Properties

Label 760.2.d.e.609.3
Level $760$
Weight $2$
Character 760.609
Analytic conductor $6.069$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [760,2,Mod(609,760)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(760, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("760.609");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 760 = 2^{3} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 760.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.06863055362\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} + 9 x^{10} - 8 x^{9} - 11 x^{8} + 60 x^{7} - 126 x^{6} + 180 x^{5} - 99 x^{4} + \cdots + 729 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{7} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 609.3
Root \(0.588529 - 1.62900i\) of defining polynomial
Character \(\chi\) \(=\) 760.609
Dual form 760.2.d.e.609.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.43031i q^{3} +(-2.06801 - 0.850485i) q^{5} +3.60737i q^{7} -2.90640 q^{9} -2.37997 q^{11} +3.96613i q^{13} +(-2.06694 + 5.02591i) q^{15} +4.28257i q^{17} -1.00000 q^{19} +8.76701 q^{21} +1.07377i q^{23} +(3.55335 + 3.51763i) q^{25} -0.227486i q^{27} -9.47021 q^{29} +6.38211 q^{31} +5.78405i q^{33} +(3.06801 - 7.46008i) q^{35} +2.04540i q^{37} +9.63892 q^{39} -4.38211 q^{41} -7.86284i q^{43} +(6.01046 + 2.47185i) q^{45} +3.83485i q^{47} -6.01310 q^{49} +10.4080 q^{51} +11.7789i q^{53} +(4.92180 + 2.02413i) q^{55} +2.43031i q^{57} -4.59593 q^{59} +6.62819 q^{61} -10.4844i q^{63} +(3.37314 - 8.20201i) q^{65} +7.02837i q^{67} +2.60959 q^{69} +4.99450 q^{71} +2.93216i q^{73} +(8.54892 - 8.63573i) q^{75} -8.58541i q^{77} -0.860616 q^{79} -9.27205 q^{81} -11.9179i q^{83} +(3.64227 - 8.85642i) q^{85} +23.0155i q^{87} -13.6460 q^{89} -14.3073 q^{91} -15.5105i q^{93} +(2.06801 + 0.850485i) q^{95} +18.5757i q^{97} +6.91712 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{5} - 16 q^{9} - 4 q^{11} - 12 q^{15} - 12 q^{19} + 36 q^{21} + 18 q^{25} + 4 q^{29} + 16 q^{31} + 6 q^{35} + 36 q^{39} + 8 q^{41} - 2 q^{45} - 4 q^{49} - 68 q^{51} - 18 q^{55} + 4 q^{59} + 20 q^{61}+ \cdots + 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/760\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(381\) \(401\) \(457\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.43031i 1.40314i −0.712601 0.701569i \(-0.752483\pi\)
0.712601 0.701569i \(-0.247517\pi\)
\(4\) 0 0
\(5\) −2.06801 0.850485i −0.924843 0.380349i
\(6\) 0 0
\(7\) 3.60737i 1.36346i 0.731605 + 0.681728i \(0.238771\pi\)
−0.731605 + 0.681728i \(0.761229\pi\)
\(8\) 0 0
\(9\) −2.90640 −0.968799
\(10\) 0 0
\(11\) −2.37997 −0.717587 −0.358793 0.933417i \(-0.616812\pi\)
−0.358793 + 0.933417i \(0.616812\pi\)
\(12\) 0 0
\(13\) 3.96613i 1.10001i 0.835162 + 0.550003i \(0.185374\pi\)
−0.835162 + 0.550003i \(0.814626\pi\)
\(14\) 0 0
\(15\) −2.06694 + 5.02591i −0.533682 + 1.29768i
\(16\) 0 0
\(17\) 4.28257i 1.03868i 0.854569 + 0.519338i \(0.173822\pi\)
−0.854569 + 0.519338i \(0.826178\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 8.76701 1.91312
\(22\) 0 0
\(23\) 1.07377i 0.223897i 0.993714 + 0.111948i \(0.0357091\pi\)
−0.993714 + 0.111948i \(0.964291\pi\)
\(24\) 0 0
\(25\) 3.55335 + 3.51763i 0.710670 + 0.703526i
\(26\) 0 0
\(27\) 0.227486i 0.0437796i
\(28\) 0 0
\(29\) −9.47021 −1.75857 −0.879287 0.476293i \(-0.841980\pi\)
−0.879287 + 0.476293i \(0.841980\pi\)
\(30\) 0 0
\(31\) 6.38211 1.14626 0.573130 0.819464i \(-0.305729\pi\)
0.573130 + 0.819464i \(0.305729\pi\)
\(32\) 0 0
\(33\) 5.78405i 1.00687i
\(34\) 0 0
\(35\) 3.06801 7.46008i 0.518589 1.26098i
\(36\) 0 0
\(37\) 2.04540i 0.336262i 0.985765 + 0.168131i \(0.0537732\pi\)
