Properties

Label 76.3.g.c.7.9
Level $76$
Weight $3$
Character 76.7
Analytic conductor $2.071$
Analytic rank $0$
Dimension $28$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 76 = 2^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 76.g (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.07085000914\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 7.9
Character \(\chi\) \(=\) 76.7
Dual form 76.3.g.c.11.9

$q$-expansion

\(f(q)\) \(=\) \(q+(0.545551 - 1.92416i) q^{2} +(3.88623 - 2.24371i) q^{3} +(-3.40475 - 2.09945i) q^{4} +(-0.133773 - 0.231701i) q^{5} +(-2.19712 - 8.70177i) q^{6} +7.24937i q^{7} +(-5.89713 + 5.40590i) q^{8} +(5.56851 - 9.64495i) q^{9} +O(q^{10})\) \(q+(0.545551 - 1.92416i) q^{2} +(3.88623 - 2.24371i) q^{3} +(-3.40475 - 2.09945i) q^{4} +(-0.133773 - 0.231701i) q^{5} +(-2.19712 - 8.70177i) q^{6} +7.24937i q^{7} +(-5.89713 + 5.40590i) q^{8} +(5.56851 - 9.64495i) q^{9} +(-0.518810 + 0.130995i) q^{10} +11.7422i q^{11} +(-17.9422 - 0.519664i) q^{12} +(4.17006 - 7.22276i) q^{13} +(13.9489 + 3.95490i) q^{14} +(-1.03974 - 0.600297i) q^{15} +(7.18461 + 14.2962i) q^{16} +(-7.11880 - 12.3301i) q^{17} +(-15.5205 - 15.9765i) q^{18} +(-11.9609 - 14.7627i) q^{19} +(-0.0309829 + 1.06973i) q^{20} +(16.2655 + 28.1727i) q^{21} +(22.5939 + 6.40599i) q^{22} +(21.4900 + 12.4073i) q^{23} +(-10.7883 + 34.2401i) q^{24} +(12.4642 - 21.5886i) q^{25} +(-11.6227 - 11.9642i) q^{26} -9.58976i q^{27} +(15.2197 - 24.6823i) q^{28} +(-25.7911 + 44.6716i) q^{29} +(-1.72230 + 1.67314i) q^{30} +26.3372i q^{31} +(31.4277 - 6.02499i) q^{32} +(26.3462 + 45.6330i) q^{33} +(-27.6087 + 6.97096i) q^{34} +(1.67969 - 0.969769i) q^{35} +(-39.2085 + 21.1478i) q^{36} -20.1243 q^{37} +(-34.9310 + 14.9608i) q^{38} -37.4257i q^{39} +(2.04143 + 0.643211i) q^{40} +(-38.5881 - 66.8366i) q^{41} +(63.0823 - 15.9277i) q^{42} +(30.0199 - 17.3320i) q^{43} +(24.6522 - 39.9793i) q^{44} -2.97967 q^{45} +(35.5975 - 34.5814i) q^{46} +(-31.9968 - 18.4733i) q^{47} +(59.9976 + 39.4381i) q^{48} -3.55331 q^{49} +(-34.7400 - 35.7608i) q^{50} +(-55.3306 - 31.9451i) q^{51} +(-29.3618 + 15.8368i) q^{52} +(-8.75934 + 15.1716i) q^{53} +(-18.4522 - 5.23171i) q^{54} +(2.72069 - 1.57079i) q^{55} +(-39.1894 - 42.7505i) q^{56} +(-79.6061 - 30.5343i) q^{57} +(71.8847 + 73.9968i) q^{58} +(-82.8741 + 47.8474i) q^{59} +(2.27977 + 4.22675i) q^{60} +(26.2074 - 45.3926i) q^{61} +(50.6769 + 14.3683i) q^{62} +(69.9198 + 40.3682i) q^{63} +(5.55239 - 63.7587i) q^{64} -2.23136 q^{65} +(102.178 - 25.7991i) q^{66} +(-11.8862 - 6.86248i) q^{67} +(-1.64877 + 56.9265i) q^{68} +111.354 q^{69} +(-0.949629 - 3.76104i) q^{70} +(-39.7717 + 22.9622i) q^{71} +(19.3014 + 86.9804i) q^{72} +(20.0638 + 34.7515i) q^{73} +(-10.9789 + 38.7223i) q^{74} -111.865i q^{75} +(9.73035 + 75.3745i) q^{76} -85.1238 q^{77} +(-72.0129 - 20.4176i) q^{78} +(106.053 - 61.2298i) q^{79} +(2.35134 - 3.57713i) q^{80} +(28.5999 + 49.5365i) q^{81} +(-149.656 + 37.7868i) q^{82} -108.436i q^{83} +(3.76723 - 130.070i) q^{84} +(-1.90461 + 3.29887i) q^{85} +(-16.9721 - 67.2186i) q^{86} +231.472i q^{87} +(-63.4774 - 69.2455i) q^{88} +(-26.2347 + 45.4398i) q^{89} +(-1.62556 + 5.73334i) q^{90} +(52.3604 + 30.2303i) q^{91} +(-47.1197 - 87.3609i) q^{92} +(59.0932 + 102.352i) q^{93} +(-53.0015 + 51.4886i) q^{94} +(-1.82049 + 4.74621i) q^{95} +(108.617 - 93.9293i) q^{96} +(29.9055 + 51.7979i) q^{97} +(-1.93851 + 6.83712i) q^{98} +(113.253 + 65.3868i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28q - 5q^{2} - 11q^{4} + 6q^{5} - 3q^{6} - 62q^{8} + 20q^{9} + O(q^{10}) \) \( 28q - 5q^{2} - 11q^{4} + 6q^{5} - 3q^{6} - 62q^{8} + 20q^{9} + 26q^{12} + 30q^{13} - 30q^{14} - 19q^{16} + 38q^{17} - 60q^{18} - 44q^{20} + 80q^{21} + 45q^{22} + 17q^{24} - 16q^{25} - 56q^{26} + 54q^{28} + 6q^{29} + 96q^{30} - 45q^{32} - 176q^{33} - 20q^{34} + 30q^{36} + 104q^{37} - 258q^{38} + 94q^{40} - 2q^{41} - 2q^{42} + 201q^{44} - 360q^{45} + 164q^{46} - 17q^{48} - 20q^{49} + 490q^{50} - 102q^{52} - 242q^{53} - 13q^{54} + 276q^{56} - 254q^{57} + 96q^{58} + 10q^{60} - 58q^{61} - 36q^{62} - 74q^{64} - 260q^{65} + 167q^{66} + 396q^{68} + 340q^{69} + 60q^{70} - 422q^{72} - 82q^{73} - 136q^{74} + 123q^{76} - 144q^{77} + 224q^{78} - 174q^{80} + 410q^{81} - 305q^{82} + 252q^{84} + 714q^{85} + 166q^{86} - 718q^{88} + 150q^{89} - 272q^{90} - 588q^{92} + 344q^{93} - 488q^{94} - 122q^{96} + 94q^{97} + 307q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/76\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(39\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.545551 1.92416i 0.272776 0.962078i
\(3\) 3.88623 2.24371i 1.29541 0.747905i 0.315802 0.948825i \(-0.397727\pi\)
0.979608 + 0.200920i \(0.0643932\pi\)
\(4\) −3.40475 2.09945i −0.851187 0.524863i
\(5\) −0.133773 0.231701i −0.0267546 0.0463403i 0.852338 0.522991i \(-0.175184\pi\)
−0.879093 + 0.476651i \(0.841851\pi\)
\(6\) −2.19712 8.70177i −0.366186 1.45029i
\(7\) 7.24937i 1.03562i 0.855495 + 0.517812i \(0.173253\pi\)
−0.855495 + 0.517812i \(0.826747\pi\)
\(8\) −5.89713 + 5.40590i −0.737142 + 0.675738i
\(9\) 5.56851 9.64495i 0.618724 1.07166i
\(10\) −0.518810 + 0.130995i −0.0518810 + 0.0130995i
\(11\) 11.7422i 1.06748i 0.845650 + 0.533738i \(0.179213\pi\)
−0.845650 + 0.533738i \(0.820787\pi\)
\(12\) −17.9422 0.519664i −1.49518 0.0433053i
\(13\) 4.17006 7.22276i 0.320774 0.555597i −0.659874 0.751376i \(-0.729390\pi\)
0.980648 + 0.195780i \(0.0627237\pi\)
\(14\) 13.9489 + 3.95490i 0.996350 + 0.282493i
\(15\) −1.03974 0.600297i −0.0693163 0.0400198i
\(16\) 7.18461 + 14.2962i 0.449038 + 0.893513i
\(17\) −7.11880 12.3301i −0.418753 0.725301i 0.577061 0.816701i \(-0.304199\pi\)
−0.995814 + 0.0913994i \(0.970866\pi\)
\(18\) −15.5205 15.9765i −0.862248 0.887583i
\(19\) −11.9609 14.7627i −0.629522 0.776983i
\(20\) −0.0309829 + 1.06973i −0.00154915 + 0.0534867i
\(21\) 16.2655 + 28.1727i 0.774548 + 1.34156i
\(22\) 22.5939 + 6.40599i 1.02699 + 0.291181i
\(23\) 21.4900 + 12.4073i 0.934349 + 0.539447i 0.888185 0.459487i \(-0.151967\pi\)
0.0461649 + 0.998934i \(0.485300\pi\)
\(24\) −10.7883 + 34.2401i −0.449513 + 1.42667i
