Properties

Label 76.3.g.c.7.8
Level $76$
Weight $3$
Character 76.7
Analytic conductor $2.071$
Analytic rank $0$
Dimension $28$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 76 = 2^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 76.g (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.07085000914\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 7.8
Character \(\chi\) \(=\) 76.7
Dual form 76.3.g.c.11.8

$q$-expansion

\(f(q)\) \(=\) \(q+(0.00657150 + 1.99999i) q^{2} +(0.443154 - 0.255855i) q^{3} +(-3.99991 + 0.0262858i) q^{4} +(1.99023 + 3.44717i) q^{5} +(0.514619 + 0.884621i) q^{6} +9.66827i q^{7} +(-0.0788568 - 7.99961i) q^{8} +(-4.36908 + 7.56746i) q^{9} +O(q^{10})\) \(q+(0.00657150 + 1.99999i) q^{2} +(0.443154 - 0.255855i) q^{3} +(-3.99991 + 0.0262858i) q^{4} +(1.99023 + 3.44717i) q^{5} +(0.514619 + 0.884621i) q^{6} +9.66827i q^{7} +(-0.0788568 - 7.99961i) q^{8} +(-4.36908 + 7.56746i) q^{9} +(-6.88123 + 4.00309i) q^{10} -2.62030i q^{11} +(-1.76585 + 1.03505i) q^{12} +(11.8012 - 20.4403i) q^{13} +(-19.3364 + 0.0635350i) q^{14} +(1.76395 + 1.01842i) q^{15} +(15.9986 - 0.210282i) q^{16} +(-3.40777 - 5.90242i) q^{17} +(-15.1636 - 8.68838i) q^{18} +(12.0371 + 14.7006i) q^{19} +(-8.05135 - 13.7361i) q^{20} +(2.47368 + 4.28453i) q^{21} +(5.24057 - 0.0172193i) q^{22} +(17.2580 + 9.96389i) q^{23} +(-2.08169 - 3.52488i) q^{24} +(4.57799 - 7.92932i) q^{25} +(40.9580 + 23.4680i) q^{26} +9.07679i q^{27} +(-0.254139 - 38.6723i) q^{28} +(0.445777 - 0.772108i) q^{29} +(-2.02523 + 3.53458i) q^{30} -59.6042i q^{31} +(0.525697 + 31.9957i) q^{32} +(-0.670416 - 1.16119i) q^{33} +(11.7824 - 6.85428i) q^{34} +(-33.3282 + 19.2421i) q^{35} +(17.2770 - 30.3840i) q^{36} -7.80746 q^{37} +(-29.3220 + 24.1706i) q^{38} -12.0776i q^{39} +(27.4191 - 16.1929i) q^{40} +(15.9560 + 27.6366i) q^{41} +(-8.55276 + 4.97548i) q^{42} +(-6.09346 + 3.51806i) q^{43} +(0.0688767 + 10.4810i) q^{44} -34.7818 q^{45} +(-19.8143 + 34.5812i) q^{46} +(-47.7806 - 27.5861i) q^{47} +(7.03604 - 4.18651i) q^{48} -44.4755 q^{49} +(15.8886 + 9.10383i) q^{50} +(-3.02033 - 1.74379i) q^{51} +(-46.6666 + 82.0698i) q^{52} +(-33.4862 + 57.9998i) q^{53} +(-18.1535 + 0.0596481i) q^{54} +(9.03262 - 5.21499i) q^{55} +(77.3424 - 0.762409i) q^{56} +(9.09550 + 3.43490i) q^{57} +(1.54714 + 0.886475i) q^{58} +(51.3641 - 29.6551i) q^{59} +(-7.08243 - 4.02722i) q^{60} +(-1.23664 + 2.14192i) q^{61} +(119.208 - 0.391689i) q^{62} +(-73.1643 - 42.2414i) q^{63} +(-63.9876 + 1.26165i) q^{64} +93.9485 q^{65} +(2.31797 - 1.34846i) q^{66} +(36.4967 + 21.0714i) q^{67} +(13.7859 + 23.5196i) q^{68} +10.1972 q^{69} +(-38.7029 - 66.5296i) q^{70} +(-88.6632 + 51.1897i) q^{71} +(60.8813 + 34.3542i) q^{72} +(-7.82182 - 13.5478i) q^{73} +(-0.0513067 - 15.6148i) q^{74} -4.68521i q^{75} +(-48.5336 - 58.4849i) q^{76} +25.3338 q^{77} +(24.1551 - 0.0793680i) q^{78} +(63.6689 - 36.7592i) q^{79} +(32.5658 + 54.7315i) q^{80} +(-36.9993 - 64.0848i) q^{81} +(-55.1680 + 32.0934i) q^{82} +18.4034i