Properties

Label 760.1.bz
Level $760$
Weight $1$
Character orbit 760.bz
Rep. character $\chi_{760}(99,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $12$
Newform subspaces $2$
Sturm bound $120$
Trace bound $8$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 760 = 2^{3} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 760.bz (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 760 \)
Character field: \(\Q(\zeta_{18})\)
Newform subspaces: \( 2 \)
Sturm bound: \(120\)
Trace bound: \(8\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(760, [\chi])\).

Total New Old
Modular forms 36 36 0
Cusp forms 12 12 0
Eisenstein series 24 24 0

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 12 0 0 0

Trace form

\( 12 q + O(q^{10}) \) \( 12 q + 12 q^{14} + 6 q^{26} - 6 q^{35} - 6 q^{41} - 6 q^{44} - 6 q^{49} - 6 q^{64} + 6 q^{65} - 6 q^{74} - 6 q^{76} + 12 q^{89} - 12 q^{91} - 12 q^{94} - 6 q^{99} + O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(760, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
760.1.bz.a 760.bz 760.az $6$ $0.379$ \(\Q(\zeta_{18})\) $D_{9}$ \(\Q(\sqrt{-10}) \) None 760.1.bz.a \(0\) \(0\) \(0\) \(0\) \(q+\zeta_{18}^{2}q^{2}+\zeta_{18}^{4}q^{4}-\zeta_{18}^{5}q^{5}+\cdots\)
760.1.bz.b 760.bz 760.az $6$ $0.379$ \(\Q(\zeta_{18})\) $D_{9}$ \(\Q(\sqrt{-10}) \) None 760.1.bz.a \(0\) \(0\) \(0\) \(0\) \(q-\zeta_{18}^{2}q^{2}+\zeta_{18}^{4}q^{4}+\zeta_{18}^{5}q^{5}+\cdots\)