−0.985765 + 0.168131i \(0.946227\pi\)
\(38\) 0 0
\(39\) 9.63892 1.54346
\(40\) 0 0
\(41\) −4.38211 −0.684370 −0.342185 0.939633i \(-0.611167\pi\)
−0.342185 + 0.939633i \(0.611167\pi\)
\(42\) 0 0
\(43\) 7.86284i 1.19907i −0.800348 0.599536i \(-0.795352\pi\)
0.800348 0.599536i \(-0.204648\pi\)
\(44\) 0 0
\(45\) 6.01046 + 2.47185i 0.895987 + 0.368481i
\(46\) 0 0
\(47\) 3.83485i 0.559371i 0.960092 + 0.279685i \(0.0902301\pi\)
−0.960092 + 0.279685i \(0.909770\pi\)
\(48\) 0 0
\(49\) −6.01310 −0.859014
\(50\) 0 0
\(51\) 10.4080 1.45741
\(52\) 0 0
\(53\) 11.7789i 1.61796i 0.587836 + 0.808980i \(0.299980\pi\)
−0.587836 + 0.808980i \(0.700020\pi\)
\(54\) 0 0
\(55\) 4.92180 + 2.02413i 0.663655 + 0.272933i
\(56\) 0 0
\(57\) 2.43031i 0.321902i
\(58\) 0 0
\(59\) −4.59593 −0.598340 −0.299170 0.954200i \(-0.596710\pi\)
−0.299170 + 0.954200i \(0.596710\pi\)
\(60\) 0 0
\(61\) 6.62819 0.848653 0.424327 0.905509i \(-0.360511\pi\)
0.424327 + 0.905509i \(0.360511\pi\)
\(62\) 0 0
\(63\) 10.4844i 1.32092i
\(64\) 0 0
\(65\) 3.37314 8.20201i 0.418386 1.01733i
\(66\) 0 0
\(67\) 7.02837i 0.858652i 0.903150 + 0.429326i \(0.141249\pi\)
−0.903150 + 0.429326i \(0.858751\pi\)
\(68\) 0 0
\(69\) 2.60959 0.314158
\(70\) 0 0
\(71\) 4.99450 0.592738 0.296369 0.955074i \(-0.404224\pi\)
0.296369 + 0.955074i \(0.404224\pi\)
\(72\) 0 0
\(73\) 2.93216i 0.343183i 0.985168 + 0.171592i \(0.0548910\pi\)
−0.985168 + 0.171592i \(0.945109\pi\)
\(74\) 0 0
\(75\) 8.54892 8.63573i 0.987144 0.997169i
\(76\) 0 0
\(77\) 8.58541i 0.978398i
\(78\) 0 0
\(79\) −0.860616 −0.0968268 −0.0484134 0.998827i \(-0.515416\pi\)
−0.0484134 + 0.998827i \(0.515416\pi\)
\(80\) 0 0
\(81\) −9.27205 −1.03023
\(82\) 0 0
\(83\) 11.9179i 1.30816i −0.756424 0.654081i \(-0.773055\pi\)
0.756424 0.654081i \(-0.226945\pi\)
\(84\) 0 0
\(85\) 3.64227 8.85642i 0.395059 0.960613i
\(86\) 0 0
\(87\) 23.0155i 2.46752i
\(88\) 0 0
\(89\) −13.6460 −1.44647 −0.723237 0.690600i \(-0.757346\pi\)
−0.723237 + 0.690600i \(0.757346\pi\)
\(90\) 0 0
\(91\) −14.3073 −1.49981
\(92\) 0 0
\(93\) 15.5105i 1.60836i
\(94\) 0 0
\(95\) 2.06801 + 0.850485i 0.212174 + 0.0872579i
\(96\) 0 0
\(97\) 18.5757i 1.88608i 0.332681 + 0.943040i \(0.392047\pi\)
−0.332681 + 0.943040i \(0.607953\pi\)
\(98\) 0 0
\(99\) 6.91712 0.695197
\(100\) 0 0
\(101\) −9.82645 −0.977769 −0.488884 0.872349i \(-0.662596\pi\)
−0.488884 + 0.872349i \(0.662596\pi\)
\(102\) 0 0
\(103\) 8.85269i 0.872282i 0.899878 + 0.436141i \(0.143655\pi\)
−0.899878 + 0.436141i \(0.856345\pi\)
\(104\) 0 0
\(105\) −18.1303 7.45621i −1.76934 0.727652i
\(106\) 0 0
\(107\) 6.58269i 0.636372i 0.948028 + 0.318186i \(0.103074\pi\)
−0.948028 + 0.318186i \(0.896926\pi\)
\(108\) 0 0
\(109\) −3.40919 −0.326541 −0.163271 0.986581i \(-0.552204\pi\)
−0.163271 + 0.986581i \(0.552204\pi\)
\(110\) 0 0
\(111\) 4.97096 0.471823
\(112\) 0 0
\(113\) 6.58065i 0.619055i 0.950890 + 0.309528i \(0.100171\pi\)
−0.950890 + 0.309528i \(0.899829\pi\)
\(114\) 0 0
\(115\) 0.913226 2.22057i 0.0851588 0.207069i
\(116\) 0 0
\(117\) 11.5271i 1.06569i
\(118\) 0 0
\(119\) −15.4488 −1.41619
\(120\) 0 0
\(121\) −5.33576 −0.485069
\(122\) 0 0
\(123\) 10.6499i 0.960267i
\(124\) 0 0
\(125\) −4.35668 10.2966i −0.389673 0.920953i
\(126\) 0 0
\(127\) 12.2826i 1.08991i −0.838466 0.544953i \(-0.816547\pi\)
0.838466 0.544953i \(-0.183453\pi\)
\(128\) 0 0
\(129\) −19.1091 −1.68246
\(130\) 0 0
\(131\) −10.0308 −0.876395 −0.438198 0.898879i \(-0.644383\pi\)
−0.438198 + 0.898879i \(0.644383\pi\)
\(132\) 0 0
\(133\) 3.60737i 0.312798i
\(134\) 0 0
\(135\) −0.193473 + 0.470443i −0.0166515 + 0.0404893i
\(136\) 0 0
\(137\) 17.1273i 1.46329i −0.681687 0.731644i \(-0.738753\pi\)
