054 0.00867904i
\(576\) 0 0
\(577\) 33.5402i 1.39630i −0.715953 0.698148i \(-0.754008\pi\)
0.715953 0.698148i \(-0.245992\pi\)
\(578\) 0 0
\(579\) 30.5566 1.26989
\(580\) 0 0
\(581\) 9.78616 0.405998
\(582\) 0 0
\(583\) 29.1943i 1.20910i
\(584\) 0 0
\(585\) −4.57412 4.67977i −0.189117 0.193485i
\(586\) 0 0
\(587\) 27.5517i 1.13718i 0.822621 + 0.568591i \(0.192511\pi\)
−0.822621 + 0.568591i \(0.807489\pi\)
\(588\) 0 0
\(589\) −6.61202 −0.272444
\(590\) 0 0
\(591\) −19.0261 −0.782630
\(592\) 0 0
\(593\) 24.4353i 1.00344i −0.865031 0.501719i \(-0.832701\pi\)
0.865031 0.501719i \(-0.167299\pi\)
\(594\) 0 0
\(595\) 10.9593 10.7119i 0.449289 0.439146i
\(596\) 0 0
\(597\) 14.6620i 0.600074i
\(598\) 0 0
\(599\) 3.51535 0.143633 0.0718166 0.997418i \(-0.477120\pi\)
0.0718166 + 0.997418i \(0.477120\pi\)
\(600\) 0 0
\(601\) −1.21824 −0.0496932 −0.0248466 0.999691i \(-0.507910\pi\)
−0.0248466 + 0.999691i \(0.507910\pi\)
\(602\) 0 0
\(603\) 0.0719079i 0.00292832i
\(604\) 0 0
\(605\) −31.9345 + 31.2136i −1.29832 + 1.26901i
\(606\) 0 0
\(607\) 13.1872i 0.535251i −0.963523 0.267625i \(-0.913761\pi\)
0.963523 0.267625i \(-0.0862390\pi\)
\(608\) 0 0
\(609\) −10.8313 −0.438907
\(610\) 0 0
\(611\) −24.3501 −0.985100
\(612\) 0 0
\(613\) 9.67880i 0.390923i 0.980711 + 0.195462i \(0.0626205\pi\)
−0.980711 + 0.195462i \(0.937379\pi\)
\(614\) 0 0
\(615\) −11.4815 11.7467i −0.462981 0.473674i
\(616\) 0 0
\(617\) 10.4077i 0.418999i 0.977809 + 0.209500i \(0.0671835\pi\)
−0.977809 + 0.209500i \(0.932816\pi\)
\(618\) 0 0
\(619\) 32.7144 1.31490 0.657452 0.753496i \(-0.271634\pi\)
0.657452 + 0.753496i \(0.271634\pi\)
\(620\) 0 0
\(621\) −10.0563 −0.403546
\(622\) 0 0
\(623\) 30.8428i 1.23569i
\(624\) 0 0
\(625\) −24.9739 1.14122i −0.998958 0.0456488i
\(626\) 0 0
\(627\) 8.86396i 0.353993i
\(628\) 0 0
\(629\) −39.8454 −1.58874
\(630\) 0 0
\(631\) −37.2305 −1.48212 −0.741061 0.671438i \(-0.765677\pi\)
−0.741061 + 0.671438i \(0.765677\pi\)
\(632\) 0 0
\(633\) 29.1431i 1.15833i
\(634\) 0 0
\(635\) 7.92460 + 8.10763i 0.314478 + 0.321742i
\(636\) 0 0
\(637\) 26.7629i 1.06038i
\(638\) 0 0
\(639\) −5.63306 −0.222840
\(640\) 0 0
\(641\) 23.3803 0.923464 0.461732 0.887019i \(-0.347228\pi\)
0.461732 + 0.887019i \(0.347228\pi\)
\(642\) 0 0
\(643\) 24.6705i 0.972911i 0.873705 + 0.486455i \(0.161710\pi\)
−0.873705 + 0.486455i \(0.838290\pi\)
\(644\) 0 0
\(645\) 9.55707 9.34132i 0.376309 0.367814i