\(25\) 12.4642 21.5886i 0.498568 0.863546i
\(26\) −11.6227 11.9642i −0.447028 0.460163i
\(27\) 9.58976i 0.355176i
\(28\) 15.2197 24.6823i 0.543560 0.881509i
\(29\) −25.7911 + 44.6716i −0.889350 + 1.54040i −0.0487047 + 0.998813i \(0.515509\pi\)
−0.840645 + 0.541586i \(0.817824\pi\)
\(30\) −1.72230 + 1.67314i −0.0574099 + 0.0557712i
\(31\) 26.3372i 0.849587i 0.905290 + 0.424793i \(0.139653\pi\)
−0.905290 + 0.424793i \(0.860347\pi\)
\(32\) 31.4277 6.02499i 0.982115 0.188281i
\(33\) 26.3462 + 45.6330i 0.798371 + 1.38282i
\(34\) −27.6087 + 6.97096i −0.812022 + 0.205028i
\(35\) 1.67969 0.969769i 0.0479911 0.0277077i
\(36\) −39.2085 + 21.1478i −1.08912 + 0.587439i
\(37\) −20.1243 −0.543901 −0.271950 0.962311i \(-0.587669\pi\)
−0.271950 + 0.962311i \(0.587669\pi\)
\(38\) −34.9310 + 14.9608i −0.919236 + 0.393707i
\(39\) 37.4257i 0.959634i
\(40\) 2.04143 + 0.643211i 0.0510358 + 0.0160803i
\(41\) −38.5881 66.8366i −0.941174 1.63016i −0.763237 0.646119i \(-0.776391\pi\)
−0.177937 0.984042i \(-0.556942\pi\)
\(42\) 63.0823 15.9277i 1.50196 0.379231i
\(43\) 30.0199 17.3320i 0.698138 0.403070i −0.108515 0.994095i \(-0.534610\pi\)
0.806654 + 0.591024i \(0.201276\pi\)
\(44\) 24.6522 39.9793i 0.560278 0.908621i
\(45\) −2.97967 −0.0662148
\(46\) 35.5975 34.5814i 0.773858 0.751769i
\(47\) −31.9968 18.4733i −0.680782 0.393050i 0.119367 0.992850i \(-0.461913\pi\)
−0.800150 + 0.599800i \(0.795247\pi\)
\(48\) 59.9976 + 39.4381i 1.24995 + 0.821627i
\(49\) −3.55331 −0.0725166
\(50\) −34.7400 35.7608i −0.694801 0.715216i
\(51\) −55.3306 31.9451i −1.08491 0.626375i
\(52\) −29.3618 + 15.8368i −0.564651 + 0.304554i
\(53\) −8.75934 + 15.1716i −0.165271 + 0.286257i −0.936751 0.349996i \(-0.886183\pi\)
0.771481 + 0.636253i \(0.219516\pi\)
\(54\) −18.4522 5.23171i −0.341707 0.0968835i
\(55\) 2.72069 1.57079i 0.0494672 0.0285599i
\(56\) −39.1894 42.7505i −0.699810 0.763402i
\(57\) −79.6061 30.5343i −1.39660 0.535689i
\(58\) 71.8847 + 73.9968i 1.23939 + 1.27581i
\(59\) −82.8741 + 47.8474i −1.40465 + 0.810973i −0.994865 0.101211i \(-0.967728\pi\)
−0.409781 + 0.912184i \(0.634395\pi\)
\(60\) 2.27977 + 4.22675i 0.0379962 + 0.0704458i
\(61\) 26.2074 45.3926i 0.429630 0.744141i −0.567210 0.823573i \(-0.691977\pi\)
0.996840 + 0.0794323i \(0.0253107\pi\)
\(62\) 50.6769 + 14.3683i 0.817369 + 0.231747i
\(63\) 69.9198 + 40.3682i 1.10984 + 0.640765i
\(64\) 5.55239 63.7587i 0.0867561 0.996230i
\(65\) −2.23136 −0.0343287
\(66\) 102.178 25.7991i 1.54815 0.390895i
\(67\) −11.8862 6.86248i −0.177405 0.102425i 0.408668 0.912683i \(-0.365994\pi\)
−0.586073 + 0.810258i \(0.699327\pi\)
\(68\) −1.64877 + 56.9265i −0.0242467 + 0.837155i
\(69\) 111.354 1.61382
\(70\) −0.949629 3.76104i −0.0135661 0.0537292i
\(71\) −39.7717 + 22.9622i −0.560164 + 0.323411i −0.753211 0.657778i \(-0.771496\pi\)
0.193047 + 0.981189i \(0.438163\pi\)
\(72\) 19.3014 + 86.9804i 0.268075 + 1.20806i
\(73\) 20.0638 + 34.7515i 0.274846 + 0.476048i 0.970096 0.242720i \(-0.0780397\pi\)
−0.695250 + 0.718768i \(0.744706\pi\)
\(74\) −10.9789 + 38.7223i −0.148363 + 0.523275i
\(75\) 111.865i 1.49153i
\(76\) 9.73035 + 75.3745i 0.128031 + 0.991770i
\(77\) −85.1238 −1.10550
\(78\) −72.0129 20.4176i −0.923242 0.261765i
\(79\) 106.053 61.2298i 1.34245 0.775061i 0.355279 0.934760i \(-0.384386\pi\)
0.987166 + 0.159699i \(0.0510524\pi\)
\(80\) 2.35134 3.57713i 0.0293918 0.0447141i
\(81\) 28.5999 + 49.5365i 0.353086 + 0.611562i
\(82\) −149.656 + 37.7868i −1.82507 + 0.460814i
\(83\) 108.436i 1.30645i −0.757163 0.653226i \(-0.773415\pi\)
0.757163 0.653226i \(-0.226585\pi\)
\(84\) 3.76723 130.070i 0.0448480 1.54845i
\(85\) −1.90461 + 3.29887i −0.0224071 + 0.0388103i
\(86\) −16.9721 67.2186i −0.197350 0.781611i
\(87\) 231.472i 2.66060i
\(88\) −63.4774 69.2455i −0.721334 0.786881i
\(89\) −26.2347 + 45.4398i −0.294772 + 0.510559i −0.974932 0.222504i \(-0.928577\pi\)
0.680160 + 0.733064i \(0.261910\pi\)
\(90\) −1.62556 + 5.73334i −0.0180618 + 0.0637038i
\(91\) 52.3604 + 30.2303i 0.575389 + 0.332201i
\(92\) −47.1197 87.3609i −0.512170 0.949575i
\(93\) 59.0932 + 102.352i 0.635410 + 1.10056i
\(94\) −53.0015 + 51.4886i −0.563845 + 0.547751i
\(95\) −1.82049 + 4.74621i −0.0191630 + 0.0499601i
\(96\) 108.617 93.9293i 1.13142 0.978430i
\(97\) 29.9055 + 51.7979i 0.308304 + 0.533999i 0.977992 0.208644i \(-0.0669051\pi\)
−0.669687 + 0.742643i \(0.733572\pi\)
\(98\) −1.93851 + 6.83712i −0.0197808 + 0.0697666i
\(99\) 113.253 + 65.3868i 1.14397 + 0.660473i
\(100\) −87.7618 + 47.3359i −0.877618 + 0.473359i
\(101\) 29.2672 50.6923i 0.289774 0.501904i −0.683981 0.729499i \(-0.739753\pi\)
0.973756 + 0.227596i \(0.0730864\pi\)
\(102\) −91.6530 + 89.0369i −0.898559 + 0.872911i
\(103\) 102.670i 0.996798i 0.866948 + 0.498399i \(0.166078\pi\)
−0.866948 + 0.498399i \(0.833922\pi\)
\(104\) 14.4541 + 65.1365i 0.138982 + 0.626313i
\(105\) 4.35177 7.53749i 0.0414454 0.0717856i
\(106\) 24.4139 + 25.1312i 0.230320 + 0.237087i
\(107\) 17.8502i 0.166825i 0.996515 + 0.0834123i \(0.0265818\pi\)
−0.996515 + 0.0834123i \(0.973418\pi\)
\(108\) −20.1332 + 32.6507i −0.186419 + 0.302321i
\(109\) −96.3984 166.967i −0.884389 1.53181i −0.846412 0.532529i \(-0.821242\pi\)
−0.0379776 0.999279i \(-0.512092\pi\)
\(110\) −1.53817 6.09199i −0.0139834 0.0553817i
\(111\) −78.2077 + 45.1533i −0.704574 + 0.406786i
\(112\) −103.638 + 52.0839i −0.925343 + 0.465035i
\(113\) 191.548 1.69512 0.847558 0.530702i \(-0.178072\pi\)
0.847558 + 0.530702i \(0.178072\pi\)
\(114\) −102.182 + 136.516i −0.896332 + 1.19751i
\(115\) 6.63903i 0.0577307i
\(116\) 181.598 97.9482i 1.56550 0.844381i
\(117\) −46.4421 80.4400i −0.396941 0.687522i
\(118\) 46.8537 + 185.566i 0.397066 + 1.57259i
\(119\) 89.3856 51.6068i 0.751139 0.433670i
\(120\) 9.37666 2.08073i 0.0781388 0.0173394i
\(121\) −16.8801 −0.139505
\(122\) −73.0449 75.1911i −0.598728 0.616321i
\(123\) −299.925 173.162i −2.43841 1.40782i
\(124\) 55.2937 89.6715i 0.445917 0.723157i
\(125\) −13.3581 −0.106865
\(126\) 115.820 112.514i 0.919202 0.892965i
\(127\) 51.3632 + 29.6546i 0.404435 + 0.233501i 0.688396 0.725335i \(-0.258315\pi\)