q^{83} +(-10.0071 - 17.0727i) q^{84} +(13.5645 - 23.4943i) q^{85} +(-7.07613 - 12.1637i) q^{86} -0.456217i q^{87} +(-20.9614 + 0.206628i) q^{88} +(-35.4778 + 61.4494i) q^{89} +(-0.228569 - 69.5633i) q^{90} +(197.623 + 114.098i) q^{91} +(-69.2923 - 39.4011i) q^{92} +(-15.2500 - 26.4138i) q^{93} +(54.8580 - 95.7420i) q^{94} +(-26.7192 + 70.7515i) q^{95} +(8.41922 + 14.0445i) q^{96} +(-39.9967 - 69.2763i) q^{97} +(-0.292271 - 88.9506i) q^{98} +(19.8290 + 11.4483i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28q - 5q^{2} - 11q^{4} + 6q^{5} - 3q^{6} - 62q^{8} + 20q^{9} + O(q^{10}) \) \( 28q - 5q^{2} - 11q^{4} + 6q^{5} - 3q^{6} - 62q^{8} + 20q^{9} + 26q^{12} + 30q^{13} - 30q^{14} - 19q^{16} + 38q^{17} - 60q^{18} - 44q^{20} + 80q^{21} + 45q^{22} + 17q^{24} - 16q^{25} - 56q^{26} + 54q^{28} + 6q^{29} + 96q^{30} - 45q^{32} - 176q^{33} - 20q^{34} + 30q^{36} + 104q^{37} - 258q^{38} + 94q^{40} - 2q^{41} - 2q^{42} + 201q^{44} - 360q^{45} + 164q^{46} - 17q^{48} - 20q^{49} + 490q^{50} - 102q^{52} - 242q^{53} - 13q^{54} + 276q^{56} - 254q^{57} + 96q^{58} + 10q^{60} - 58q^{61} - 36q^{62} - 74q^{64} - 260q^{65} + 167q^{66} + 396q^{68} + 340q^{69} + 60q^{70} - 422q^{72} - 82q^{73} - 136q^{74} + 123q^{76} - 144q^{77} + 224q^{78} - 174q^{80} + 410q^{81} - 305q^{82} + 252q^{84} + 714q^{85} + 166q^{86} - 718q^{88} + 150q^{89} - 272q^{90} - 588q^{92} + 344q^{93} - 488q^{94} - 122q^{96} + 94q^{97} + 307q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/76\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(39\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.00657150 + 1.99999i 0.00328575 + 0.999995i
\(3\) 0.443154 0.255855i 0.147718 0.0852850i −0.424319 0.905513i \(-0.639487\pi\)
0.572037 + 0.820228i \(0.306153\pi\)
\(4\) −3.99991 + 0.0262858i −0.999978 + 0.00657146i
\(5\) 1.99023 + 3.44717i 0.398045 + 0.689435i 0.993485 0.113965i \(-0.0363553\pi\)
−0.595439 + 0.803400i \(0.703022\pi\)
\(6\) 0.514619 + 0.884621i 0.0857699 + 0.147437i
\(7\) 9.66827i 1.38118i 0.723246 + 0.690591i \(0.242649\pi\)
−0.723246 + 0.690591i \(0.757351\pi\)
\(8\) −0.0788568 7.99961i −0.00985710 0.999951i
\(9\) −4.36908 + 7.56746i −0.485453 + 0.840829i
\(10\) −6.88123 + 4.00309i −0.688123 + 0.400309i
\(11\) 2.62030i 0.238209i −0.992882 0.119104i \(-0.961998\pi\)
0.992882 0.119104i \(-0.0380023\pi\)
\(12\) −1.76585 + 1.03505i −0.147154 + 0.0862538i
\(13\) 11.8012 20.4403i 0.907787 1.57233i 0.0906551 0.995882i \(-0.471104\pi\)
0.817132 0.576451i \(-0.195563\pi\)
\(14\) −19.3364 + 0.0635350i −1.38117 + 0.00453822i
\(15\) 1.76395 + 1.01842i 0.117597 + 0.0678946i
\(16\) 15.9986 0.210282i 0.999914 0.0131426i
\(17\) −3.40777 5.90242i −0.200457 0.347201i 0.748219 0.663452i \(-0.230909\pi\)
−0.948676 + 0.316251i \(0.897576\pi\)
\(18\) −15.1636 8.68838i −0.842420 0.482688i
\(19\) 12.0371 + 14.7006i 0.633530 + 0.773718i
\(20\) −8.05135 13.7361i −0.402567 0.686804i
\(21\) 2.47368 + 4.28453i 0.117794 + 0.204025i
\(22\) 5.24057 0.0172193i 0.238208 0.000782694i