\(646\) 0 0
\(647\) 47.2591i 1.85795i 0.370147 + 0.928973i \(0.379307\pi\)
−0.370147 + 0.928973i \(0.620693\pi\)
\(648\) 0 0
\(649\) 64.1610 2.51854
\(650\) 0 0
\(651\) −17.5127 −0.686378
\(652\) 0 0
\(653\) 31.5361i 1.23410i −0.786924 0.617051i \(-0.788327\pi\)
0.786924 0.617051i \(-0.211673\pi\)
\(654\) 0 0
\(655\) −17.3853 + 16.9928i −0.679301 + 0.663966i
\(656\) 0 0
\(657\) 0.368434i 0.0143740i
\(658\) 0 0
\(659\) 21.3511 0.831722 0.415861 0.909428i \(-0.363480\pi\)
0.415861 + 0.909428i \(0.363480\pi\)
\(660\) 0 0
\(661\) −31.2161 −1.21416 −0.607082 0.794639i \(-0.707660\pi\)
−0.607082 + 0.794639i \(0.707660\pi\)
\(662\) 0 0
\(663\) 41.4863i 1.61119i
\(664\) 0 0
\(665\) −2.59909 2.65912i −0.100788 0.103116i
\(666\) 0 0
\(667\) 7.45563i 0.288683i
\(668\) 0 0
\(669\) −2.50711 −0.0969304
\(670\) 0 0
\(671\) 44.6649 1.72427
\(672\) 0 0
\(673\) 4.16240i 0.160449i 0.996777 + 0.0802243i \(0.0255637\pi\)
−0.996777 + 0.0802243i \(0.974436\pi\)
\(674\) 0 0
\(675\) −27.5723 0.629648i −1.06126 0.0242352i
\(676\) 0 0
\(677\) 35.5734i 1.36720i 0.729857 + 0.683599i \(0.239586\pi\)
−0.729857 + 0.683599i \(0.760414\pi\)
\(678\) 0 0
\(679\) −4.61677 −0.177175
\(680\) 0 0
\(681\) 23.2599 0.891320
\(682\) 0 0
\(683\) 26.8628i 1.02788i −0.857827 0.513938i \(-0.828186\pi\)
0.857827 0.513938i \(-0.171814\pi\)
\(684\) 0 0
\(685\) 11.7827 + 12.0549i 0.450195 + 0.460593i
\(686\) 0 0
\(687\) 14.8658i 0.567166i
\(688\) 0 0
\(689\) −33.1533 −1.26304
\(690\) 0 0
\(691\) 32.0064 1.21758 0.608791 0.793331i \(-0.291655\pi\)
0.608791 + 0.793331i \(0.291655\pi\)
\(692\) 0 0
\(693\) 4.28538i 0.162788i
\(694\) 0 0
\(695\) −1.41672 + 1.38473i −0.0537391 + 0.0525259i
\(696\) 0 0
\(697\) 19.0081i 0.719983i
\(698\) 0 0
\(699\) 1.62568 0.0614890
\(700\) 0 0
\(701\) −0.822942 −0.0310821 −0.0155410 0.999879i \(-0.504947\pi\)
−0.0155410 + 0.999879i \(0.504947\pi\)
\(702\) 0 0
\(703\) 9.66787i 0.364631i
\(704\) 0 0
\(705\) −9.81350 + 9.59195i −0.369598 + 0.361254i
\(706\) 0 0
\(707\) 22.7802i 0.856739i
\(708\) 0 0
\(709\) −24.8057 −0.931599 −0.465800 0.884890i \(-0.654233\pi\)
−0.465800 + 0.884890i \(0.654233\pi\)
\(710\) 0 0
\(711\) 3.32743 0.124789
\(712\) 0 0
\(713\) 12.0547i 0.451453i
\(714\) 0 0
\(715\) −54.9708 56.2405i −2.05579 2.10327i
\(716\) 0 0
\(717\) 5.84194i 0.218171i
\(718\) 0 0
\(719\) −13.8765 −0.517506 −0.258753 0.965943i \(-0.583312\pi\)
−0.258753 + 0.965943i \(0.583312\pi\)
