Properties

Label 760.1.bm.b.539.1
Level $760$
Weight $1$
Character 760.539
Analytic conductor $0.379$
Analytic rank $0$
Dimension $2$
Projective image $D_{3}$
CM discriminant -40
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [760,1,Mod(539,760)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("760.539"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(760, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 3, 2])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 760 = 2^{3} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 760.bm (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.379289409601\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{3}\)
Projective field: Galois closure of 3.1.14440.1
Artin image: $C_6\times S_3$
Artin field: Galois closure of \(\mathbb{Q}[x]/(x^{12} - \cdots)\)

Embedding invariants

Embedding label 539.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 760.539
Dual form 760.1.bm.b.619.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} +(0.500000 + 0.866025i) q^{5} +1.00000 q^{7} -1.00000 q^{8} +(-0.500000 + 0.866025i) q^{9} +(-0.500000 + 0.866025i) q^{10} -1.00000 q^{11} +(1.00000 - 1.73205i) q^{13} +(0.500000 + 0.866025i) q^{14} +(-0.500000 - 0.866025i) q^{16} -1.00000 q^{18} +(-0.500000 - 0.866025i) q^{19} -1.00000 q^{20} +(-0.500000 - 0.866025i) q^{22} +(-0.500000 + 0.866025i) q^{23} +(-0.500000 + 0.866025i) q^{25} +2.00000 q^{26} +(-0.500000 + 0.866025i) q^{28} +(0.500000 - 0.866025i) q^{32} +(0.500000 + 0.866025i) q^{35} +(-0.500000 - 0.866025i) q^{36} +1.00000 q^{37} +(0.500000 - 0.866025i) q^{38} +(-0.500000 - 0.866025i) q^{40} +(0.500000 + 0.866025i) q^{41} +(0.500000 - 0.866025i) q^{44} -1.00000 q^{45} -1.00000 q^{46} +(1.00000 - 1.73205i) q^{47} -1.00000 q^{50} +(1.00000 + 1.73205i) q^{52} +(-0.500000 + 0.866025i) q^{53} +(-0.500000 - 0.866025i) q^{55} -1.00000 q^{56} +(-1.00000 - 1.73205i) q^{59} +(-0.500000 + 0.866025i) q^{63} +1.00000 q^{64} +2.00000 q^{65} +(-0.500000 + 0.866025i) q^{70} +(0.500000 - 0.866025i) q^{72} +(0.500000 + 0.866025i) q^{74} +1.00000 q^{76} -1.00000 q^{77} +(0.500000 - 0.866025i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(-0.500000 + 0.866025i) q^{82} +1.00000 q^{88} +(0.500000 - 0.866025i) q^{89} +(-0.500000 - 0.866025i) q^{90} +(1.00000 - 1.73205i) q^{91} +(-0.500000 - 0.866025i) q^{92} +2.00000 q^{94} +(0.500000 - 0.866025i) q^{95} +(0.500000 - 0.866025i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - q^{4} + q^{5} + 2 q^{7} - 2 q^{8} - q^{9} - q^{10} - 2 q^{11} + 2 q^{13} + q^{14} - q^{16} - 2 q^{18} - q^{19} - 2 q^{20} - q^{22} - q^{23} - q^{25} + 4 q^{26} - q^{28} + q^{32}+ \cdots + q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/760\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(381\) \(401\) \(457\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(3\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(4\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(5\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(6\) 0 0
\(7\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(8\) −1.00000 −1.00000
\(9\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(10\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(11\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(12\) 0 0
\(13\) 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i \(-0.333333\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(14\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.500000 0.866025i
\(17\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(18\) −1.00000 −1.00000
\(19\) −0.500000 0.866025i −0.500000 0.866025i
\(20\) −1.00000 −1.00000
\(21\) 0 0
\(22\) −0.500000 0.866025i −0.500000 0.866025i
\(23\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(24\) 0 0
\(25\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(26\) 2.00000 2.00000
\(27\) 0 0
\(28\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(29\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 0.500000 0.866025i 0.500000 0.866025i
\(33\) 0 0
\(34\) 0 0
\(35\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(36\) −0.500000 0.866025i −0.500000 0.866025i
\(37\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(38\) 0.500000 0.866025i 0.500000 0.866025i
\(39\) 0 0
\(40\) −0.500000 0.866025i −0.500000 0.866025i
\(41\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(42\) 0 0
\(43\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(44\) 0.500000 0.866025i 0.500000 0.866025i
\(45\) −1.00000 −1.00000
\(46\) −1.00000 −1.00000
\(47\) 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i \(-0.333333\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −1.00000 −1.00000
\(51\) 0 0