−0.283961 + 0.958836i \(0.591649\pi\)
\(128\) −119.653 45.4673i −0.934785 0.355213i
\(129\) 77.7763 134.712i 0.602917 1.04428i
\(130\) −1.21732 + 4.29349i −0.00936403 + 0.0330269i
\(131\) 25.3061 14.6105i 0.193177 0.111531i −0.400292 0.916388i \(-0.631091\pi\)
0.593469 + 0.804857i \(0.297758\pi\)
\(132\) 6.10201 210.681i 0.0462274 1.59607i
\(133\) 107.020 86.7090i 0.804662 0.651947i
\(134\) −19.6890 + 19.1270i −0.146933 + 0.142739i
\(135\) −2.22196 + 1.28285i −0.0164590 + 0.00950260i
\(136\) 108.636 + 34.2288i 0.798794 + 0.251683i
\(137\) 2.83485 4.91011i 0.0206924 0.0358402i −0.855494 0.517813i \(-0.826746\pi\)
0.876186 + 0.481973i \(0.160080\pi\)
\(138\) 60.7491 214.262i 0.440211 1.55262i
\(139\) 43.5024 + 25.1161i 0.312967 + 0.180692i 0.648253 0.761425i \(-0.275500\pi\)
−0.335286 + 0.942116i \(0.608833\pi\)
\(140\) −7.75490 0.224607i −0.0553921 0.00160433i
\(141\) −165.796 −1.17586
\(142\) 22.4853 + 89.0539i 0.158347 + 0.627140i
\(143\) 84.8113 + 48.9658i 0.593086 + 0.342418i
\(144\) 177.894 + 10.3134i 1.23537 + 0.0716208i
\(145\) 13.8006 0.0951768
\(146\) 77.8131 19.6471i 0.532966 0.134569i
\(147\) −13.8090 + 7.97262i −0.0939387 + 0.0542355i
\(148\) 68.5183 + 42.2500i 0.462961 + 0.285473i
\(149\) 81.0049 + 140.305i 0.543657 + 0.941642i 0.998690 + 0.0511672i \(0.0162941\pi\)
−0.455033 + 0.890475i \(0.650373\pi\)
\(150\) −215.245 61.0278i −1.43496 0.406852i
\(151\) 123.556i 0.818250i −0.912478 0.409125i \(-0.865834\pi\)
0.912478 0.409125i \(-0.134166\pi\)
\(152\) 150.341 + 22.3980i 0.989084 + 0.147355i
\(153\) −158.565 −1.03637
\(154\) −46.4394 + 163.791i −0.301554 + 1.06358i
\(155\) 6.10237 3.52320i 0.0393701 0.0227303i
\(156\) −78.5734 + 127.425i −0.503676 + 0.816828i
\(157\) −115.986 200.893i −0.738763 1.27958i −0.953052 0.302806i \(-0.902077\pi\)
0.214289 0.976770i \(-0.431257\pi\)
\(158\) −59.9582 237.467i −0.379483 1.50295i
\(159\) 78.6138i 0.494427i
\(160\) −5.60017 6.47586i −0.0350011 0.0404741i
\(161\) −89.9449 + 155.789i −0.558664 + 0.967635i
\(162\) 110.919 28.0060i 0.684683 0.172876i
\(163\) 72.2434i 0.443211i −0.975136 0.221606i \(-0.928870\pi\)
0.975136 0.221606i \(-0.0711298\pi\)
\(164\) −8.93734 + 308.576i −0.0544960 + 1.88156i
\(165\) 7.04882 12.2089i 0.0427201 0.0739935i
\(166\) −208.647 59.1572i −1.25691 0.356369i
\(167\) −101.024 58.3264i −0.604936 0.349260i 0.166045 0.986118i \(-0.446900\pi\)
−0.770981 + 0.636858i \(0.780234\pi\)
\(168\) −248.219 78.2084i −1.47749 0.465526i
\(169\) 49.7212 + 86.1196i 0.294208 + 0.509584i
\(170\) 5.30848 + 5.46446i 0.0312264 + 0.0321439i
\(171\) −208.990 + 33.1562i −1.22216 + 0.193896i
\(172\) −138.598 4.01425i −0.805803 0.0233386i
\(173\) 66.5048 + 115.190i 0.384421 + 0.665836i 0.991689 0.128661i \(-0.0410679\pi\)
−0.607268 + 0.794497i \(0.707735\pi\)
\(174\) 445.388 + 126.280i 2.55970 + 0.725746i
\(175\) 156.504 + 90.3576i 0.894309 + 0.516329i
\(176\) −167.869 + 84.3634i −0.953803 + 0.479337i
\(177\) −214.712 + 371.892i −1.21306 + 2.10108i
\(178\) 73.1208 + 75.2693i 0.410791 + 0.422861i
\(179\) 99.3625i 0.555098i 0.960711 + 0.277549i \(0.0895221\pi\)
−0.960711 + 0.277549i \(0.910478\pi\)
\(180\) 10.1450 + 6.25566i 0.0563612 + 0.0347537i
\(181\) −21.9433 + 38.0069i −0.121234 + 0.209983i −0.920254 0.391321i \(-0.872018\pi\)
0.799021 + 0.601303i \(0.205352\pi\)
\(182\) 86.7331 84.2574i 0.476555 0.462953i
\(183\) 235.208i 1.28529i
\(184\) −193.802 + 43.0057i −1.05327 + 0.233727i
\(185\) 2.69209 + 4.66284i 0.0145518 + 0.0252045i
\(186\) 229.180 57.8659i 1.23215 0.311107i
\(187\) 144.783 83.5906i 0.774242 0.447009i
\(188\) 70.1570 + 130.073i 0.373176 + 0.691876i
\(189\) 69.5197 0.367829
\(190\) 8.13927 + 6.09220i 0.0428383 + 0.0320642i
\(191\) 63.2363i 0.331080i 0.986203 + 0.165540i \(0.0529367\pi\)
−0.986203 + 0.165540i \(0.947063\pi\)
\(192\) −121.478 260.239i −0.632700 1.35541i
\(193\) 23.1161 + 40.0383i 0.119773 + 0.207452i 0.919678 0.392674i \(-0.128450\pi\)
−0.799905 + 0.600127i \(0.795117\pi\)
\(194\) 115.982 29.2845i 0.597846 0.150951i
\(195\) −8.67159 + 5.00655i −0.0444697 + 0.0256746i
\(196\) 12.0981 + 7.46001i 0.0617252 + 0.0380613i
\(197\) 76.2113 0.386859 0.193430 0.981114i \(-0.438039\pi\)
0.193430 + 0.981114i \(0.438039\pi\)
\(198\) 187.600 182.245i 0.947474 0.920429i
\(199\) −89.6573 51.7637i −0.450539 0.260119i 0.257519 0.966273i \(-0.417095\pi\)
−0.708058 + 0.706154i \(0.750428\pi\)
\(200\) 43.2030 + 194.691i 0.216015 + 0.973457i
\(201\) −61.5898 −0.306417
\(202\) −81.5731 83.9699i −0.403827 0.415693i
\(203\) −323.841 186.969i −1.59527 0.921032i
\(204\) 121.319 + 224.929i 0.594703 + 1.10259i
\(205\) −10.3241 + 17.8819i −0.0503614 + 0.0872285i
\(206\) 197.553 + 56.0118i 0.958997 + 0.271902i
\(207\) 239.335 138.180i 1.15621 0.667537i
\(208\) 133.218 + 7.72333i 0.640472 + 0.0371314i
\(209\) 173.347 140.448i 0.829411 0.671999i
\(210\) −12.1292 12.4856i −0.0577580 0.0594551i
\(211\) 107.264 61.9287i 0.508359 0.293501i −0.223800 0.974635i \(-0.571846\pi\)
0.732159 + 0.681134i \(0.238513\pi\)
\(212\) 61.6754 33.2657i 0.290922 0.156914i
\(213\) −103.041 + 178.473i −0.483761 + 0.837899i
\(214\) 34.3466 + 9.73822i 0.160498 + 0.0455057i
\(215\) −8.03171 4.63711i −0.0373568 0.0215680i
\(216\) 51.8413 + 56.5521i 0.240006 + 0.261815i
\(217\) −190.928 −0.879852
\(218\) −373.861 + 94.3965i −1.71496 + 0.433012i
\(219\) 155.945 + 90.0348i 0.712077 + 0.411118i
\(220\) −12.5611 0.363809i −0.0570958 0.00165368i
\(221\) −118.743 −0.537300
\(222\) 44.2155 + 175.117i 0.199169 + 0.788817i
\(223\) −189.587 + 109.458i −0.850167 + 0.490844i −0.860707 0.509100i \(-0.829978\pi\)
0.0105403 + 0.999944i \(0.496645\pi\)
\(224\) 43.6774 + 227.831i 0.194988 + 1.01710i
\(225\) −138.814 240.433i −0.616952 1.06859i
\(226\) 104.499 368.568i 0.462387 1.63083i
\(227\) 116.805i 0.514558i −0.966337 0.257279i \(-0.917174\pi\)
0.966337 0.257279i \(-0.0828260\pi\)
\(228\) 206.933 + 271.091i 0.907602 + 1.18899i
\(229\) 162.657 0.710291 0.355145 0.934811i \(-0.384431\pi\)
0.355145 + 0.934811i \(0.384431\pi\)
\(230\) −12.7745 3.62193i −0.0555414 0.0157475i
\(231\) −330.810 + 190.993i −1.43208 + 0.826812i