0.681687 0.731644i \(-0.261247\pi\)
\(138\) 0 0
\(139\) 5.50494 0.466923 0.233461 0.972366i \(-0.424995\pi\)
0.233461 + 0.972366i \(0.424995\pi\)
\(140\) 0 0
\(141\) 9.31987 0.784875
\(142\) 0 0
\(143\) 9.43926i 0.789350i
\(144\) 0 0
\(145\) 19.5845 + 8.05427i 1.62641 + 0.668871i
\(146\) 0 0
\(147\) 14.6137i 1.20532i
\(148\) 0 0
\(149\) 21.4593 1.75801 0.879007 0.476808i \(-0.158206\pi\)
0.879007 + 0.476808i \(0.158206\pi\)
\(150\) 0 0
\(151\) −14.1805 −1.15399 −0.576996 0.816747i \(-0.695775\pi\)
−0.576996 + 0.816747i \(0.695775\pi\)
\(152\) 0 0
\(153\) 12.4469i 1.00627i
\(154\) 0 0
\(155\) −13.1983 5.42789i −1.06011 0.435979i
\(156\) 0 0
\(157\) 2.69891i 0.215397i 0.994184 + 0.107698i \(0.0343481\pi\)
−0.994184 + 0.107698i \(0.965652\pi\)
\(158\) 0 0
\(159\) 28.6264 2.27022
\(160\) 0 0
\(161\) −3.87349 −0.305273
\(162\) 0 0
\(163\) 11.1955i 0.876898i 0.898756 + 0.438449i \(0.144472\pi\)
−0.898756 + 0.438449i \(0.855528\pi\)
\(164\) 0 0
\(165\) 4.91925 11.9615i 0.382963 0.931200i
\(166\) 0 0
\(167\) 9.71331i 0.751639i −0.926693 0.375819i \(-0.877361\pi\)
0.926693 0.375819i \(-0.122639\pi\)
\(168\) 0 0
\(169\) −2.73019 −0.210015
\(170\) 0 0
\(171\) 2.90640 0.222258
\(172\) 0 0
\(173\) 14.2783i 1.08556i 0.839874 + 0.542781i \(0.182629\pi\)
−0.839874 + 0.542781i \(0.817371\pi\)
\(174\) 0 0
\(175\) −12.6894 + 12.8182i −0.959227 + 0.968968i
\(176\) 0 0
\(177\) 11.1695i 0.839554i
\(178\) 0 0
\(179\) 17.1327 1.28056 0.640278 0.768143i \(-0.278819\pi\)
0.640278 + 0.768143i \(0.278819\pi\)
\(180\) 0 0
\(181\) −23.6883 −1.76074 −0.880370 0.474288i \(-0.842705\pi\)
−0.880370 + 0.474288i \(0.842705\pi\)
\(182\) 0 0
\(183\) 16.1085i 1.19078i
\(184\) 0 0
\(185\) 1.73959 4.22992i 0.127897 0.310990i
\(186\) 0 0
\(187\) 10.1924i 0.745341i
\(188\) 0 0
\(189\) 0.820624 0.0596916
\(190\) 0 0
\(191\) 25.2506 1.82707 0.913535 0.406761i \(-0.133342\pi\)
0.913535 + 0.406761i \(0.133342\pi\)
\(192\) 0 0
\(193\) 16.6814i 1.20076i −0.799716 0.600378i \(-0.795017\pi\)
0.799716 0.600378i \(-0.204983\pi\)
\(194\) 0 0
\(195\) −19.9334 8.19776i −1.42746 0.587054i
\(196\) 0 0
\(197\) 17.1471i 1.22168i 0.791755 + 0.610839i \(0.209168\pi\)
−0.791755 + 0.610839i \(0.790832\pi\)
\(198\) 0 0
\(199\) −22.1273 −1.56856 −0.784280 0.620407i \(-0.786967\pi\)
−0.784280 + 0.620407i \(0.786967\pi\)
\(200\) 0 0
\(201\) 17.0811 1.20481
\(202\) 0 0
\(203\) 34.1625i 2.39774i
\(204\) 0 0
\(205\) 9.06225 + 3.72692i 0.632935 + 0.260299i
\(206\) 0 0
\(207\) 3.12080i 0.216911i
\(208\) 0 0
\(209\) 2.37997 0.164626
\(210\) 0 0
\(211\) −24.6690 −1.69828 −0.849141 0.528166i \(-0.822880\pi\)
−0.849141 + 0.528166i \(0.822880\pi\)
\(212\) 0 0
\(213\) 12.1382i 0.831694i
\(214\) 0 0
\(215\) −6.68723 + 16.2605i −0.456065 + 1.10895i
\(216\) 0 0
\(217\) 23.0226i 1.56288i
\(218\) 0 0
\(219\) 7.12605 0.481534
\(220\) 0 0
\(221\) −16.9852 −1.14255
\(222\) 0 0
\(223\) 21.4787i 1.43832i −0.694843 0.719162i \(-0.744526\pi\)
0.694843 0.719162i \(-0.255474\pi\)
\(224\) 0 0
\(225\) −10.3274 10.2236i −0.688496 0.681575i
\(226\) 0 0
\(227\) 20.5568i 1.36440i −0.731164 0.682201i \(-0.761023\pi\)
0.731164 0.682201i \(-0.238977\pi\)
\(228\) 0 0
\(229\) 17.6465 1.16611 0.583057 0.812431i \(-0.301856\pi\)
0.583057 + 0.812431i \(0.301856\pi\)
\(230\) 0 0
\(231\) −20.8652 −1.37283
\(232\) 0 0
\(233\) 15.5021i 1.01558i −0.861482 0.507788i \(-0.830463\pi\)
0.861482 0.507788i \(-0.169537\pi\)
\(234\) 0 0
\(235\) 3.26149 7.93052i 0.212756 0.517330i
\(236\) 0 0
\(237\) 2.09156i 0.135862i
\(238\) 0 0
\(239\) 28.2186 1.82531 0.912656 0.408730i \(-0.134028\pi\)
0.912656 + 0.408730i \(0.134028\pi\)
\(240\) 0 0
\(241\) 23.8653 1.53730 0.768649 0.639671i \(-0.220929\pi\)