\(720\) 0 0
\(721\) 12.3433 0.459690
\(722\) 0 0
\(723\) 36.9045i 1.37249i
\(724\) 0 0
\(725\) 0.466814 20.4417i 0.0173370 0.759187i
\(726\) 0 0
\(727\) 28.7158i 1.06501i 0.846426 + 0.532506i \(0.178749\pi\)
−0.846426 + 0.532506i \(0.821251\pi\)
\(728\) 0 0
\(729\) −29.7817 −1.10303
\(730\) 0 0
\(731\) −15.4649 −0.571989
\(732\) 0 0
\(733\) 47.1903i 1.74301i −0.490384 0.871506i \(-0.663144\pi\)
0.490384 0.871506i \(-0.336856\pi\)
\(734\) 0 0
\(735\) 10.5424 + 10.7859i 0.388862 + 0.397843i
\(736\) 0 0
\(737\) 0.864174i 0.0318322i
\(738\) 0 0
\(739\) 7.61271 0.280038 0.140019 0.990149i \(-0.455284\pi\)
0.140019 + 0.990149i \(0.455284\pi\)
\(740\) 0 0
\(741\) −10.0660 −0.369784
\(742\) 0 0
\(743\) 15.8127i 0.580111i 0.957010 + 0.290055i \(0.0936738\pi\)
−0.957010 + 0.290055i \(0.906326\pi\)
\(744\) 0 0
\(745\) 19.6039 19.1613i 0.718230 0.702016i
\(746\) 0 0
\(747\) 2.72519i 0.0997093i
\(748\) 0 0
\(749\) 22.9497 0.838563
\(750\) 0 0
\(751\) 35.7516 1.30459 0.652296 0.757964i \(-0.273806\pi\)
0.652296 + 0.757964i \(0.273806\pi\)
\(752\) 0 0
\(753\) 47.1869i 1.71959i
\(754\) 0 0
\(755\) 4.71954 4.61299i 0.171762 0.167884i
\(756\) 0 0
\(757\) 12.8136i 0.465717i 0.972511 + 0.232859i \(0.0748079\pi\)
−0.972511 + 0.232859i \(0.925192\pi\)
\(758\) 0 0
\(759\) −16.1604 −0.586584
\(760\) 0 0
\(761\) 18.8830 0.684508 0.342254 0.939608i \(-0.388810\pi\)
0.342254 + 0.939608i \(0.388810\pi\)
\(762\) 0 0
\(763\) 21.2090i 0.767818i
\(764\) 0 0
\(765\) 2.98299 + 3.05189i 0.107850 + 0.110341i
\(766\) 0 0
\(767\) 72.8618i 2.63089i
\(768\) 0 0
\(769\) 16.0228 0.577798 0.288899 0.957360i \(-0.406711\pi\)
0.288899 + 0.957360i \(0.406711\pi\)
\(770\) 0 0
\(771\) 22.2618 0.801741
\(772\) 0 0
\(773\) 9.91039i 0.356452i 0.983990 + 0.178226i \(0.0570358\pi\)
−0.983990 + 0.178226i \(0.942964\pi\)
\(774\) 0 0
\(775\) 0.754774 33.0515i 0.0271123 1.18724i
\(776\) 0 0
\(777\) 25.6065i 0.918628i
\(778\) 0 0
\(779\) 4.61202 0.165243
\(780\) 0 0
\(781\) −67.6969 −2.42238
\(782\) 0 0
\(783\) 22.5568i 0.806113i
\(784\) 0 0
\(785\) −24.6875 25.2577i −0.881133 0.901485i
\(786\) 0 0
\(787\) 30.9671i 1.10386i 0.833891 + 0.551929i \(0.186108\pi\)
−0.833891 + 0.551929i \(0.813892\pi\)
\(788\) 0 0
\(789\) −18.2689 −0.650392
\(790\) 0 0
\(791\) 13.0024 0.462313
\(792\) 0 0
\(793\) 50.7219i 1.80119i
\(794\) 0 0
\(795\) −13.3613 + 13.0597i −0.473877 + 0.463179i
\(796\) 0 0
\(797\)