Newspace parameters
Level: | \( N \) | \(=\) | \( 76 = 2^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 76.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(4.48414516044\) |
Analytic rank: | \(1\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\sqrt{33}) \) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{2} - x - 8 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{33})\). We also show the integral \(q\)-expansion of the trace form.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
0 | −5.37228 | 0 | 11.8614 | 0 | −26.4891 | 0 | 1.86141 | 0 | ||||||||||||||||||||||||
1.2 | 0 | 0.372281 | 0 | −16.8614 | 0 | −3.51087 | 0 | −26.8614 | 0 | |||||||||||||||||||||||||
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(2\) | \(-1\) |
\(19\) | \(1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 76.4.a.a | ✓ | 2 |
3.b | odd | 2 | 1 | 684.4.a.g | 2 | ||
4.b | odd | 2 | 1 | 304.4.a.f | 2 | ||
5.b | even | 2 | 1 | 1900.4.a.b | 2 | ||
5.c | odd | 4 | 2 | 1900.4.c.b | 4 | ||
8.b | even | 2 | 1 | 1216.4.a.o | 2 | ||
8.d | odd | 2 | 1 | 1216.4.a.h | 2 | ||
19.b | odd | 2 | 1 | 1444.4.a.d | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
76.4.a.a | ✓ | 2 | 1.a | even | 1 | 1 | trivial |
304.4.a.f | 2 | 4.b | odd | 2 | 1 | ||
684.4.a.g | 2 | 3.b | odd | 2 | 1 | ||
1216.4.a.h | 2 | 8.d | odd | 2 | 1 | ||
1216.4.a.o | 2 | 8.b | even | 2 | 1 | ||
1444.4.a.d | 2 | 19.b | odd | 2 | 1 | ||
1900.4.a.b | 2 | 5.b | even | 2 | 1 | ||
1900.4.c.b | 4 | 5.c | odd | 4 | 2 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{2} + 5T_{3} - 2 \)
acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(76))\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{2} \)
$3$
\( T^{2} + 5T - 2 \)
$5$
\( T^{2} + 5T - 200 \)
$7$
\( T^{2} + 30T + 93 \)
$11$
\( T^{2} + 71T + 1054 \)
$13$
\( T^{2} + 35T - 692 \)
$17$
\( T^{2} - 297 \)
$19$
\( (T + 19)^{2} \)
$23$
\( T^{2} + 5T - 28712 \)
$29$
\( T^{2} - 155T - 28850 \)
$31$
\( T^{2} + 88T - 50864 \)
$37$
\( T^{2} - 380T + 35572 \)
$41$
\( T^{2} + 142T - 2384 \)
$43$
\( T^{2} - 155T - 106928 \)
$47$
\( T^{2} + 455T + 47392 \)
$53$
\( T^{2} + 275T - 105908 \)
$59$
\( T^{2} + 873T + 180426 \)
$61$
\( T^{2} - 445T - 203150 \)
$67$
\( T^{2} - 645T + 73308 \)
$71$
\( T^{2} + 1712 T + 729436 \)
$73$
\( T^{2} + 990T + 211233 \)
$79$
\( T^{2} + 1274 T + 404944 \)
$83$
\( T^{2} + 90T - 105192 \)
$89$
\( T^{2} + 888T + 144336 \)
$97$
\( T^{2} - 710 T - 1604528 \)
show more
show less