0.768649 + 0.639671i \(0.220929\pi\)
\(242\) 0 0
\(243\) 21.8515i 1.40177i
\(244\) 0 0
\(245\) 12.4352 + 5.11405i 0.794453 + 0.326725i
\(246\) 0 0
\(247\) 3.96613i 0.252359i
\(248\) 0 0
\(249\) −28.9642 −1.83553
\(250\) 0 0
\(251\) 8.15793 0.514924 0.257462 0.966288i \(-0.417114\pi\)
0.257462 + 0.966288i \(0.417114\pi\)
\(252\) 0 0
\(253\) 2.55554i 0.160665i
\(254\) 0 0
\(255\) −21.5238 8.85183i −1.34787 0.554323i
\(256\) 0 0
\(257\) 6.07899i 0.379197i 0.981862 + 0.189598i \(0.0607186\pi\)
−0.981862 + 0.189598i \(0.939281\pi\)
\(258\) 0 0
\(259\) −7.37852 −0.458479
\(260\) 0 0
\(261\) 27.5242 1.70370
\(262\) 0 0
\(263\) 8.47535i 0.522612i −0.965256 0.261306i \(-0.915847\pi\)
0.965256 0.261306i \(-0.0841532\pi\)
\(264\) 0 0
\(265\) 10.0178 24.3590i 0.615389 1.49636i
\(266\) 0 0
\(267\) 33.1640i 2.02960i
\(268\) 0 0
\(269\) 16.6667 1.01619 0.508093 0.861302i \(-0.330351\pi\)
0.508093 + 0.861302i \(0.330351\pi\)
\(270\) 0 0
\(271\) −11.8151 −0.717718 −0.358859 0.933392i \(-0.616834\pi\)
−0.358859 + 0.933392i \(0.616834\pi\)
\(272\) 0 0
\(273\) 34.7711i 2.10444i
\(274\) 0 0
\(275\) −8.45685 8.37183i −0.509967 0.504841i
\(276\) 0 0
\(277\) 2.10858i 0.126692i −0.997992 0.0633462i \(-0.979823\pi\)
0.997992 0.0633462i \(-0.0201772\pi\)
\(278\) 0 0
\(279\) −18.5489 −1.11050
\(280\) 0 0
\(281\) −3.76859 −0.224815 −0.112408 0.993662i \(-0.535856\pi\)
−0.112408 + 0.993662i \(0.535856\pi\)
\(282\) 0 0
\(283\) 0.0720389i 0.00428227i −0.999998 0.00214114i \(-0.999318\pi\)
0.999998 0.00214114i \(-0.000681545\pi\)
\(284\) 0 0
\(285\) 2.06694 5.02591i 0.122435 0.297709i
\(286\) 0 0
\(287\) 15.8079i 0.933109i
\(288\) 0 0
\(289\) −1.34044 −0.0788494
\(290\) 0 0
\(291\) 45.1447 2.64643
\(292\) 0 0
\(293\) 9.98245i 0.583181i 0.956543 + 0.291590i \(0.0941844\pi\)
−0.956543 + 0.291590i \(0.905816\pi\)
\(294\) 0 0
\(295\) 9.50445 + 3.90877i 0.553370 + 0.227578i
\(296\) 0 0
\(297\) 0.541408i 0.0314157i
\(298\) 0 0
\(299\) −4.25872 −0.246288
\(300\) 0 0
\(301\) 28.3642 1.63488
\(302\) 0 0
\(303\) 23.8813i 1.37195i
\(304\) 0 0
\(305\) −13.7072 5.63718i −0.784871 0.322784i
\(306\) 0 0
\(307\) 21.0679i 1.20241i 0.799096 + 0.601204i \(0.205312\pi\)
−0.799096 + 0.601204i \(0.794688\pi\)
\(308\) 0 0
\(309\) 21.5148 1.22393
\(310\) 0 0
\(311\) −29.9966 −1.70095 −0.850475 0.526015i \(-0.823686\pi\)
−0.850475 + 0.526015i \(0.823686\pi\)
\(312\) 0 0
\(313\) 5.48121i 0.309817i −0.987929 0.154908i \(-0.950492\pi\)
0.987929 0.154908i \(-0.0495082\pi\)
\(314\) 0 0
\(315\) −8.91686 + 21.6819i −0.502408 + 1.22164i
\(316\) 0 0
\(317\) 0.687909i 0.0386368i 0.999813 + 0.0193184i \(0.00614962\pi\)
−0.999813 + 0.0193184i \(0.993850\pi\)
\(318\) 0 0
\(319\) 22.5388 1.26193
\(320\) 0 0
\(321\) 15.9980 0.892919
\(322\) 0 0
\(323\) 4.28257i 0.238289i
\(324\) 0 0
\(325\) −13.9514 + 14.0930i −0.773883 + 0.781742i
\(326\) 0 0
\(327\) 8.28538i 0.458183i
\(328\) 0 0
\(329\) −13.8337 −0.762678
\(330\) 0 0
\(331\) 23.1679 1.27342 0.636712 0.771102i \(-0.280294\pi\)
0.636712 + 0.771102i \(0.280294\pi\)
\(332\) 0 0
\(333\) 5.94475i 0.325771i
\(334\) 0 0
\(335\) 5.97752 14.5347i 0.326587 0.794118i
\(336\) 0 0
\(337\) 28.8512i 1.57162i 0.618465 + 0.785812i \(0.287755\pi\)
−0.618465 + 0.785812i \(0.712245\pi\)
\(338\) 0 0
\(339\) 15.9930 0.868620
\(340\) 0 0
\(341\) −15.1892 −0.822541
\(342\) 0 0
\(343\) 3.56013i 0.192229i
\(344\) 0 0
\(345\) −5.39667 2.21942i −0.290547 0.119490i
\(346\) 0 0
\(347\) 5.51365i 0.295988i 0.988988 + 0.147994i \(0.0472816\pi\)
−0.988988 + 0.147994i \(0.952718\pi\)
\(348\) 0 0
\(349\) 6.62869 0.354826 0.177413 0.984137i \(-0.443227\pi\)
0.177413 + 0.984137i \(0.443227\pi\)
\(350\) 0 0
\(351\) 0.902238 0.0481579