\(23\) 17.2580 + 9.96389i 0.750346 + 0.433213i 0.825819 0.563935i \(-0.190713\pi\)
−0.0754728 + 0.997148i \(0.524047\pi\)
\(24\) −2.08169 3.52488i −0.0867369 0.146870i
\(25\) 4.57799 7.92932i 0.183120 0.317173i
\(26\) 40.9580 + 23.4680i 1.57531 + 0.902616i
\(27\) 9.07679i 0.336177i
\(28\) −0.254139 38.6723i −0.00907638 1.38115i
\(29\) 0.445777 0.772108i 0.0153716 0.0266244i −0.858237 0.513253i \(-0.828440\pi\)
0.873609 + 0.486629i \(0.161774\pi\)
\(30\) −2.02523 + 3.53458i −0.0675078 + 0.117819i
\(31\) 59.6042i 1.92272i −0.275303 0.961358i \(-0.588778\pi\)
0.275303 0.961358i \(-0.411222\pi\)
\(32\) 0.525697 + 31.9957i 0.0164280 + 0.999865i
\(33\) −0.670416 1.16119i −0.0203156 0.0351877i
\(34\) 11.7824 6.85428i 0.346541 0.201597i
\(35\) −33.3282 + 19.2421i −0.952235 + 0.549773i
\(36\) 17.2770 30.3840i 0.479917 0.844001i
\(37\) −7.80746 −0.211012 −0.105506 0.994419i \(-0.533646\pi\)
−0.105506 + 0.994419i \(0.533646\pi\)
\(38\) −29.3220 + 24.1706i −0.771632 + 0.636069i
\(39\) 12.0776i 0.309682i
\(40\) 27.4191 16.1929i 0.685478 0.404822i
\(41\) 15.9560 + 27.6366i 0.389171 + 0.674063i 0.992338 0.123551i \(-0.0394283\pi\)
−0.603168 + 0.797614i \(0.706095\pi\)
\(42\) −8.55276 + 4.97548i −0.203637 + 0.118464i
\(43\) −6.09346 + 3.51806i −0.141708 + 0.0818154i −0.569178 0.822214i \(-0.692738\pi\)
0.427470 + 0.904030i \(0.359405\pi\)
\(44\) 0.0688767 + 10.4810i 0.00156538 + 0.238204i
\(45\) −34.7818 −0.772929
\(46\) −19.8143 + 34.5812i −0.430745 + 0.751766i
\(47\) −47.7806 27.5861i −1.01661 0.586939i −0.103489 0.994631i \(-0.533001\pi\)
−0.913120 + 0.407692i \(0.866334\pi\)
\(48\) 7.03604 4.18651i 0.146584 0.0872190i
\(49\) −44.4755 −0.907664
\(50\) 15.8886 + 9.10383i 0.317773 + 0.182077i
\(51\) −3.02033 1.74379i −0.0592221 0.0341919i
\(52\) −46.6666 + 82.0698i −0.897435 + 1.57826i
\(53\) −33.4862 + 57.9998i −0.631815 + 1.09434i 0.355366 + 0.934727i \(0.384356\pi\)
−0.987180 + 0.159608i \(0.948977\pi\)
\(54\) −18.1535 + 0.0596481i −0.336175 + 0.00110459i
\(55\) 9.03262 5.21499i 0.164230 0.0948179i
\(56\) 77.3424 0.762409i 1.38111 0.0136145i
\(57\) 9.09550 + 3.43490i 0.159570 + 0.0602615i
\(58\) 1.54714 + 0.886475i 0.0266748 + 0.0152841i
\(59\) 51.3641 29.6551i 0.870578 0.502628i 0.00303759 0.999995i \(-0.499033\pi\)
0.867540 + 0.497367i \(0.165700\pi\)
\(60\) −7.08243 4.02722i −0.118040 0.0671203i
\(61\) −1.23664 + 2.14192i −0.0202727 + 0.0351134i −0.875984 0.482341i \(-0.839787\pi\)
0.855711 + 0.517454i \(0.173120\pi\)
\(62\) 119.208 0.391689i 1.92270 0.00631756i
\(63\) −73.1643 42.2414i −1.16134 0.670499i
\(64\) −63.9876 + 1.26165i −0.999806 + 0.0197133i
\(65\) 93.9485 1.44536
\(66\) 2.31797 1.34846i 0.0351208 0.0204311i
\(67\) 36.4967 + 21.0714i 0.544727 + 0.314498i 0.746992 0.664833i \(-0.231497\pi\)
−0.202266 + 0.979331i \(0.564830\pi\)
\(68\) 13.7859 + 23.5196i 0.202734 + 0.345877i
\(69\) 10.1972 0.147786
\(70\) −38.7029 66.5296i −0.552899 0.950423i
\(71\) −88.6632 + 51.1897i −1.24878 + 0.720982i −0.970866 0.239625i \(-0.922976\pi\)
