Properties

Label 76.6.e
Level $76$
Weight $6$
Character orbit 76.e
Rep. character $\chi_{76}(45,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $18$
Newform subspaces $1$
Sturm bound $60$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 76 = 2^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 76.e (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 19 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 1 \)
Sturm bound: \(60\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(76, [\chi])\).

Total New Old
Modular forms 106 18 88
Cusp forms 94 18 76
Eisenstein series 12 0 12

Trace form

\( 18q - 11q^{3} + 11q^{5} + 336q^{7} - 902q^{9} + O(q^{10}) \) \( 18q - 11q^{3} + 11q^{5} + 336q^{7} - 902q^{9} - 320q^{11} + 227q^{13} - 101q^{15} + 179q^{17} - 868q^{19} - 5700q^{21} - 3425q^{23} - 7054q^{25} + 14722q^{27} - 7349q^{29} - 9960q^{31} - 2998q^{33} + 15888q^{35} + 26444q^{37} - 30246q^{39} - 7311q^{41} - 8283q^{43} - 62164q^{45} + 37603q^{47} + 124738q^{49} + 47227q^{51} - 20337q^{53} + 716q^{55} - 57555q^{57} - 74455q^{59} - 7569q^{61} - 52544q^{63} + 188998q^{65} - 26177q^{67} + 116282q^{69} - 53463q^{71} - 14103q^{73} + 120912q^{75} - 31960q^{77} + 31825q^{79} - 21137q^{81} + 82600q^{83} - 50787q^{85} - 339766q^{87} - 155197q^{89} - 2800q^{91} - 46460q^{93} + 49315q^{95} + 111241q^{97} - 193544q^{99} + O(q^{100}) \)

Decomposition of \(S_{6}^{\mathrm{new}}(76, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
76.6.e.a \(18\) \(12.189\) \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None \(0\) \(-11\) \(11\) \(336\) \(q+(\beta _{1}-\beta _{2}+\beta _{3})q^{3}+(\beta _{2}+\beta _{6}+\beta _{8}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(76, [\chi])\) into lower level spaces

\( S_{6}^{\mathrm{old}}(76, [\chi]) \cong \) \(S_{6}^{\mathrm{new}}(19, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(38, [\chi])\)\(^{\oplus 2}\)