\(352\) 0 0
\(353\) 10.0657i 0.535745i 0.963454 + 0.267872i \(0.0863206\pi\)
−0.963454 + 0.267872i \(0.913679\pi\)
\(354\) 0 0
\(355\) −10.3287 4.24775i −0.548190 0.225447i
\(356\) 0 0
\(357\) 37.5454i 1.98711i
\(358\) 0 0
\(359\) 23.9747 1.26534 0.632668 0.774423i \(-0.281960\pi\)
0.632668 + 0.774423i \(0.281960\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 12.9675i 0.680620i
\(364\) 0 0
\(365\) 2.49376 6.06374i 0.130529 0.317391i
\(366\) 0 0
\(367\) 2.10030i 0.109635i 0.998496 + 0.0548174i \(0.0174577\pi\)
−0.998496 + 0.0548174i \(0.982542\pi\)
\(368\) 0 0
\(369\) 12.7361 0.663017
\(370\) 0 0
\(371\) −42.4909 −2.20602
\(372\) 0 0
\(373\) 19.2927i 0.998939i −0.866331 0.499470i \(-0.833528\pi\)
0.866331 0.499470i \(-0.166472\pi\)
\(374\) 0 0
\(375\) −25.0238 + 10.5881i −1.29223 + 0.546766i
\(376\) 0 0
\(377\) 37.5601i 1.93444i
\(378\) 0 0
\(379\) −4.29783 −0.220765 −0.110382 0.993889i \(-0.535208\pi\)
−0.110382 + 0.993889i \(0.535208\pi\)
\(380\) 0 0
\(381\) −29.8506 −1.52929
\(382\) 0 0
\(383\) 15.6099i 0.797628i 0.917032 + 0.398814i \(0.130578\pi\)
−0.917032 + 0.398814i \(0.869422\pi\)
\(384\) 0 0
\(385\) −7.30176 + 17.7547i −0.372132 + 0.904865i
\(386\) 0 0
\(387\) 22.8525i 1.16166i
\(388\) 0 0
\(389\) −15.4509 −0.783390 −0.391695 0.920095i \(-0.628111\pi\)
−0.391695 + 0.920095i \(0.628111\pi\)
\(390\) 0 0
\(391\) −4.59850 −0.232556
\(392\) 0 0
\(393\) 24.3779i 1.22970i
\(394\) 0 0
\(395\) 1.77976 + 0.731941i 0.0895496 + 0.0368279i
\(396\) 0 0
\(397\) 0.852887i 0.0428051i 0.999771 + 0.0214026i \(0.00681317\pi\)
−0.999771 + 0.0214026i \(0.993187\pi\)
\(398\) 0 0
\(399\) −8.76701 −0.438900
\(400\) 0 0
\(401\) 38.8284 1.93900 0.969500 0.245091i \(-0.0788180\pi\)
0.969500 + 0.245091i \(0.0788180\pi\)
\(402\) 0 0
\(403\) 25.3123i 1.26089i
\(404\) 0 0
\(405\) 19.1747 + 7.88574i 0.952799 + 0.391846i
\(406\) 0 0
\(407\) 4.86799i 0.241297i
\(408\) 0 0
\(409\) −6.16871 −0.305023 −0.152512 0.988302i \(-0.548736\pi\)
−0.152512 + 0.988302i \(0.548736\pi\)
\(410\) 0 0
\(411\) −41.6247 −2.05320
\(412\) 0 0
\(413\) 16.5792i 0.815810i
\(414\) 0 0
\(415\) −10.1360 + 24.6464i −0.497558 + 1.20985i
\(416\) 0 0
\(417\) 13.3787i 0.655157i
\(418\) 0 0
\(419\) 14.0712 0.687422 0.343711 0.939075i \(-0.388316\pi\)
0.343711 + 0.939075i \(0.388316\pi\)
\(420\) 0 0
\(421\) 4.85298 0.236520 0.118260 0.992983i \(-0.462268\pi\)
0.118260 + 0.992983i \(0.462268\pi\)
\(422\) 0 0
\(423\) 11.1456i 0.541918i
\(424\) 0 0
\(425\) −15.0645 + 15.2175i −0.730736 + 0.738156i
\(426\) 0 0
\(427\) 23.9103i 1.15710i
\(428\) 0 0
\(429\) −22.9403 −1.10757
\(430\) 0 0
\(431\) −15.6171 −0.752251 −0.376126 0.926569i \(-0.622744\pi\)
−0.376126 + 0.926569i \(0.622744\pi\)
\(432\) 0 0
\(433\) 25.3497i 1.21823i −0.793082 0.609114i \(-0.791525\pi\)
0.793082 0.609114i \(-0.208475\pi\)
\(434\) 0 0
\(435\) 19.5744 47.5964i 0.938519 2.28207i
\(436\) 0 0
\(437\) 1.07377i 0.0513654i
\(438\) 0 0
\(439\) −23.4184 −1.11770 −0.558849 0.829269i \(-0.688757\pi\)
−0.558849 + 0.829269i \(0.688757\pi\)
\(440\) 0 0
\(441\) 17.4764 0.832211
\(442\) 0 0
\(443\) 25.1133i 1.19317i 0.802551 + 0.596584i \(0.203476\pi\)
−0.802551 + 0.596584i \(0.796524\pi\)
\(444\) 0 0
\(445\) 28.2201 + 11.6057i 1.33776 + 0.550164i
\(446\) 0 0
\(447\) 52.1527i 2.46674i
\(448\) 0 0
\(449\) −6.37270 −0.300746 −0.150373 0.988629i \(-0.548047\pi\)
−0.150373 + 0.988629i \(0.548047\pi\)
\(450\) 0 0
\(451\) 10.4293 0.491095
\(452\) 0 0
\(453\) 34.4630i 1.61921i
\(454\) 0 0
\(455\) 29.5876 + 12.1681i 1.38709 + 0.570451i
\(456\) 0 0
\(457\) 40.6893i 1.90336i −0.307085 0.951682i \(-0.599354\pi\)
0.307085 0.951682i \(-0.400646\pi\)
\(458\) 0 0