\(232\) −89.3964 402.859i −0.385329 1.73646i
\(233\) 144.534 + 250.340i 0.620316 + 1.07442i 0.989427 + 0.145034i \(0.0463290\pi\)
−0.369111 + 0.929385i \(0.620338\pi\)
\(234\) −180.116 + 45.4776i −0.769725 + 0.194349i
\(235\) 9.88493i 0.0420635i
\(236\) 382.619 + 11.0819i 1.62127 + 0.0469571i
\(237\) 274.765 475.906i 1.15934 2.00804i
\(238\) −50.5351 200.146i −0.212332 0.840949i
\(239\) 283.451i 1.18599i 0.805208 + 0.592993i \(0.202054\pi\)
−0.805208 + 0.592993i \(0.797946\pi\)
\(240\) 1.11180 19.1773i 0.00463252 0.0799054i
\(241\) 224.651 389.108i 0.932164 1.61456i 0.152549 0.988296i \(-0.451252\pi\)
0.779615 0.626259i \(-0.215415\pi\)
\(242\) −9.20896 + 32.4799i −0.0380535 + 0.134215i
\(243\) 297.037 + 171.494i 1.22237 + 0.705737i
\(244\) −184.529 + 99.5291i −0.756267 + 0.407906i
\(245\) 0.475337 + 0.823308i 0.00194015 + 0.00336044i
\(246\) −496.814 + 482.633i −2.01957 + 1.96192i
\(247\) −156.505 + 24.8295i −0.633623 + 0.100524i
\(248\) −142.376 155.314i −0.574098 0.626266i
\(249\) −243.299 421.405i −0.977103 1.69239i
\(250\) −7.28755 + 25.7031i −0.0291502 + 0.102813i
\(251\) −59.8145 34.5339i −0.238305 0.137585i 0.376093 0.926582i \(-0.377267\pi\)
−0.614397 + 0.788997i \(0.710601\pi\)
\(252\) −153.308 284.237i −0.608365 1.12792i
\(253\) −145.689 + 252.341i −0.575847 + 0.997396i
\(254\) 85.0813 82.6527i 0.334966 0.325405i
\(255\) 17.0936i 0.0670336i
\(256\) −152.763 + 205.425i −0.596730 + 0.802442i
\(257\) 55.5635 96.2387i 0.216200 0.374470i −0.737443 0.675409i \(-0.763967\pi\)
0.953643 + 0.300940i \(0.0973003\pi\)
\(258\) −216.777 223.146i −0.840220 0.864907i
\(259\) 145.889i 0.563277i
\(260\) 7.59723 + 4.68464i 0.0292201 + 0.0180179i
\(261\) 287.237 + 497.509i 1.10052 + 1.90616i
\(262\) −14.3071 56.6637i −0.0546072 0.216274i
\(263\) −168.328 + 97.1841i −0.640030 + 0.369521i −0.784626 0.619969i \(-0.787145\pi\)
0.144596 + 0.989491i \(0.453812\pi\)
\(264\) −402.055 126.679i −1.52294 0.479844i
\(265\) 4.68705 0.0176870
\(266\) −108.457 253.227i −0.407732 0.951983i
\(267\) 235.453i 0.881845i
\(268\) 26.0620 + 48.3194i 0.0972461 + 0.180296i
\(269\) −122.994 213.032i −0.457226 0.791939i 0.541587 0.840645i \(-0.317824\pi\)
−0.998813 + 0.0487054i \(0.984490\pi\)
\(270\) 1.25621 + 4.97526i 0.00465263 + 0.0184269i
\(271\) 361.577 208.757i 1.33423 0.770320i 0.348287 0.937388i \(-0.386763\pi\)
0.985945 + 0.167068i \(0.0534300\pi\)
\(272\) 125.128 190.359i 0.460030 0.699849i
\(273\) 271.313 0.993819
\(274\) −7.90126 8.13342i −0.0288367 0.0296840i
\(275\) 253.499 + 146.358i 0.921814 + 0.532210i
\(276\) −379.131 233.781i −1.37366 0.847034i
\(277\) −408.968 −1.47642 −0.738209 0.674572i \(-0.764328\pi\)
−0.738209 + 0.674572i \(0.764328\pi\)
\(278\) 72.0602 70.0033i 0.259209 0.251810i
\(279\) 254.021 + 146.659i 0.910469 + 0.525660i
\(280\) −4.66287 + 14.7991i −0.0166531 + 0.0528539i
\(281\) 39.1063 67.7340i 0.139168 0.241046i −0.788014 0.615658i \(-0.788890\pi\)
0.927182 + 0.374611i \(0.122224\pi\)
\(282\) −90.4500 + 319.017i −0.320745 + 1.13126i
\(283\) −101.132 + 58.3887i −0.357357 + 0.206320i −0.667921 0.744232i \(-0.732816\pi\)
0.310563 + 0.950553i \(0.399482\pi\)
\(284\) 183.620 + 5.31824i 0.646551 + 0.0187262i
\(285\) 3.57430 + 22.5295i 0.0125414 + 0.0790509i
\(286\) 140.487 136.477i 0.491213 0.477191i
\(287\) 484.523 279.739i 1.68823 0.974702i
\(288\) 116.895 336.669i 0.405885 1.16899i
\(289\) 43.1454 74.7300i 0.149292 0.258581i
\(290\) 7.52895 26.5546i 0.0259619 0.0915674i
\(291\) 232.439 + 134.199i 0.798761 + 0.461165i
\(292\) 4.64694 160.443i 0.0159142 0.549462i
\(293\) 121.092 0.413284 0.206642 0.978417i \(-0.433746\pi\)
0.206642 + 0.978417i \(0.433746\pi\)
\(294\) 7.80705 + 30.9201i 0.0265546 + 0.105170i
\(295\) 22.1726 + 12.8014i 0.0751614 + 0.0433945i
\(296\) 118.676 108.790i 0.400932 0.367534i
\(297\) 112.605 0.379142
\(298\) 314.160 79.3227i 1.05423 0.266183i
\(299\) 179.230 103.478i 0.599430 0.346081i
\(300\) −234.854 + 380.870i −0.782847 + 1.26957i
\(301\) 125.646 + 217.626i 0.417429 + 0.723009i
\(302\) −237.740 67.4060i −0.787220 0.223199i
\(303\) 262.669i 0.866895i
\(304\) 125.116 277.060i 0.411565 0.911380i
\(305\) −14.0234 −0.0459783
\(306\) −86.5051 + 305.103i −0.282696 + 0.997068i
\(307\) −459.430 + 265.252i −1.49652 + 0.864013i −0.999992 0.00401001i \(-0.998724\pi\)
−0.496523 + 0.868023i \(0.665390\pi\)
\(308\) 289.825 + 178.713i 0.940990 + 0.580238i
\(309\) 230.363 + 399.000i 0.745510 + 1.29126i
\(310\) −3.45004 13.6640i −0.0111291 0.0440774i
\(311\) 54.0586i 0.173822i 0.996216 + 0.0869109i \(0.0276995\pi\)
−0.996216 + 0.0869109i \(0.972300\pi\)
\(312\) 202.320 + 220.704i 0.648461 + 0.707386i
\(313\) 157.796 273.310i 0.504139 0.873195i −0.495849 0.868409i \(-0.665143\pi\)
0.999989 0.00478603i \(-0.00152345\pi\)
\(314\) −449.826 + 113.577i −1.43257 + 0.361711i
\(315\) 21.6007i 0.0685736i
\(316\) −489.633 14.1814i −1.54947 0.0448777i
\(317\) −140.142 + 242.732i −0.442087 + 0.765717i −0.997844 0.0656277i \(-0.979095\pi\)
0.555757 + 0.831345i \(0.312428\pi\)
\(318\) 151.265 + 42.8879i 0.475677 + 0.134868i
\(319\) −524.544 302.846i −1.64434 0.949360i
\(320\) −15.5157 + 7.24269i −0.0484867 + 0.0226334i
\(321\) 40.0508 + 69.3701i 0.124769 + 0.216106i
\(322\) 250.693 + 258.059i 0.778550 + 0.801425i
\(323\) −96.8783 + 252.572i −0.299933 + 0.781957i
\(324\) 6.62399 228.704i 0.0204444 0.705875i
\(325\) −103.953 180.052i −0.319855 0.554006i
\(326\) −139.008 39.4125i −0.426404 0.120897i
\(327\) −749.253 432.581i −2.29129 1.32288i
\(328\) 588.872 + 185.541i 1.79534 + 0.565673i
\(329\) 133.920 231.956i 0.407052 0.705034i
\(330\) −19.6464 20.2236i −0.0595344 0.0612837i
\(331\) 443.490i 1.33985i 0.742429 + 0.669924i \(0.233673\pi\)
−0.742429 + 0.669924i \(0.766327\pi\)
\(332\) −227.655 + 369.196i −0.685708 + 1.11204i
\(333\) −112.063 + 194.098i −0.336524 + 0.582877i
\(334\) −167.343 + 162.566i −0.501027 + 0.486725i
\(335\) 3.67206i 0.0109614i
\(336\) −285.901 + 434.945i −0.850896 + 1.29448i
\(337\) 94.1888 + 163.140i 0.279492 + 0.484094i 0.971259 0.238027i \(-0.0765007\pi\)
−0.691767 + 0.722121i \(0.743167\pi\)
\(338\) 192.833 48.6886i 0.570512 0.144049i
