Properties

Label 76.7.c.a
Level $76$
Weight $7$
Character orbit 76.c
Self dual yes
Analytic conductor $17.484$
Analytic rank $0$
Dimension $2$
CM discriminant -19
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 76 = 2^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 76.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: yes
Analytic conductor: \(17.4841103551\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{57}) \)
Defining polynomial: \(x^{2} - x - 14\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 4\sqrt{57}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( 27 + 7 \beta ) q^{5} + ( -305 + 9 \beta ) q^{7} + 729 q^{9} +O(q^{10})\) \( q + ( 27 + 7 \beta ) q^{5} + ( -305 + 9 \beta ) q^{7} + 729 q^{9} + ( 531 - 70 \beta ) q^{11} + ( 4815 + 56 \beta ) q^{17} -6859 q^{19} + 20610 q^{23} + ( 29792 + 378 \beta ) q^{25} + ( 49221 - 1892 \beta ) q^{35} + ( 71315 - 2016 \beta ) q^{43} + ( 19683 + 5103 \beta ) q^{45} + ( 37575 + 5551 \beta ) q^{47} + ( 49248 - 5490 \beta ) q^{49} + ( -432543 + 1827 \beta ) q^{55} + ( 28531 - 12915 \beta ) q^{61} + ( -222345 + 6561 \beta ) q^{63} + ( -192025 - 19404 \beta ) q^{73} + ( -736515 + 26129 \beta ) q^{77} + 531441 q^{81} -1131030 q^{83} + ( 487509 + 35217 \beta ) q^{85} + ( -185193 - 48013 \beta ) q^{95} + ( 387099 - 51030 \beta ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 54q^{5} - 610q^{7} + 1458q^{9} + O(q^{10}) \) \( 2q + 54q^{5} - 610q^{7} + 1458q^{9} + 1062q^{11} + 9630q^{17} - 13718q^{19} + 41220q^{23} + 59584q^{25} + 98442q^{35} + 142630q^{43} + 39366q^{45} + 75150q^{47} + 98496q^{49} - 865086q^{55} + 57062q^{61} - 444690q^{63} - 384050q^{73} - 1473030q^{77} + 1062882q^{81} - 2262060q^{83} + 975018q^{85} - 370386q^{95} + 774198q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/76\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(39\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
37.1
−3.27492
4.27492
0 0 0 −184.395 0 −576.794 0 729.000 0
37.2 0 0 0 238.395 0 −33.2060 0 729.000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.b odd 2 1 CM by \(\Q(\sqrt{-19}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 76.7.c.a 2
3.b odd 2 1 684.7.h.a 2
4.b odd 2 1 304.7.e.b 2
19.b odd 2 1 CM 76.7.c.a 2
57.d even 2 1 684.7.h.a 2
76.d even 2 1 304.7.e.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
76.7.c.a 2 1.a even 1 1 trivial
76.7.c.a 2 19.b odd 2 1 CM
304.7.e.b 2 4.b odd 2 1
304.7.e.b 2 76.d even 2 1
684.7.h.a 2 3.b odd 2 1
684.7.h.a 2 57.d even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} \) acting on \(S_{7}^{\mathrm{new}}(76, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( T^{2} \)
$5$ \( -43959 - 54 T + T^{2} \)
$7$ \( 19153 + 610 T + T^{2} \)
$11$ \( -4186839 - 1062 T + T^{2} \)
$13$ \( T^{2} \)
$17$ \( 20324193 - 9630 T + T^{2} \)
$19$ \( ( 6859 + T )^{2} \)
$23$ \( ( -20610 + T )^{2} \)
$29$ \( T^{2} \)
$31$ \( T^{2} \)
$37$ \( T^{2} \)
$41$ \( T^{2} \)
$43$ \( 1379227753 - 142630 T + T^{2} \)
$47$ \( -26690123487 - 75150 T + T^{2} \)
$53$ \( T^{2} \)
$59$ \( T^{2} \)
$61$ \( -151305051239 - 57062 T + T^{2} \)
$67$ \( T^{2} \)
$71$ \( T^{2} \)
$73$ \( -306508276367 + 384050 T + T^{2} \)
$79$ \( T^{2} \)
$83$ \( ( 1131030 + T )^{2} \)
$89$ \( T^{2} \)
$97$ \( T^{2} \)
show more
show less