\(459\) 0.974224 0.0454729
\(460\) 0 0
\(461\) −11.5304 −0.537024 −0.268512 0.963276i \(-0.586532\pi\)
−0.268512 + 0.963276i \(0.586532\pi\)
\(462\) 0 0
\(463\) 32.0882i 1.49127i 0.666357 + 0.745633i \(0.267853\pi\)
−0.666357 + 0.745633i \(0.732147\pi\)
\(464\) 0 0
\(465\) −13.1914 + 32.0759i −0.611738 + 1.48748i
\(466\) 0 0
\(467\) 20.6254i 0.954429i 0.878787 + 0.477214i \(0.158353\pi\)
−0.878787 + 0.477214i \(0.841647\pi\)
\(468\) 0 0
\(469\) −25.3539 −1.17073
\(470\) 0 0
\(471\) 6.55919 0.302231
\(472\) 0 0
\(473\) 18.7133i 0.860438i
\(474\) 0 0
\(475\) −3.55335 3.51763i −0.163039 0.161400i
\(476\) 0 0
\(477\) 34.2342i 1.56748i
\(478\) 0 0
\(479\) −10.8936 −0.497740 −0.248870 0.968537i \(-0.580059\pi\)
−0.248870 + 0.968537i \(0.580059\pi\)
\(480\) 0 0
\(481\) −8.11234 −0.369891
\(482\) 0 0
\(483\) 9.41376i 0.428341i
\(484\) 0 0
\(485\) 15.7984 38.4148i 0.717367 1.74433i
\(486\) 0 0
\(487\) 5.05668i 0.229140i −0.993415 0.114570i \(-0.963451\pi\)
0.993415 0.114570i \(-0.0365491\pi\)
\(488\) 0 0
\(489\) 27.2085 1.23041
\(490\) 0 0
\(491\) −25.5833 −1.15456 −0.577279 0.816547i \(-0.695886\pi\)
−0.577279 + 0.816547i \(0.695886\pi\)
\(492\) 0 0
\(493\) 40.5569i 1.82659i
\(494\) 0 0
\(495\) −14.3047 5.88291i −0.642948 0.264417i
\(496\) 0 0
\(497\) 18.0170i 0.808172i
\(498\) 0 0
\(499\) 34.0476 1.52418 0.762090 0.647471i \(-0.224173\pi\)
0.762090 + 0.647471i \(0.224173\pi\)
\(500\) 0 0
\(501\) −23.6063 −1.05465
\(502\) 0 0
\(503\) 5.70145i 0.254215i 0.991889 + 0.127108i \(0.0405693\pi\)
−0.991889 + 0.127108i \(0.959431\pi\)
\(504\) 0 0
\(505\) 20.3212 + 8.35725i 0.904283 + 0.371893i
\(506\) 0 0
\(507\) 6.63521i 0.294680i
\(508\) 0 0
\(509\) 27.9604 1.23932 0.619661 0.784870i \(-0.287270\pi\)
0.619661 + 0.784870i \(0.287270\pi\)
\(510\) 0 0
\(511\) −10.5774 −0.467916
\(512\) 0 0
\(513\) 0.227486i 0.0100437i
\(514\) 0 0
\(515\) 7.52909 18.3075i 0.331771 0.806724i
\(516\) 0 0
\(517\) 9.12682i 0.401397i
\(518\) 0 0
\(519\) 34.7008 1.52319
\(520\) 0 0
\(521\) −0.419591 −0.0183826 −0.00919131 0.999958i \(-0.502926\pi\)
−0.00919131 + 0.999958i \(0.502926\pi\)
\(522\) 0 0
\(523\) 2.23302i 0.0976433i 0.998808 + 0.0488217i \(0.0155466\pi\)
−0.998808 + 0.0488217i \(0.984453\pi\)
\(524\) 0 0
\(525\) 31.1523 + 30.8391i 1.35960 + 1.34593i
\(526\) 0 0
\(527\) 27.3319i 1.19059i
\(528\) 0 0
\(529\) 21.8470 0.949870
\(530\) 0 0
\(531\) 13.3576 0.579671
\(532\) 0 0
\(533\) 17.3800i 0.752812i
\(534\) 0 0
\(535\) 5.59848 13.6131i 0.242043 0.588545i
\(536\) 0 0
\(537\) 41.6377i 1.79680i
\(538\) 0 0
\(539\) 14.3110 0.616417
\(540\) 0 0
\(541\) 39.9938 1.71947 0.859734 0.510741i \(-0.170629\pi\)
0.859734 + 0.510741i \(0.170629\pi\)
\(542\) 0 0
\(543\) 57.5699i 2.47056i
\(544\) 0 0
\(545\) 7.05025 + 2.89947i 0.301999 + 0.124199i
\(546\) 0 0
\(547\) 15.5651i 0.665516i 0.943012 + 0.332758i \(0.107979\pi\)
−0.943012 + 0.332758i \(0.892021\pi\)
\(548\) 0 0
\(549\) −19.2642 −0.822174
\(550\) 0 0
\(551\) 9.47021 0.403444
\(552\) 0 0
\(553\) 3.10456i 0.132019i
\(554\) 0 0
\(555\) −10.2800 4.22773i −0.436362 0.179457i
\(556\) 0 0
\(557\) 2.68789i 0.113890i 0.998377 + 0.0569448i \(0.0181359\pi\)
−0.998377 + 0.0569448i \(0.981864\pi\)
\(558\) 0 0
\(559\) 31.1851 1.31899
\(560\) 0 0
\(561\) −24.7706 −1.04582
\(562\) 0 0
\(563\) 12.7089i 0.535618i −0.963472 0.267809i \(-0.913700\pi\)
0.963472 0.267809i \(-0.0862996\pi\)
\(564\) 0 0
\(565\) 5.59674 13.6089i 0.235457 0.572529i
\(566\) 0 0
\(567\) 33.4477i 1.40467i
\(568\) 0 0
\(569\) −28.9522 −1.21374 −0.606870 0.794801i \(-0.707575\pi\)
−0.606870 + 0.794801i \(0.707575\pi\)
\(570\) 0 0
\(571\) 8.89885 0.372405 0.186203 0.982511i \(-0.440382\pi\)
0.186203 + 0.982511i \(0.440382\pi\)