\(52\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(53\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) −0.500000 0.866025i −0.500000 0.866025i
\(56\) −1.00000 −1.00000
\(57\) 0 0
\(58\) 0 0
\(59\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(60\) 0 0
\(61\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(62\) 0 0
\(63\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(64\) 1.00000 1.00000
\(65\) 2.00000 2.00000
\(66\) 0 0
\(67\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(71\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(72\) 0.500000 0.866025i 0.500000 0.866025i
\(73\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(74\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(75\) 0 0
\(76\) 1.00000 1.00000
\(77\) −1.00000 −1.00000
\(78\) 0 0
\(79\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(80\) 0.500000 0.866025i 0.500000 0.866025i
\(81\) −0.500000 0.866025i −0.500000 0.866025i
\(82\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 1.00000 1.00000
\(89\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(90\) −0.500000 0.866025i −0.500000 0.866025i
\(91\) 1.00000 1.73205i 1.00000 1.73205i
\(92\) −0.500000 0.866025i −0.500000 0.866025i
\(93\) 0 0
\(94\) 2.00000 2.00000
\(95\) 0.500000 0.866025i 0.500000 0.866025i
\(96\) 0 0
\(97\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(98\) 0 0
\(99\) 0.500000 0.866025i 0.500000 0.866025i
\(100\) −0.500000 0.866025i −0.500000 0.866025i
\(101\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(102\) 0 0
\(103\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(104\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(105\) 0 0
\(106\) −1.00000 −1.00000
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 0 0
\(109\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(110\) 0.500000 0.866025i 0.500000 0.866025i
\(111\) 0 0
\(112\) −0.500000 0.866025i −0.500000 0.866025i
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) −1.00000 −1.00000
\(116\) 0 0
\(117\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(118\) 1.00000 1.73205i 1.00000 1.73205i
\(119\) 0 0
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1.00000 −1.00000
\(126\) −1.00000 −1.00000
\(127\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(128\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(129\) 0 0
\(130\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(131\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(132\) 0 0
\(133\) −0.500000 0.866025i −0.500000 0.866025i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(138\) 0 0
\(139\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(140\) −1.00000 −1.00000
\(141\) 0 0
\(142\) 0 0
\(143\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(144\) 1.00000 1.00000
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(149\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(153\) 0 0
\(154\) −0.500000 0.866025i −0.500000 0.866025i
\(155\) 0 0
\(156\) 0 0
\(157\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 1.00000 1.00000
\(161\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(162\) 0.500000 0.866025i 0.500000 0.866025i
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) −1.00000 −1.00000
\(165\) 0 0
\(166\) 0 0
\(167\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) −1.50000 2.59808i −1.50000 2.59808i
\(170\) 0 0
\(171\) 1.00000 1.00000
\(172\) 0 0
\(173\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(176\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(177\) 0 0
\(178\) 1.00000 1.00000
\(179\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(180\) 0.500000 0.866025i 0.500000 0.866025i
\(181\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(182\) 2.00000 2.00000
\(183\) 0 0
\(184\) 0.500000 0.866025i 0.500000 0.866025i
\(185\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(186\) 0 0
\(187\) 0 0
\(188\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(189\) 0 0
\(190\) 1.00000 1.00000
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 0 0
\(193\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(198\) 1.00000 1.00000
\(199\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(200\) 0.500000 0.866025i 0.500000 0.866025i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(206\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(207\) −0.500000 0.866025i −0.500000 0.866025i
\(208\) −2.00000 −2.00000
\(209\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(210\) 0 0
\(211\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(212\) −0.500000 0.866025i −0.500000 0.866025i
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 1.00000 1.00000
\(221\) 0 0
\(222\) 0 0
