Properties

Label 76.5.l
Level $76$
Weight $5$
Character orbit 76.l
Rep. character $\chi_{76}(23,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $228$
Newform subspaces $1$
Sturm bound $50$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 76 = 2^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 76.l (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 76 \)
Character field: \(\Q(\zeta_{18})\)
Newform subspaces: \( 1 \)
Sturm bound: \(50\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{5}(76, [\chi])\).

Total New Old
Modular forms 252 252 0
Cusp forms 228 228 0
Eisenstein series 24 24 0

Trace form

\( 228q - 6q^{2} - 48q^{4} - 12q^{5} - 60q^{6} - 3q^{8} - 180q^{9} + O(q^{10}) \) \( 228q - 6q^{2} - 48q^{4} - 12q^{5} - 60q^{6} - 3q^{8} - 180q^{9} - 453q^{10} - 3q^{12} + 516q^{13} + 81q^{14} - 720q^{16} - 12q^{17} - 12q^{18} - 1182q^{20} - 930q^{21} - 54q^{22} - 2664q^{24} - 12q^{25} - 3099q^{26} - 4824q^{28} - 12q^{29} + 5814q^{30} + 7419q^{32} + 1542q^{33} + 6912q^{34} + 8547q^{36} - 24q^{37} - 1536q^{38} - 6942q^{40} + 6396q^{41} - 18855q^{42} - 1143q^{44} - 6q^{45} - 1488q^{46} + 6093q^{48} + 26748q^{49} + 8070q^{50} - 12591q^{52} + 2436q^{53} - 7365q^{54} - 14418q^{56} - 12q^{57} + 8268q^{58} + 34632q^{60} - 31068q^{61} + 27396q^{62} + 4575q^{64} + 3594q^{65} - 29556q^{66} - 22782q^{68} + 29370q^{69} - 71541q^{70} - 30174q^{72} - 6348q^{73} - 417q^{74} + 43194q^{76} - 50436q^{77} + 45537q^{78} + 30081q^{80} - 41994q^{81} + 72219q^{82} + 13779q^{84} - 59244q^{85} + 19200q^{86} - 22395q^{88} + 1860q^{89} + 45594q^{90} - 64140q^{92} + 59118q^{93} - 55590q^{94} - 98646q^{96} - 5556q^{97} - 52215q^{98} + O(q^{100}) \)

Decomposition of \(S_{5}^{\mathrm{new}}(76, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
76.5.l.a \(228\) \(7.856\) None \(-6\) \(0\) \(-12\) \(0\)