\(572\) 0 0
\(573\) 61.3667i 2.56363i
\(574\) 0 0
\(575\) −3.77713 + 3.81548i −0.157517 + 0.159117i
\(576\) 0 0
\(577\) 25.3754i 1.05639i 0.849123 + 0.528196i \(0.177131\pi\)
−0.849123 + 0.528196i \(0.822869\pi\)
\(578\) 0 0
\(579\) −40.5411 −1.68483
\(580\) 0 0
\(581\) 42.9924 1.78362
\(582\) 0 0
\(583\) 28.0334i 1.16103i
\(584\) 0 0
\(585\) −9.80367 + 23.8383i −0.405332 + 0.985592i
\(586\) 0 0
\(587\) 38.7611i 1.59984i −0.600107 0.799920i \(-0.704875\pi\)
0.600107 0.799920i \(-0.295125\pi\)
\(588\) 0 0
\(589\) −6.38211 −0.262970
\(590\) 0 0
\(591\) 41.6727 1.71418
\(592\) 0 0
\(593\) 35.5132i 1.45835i −0.684327 0.729176i \(-0.739904\pi\)
0.684327 0.729176i \(-0.260096\pi\)
\(594\) 0 0
\(595\) 31.9483 + 13.1390i 1.30975 + 0.538646i
\(596\) 0 0
\(597\) 53.7761i 2.20091i
\(598\) 0 0
\(599\) 22.7248 0.928512 0.464256 0.885701i \(-0.346322\pi\)
0.464256 + 0.885701i \(0.346322\pi\)
\(600\) 0 0
\(601\) −25.3951 −1.03589 −0.517944 0.855415i \(-0.673302\pi\)
−0.517944 + 0.855415i \(0.673302\pi\)
\(602\) 0 0
\(603\) 20.4272i 0.831861i
\(604\) 0 0
\(605\) 11.0344 + 4.53799i 0.448613 + 0.184495i
\(606\) 0 0
\(607\) 18.2509i 0.740779i −0.928876 0.370390i \(-0.879224\pi\)
0.928876 0.370390i \(-0.120776\pi\)
\(608\) 0 0
\(609\) −83.0254 −3.36436
\(610\) 0 0
\(611\) −15.2095 −0.615312
\(612\) 0 0
\(613\) 3.43574i 0.138768i 0.997590 + 0.0693842i \(0.0221034\pi\)
−0.997590 + 0.0693842i \(0.977897\pi\)
\(614\) 0 0
\(615\) 9.05756 22.0241i 0.365236 0.888096i
\(616\) 0 0
\(617\) 11.7976i 0.474952i 0.971393 + 0.237476i \(0.0763201\pi\)
−0.971393 + 0.237476i \(0.923680\pi\)
\(618\) 0 0
\(619\) −27.6561 −1.11159 −0.555797 0.831318i \(-0.687587\pi\)
−0.555797 + 0.831318i \(0.687587\pi\)
\(620\) 0 0
\(621\) 0.244267 0.00980211
\(622\) 0 0
\(623\) 49.2261i 1.97220i
\(624\) 0 0
\(625\) 0.252588 + 24.9987i 0.0101035 + 0.999949i
\(626\) 0 0
\(627\) 5.78405i 0.230993i
\(628\) 0 0
\(629\) −8.75959 −0.349268
\(630\) 0 0
\(631\) 7.23176 0.287892 0.143946 0.989586i \(-0.454021\pi\)
0.143946 + 0.989586i \(0.454021\pi\)
\(632\) 0 0
\(633\) 59.9532i 2.38293i
\(634\) 0 0
\(635\) −10.4462 + 25.4006i −0.414544 + 1.00799i
\(636\) 0 0
\(637\) 23.8487i 0.944921i
\(638\) 0 0
\(639\) −14.5160 −0.574244
\(640\) 0 0
\(641\) 20.1802 0.797070 0.398535 0.917153i \(-0.369519\pi\)
0.398535 + 0.917153i \(0.369519\pi\)
\(642\) 0 0
\(643\) 4.68579i 0.184790i −0.995722 0.0923948i \(-0.970548\pi\)
0.995722 0.0923948i \(-0.0294522\pi\)
\(644\) 0 0
\(645\) 39.5179 + 16.2520i 1.55602 + 0.639923i
\(646\) 0 0
\(647\) 2.17831i 0.0856383i −0.999083 0.0428191i \(-0.986366\pi\)
0.999083 0.0428191i \(-0.0136339\pi\)
\(648\) 0 0
\(649\) 10.9382 0.429361
\(650\) 0 0
\(651\) 55.9520 2.19293
\(652\) 0 0
\(653\) 3.73150i 0.146025i −0.997331 0.0730124i \(-0.976739\pi\)
0.997331 0.0730124i \(-0.0232613\pi\)
\(654\) 0 0
\(655\) 20.7438 + 8.53105i 0.810528 + 0.333336i
\(656\) 0 0
\(657\) 8.52202i 0.332476i
\(658\) 0 0
\(659\) 18.1674 0.707700 0.353850 0.935302i \(-0.384872\pi\)
0.353850 + 0.935302i \(0.384872\pi\)
\(660\) 0 0
\(661\) 8.87307 0.345123 0.172561 0.984999i \(-0.444796\pi\)
0.172561 + 0.984999i \(0.444796\pi\)
\(662\) 0 0
\(663\) 41.2794i 1.60316i
\(664\) 0 0
\(665\) −3.06801 + 7.46008i −0.118972 + 0.289289i
\(666\) 0 0
\(667\) 10.1688i 0.393739i
\(668\) 0 0
\(669\) −52.2000 −2.01817
\(670\) 0 0
\(671\) −15.7749 −0.608982
\(672\) 0 0
\(673\) 35.7318i 1.37736i −0.725065 0.688680i \(-0.758191\pi\)
0.725065 0.688680i \(-0.241809\pi\)
\(674\) 0 0
\(675\) 0.800210 0.808336i 0.0308001 0.0311129i
\(676\) 0 0
\(677\) 21.0748i 0.809971i −0.914323 0.404985i \(-0.867277\pi\)
0.914323 0.404985i \(-0.132723\pi\)
\(678\) 0 0