\(223\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(224\) 0.500000 0.866025i 0.500000 0.866025i
\(225\) −0.500000 0.866025i −0.500000 0.866025i
\(226\) 0 0
\(227\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) −0.500000 0.866025i −0.500000 0.866025i
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(234\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(235\) 2.00000 2.00000
\(236\) 2.00000 2.00000
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −2.00000 −2.00000
\(248\) 0 0
\(249\) 0 0
\(250\) −0.500000 0.866025i −0.500000 0.866025i
\(251\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(252\) −0.500000 0.866025i −0.500000 0.866025i
\(253\) 0.500000 0.866025i 0.500000 0.866025i
\(254\) −1.00000 −1.00000
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(257\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(258\) 0 0
\(259\) 1.00000 1.00000
\(260\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(261\) 0 0
\(262\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(263\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) −1.00000 −1.00000
\(266\) 0.500000 0.866025i 0.500000 0.866025i
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(270\) 0 0
\(271\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0.500000 0.866025i 0.500000 0.866025i
\(276\) 0 0
\(277\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(278\) −2.00000 −2.00000
\(279\) 0 0
\(280\) −0.500000 0.866025i −0.500000 0.866025i
\(281\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(282\) 0 0
\(283\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) −2.00000 −2.00000
\(287\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(288\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(289\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(294\) 0 0
\(295\) 1.00000 1.73205i 1.00000 1.73205i
\(296\) −1.00000 −1.00000
\(297\) 0 0
\(298\) 0 0
\(299\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(308\) 0.500000 0.866025i 0.500000 0.866025i
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(314\) 0.500000 0.866025i 0.500000 0.866025i
\(315\) −1.00000 −1.00000
\(316\) 0 0
\(317\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(321\) 0 0
\(322\) −1.00000 −1.00000
\(323\) 0 0
\(324\) 1.00000 1.00000
\(325\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(326\) 0 0
\(327\) 0 0
\(328\) −0.500000 0.866025i −0.500000 0.866025i
\(329\) 1.00000 1.73205i 1.00000 1.73205i
\(330\) 0 0
\(331\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(332\) 0 0
\(333\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(334\) −1.00000 −1.00000
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(338\) 1.50000 2.59808i 1.50000 2.59808i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(343\) −1.00000 −1.00000
\(344\) 0 0
\(345\) 0 0
\(346\) 0.500000 0.866025i 0.500000 0.866025i
\(347\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) −1.00000 −1.00000
\(351\) 0 0
\(352\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(357\) 0 0
\(358\) −0.500000 0.866025i −0.500000 0.866025i
\(359\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(360\) 1.00000 1.00000
\(361\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(362\) 0 0
\(363\) 0 0
\(364\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(365\) 0 0
\(366\) 0 0
\(367\) 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i \(-0.333333\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(368\) 1.00000 1.00000
\(369\) −1.00000 −1.00000
\(370\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(371\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(372\) 0 0
\(373\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(377\) 0 0
\(378\) 0 0
\(379\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(380\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(381\) 0 0
\(382\) 0 0
\(383\) 1.00000 + 1.73205i 1.00000 + 1.73205i 0.500000 + 0.866025i \(0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(384\) 0 0
\(385\) −0.500000 0.866025i −0.500000 0.866025i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(395\) 0 0
\(396\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(397\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 1.00000 1.00000
\(401\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0.500000 0.866025i 0.500000 0.866025i
\(406\) 0 0
\(407\) −1.00000 −1.00000
\(408\) 0 0
\(409\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(410\) −1.00000 −1.00000
\(411\) 0 0
\(412\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(413\) −1.00000 1.73205i −1.00000 1.73205i
\(414\) 0.500000 0.866025i 0.500000 0.866025i
\(415\) 0 0
\(416\) −1.00000 1.73205i −1.00000 1.73205i
\(417\) 0 0
\(418\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(419\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(420\) 0 0