\(339\) 744.400 429.779i 2.19587 1.26779i
\(340\) 13.4105 7.23320i 0.0394427 0.0212741i
\(341\) −309.258 −0.906914
\(342\) −50.2170 + 420.217i −0.146833 + 1.22871i
\(343\) 329.460i 0.960524i
\(344\) −83.3364 + 264.494i −0.242257 + 0.768879i
\(345\) −14.8961 25.8008i −0.0431771 0.0747849i
\(346\) 257.925 65.1237i 0.745447 0.188219i
\(347\) −468.604 + 270.549i −1.35044 + 0.779679i −0.988312 0.152447i \(-0.951285\pi\)
−0.362132 + 0.932127i \(0.617951\pi\)
\(348\) 485.964 788.104i 1.39645 2.26467i
\(349\) 39.0675 0.111941 0.0559706 0.998432i \(-0.482175\pi\)
0.0559706 + 0.998432i \(0.482175\pi\)
\(350\) 259.243 251.843i 0.740694 0.719552i
\(351\) −69.2645 39.9899i −0.197335 0.113931i
\(352\) 70.7469 + 369.031i 0.200985 + 1.04838i
\(353\) −389.987 −1.10478 −0.552389 0.833586i \(-0.686284\pi\)
−0.552389 + 0.833586i \(0.686284\pi\)
\(354\) 598.441 + 616.025i 1.69051 + 1.74018i
\(355\) 10.6407 + 6.14344i 0.0299739 + 0.0173055i
\(356\) 184.721 99.6326i 0.518879 0.279867i
\(357\) 231.582 401.112i 0.648689 1.12356i
\(358\) 191.189 + 54.2074i 0.534047 + 0.151417i
\(359\) 475.099 274.299i 1.32340 0.764063i 0.339127 0.940740i \(-0.389868\pi\)
0.984269 + 0.176677i \(0.0565349\pi\)
\(360\) 17.5715 16.1078i 0.0488097 0.0447439i
\(361\) −74.8733 + 353.150i −0.207405 + 0.978255i
\(362\) 61.1600 + 62.9570i 0.168950 + 0.173914i
\(363\) −65.5999 + 37.8741i −0.180716 + 0.104336i
\(364\) −114.807 212.855i −0.315404 0.584766i
\(365\) 5.36798 9.29762i 0.0147068 0.0254729i
\(366\) −452.577 128.318i −1.23655 0.350596i
\(367\) −193.800 111.891i −0.528066 0.304879i 0.212163 0.977234i \(-0.431949\pi\)
−0.740228 + 0.672355i \(0.765283\pi\)
\(368\) −22.9794 + 396.367i −0.0624441 + 1.07709i
\(369\) −859.514 −2.32931
\(370\) 10.4407 2.63618i 0.0282181 0.00712482i
\(371\) −109.985 63.4996i −0.296454 0.171158i
\(372\) 13.6865 472.547i 0.0367916 1.27029i
\(373\) −655.054 −1.75618 −0.878089 0.478498i \(-0.841182\pi\)
−0.878089 + 0.478498i \(0.841182\pi\)
\(374\) −81.8547 324.188i −0.218863 0.866814i
\(375\) −51.9128 + 29.9719i −0.138434 + 0.0799250i
\(376\) 288.554 64.0317i 0.767432 0.170297i
\(377\) 215.101 + 372.566i 0.570561 + 0.988240i
\(378\) 37.9266 133.767i 0.100335 0.353880i
\(379\) 205.788i 0.542977i 0.962442 + 0.271488i \(0.0875159\pi\)
−0.962442 + 0.271488i \(0.912484\pi\)
\(380\) 16.1627 12.3376i 0.0425335 0.0324674i
\(381\) 266.146 0.698545
\(382\) 121.676 + 34.4987i 0.318525 + 0.0903106i
\(383\) −107.827 + 62.2538i −0.281532 + 0.162542i −0.634117 0.773237i \(-0.718636\pi\)
0.352585 + 0.935780i \(0.385303\pi\)
\(384\) −567.013 + 91.7698i −1.47660 + 0.238984i
\(385\) 11.3873 + 19.7233i 0.0295773 + 0.0512294i
\(386\) 89.6510 22.6361i 0.232256 0.0586427i
\(387\) 386.054i 0.997557i
\(388\) 6.92637 239.144i 0.0178515 0.616350i
\(389\) 210.874 365.244i 0.542092 0.938932i −0.456691 0.889625i \(-0.650966\pi\)
0.998784 0.0493064i \(-0.0157011\pi\)
\(390\) 4.90257 + 19.4168i 0.0125707 + 0.0497867i
\(391\) 353.300i 0.903580i
\(392\) 20.9544 19.2089i 0.0534550 0.0490022i
\(393\) 65.5636 113.560i 0.166829 0.288956i
\(394\) 41.5772 146.642i 0.105526 0.372189i
\(395\) −28.3741 16.3818i −0.0718331 0.0414729i
\(396\) −248.322 460.395i −0.627077 1.16261i
\(397\) 312.624 + 541.481i 0.787467 + 1.36393i 0.927514 + 0.373788i \(0.121941\pi\)
−0.140047 + 0.990145i \(0.544725\pi\)
\(398\) −148.514 + 144.275i −0.373151 + 0.362500i
\(399\) 221.354 577.094i 0.554772 1.44635i
\(400\) 398.186 + 23.0849i 0.995465 + 0.0577121i
\(401\) 61.9807 + 107.354i 0.154565 + 0.267715i 0.932901 0.360134i \(-0.117269\pi\)
−0.778335 + 0.627849i \(0.783936\pi\)
\(402\) −33.6004 + 118.508i −0.0835831 + 0.294797i
\(403\) 190.227 + 109.828i 0.472028 + 0.272525i
\(404\) −206.073 + 111.149i −0.510083 + 0.275122i
\(405\) 7.65179 13.2533i 0.0188933 0.0327242i
\(406\) −536.430 + 521.118i −1.32126 + 1.28354i
\(407\) 236.305i 0.580601i
\(408\) 498.984 110.727i 1.22300 0.271390i
\(409\) −50.9014 + 88.1639i −0.124453 + 0.215560i −0.921519 0.388333i \(-0.873051\pi\)
0.797066 + 0.603893i \(0.206384\pi\)
\(410\) 28.7751 + 29.6206i 0.0701833 + 0.0722454i
\(411\) 25.4424i 0.0619037i
\(412\) 215.551 349.566i 0.523182 0.848461i
\(413\) −346.863 600.785i −0.839863 1.45468i
\(414\) −135.311 535.902i −0.326837 1.29445i
\(415\) −25.1247 + 14.5057i −0.0605414 + 0.0349536i
\(416\) 87.5383 252.119i 0.210429 0.606056i
\(417\) 225.414 0.540561
\(418\) −175.674 410.168i −0.420272 0.981263i
\(419\) 155.139i 0.370261i 0.982714 + 0.185130i \(0.0592708\pi\)
−0.982714 + 0.185130i \(0.940729\pi\)
\(420\) −30.6413 + 16.5269i −0.0729554 + 0.0393498i
\(421\) 114.921 + 199.049i 0.272972 + 0.472802i 0.969621 0.244610i \(-0.0786600\pi\)
−0.696649 + 0.717412i \(0.745327\pi\)
\(422\) −60.6426 240.177i −0.143703 0.569140i
\(423\) −356.349 + 205.738i −0.842432 + 0.486379i
\(424\) −30.3613 136.821i −0.0716069 0.322692i
\(425\) −354.921 −0.835108
\(426\) 287.195 + 295.633i 0.674166 + 0.693975i
\(427\) 329.067 + 189.987i 0.770650 + 0.444935i
\(428\) 37.4757 60.7755i 0.0875600 0.141999i
\(429\) 439.461 1.02439
\(430\) −13.3042 + 12.9245i −0.0309401 + 0.0300569i
\(431\) −21.9723 12.6857i −0.0509799 0.0294333i 0.474293 0.880367i \(-0.342704\pi\)
−0.525273 + 0.850934i \(0.676037\pi\)
\(432\) 137.097 68.8987i 0.317355 0.159488i
\(433\) −325.392 + 563.595i −0.751482 + 1.30160i 0.195623 + 0.980679i \(0.437327\pi\)
−0.947104 + 0.320926i \(0.896006\pi\)
\(434\) −104.161 + 367.375i −0.240002 + 0.846486i
\(435\) 53.6324 30.9647i 0.123293 0.0711832i
\(436\) −22.3267 + 770.864i −0.0512080 + 1.76804i
\(437\) −73.8757 465.653i −0.169052 1.06557i
\(438\) 258.317 250.944i 0.589765 0.572931i
\(439\) −582.157 + 336.108i −1.32610 + 0.765623i −0.984694 0.174294i \(-0.944236\pi\)
−0.341404 + 0.939917i \(0.610902\pi\)
\(440\) −7.55274 + 23.9710i −0.0171653 + 0.0544795i
\(441\) −19.7867 + 34.2715i −0.0448677 + 0.0777132i
\(442\) −64.7806 + 228.481i −0.146562 + 0.516924i
\(443\) 98.6335 + 56.9461i 0.222649 + 0.128546i 0.607176 0.794567i \(-0.292302\pi\)
−0.384527 + 0.923114i \(0.625636\pi\)
\(444\) 361.075 + 10.4579i 0.813231 + 0.0235538i
\(445\) 14.0380 0.0315460