\(679\) −67.0095 −2.57159
\(680\) 0 0
\(681\) −49.9594 −1.91445
\(682\) 0 0
\(683\) 9.90904i 0.379159i 0.981865 + 0.189579i \(0.0607124\pi\)
−0.981865 + 0.189579i \(0.939288\pi\)
\(684\) 0 0
\(685\) −14.5666 + 35.4196i −0.556559 + 1.35331i
\(686\) 0 0
\(687\) 42.8865i 1.63622i
\(688\) 0 0
\(689\) −46.7168 −1.77977
\(690\) 0 0
\(691\) −11.9960 −0.456348 −0.228174 0.973620i \(-0.573276\pi\)
−0.228174 + 0.973620i \(0.573276\pi\)
\(692\) 0 0
\(693\) 24.9526i 0.947871i
\(694\) 0 0
\(695\) −11.3843 4.68187i −0.431830 0.177593i
\(696\) 0 0
\(697\) 18.7667i 0.710840i
\(698\) 0 0
\(699\) −37.6748 −1.42499
\(700\) 0 0
\(701\) −42.9782 −1.62326 −0.811632 0.584169i \(-0.801420\pi\)
−0.811632 + 0.584169i \(0.801420\pi\)
\(702\) 0 0
\(703\) 2.04540i 0.0771439i
\(704\) 0 0
\(705\) −19.2736 7.92641i −0.725886 0.298526i
\(706\) 0 0
\(707\) 35.4476i 1.33314i
\(708\) 0 0
\(709\) 30.3524 1.13991 0.569954 0.821676i \(-0.306961\pi\)
0.569954 + 0.821676i \(0.306961\pi\)
\(710\) 0 0
\(711\) 2.50129 0.0938057
\(712\) 0 0
\(713\) 6.85292i 0.256644i
\(714\) 0 0
\(715\) −8.02795 + 19.5205i −0.300228 + 0.730025i
\(716\) 0 0
\(717\) 68.5799i 2.56116i
\(718\) 0 0
\(719\) −38.0282 −1.41821 −0.709106 0.705102i \(-0.750901\pi\)
−0.709106 + 0.705102i \(0.750901\pi\)
\(720\) 0 0
\(721\) −31.9349 −1.18932
\(722\) 0 0
\(723\) 58.0000i 2.15704i
\(724\) 0 0
\(725\) −33.6510 33.3127i −1.24977 1.23720i
\(726\) 0 0
\(727\) 17.1429i 0.635796i −0.948125 0.317898i \(-0.897023\pi\)
0.948125 0.317898i \(-0.102977\pi\)
\(728\) 0 0
\(729\) 25.2897 0.936654
\(730\) 0 0
\(731\) 33.6732 1.24545
\(732\) 0 0
\(733\) 14.0860i 0.520277i 0.965571 + 0.260139i \(0.0837683\pi\)
−0.965571 + 0.260139i \(0.916232\pi\)
\(734\) 0 0
\(735\) 12.4287 30.2213i 0.458440 1.11473i
\(736\) 0 0
\(737\) 16.7273i 0.616157i
\(738\) 0 0
\(739\) 4.08166 0.150146 0.0750731 0.997178i \(-0.476081\pi\)
0.0750731 + 0.997178i \(0.476081\pi\)
\(740\) 0 0
\(741\) −9.63892 −0.354095
\(742\) 0 0
\(743\) 22.5661i 0.827872i 0.910306 + 0.413936i \(0.135846\pi\)
−0.910306 + 0.413936i \(0.864154\pi\)
\(744\) 0 0
\(745\) −44.3781 18.2508i −1.62589 0.668658i
\(746\) 0 0
\(747\) 34.6382i 1.26735i
\(748\) 0 0
\(749\) −23.7462 −0.867666
\(750\) 0 0
\(751\) 39.5626 1.44366 0.721830 0.692070i \(-0.243301\pi\)
0.721830 + 0.692070i \(0.243301\pi\)
\(752\) 0 0
\(753\) 19.8263i 0.722510i
\(754\) 0 0
\(755\) 29.3254 + 12.0603i 1.06726 + 0.438919i
\(756\) 0 0
\(757\) 33.4582i 1.21606i 0.793915 + 0.608029i \(0.208040\pi\)
−0.793915 + 0.608029i \(0.791960\pi\)
\(758\) 0 0
\(759\) −6.21074 −0.225436
\(760\) 0 0
\(761\) 4.30846 0.156181 0.0780907 0.996946i \(-0.475118\pi\)
0.0780907 + 0.996946i \(0.475118\pi\)
\(762\) 0 0
\(763\) 12.2982i 0.445225i
\(764\) 0 0
\(765\) −10.5859 + 25.7403i −0.382733 + 0.930641i
\(766\) 0 0
\(767\) 18.2281i 0.658178i
\(768\) 0 0
\(769\) 29.3601 1.05875 0.529376 0.848387i \(-0.322426\pi\)
0.529376 + 0.848387i \(0.322426\pi\)
\(770\) 0 0
\(771\) 14.7738 0.532066
\(772\) 0 0
\(773\) 43.7346i 1.57303i 0.617574 + 0.786513i \(0.288116\pi\)
−0.617574 + 0.786513i \(0.711884\pi\)
\(774\) 0 0
\(775\) 22.6779 + 22.4499i 0.814613 + 0.806424i
\(776\) 0 0
\(777\) 17.9321i 0.643310i
\(778\) 0 0
\(779\) 4.38211 0.157005
\(780\) 0 0
\(781\) −11.8867 −0.425341
\(782\) 0 0
\(783\) 2.15434i 0.0769897i
\(784\) 0 0
\(785\) 2.29538 5.58138i 0.0819258 0.199208i
\(786\) 0 0
\(787\) 29.4309i 1.04910i −0.851380 0.524550i \(-0.824234\pi\)
0.851380 0.524550i \(-0.175766\pi\)
\(788\) 0 0
\(789\) −20.5977 −0.733298
\(790\) 0 0
\(791\) −23.7388 −0.844055
\(792\) 0 0
\(793\) 26.2883i 0.933524i
\(794\) 0 0
\(795\) −59.1998 24.3463i −2.09960 0.863476i
\(796\) 0 0
\(797\) 21.2121i