\(421\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(422\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(423\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(424\) 0.500000 0.866025i 0.500000 0.866025i
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(432\) 0 0
\(433\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1.00000 1.00000
\(438\) 0 0
\(439\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(440\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(441\) 0 0
\(442\) 0 0
\(443\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(444\) 0 0
\(445\) 1.00000 1.00000
\(446\) 0.500000 0.866025i 0.500000 0.866025i
\(447\) 0 0
\(448\) 1.00000 1.00000
\(449\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(450\) 0.500000 0.866025i 0.500000 0.866025i
\(451\) −0.500000 0.866025i −0.500000 0.866025i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 2.00000 2.00000
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0.500000 0.866025i 0.500000 0.866025i
\(461\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(462\) 0 0
\(463\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) −2.00000 −2.00000
\(469\) 0 0
\(470\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(471\) 0 0
\(472\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(473\) 0 0
\(474\) 0 0
\(475\) 1.00000 1.00000
\(476\) 0 0
\(477\) −0.500000 0.866025i −0.500000 0.866025i
\(478\) 0 0
\(479\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(480\) 0 0
\(481\) 1.00000 1.73205i 1.00000 1.73205i
\(482\) −2.00000 −2.00000
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −1.00000 1.73205i −1.00000 1.73205i
\(495\) 1.00000 1.00000
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(500\) 0.500000 0.866025i 0.500000 0.866025i
\(501\) 0 0
\(502\) −2.00000 −2.00000
\(503\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(504\) 0.500000 0.866025i 0.500000 0.866025i
\(505\) 0 0
\(506\) 1.00000 1.00000
\(507\) 0 0
\(508\) −0.500000 0.866025i −0.500000 0.866025i
\(509\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −1.00000 −1.00000
\(513\) 0 0
\(514\) 0 0
\(515\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(516\) 0 0
\(517\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(518\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(519\) 0 0
\(520\) −2.00000 −2.00000
\(521\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(522\) 0 0
\(523\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(524\) −1.00000 −1.00000
\(525\) 0 0
\(526\) 0.500000 0.866025i 0.500000 0.866025i
\(527\) 0 0
\(528\) 0 0
\(529\) 0 0
\(530\) −0.500000 0.866025i −0.500000 0.866025i
\(531\) 2.00000 2.00000
\(532\) 1.00000 1.00000
\(533\) 2.00000 2.00000
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 1.00000 1.00000
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) −1.00000 1.73205i −1.00000 1.73205i
\(555\) 0 0
\(556\) −1.00000 1.73205i −1.00000 1.73205i
\(557\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0.500000 0.866025i 0.500000 0.866025i
\(561\) 0 0
\(562\) 1.00000 1.00000
\(563\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −0.500000 0.866025i −0.500000 0.866025i
\(568\) 0 0
\(569\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(570\) 0 0
\(571\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(572\) −1.00000 1.73205i −1.00000 1.73205i
\(573\) 0 0
\(574\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(575\) −0.500000 0.866025i −0.500000 0.866025i
\(576\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) −1.00000 −1.00000
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0.500000 0.866025i 0.500000 0.866025i
\(584\) 0 0
\(585\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(586\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(587\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 2.00000 2.00000
\(591\) 0 0
\(592\) −0.500000 0.866025i −0.500000 0.866025i
\(593\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(599\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(600\) 0 0
\(601\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(608\) −1.00000 −1.00000
\(609\) 0 0
\(610\) 0 0
\(611\) −2.00000 3.46410i −2.00000 3.46410i
\(612\) 0 0
\(613\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 1.00000 1.00000
\(617\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(618\) 0 0
\(619\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0.500000 0.866025i 0.500000 0.866025i
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.500000 0.866025i
\(626\) 0 0
\(627\) 0 0
\(628\) 1.00000 1.00000
\(629\) 0 0
\(630\) −0.500000 0.866025i −0.500000 0.866025i