\(446\) 107.185 + 424.510i 0.240325 + 0.951817i
\(447\) 629.607 + 363.504i 1.40852 + 0.813208i
\(448\) 462.210 + 40.2513i 1.03172 + 0.0898467i
\(449\) 96.0975 0.214026 0.107013 0.994258i \(-0.465871\pi\)
0.107013 + 0.994258i \(0.465871\pi\)
\(450\) −538.361 + 135.931i −1.19636 + 0.302070i
\(451\) 784.811 453.111i 1.74016 1.00468i
\(452\) −652.173 402.146i −1.44286 0.889703i
\(453\) −277.224 480.166i −0.611973 1.05997i
\(454\) −224.750 63.7230i −0.495045 0.140359i
\(455\) 16.1760i 0.0355516i
\(456\) 634.513 250.278i 1.39148 0.548855i
\(457\) 526.215 1.15146 0.575728 0.817641i \(-0.304719\pi\)
0.575728 + 0.817641i \(0.304719\pi\)
\(458\) 88.7375 312.977i 0.193750 0.683355i
\(459\) −118.243 + 68.2676i −0.257610 + 0.148731i
\(460\) −13.9383 + 22.6042i −0.0303007 + 0.0491396i
\(461\) −243.622 421.966i −0.528464 0.915327i −0.999449 0.0331859i \(-0.989435\pi\)
0.470985 0.882141i \(-0.343899\pi\)
\(462\) 187.027 + 740.727i 0.404820 + 1.60331i
\(463\) 151.027i 0.326193i 0.986610 + 0.163096i \(0.0521481\pi\)
−0.986610 + 0.163096i \(0.947852\pi\)
\(464\) −823.933 47.7676i −1.77572 0.102947i
\(465\) 15.8101 27.3839i 0.0340003 0.0588902i
\(466\) 560.543 141.532i 1.20288 0.303717i
\(467\) 211.728i 0.453379i −0.973967 0.226690i \(-0.927210\pi\)
0.973967 0.226690i \(-0.0727903\pi\)
\(468\) −10.7564 + 371.381i −0.0229837 + 0.793549i
\(469\) 49.7486 86.1672i 0.106074 0.183725i
\(470\) 19.0201 + 5.39274i 0.0404684 + 0.0114739i
\(471\) −901.495 520.478i −1.91400 1.10505i
\(472\) 230.061 730.172i 0.487418 1.54697i
\(473\) 203.517 + 352.501i 0.430268 + 0.745246i
\(474\) −765.819 788.321i −1.61565 1.66312i
\(475\) −467.789 + 74.2147i −0.984820 + 0.156241i
\(476\) −412.681 11.9526i −0.866977 0.0251104i
\(477\) 97.5530 + 168.967i 0.204514 + 0.354228i
\(478\) 545.403 + 154.637i 1.14101 + 0.323508i
\(479\) 88.5573 + 51.1286i 0.184879 + 0.106740i 0.589583 0.807708i \(-0.299292\pi\)
−0.404704 + 0.914448i \(0.632625\pi\)
\(480\) −36.2935 12.6015i −0.0756115 0.0262531i
\(481\) −83.9197 + 145.353i −0.174469 + 0.302190i
\(482\) −626.145 644.543i −1.29906 1.33723i
\(483\) 807.243i 1.67131i
\(484\) 57.4724 + 35.4389i 0.118745 + 0.0732209i
\(485\) 8.00110 13.8583i 0.0164971 0.0285738i
\(486\) 492.030 477.986i 1.01241 0.983509i
\(487\) 15.7559i 0.0323530i 0.999869 + 0.0161765i \(0.00514936\pi\)
−0.999869 + 0.0161765i \(0.994851\pi\)
\(488\) 90.8393 + 409.361i 0.186146 + 0.838854i
\(489\) −162.094 280.755i −0.331480 0.574140i
\(490\) 1.84349 0.465465i 0.00376223 0.000949930i
\(491\) −181.944 + 105.045i −0.370558 + 0.213942i −0.673702 0.739003i \(-0.735297\pi\)
0.303144 + 0.952945i \(0.401964\pi\)
\(492\) 657.623 + 1219.25i 1.33663 + 2.47815i
\(493\) 734.408 1.48967
\(494\) −37.6057 + 314.686i −0.0761249 + 0.637015i
\(495\) 34.9879i 0.0706827i
\(496\) −376.522 + 189.222i −0.759117 + 0.381497i
\(497\) −166.461 288.319i −0.334932 0.580119i
\(498\) −943.581 + 238.246i −1.89474 + 0.478405i
\(499\) 208.860 120.586i 0.418558 0.241655i −0.275902 0.961186i \(-0.588977\pi\)
0.694460 + 0.719531i \(0.255643\pi\)
\(500\) 45.4811 + 28.0448i 0.0909622 + 0.0560895i
\(501\) −523.471 −1.04485
\(502\) −99.0805 + 96.2524i −0.197372 + 0.191738i
\(503\) −8.31936 4.80318i −0.0165395 0.00954908i 0.491707 0.870760i \(-0.336373\pi\)
−0.508247 + 0.861211i \(0.669706\pi\)
\(504\) −630.553 + 139.923i −1.25110 + 0.277625i
\(505\) −15.6606 −0.0310112
\(506\) 406.063 + 417.994i 0.802495 + 0.826074i
\(507\) 386.456 + 223.120i 0.762240 + 0.440080i
\(508\) −112.621 208.801i −0.221694 0.411025i
\(509\) 66.9546 115.969i 0.131541 0.227836i −0.792730 0.609574i \(-0.791341\pi\)
0.924271 + 0.381737i \(0.124674\pi\)
\(510\) 32.8907 + 9.32542i 0.0644915 + 0.0182851i
\(511\) −251.926 + 145.450i −0.493007 + 0.284637i
\(512\) 311.930 + 406.009i 0.609239 + 0.792987i
\(513\) −141.571 + 114.702i −0.275966 + 0.223591i
\(514\) −154.866 159.416i −0.301295 0.310148i
\(515\) 23.7888 13.7345i 0.0461919 0.0266689i
\(516\) −547.631 + 295.374i −1.06130 + 0.572431i
\(517\) 216.918 375.714i 0.419571 0.726719i
\(518\) −280.712 79.5897i −0.541916 0.153648i
\(519\) 516.906 + 298.436i 0.995964 + 0.575020i
\(520\) 13.1587 12.0625i 0.0253051 0.0231972i
\(521\) 869.670 1.66923 0.834616 0.550832i \(-0.185689\pi\)
0.834616 + 0.550832i \(0.185689\pi\)
\(522\) 1113.99 281.272i 2.13407 0.538834i
\(523\) −775.040 447.469i −1.48191 0.855582i −0.482122 0.876104i \(-0.660134\pi\)
−0.999789 + 0.0205217i \(0.993467\pi\)
\(524\) −116.835 3.38392i −0.222968 0.00645786i
\(525\) 810.947 1.54466
\(526\) 95.1659 + 376.908i 0.180924 + 0.716555i
\(527\) 324.741 187.489i 0.616207 0.355767i
\(528\) −463.091 + 704.506i −0.877067 + 1.33429i
\(529\) 43.3812 + 75.1384i 0.0820060 + 0.142039i
\(530\) 2.55703 9.01861i 0.00482458 0.0170162i
\(531\) 1065.76i 2.00707i
\(532\) −546.418 + 70.5389i −1.02710 + 0.132592i
\(533\) −643.659 −1.20762
\(534\) 453.047 + 128.451i 0.848403 + 0.240546i
\(535\) 4.13592 2.38788i 0.00773070 0.00446332i
\(536\) 107.192 23.7865i 0.199986 0.0443778i
\(537\) 222.941 + 386.146i 0.415161 + 0.719079i
\(538\) −477.006 + 120.440i −0.886628 + 0.223866i
\(539\) 41.7238i 0.0774097i
\(540\) 10.2585 + 0.297119i 0.0189972 + 0.000550221i
\(541\) −473.984 + 820.965i −0.876127 + 1.51750i −0.0205687 + 0.999788i \(0.506548\pi\)
−0.855558 + 0.517707i \(0.826786\pi\)
\(542\) −204.421 809.618i −0.377161 1.49376i
\(543\) 196.938i 0.362685i
\(544\) −298.016 344.617i −0.547824 0.633486i
\(545\) −25.7910 + 44.6713i −0.0473229 + 0.0819657i
\(546\) 148.015 522.048i 0.271090 0.956131i
\(547\) 476.141 + 274.900i 0.870459 + 0.502560i 0.867501 0.497436i \(-0.165725\pi\)
0.00295823 + 0.999996i \(0.499058\pi\)
\(548\) −19.9605 + 10.7661i −0.0364243 + 0.0196461i
\(549\) −291.873 505.538i −0.531644 0.920835i
\(550\) 419.912 407.926i 0.763476 0.741683i
\(551\) 967.958 153.566i 1.75673 0.278705i
\(552\) −656.667 + 601.967i −1.18961 + 1.09052i
\(553\) 443.877 + 768.818i 0.802672 + 1.39027i
\(554\) −223.113 + 786.917i −0.402731 + 1.42043i
\(555\) 20.9242 + 12.0806i 0.0377012 + 0.0217668i
\(556\) −95.3847 176.845i −0.171555 0.318067i
