Properties

Label 76.5.j
Level $76$
Weight $5$
Character orbit 76.j
Rep. character $\chi_{76}(13,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $42$
Newform subspaces $1$
Sturm bound $50$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 76 = 2^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 76.j (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 19 \)
Character field: \(\Q(\zeta_{18})\)
Newform subspaces: \( 1 \)
Sturm bound: \(50\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{5}(76, [\chi])\).

Total New Old
Modular forms 258 42 216
Cusp forms 222 42 180
Eisenstein series 36 0 36

Trace form

\( 42q + 12q^{3} - 45q^{7} - 84q^{9} + O(q^{10}) \) \( 42q + 12q^{3} - 45q^{7} - 84q^{9} - 45q^{11} + 33q^{13} - 393q^{15} + 909q^{17} + 1242q^{19} + 1107q^{21} - 360q^{23} - 810q^{25} - 7056q^{27} - 2889q^{29} + 2808q^{31} + 10875q^{33} + 6741q^{35} - 3480q^{39} - 3060q^{41} - 8079q^{43} - 4320q^{45} - 2655q^{47} - 474q^{49} - 12222q^{51} - 6705q^{53} + 4623q^{55} - 8022q^{57} + 24309q^{59} + 7104q^{61} + 12063q^{63} + 25245q^{65} + 15573q^{67} - 10881q^{69} - 25506q^{71} + 3036q^{73} + 12924q^{77} - 16839q^{79} - 2208q^{81} - 6363q^{83} - 37890q^{85} - 21924q^{87} - 22644q^{89} + 17418q^{91} + 8184q^{93} - 82413q^{95} + 13383q^{97} + 23565q^{99} + O(q^{100}) \)

Decomposition of \(S_{5}^{\mathrm{new}}(76, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
76.5.j.a \(42\) \(7.856\) None \(0\) \(12\) \(0\) \(-45\)

Decomposition of \(S_{5}^{\mathrm{old}}(76, [\chi])\) into lower level spaces

\( S_{5}^{\mathrm{old}}(76, [\chi]) \cong \) \(S_{5}^{\mathrm{new}}(19, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(38, [\chi])\)\(^{\oplus 2}\)