\(631\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) −1.00000 −1.00000
\(635\) −1.00000 −1.00000
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(641\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(642\) 0 0
\(643\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(644\) −0.500000 0.866025i −0.500000 0.866025i
\(645\) 0 0
\(646\) 0 0
\(647\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(648\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(649\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(650\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(651\) 0 0
\(652\) 0 0
\(653\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(654\) 0 0
\(655\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(656\) 0.500000 0.866025i 0.500000 0.866025i
\(657\) 0 0
\(658\) 2.00000 2.00000
\(659\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(660\) 0 0
\(661\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(662\) −0.500000 0.866025i −0.500000 0.866025i
\(663\) 0 0
\(664\) 0 0
\(665\) 0.500000 0.866025i 0.500000 0.866025i
\(666\) −1.00000 −1.00000
\(667\) 0 0
\(668\) −0.500000 0.866025i −0.500000 0.866025i
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 3.00000 3.00000
\(677\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(685\) 0 0
\(686\) −0.500000 0.866025i −0.500000 0.866025i
\(687\) 0 0
\(688\) 0 0
\(689\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(690\) 0 0
\(691\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(692\) 1.00000 1.00000
\(693\) 0.500000 0.866025i 0.500000 0.866025i
\(694\) 0 0
\(695\) −2.00000 −2.00000
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) −0.500000 0.866025i −0.500000 0.866025i
\(701\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(702\) 0 0
\(703\) −0.500000 0.866025i −0.500000 0.866025i
\(704\) −1.00000 −1.00000
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(713\) 0 0
\(714\) 0 0
\(715\) −2.00000 −2.00000
\(716\) 0.500000 0.866025i 0.500000 0.866025i
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(720\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(721\) 1.00000 1.00000
\(722\) −1.00000 −1.00000
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 1.00000 + 1.73205i 1.00000 + 1.73205i 0.500000 + 0.866025i \(0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(728\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(729\) 1.00000 1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(734\) 2.00000 2.00000
\(735\) 0 0
\(736\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(737\) 0 0
\(738\) −0.500000 0.866025i −0.500000 0.866025i
\(739\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(740\) −1.00000 −1.00000
\(741\) 0 0
\(742\) −1.00000 −1.00000
\(743\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(752\) −2.00000 −2.00000
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(758\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(759\) 0 0
\(760\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(761\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(767\) −4.00000 −4.00000
\(768\) 0 0
\(769\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(770\) 0.500000 0.866025i 0.500000 0.866025i
\(771\) 0 0
\(772\) 0 0
\(773\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0.500000 0.866025i 0.500000 0.866025i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0.500000 0.866025i 0.500000 0.866025i
\(786\) 0 0
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(793\) 0 0
\(794\) 0.500000 0.866025i 0.500000 0.866025i
\(795\) 0 0
\(796\) 0 0
\(797\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(801\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(802\) 1.00000 1.73205i 1.00000 1.73205i
\(803\) 0 0
\(804\) 0 0
\(805\) −1.00000 −1.00000
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(810\) 1.00000 1.00000
\(811\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(812\) 0 0
\(813\) 0 0
\(814\) −0.500000 0.866025i −0.500000 0.866025i
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 1.00000 1.00000
\(819\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(820\) −0.500000 0.866025i −0.500000 0.866025i
\(821\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(822\) 0 0
\(823\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(824\) −1.00000 −1.00000
\(825\) 0 0
\(826\) 1.00000 1.73205i 1.00000 1.73205i
\(827\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(828\) 1.00000 1.00000
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 1.00000 1.73205i 1.00000 1.73205i
\(833\) 0 0
\(834\) 0 0
\(835\) −1.00000 −1.00000
\(836\) −1.00000 −1.00000
\(837\) 0 0
\(838\) −0.500000 0.866025i −0.500000 0.866025i
\(839\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(840\) 0 0
