Properties

Label 76.4.a.a
Level $76$
Weight $4$
Character orbit 76.a
Self dual yes
Analytic conductor $4.484$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [76,4,Mod(1,76)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(76, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("76.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 76 = 2^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 76.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.48414516044\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{33}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{33})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta - 2) q^{3} + (5 \beta - 5) q^{5} + ( - 4 \beta - 13) q^{7} + (5 \beta - 15) q^{9} + ( - 5 \beta - 33) q^{11} + ( - 11 \beta - 12) q^{13} + ( - 10 \beta - 30) q^{15} + (6 \beta - 3) q^{17}+ \cdots + ( - 115 \beta + 295) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 5 q^{3} - 5 q^{5} - 30 q^{7} - 25 q^{9} - 71 q^{11} - 35 q^{13} - 70 q^{15} - 38 q^{19} + 141 q^{21} - 5 q^{23} + 175 q^{25} + 115 q^{27} + 155 q^{29} - 88 q^{31} + 260 q^{33} - 255 q^{35} + 380 q^{37}+ \cdots + 475 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
3.37228
−2.37228
0 −5.37228 0 11.8614 0 −26.4891 0 1.86141 0
1.2 0 0.372281 0 −16.8614 0 −3.51087 0 −26.8614 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 76.4.a.a 2
3.b odd 2 1 684.4.a.g 2
4.b odd 2 1 304.4.a.f 2
5.b even 2 1 1900.4.a.b 2
5.c odd 4 2 1900.4.c.b 4
8.b even 2 1 1216.4.a.o 2
8.d odd 2 1 1216.4.a.h 2
19.b odd 2 1 1444.4.a.d 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
76.4.a.a 2 1.a even 1 1 trivial
304.4.a.f 2 4.b odd 2 1
684.4.a.g 2 3.b odd 2 1
1216.4.a.h 2 8.d odd 2 1
1216.4.a.o 2 8.b even 2 1
1444.4.a.d 2 19.b odd 2 1
1900.4.a.b 2 5.b even 2 1
1900.4.c.b 4 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 5T_{3} - 2 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(76))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 5T - 2 \) Copy content Toggle raw display
$5$ \( T^{2} + 5T - 200 \) Copy content Toggle raw display
$7$ \( T^{2} + 30T + 93 \) Copy content Toggle raw display
$11$ \( T^{2} + 71T + 1054 \) Copy content Toggle raw display
$13$ \( T^{2} + 35T - 692 \) Copy content Toggle raw display
$17$ \( T^{2} - 297 \) Copy content Toggle raw display
$19$ \( (T + 19)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 5T - 28712 \) Copy content Toggle raw display
$29$ \( T^{2} - 155T - 28850 \) Copy content Toggle raw display
$31$ \( T^{2} + 88T - 50864 \) Copy content Toggle raw display
$37$ \( T^{2} - 380T + 35572 \) Copy content Toggle raw display
$41$ \( T^{2} + 142T - 2384 \) Copy content Toggle raw display
$43$ \( T^{2} - 155T - 106928 \) Copy content Toggle raw display
$47$ \( T^{2} + 455T + 47392 \) Copy content Toggle raw display
$53$ \( T^{2} + 275T - 105908 \) Copy content Toggle raw display
$59$ \( T^{2} + 873T + 180426 \) Copy content Toggle raw display
$61$ \( T^{2} - 445T - 203150 \) Copy content Toggle raw display
$67$ \( T^{2} - 645T + 73308 \) Copy content Toggle raw display
$71$ \( T^{2} + 1712 T + 729436 \) Copy content Toggle raw display
$73$ \( T^{2} + 990T + 211233 \) Copy content Toggle raw display
$79$ \( T^{2} + 1274 T + 404944 \) Copy content Toggle raw display
$83$ \( T^{2} + 90T - 105192 \) Copy content Toggle raw display
$89$ \( T^{2} + 888T + 144336 \) Copy content Toggle raw display
$97$ \( T^{2} - 710 T - 1604528 \) Copy content Toggle raw display
show more
show less