\(557\) −293.392 + 508.170i −0.526736 + 0.912334i 0.472779 + 0.881181i \(0.343251\pi\)
−0.999515 + 0.0311523i \(0.990082\pi\)
\(558\) 420.776 408.766i 0.754079 0.732555i
\(559\) 289.102i 0.517178i
\(560\) 25.9319 + 17.0458i 0.0463070 + 0.0304389i
\(561\) 375.107 649.705i 0.668640 1.15812i
\(562\) −108.996 112.199i −0.193944 0.199642i
\(563\) 545.417i 0.968770i 0.874855 + 0.484385i \(0.160957\pi\)
−0.874855 + 0.484385i \(0.839043\pi\)
\(564\) 564.492 + 348.080i 1.00087 + 0.617163i
\(565\) −25.6240 44.3820i −0.0453521 0.0785522i
\(566\) 57.1761 + 226.448i 0.101018 + 0.400085i
\(567\) −359.109 + 207.331i −0.633348 + 0.365664i
\(568\) 110.407 350.413i 0.194379 0.616924i
\(569\) −548.968 −0.964795 −0.482397 0.875953i \(-0.660234\pi\)
−0.482397 + 0.875953i \(0.660234\pi\)
\(570\) 45.3002 + 5.41349i 0.0794741 + 0.00949735i
\(571\) 1004.32i 1.75888i −0.476012 0.879439i \(-0.657918\pi\)
0.476012 0.879439i \(-0.342082\pi\)
\(572\) −185.960 344.774i −0.325104 0.602751i
\(573\) 141.884 + 245.751i 0.247617 + 0.428884i
\(574\) −273.930 1084.91i −0.477230 1.89009i
\(575\) 535.713 309.294i 0.931674 0.537902i
\(576\) −584.031 408.594i −1.01394 0.709364i
\(577\) 377.294 0.653890 0.326945 0.945043i \(-0.393981\pi\)
0.326945 + 0.945043i \(0.393981\pi\)
\(578\) −120.254 123.787i −0.208052 0.214165i
\(579\) 179.669 + 103.732i 0.310309 + 0.179157i
\(580\) −46.9877 28.9737i −0.0810132 0.0499547i
\(581\) 786.089 1.35299
\(582\) 385.027 374.037i 0.661559 0.642675i
\(583\) −178.149 102.854i −0.305572 0.176422i
\(584\) −306.182 96.4713i −0.524284 0.165191i
\(585\) −12.4254 + 21.5214i −0.0212400 + 0.0367887i
\(586\) 66.0621 233.000i 0.112734 0.397612i
\(587\) 262.988 151.836i 0.448020 0.258665i −0.258973 0.965884i \(-0.583384\pi\)
0.706994 + 0.707220i \(0.250051\pi\)
\(588\) 63.7542 + 1.84653i 0.108426 + 0.00314035i
\(589\) 388.808 315.017i 0.660115 0.534833i
\(590\) 36.7281 35.6798i 0.0622511 0.0604742i
\(591\) 296.174 170.996i 0.501141 0.289334i
\(592\) −144.585 287.701i −0.244232 0.485982i
\(593\) 51.2041 88.6881i 0.0863475 0.149558i −0.819617 0.572912i \(-0.805814\pi\)
0.905965 + 0.423353i \(0.139147\pi\)
\(594\) 61.4319 216.670i 0.103421 0.364764i
\(595\) −23.9147 13.8072i −0.0401928 0.0232053i
\(596\) 18.7614 647.768i 0.0314789 1.08686i
\(597\) −464.572 −0.778177
\(598\) −101.329 401.318i −0.169447 0.671101i
\(599\) −669.678 386.639i −1.11799 0.645474i −0.177105 0.984192i \(-0.556673\pi\)
−0.940888 + 0.338718i \(0.890007\pi\)
\(600\) 604.729 + 659.680i 1.00788 + 1.09947i
\(601\) 399.651 0.664977 0.332489 0.943107i \(-0.392112\pi\)
0.332489 + 0.943107i \(0.392112\pi\)
\(602\) 487.292 123.037i 0.809455 0.204380i
\(603\) −132.377 + 76.4277i −0.219530 + 0.126746i
\(604\) −259.399 + 420.676i −0.429469 + 0.696484i
\(605\) 2.25810 + 3.91114i 0.00373239 + 0.00646470i
\(606\) −505.416 143.299i −0.834020 0.236468i
\(607\) 244.707i 0.403142i 0.979474 + 0.201571i \(0.0646046\pi\)
−0.979474 + 0.201571i \(0.935395\pi\)
\(608\) −464.849 391.892i −0.764554 0.644560i
\(609\) −1678.02 −2.75538
\(610\) −7.65047 + 26.9831i −0.0125418 + 0.0442347i
\(611\) −266.857 + 154.070i −0.436754 + 0.252160i
\(612\) 539.872 + 332.899i 0.882144 + 0.543952i
\(613\) −396.466 686.700i −0.646764 1.12023i −0.983891 0.178769i \(-0.942789\pi\)
0.337127 0.941459i \(-0.390545\pi\)
\(614\) 259.744 + 1028.72i 0.423035 + 1.67545i
\(615\) 92.6573i 0.150662i
\(616\) 501.986 460.171i 0.814913 0.747031i
\(617\) −142.607 + 247.003i −0.231130 + 0.400328i −0.958141 0.286297i \(-0.907576\pi\)
0.727011 + 0.686626i \(0.240909\pi\)
\(618\) 893.412 225.579i 1.44565 0.365014i
\(619\) 249.474i 0.403028i −0.979486 0.201514i \(-0.935414\pi\)
0.979486 0.201514i \(-0.0645861\pi\)
\(620\) −28.1738 0.816004i −0.0454416 0.00131614i
\(621\) 118.983 206.084i 0.191599 0.331859i
\(622\) 104.017 + 29.4917i 0.167230 + 0.0474144i
\(623\) −329.410 190.185i −0.528747 0.305272i
\(624\) 535.045 268.889i 0.857445 0.430912i
\(625\) −309.818 536.621i −0.495709 0.858594i
\(626\) −439.805 452.728i −0.702564 0.723207i
\(627\) 358.541 934.753i 0.571835 1.49083i
\(628\) −26.8633 + 927.498i −0.0427760 + 1.47691i
\(629\) 143.261 + 248.135i 0.227760 + 0.394492i
\(630\) −41.5631 11.7843i −0.0659731 0.0187052i
\(631\) −672.867 388.480i −1.06635 0.615658i −0.139169 0.990269i \(-0.544443\pi\)
−0.927182 + 0.374611i \(0.877776\pi\)
\(632\) −294.407 + 934.394i −0.465834 + 1.47847i
\(633\) 277.901 481.338i 0.439022 0.760408i
\(634\) 390.600 + 402.077i 0.616089 + 0.634191i
\(635\) 15.8679i 0.0249888i
\(636\) 165.046 267.660i 0.259506 0.420849i
\(637\) −14.8175 + 25.6647i −0.0232614 + 0.0402900i
\(638\) −868.888 + 844.087i −1.36189 + 1.32302i
\(639\) 511.461i 0.800408i
\(640\) 5.47142 + 33.8060i 0.00854910 + 0.0528218i
\(641\) −237.718 411.740i −0.370855 0.642340i 0.618842 0.785515i \(-0.287602\pi\)
−0.989697 + 0.143175i \(0.954269\pi\)
\(642\) 155.329 39.2191i 0.241945 0.0610889i
\(643\) 153.600 88.6809i 0.238880 0.137917i −0.375782 0.926708i \(-0.622626\pi\)
0.614662 + 0.788791i \(0.289292\pi\)
\(644\) 633.311 341.588i 0.983403 0.530416i
\(645\) −41.6174 −0.0645231
\(646\) 433.136 + 324.200i 0.670489 + 0.501858i
\(647\) 779.535i 1.20484i 0.798177 + 0.602422i \(0.205798\pi\)
−0.798177 + 0.602422i \(0.794202\pi\)
\(648\) −436.447 137.515i −0.673530 0.212215i
\(649\) −561.835 973.127i −0.865694 1.49943i
\(650\) −403.160 + 101.794i −0.620245 + 0.156606i
\(651\) −741.990 + 428.388i −1.13977 + 0.658046i
\(652\) −151.672 + 245.971i −0.232625 + 0.377256i
\(653\) −235.113 −0.360050 −0.180025 0.983662i \(-0.557618\pi\)
−0.180025 + 0.983662i \(0.557618\pi\)
\(654\) −1241.11 + 1205.68i −1.89772 + 1.84355i
\(655\) −6.77055 3.90898i −0.0103367 0.00596791i
\(656\) 678.269 1031.86i 1.03395 1.57295i
\(657\) 446.902 0.680216
\(658\) −373.260 384.227i −0.567264 0.583932i
\(659\) −713.472 411.923i −1.08266 0.625073i −0.151046 0.988527i \(-0.548264\pi\)
−0.931612 + 0.363454i \(0.881597\pi\)
\(660\) −49.6315 + 26.7696i −0.0751992 + 0.0405600i
\(661\) −448.256 + 776.402i −0.678148 + 1.17459i 0.297390 + 0.954756i \(0.403884\pi\)
−0.975538 + 0.219830i \(0.929450\pi\)