\(841\) −0.500000 0.866025i −0.500000 0.866025i
\(842\) 0 0
\(843\) 0 0
\(844\) −1.00000 −1.00000
\(845\) 1.50000 2.59808i 1.50000 2.59808i
\(846\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(847\) 0 0
\(848\) 1.00000 1.00000
\(849\) 0 0
\(850\) 0 0
\(851\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(852\) 0 0
\(853\) 1.00000 + 1.73205i 1.00000 + 1.73205i 0.500000 + 0.866025i \(0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(854\) 0 0
\(855\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(856\) 0 0
\(857\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(858\) 0 0
\(859\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(864\) 0 0
\(865\) 0.500000 0.866025i 0.500000 0.866025i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(875\) −1.00000 −1.00000
\(876\) 0 0
\(877\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(881\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(882\) 0 0
\(883\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i \(-0.333333\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(888\) 0 0
\(889\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(890\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(891\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(892\) 1.00000 1.00000
\(893\) −2.00000 −2.00000
\(894\) 0 0
\(895\) −0.500000 0.866025i −0.500000 0.866025i
\(896\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(897\) 0 0
\(898\) −0.500000 0.866025i −0.500000 0.866025i
\(899\) 0 0
\(900\) 1.00000 1.00000
\(901\) 0 0
\(902\) 0.500000 0.866025i 0.500000 0.866025i
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 1.00000 1.00000
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(926\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(927\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(928\) 0 0
\(929\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) −1.00000 1.73205i −1.00000 1.73205i
\(937\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(941\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(942\) 0 0
\(943\) −1.00000 −1.00000
\(944\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(954\) 0.500000 0.866025i 0.500000 0.866025i
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 1.00000 1.00000
\(962\) 2.00000 2.00000
\(963\) 0 0
\(964\) −1.00000 1.73205i −1.00000 1.73205i
\(965\) 0 0
\(966\) 0 0
\(967\) 1.00000 + 1.73205i 1.00000 + 1.73205i 0.500000 + 0.866025i \(0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(972\) 0 0
\(973\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(974\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(980\) 0 0
\(981\) 0 0
\(982\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(983\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(986\) 0 0
\(987\) 0 0
\(988\) 1.00000 1.73205i 1.00000 1.73205i
\(989\) 0 0
\(990\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(991\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(998\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 760.1.bm.b.539.1 yes 2
4.3 odd 2 3040.1.cc.b.1679.1 2
5.2 odd 4 3800.1.bd.f.1451.1 4
5.3 odd 4 3800.1.bd.f.1451.2 4
5.4 even 2 760.1.bm.a.539.1 2
8.3 odd 2 760.1.bm.a.539.1 2
8.5 even 2 3040.1.cc.a.1679.1 2
19.11 even 3 inner 760.1.bm.b.619.1 yes 2
20.19 odd 2 3040.1.cc.a.1679.1 2
40.3 even 4 3800.1.bd.f.1451.1 4
40.19 odd 2 CM 760.1.bm.b.539.1 yes 2
40.27 even 4 3800.1.bd.f.1451.2 4
40.29 even 2 3040.1.cc.b.1679.1 2
76.11 odd 6 3040.1.cc.b.239.1 2
95.49 even 6 760.1.bm.a.619.1 yes 2
95.68 odd 12 3800.1.bd.f.3051.1 4
95.87 odd 12 3800.1.bd.f.3051.2 4
152.11 odd 6 760.1.bm.a.619.1 yes 2
152.125 even 6 3040.1.cc.a.239.1 2
380.239 odd 6 3040.1.cc.a.239.1 2
760.163 even 12 3800.1.bd.f.3051.2 4
760.429 even 6 3040.1.cc.b.239.1 2
760.467 even 12 3800.1.bd.f.3051.1 4
760.619 odd 6 inner 760.1.bm.b.619.1 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
760.1.bm.a.539.1 2 5.4 even 2
760.1.bm.a.539.1 2 8.3 odd 2
760.1.bm.a.619.1 yes 2 95.49 even 6
760.1.bm.a.619.1 yes 2 152.11 odd 6
760.1.bm.b.539.1 yes 2 1.1 even 1 trivial
760.1.bm.b.539.1 yes 2 40.19 odd 2 CM
760.1.bm.b.619.1 yes 2 19.11 even 3 inner
760.1.bm.b.619.1 yes 2 760.619 odd 6 inner
3040.1.cc.a.239.1 2 152.125 even 6
3040.1.cc.a.239.1 2 380.239 odd 6
3040.1.cc.a.1679.1 2 8.5 even 2
3040.1.cc.a.1679.1 2 20.19 odd 2
3040.1.cc.b.239.1 2 76.11 odd 6
3040.1.cc.b.239.1 2 760.429 even 6
3040.1.cc.b.1679.1 2 4.3 odd 2
3040.1.cc.b.1679.1 2 40.29 even 2
3800.1.bd.f.1451.1 4 5.2 odd 4
3800.1.bd.f.1451.1 4 40.3 even 4
3800.1.bd.f.1451.2 4 5.3 odd 4
3800.1.bd.f.1451.2 4 40.27 even 4
3800.1.bd.f.3051.1 4 95.68 odd 12
3800.1.bd.f.3051.1 4 760.467 even 12
3800.1.bd.f.3051.2 4 95.87 odd 12
3800.1.bd.f.3051.2 4 760.163 even 12