\(662\) 853.343 + 241.946i 1.28904 + 0.365478i
\(663\) −461.464 + 266.426i −0.696024 + 0.401849i
\(664\) 586.192 + 639.459i 0.882820 + 0.963041i
\(665\) −34.4070 13.1974i −0.0517398 0.0198457i
\(666\) 312.339 + 321.516i 0.468978 + 0.482757i
\(667\) −1108.51 + 639.996i −1.66193 + 0.959514i
\(668\) 221.509 + 410.682i 0.331600 + 0.614793i
\(669\) −491.186 + 850.759i −0.734209 + 1.27169i
\(670\) 7.06561 + 2.00330i 0.0105457 + 0.00298999i
\(671\) 533.010 + 307.734i 0.794352 + 0.458619i
\(672\) 680.928 + 787.403i 1.01329 + 1.17173i
\(673\) 769.535 1.14344 0.571720 0.820449i \(-0.306276\pi\)
0.571720 + 0.820449i \(0.306276\pi\)
\(674\) 365.291 92.2327i 0.541975 0.136844i
\(675\) −207.030 119.529i −0.306711 0.177080i
\(676\) 11.5159 397.603i 0.0170353 0.588170i
\(677\) 371.960 0.549424 0.274712 0.961527i \(-0.411417\pi\)
0.274712 + 0.961527i \(0.411417\pi\)
\(678\) −420.854 1666.81i −0.620729 2.45842i
\(679\) −375.502 + 216.796i −0.553022 + 0.319287i
\(680\) −6.60168 29.7500i −0.00970835 0.0437500i
\(681\) −262.076 453.930i −0.384841 0.666564i
\(682\) −168.716 + 595.060i −0.247384 + 0.872521i
\(683\) 1047.47i 1.53363i −0.641866 0.766817i \(-0.721840\pi\)
0.641866 0.766817i \(-0.278160\pi\)
\(684\) 781.167 + 325.875i 1.14206 + 0.476426i
\(685\) −1.51691 −0.00221446
\(686\) 633.932 + 179.737i 0.924099 + 0.262008i
\(687\) 632.121 364.955i 0.920117 0.531230i
\(688\) 463.464 + 304.647i 0.673639 + 0.442801i
\(689\) 73.0539 + 126.533i 0.106029 + 0.183647i
\(690\) −57.7713 + 14.5867i −0.0837266 + 0.0211402i
\(691\) 75.1204i 0.108713i −0.998522 0.0543563i \(-0.982689\pi\)
0.998522 0.0543563i \(-0.0173107\pi\)
\(692\) 15.4031 531.815i 0.0222588 0.768519i
\(693\) −474.013 + 821.014i −0.684001 + 1.18472i
\(694\) 264.930 + 1049.27i 0.381744 + 1.51191i
\(695\) 13.4394i 0.0193373i
\(696\) −1251.32 1365.02i −1.79787 1.96124i
\(697\) −549.402 + 951.593i −0.788239 + 1.36527i
\(698\) 21.3133 75.1719i 0.0305348 0.107696i
\(699\) 1123.38 + 648.585i 1.60713 + 0.927875i
\(700\) −343.155 636.217i −0.490222 0.908882i
\(701\) −210.478 364.558i −0.300253 0.520054i 0.675940 0.736957i \(-0.263738\pi\)
−0.976193 + 0.216903i \(0.930405\pi\)
\(702\) −114.734 + 111.459i −0.163439 + 0.158774i
\(703\) 240.705 + 297.089i 0.342397 + 0.422602i
\(704\) 748.670 + 65.1975i 1.06345 + 0.0926101i
\(705\) 22.1790 + 38.4151i 0.0314595 + 0.0544895i
\(706\) −212.758 + 750.395i −0.301357 + 1.06288i
\(707\) 367.487 + 212.169i 0.519784 + 0.300097i
\(708\) 1511.81 815.421i 2.13532 1.15172i
\(709\) 562.723 974.665i 0.793686 1.37470i −0.129984 0.991516i \(-0.541493\pi\)
0.923670 0.383188i \(-0.125174\pi\)
\(710\) 17.6260 17.1229i 0.0248253 0.0241167i
\(711\) 1363.84i 1.91819i
\(712\) −90.9337 409.787i −0.127716 0.575543i
\(713\) −326.773 + 565.987i −0.458307 + 0.793811i
\(714\) −645.461 664.426i −0.904007 0.930569i
\(715\) 26.2012i 0.0366450i
\(716\) 208.607 338.304i 0.291350 0.472492i
\(717\) 635.983 + 1101.55i 0.887005 + 1.53634i
\(718\) −268.602 1063.81i −0.374098 1.48163i
\(719\) −185.767 + 107.253i −0.258369 + 0.149169i −0.623590 0.781751i \(-0.714327\pi\)
0.365221 + 0.930921i \(0.380993\pi\)
\(720\) −21.4077 42.5979i −0.0297330 0.0591637i
\(721\) −744.293 −1.03231
\(722\) 638.668 + 336.729i 0.884582 + 0.466384i
\(723\) 2016.22i 2.78868i
\(724\) 154.505 83.3350i 0.213405 0.115104i
\(725\) 642.933 + 1113.59i 0.886804 + 1.53599i
\(726\) 37.0876 + 146.887i 0.0510848 + 0.202323i
\(727\) 611.381 352.981i 0.840964 0.485531i −0.0166275 0.999862i \(-0.505293\pi\)
0.857592 + 0.514331i \(0.171960\pi\)
\(728\) −472.198 + 104.783i −0.648624 + 0.143933i
\(729\) 1024.34 1.40513
\(730\) −14.9616 15.4012i −0.0204953 0.0210975i
\(731\) −427.412 246.766i −0.584695 0.337574i
\(732\) −493.807 + 800.823i −0.674600 + 1.09402i
\(733\) −333.184 −0.454549 −0.227274 0.973831i \(-0.572981\pi\)
−0.227274 + 0.973831i \(0.572981\pi\)
\(734\) −321.023 + 311.859i −0.437361 + 0.424877i
\(735\) 3.69454 + 2.13304i 0.00502658 + 0.00290210i
\(736\) 750.136 + 260.455i 1.01921 + 0.353879i
\(737\) 80.5809 139.570i 0.109336 0.189376i
\(738\) −468.909 + 1653.84i −0.635378 + 2.24097i
\(739\) 103.982 60.0342i 0.140707 0.0812370i −0.427994 0.903782i \(-0.640780\pi\)
0.568701 + 0.822545i \(0.307446\pi\)
\(740\) 0.623511 21.5277i 0.000842583 0.0290915i
\(741\) −552.504 + 447.646i −0.745619 + 0.604110i
\(742\) −182.185 + 176.985i −0.245533 + 0.238524i
\(743\) 207.224 119.641i 0.278901 0.161024i −0.354025 0.935236i \(-0.615187\pi\)
0.632926 + 0.774212i \(0.281854\pi\)
\(744\) −901.787 284.134i −1.21208 0.381900i
\(745\) 21.6725 37.5379i 0.0290906 0.0503865i
\(746\) −357.366 + 1260.43i −0.479043 + 1.68958i
\(747\) −1045.86 603.825i −1.40007 0.808333i
\(748\) −668.445 19.3603i −0.893643 0.0258828i
\(749\) −129.403 −0.172767
\(750\) 29.3494 + 116.239i 0.0391326 + 0.154986i
\(751\) 788.836 + 455.435i 1.05038 + 0.606438i 0.922756 0.385384i \(-0.125931\pi\)
0.127625 + 0.991822i \(0.459264\pi\)
\(752\) 34.2143 590.156i 0.0454978 0.784782i
\(753\) −309.937 −0.411603
\(754\) 834.224 210.634i 1.10640 0.279356i
\(755\) −28.6280 + 16.5284i −0.0379179 + 0.0218919i
\(756\) −236.697 145.953i −0.313091 0.193060i
\(757\) 387.365 + 670.935i 0.511710 + 0.886308i 0.999908 + 0.0135751i \(0.00432124\pi\)
−0.488198 + 0.872733i \(0.662345\pi\)
\(758\) 395.969 + 112.268i 0.522386 + 0.148111i
\(759\) 1307.54i 1.72271i
\(760\) −14.9219 37.8304i −0.0196340 0.0497769i
\(761\) 1111.15 1.46011 0.730057 0.683386i \(-0.239494\pi\)
0.730057 + 0.683386i \(0.239494\pi\)
\(762\) 145.196 512.106i 0.190546 0.672055i
\(763\) 1210.41 698.828i 1.58638 0.915895i
\(764\) 132.762 215.304i 0.173772 0.281811i
\(765\) 21.2116 + 36.7396i 0.0277276 + 0.0480257i
\(766\) 60.9609 + 241.438i 0.0795835 + 0.315193i
\(767\) 798.106i 1.04056i
\(768\) −132.755 + 1141.09i −0.172858 + 1.48579i
\(769\) 299.646 519.002i 0.389657 0.674905i −0.602747 0.797933i \(-0.705927\pi\)
0.992403 + 0.123028i \(0.0392603\pi\)
\(770\) 44.1630 11.1508i 0.0573546 0.0144815i
\(771\) 498.674i 0.646789i
\(772\) 5.35389 184.852i 0.00693510 0.239445i
\(773\) 104.830 181.572i 0.135615 0.234892i −0.790217 0.612827i \(-0.790032\pi\)