−0.277912 + 0.960607i \(0.589642\pi\)
\(72\) 60.8813 + 34.3542i 0.845573 + 0.477141i
\(73\) −7.82182 13.5478i −0.107148 0.185586i 0.807466 0.589915i \(-0.200839\pi\)
−0.914614 + 0.404328i \(0.867505\pi\)
\(74\) −0.0513067 15.6148i −0.000693334 0.211011i
\(75\) 4.68521i 0.0624694i
\(76\) −48.5336 58.4849i −0.638601 0.769538i
\(77\) 25.3338 0.329010
\(78\) 24.1551 0.0793680i 0.309681 0.00101754i
\(79\) 63.6689 36.7592i 0.805935 0.465307i −0.0396072 0.999215i \(-0.512611\pi\)
0.845542 + 0.533908i \(0.179277\pi\)
\(80\) 32.5658 + 54.7315i 0.407072 + 0.684144i
\(81\) −36.9993 64.0848i −0.456782 0.791170i
\(82\) −55.1680 + 32.0934i −0.672781 + 0.391383i
\(83\) 18.4034i 0.221728i 0.993836 + 0.110864i \(0.0353618\pi\)
−0.993836 + 0.110864i \(0.964638\pi\)
\(84\) −10.0071 17.0727i −0.119132 0.203247i
\(85\) 13.5645 23.4943i 0.159582 0.276404i
\(86\) −7.07613 12.1637i −0.0822805 0.141439i
\(87\) 0.456217i 0.00524387i
\(88\) −20.9614 + 0.206628i −0.238197 + 0.00234805i
\(89\) −35.4778 + 61.4494i −0.398627 + 0.690443i −0.993557 0.113335i \(-0.963847\pi\)
0.594929 + 0.803778i \(0.297180\pi\)
\(90\) −0.228569 69.5633i −0.00253965 0.772925i
\(91\) 197.623 + 114.098i 2.17168 + 1.25382i
\(92\) −69.2923 39.4011i −0.753177 0.428272i
\(93\) −15.2500 26.4138i −0.163979 0.284019i
\(94\) 54.8580 95.7420i 0.583596 1.01853i
\(95\) −26.7192 + 70.7515i −0.281255 + 0.744753i
\(96\) 8.41922 + 14.0445i 0.0877002 + 0.146297i
\(97\) −39.9967 69.2763i −0.412337 0.714189i 0.582808 0.812610i \(-0.301954\pi\)
−0.995145 + 0.0984213i \(0.968621\pi\)
\(98\) −0.292271 88.9506i −0.00298235 0.907659i
\(99\) 19.8290 + 11.4483i 0.200293 + 0.115639i
\(100\) −18.1031 + 31.8369i −0.181031 + 0.318369i
\(101\) 70.6125 122.304i 0.699133 1.21093i −0.269634 0.962963i \(-0.586903\pi\)
0.968767 0.247972i \(-0.0797639\pi\)
\(102\) 3.46771 6.05208i 0.0339971 0.0593342i
\(103\) 130.698i 1.26891i −0.772958 0.634457i \(-0.781224\pi\)
0.772958 0.634457i \(-0.218776\pi\)
\(104\) −164.445 92.7934i −1.58120 0.892244i
\(105\) −9.84635 + 17.0544i −0.0937748 + 0.162423i
\(106\) −116.219 66.5909i −1.09641 0.628216i
\(107\) 83.9587i 0.784661i 0.919824 + 0.392331i \(0.128331\pi\)
−0.919824 + 0.392331i \(0.871669\pi\)
\(108\) −0.238591 36.3064i −0.00220918 0.336170i
\(109\) −46.1581 79.9481i −0.423468 0.733469i 0.572808 0.819690i \(-0.305854\pi\)
−0.996276 + 0.0862211i \(0.972521\pi\)
\(110\) 10.4893 + 18.0309i 0.0953571 + 0.163917i
\(111\) −3.45990 + 1.99758i −0.0311703 + 0.0179962i
\(112\) 2.03307 + 154.679i 0.0181524 + 1.38106i
\(113\) 26.6191 0.235567 0.117784 0.993039i \(-0.462421\pi\)
0.117784 + 0.993039i \(0.462421\pi\)
\(114\) −6.81000 + 18.2135i −0.0597368 + 0.159767i
\(115\) 79.3216i 0.689753i
\(116\) −1.76277 + 3.10008i −0.0151963 + 0.0267249i
\(117\) 103.121 + 178.611i 0.881376 + 1.52659i
\(118\) 59.6474 + 102.533i 0.505486 + 0.868922i
\(119\) 57.0663 32.9472i 0.479548 0.276867i
\(120\) 8.00785 14.1912i 0.0667321 0.118260i
\(121\) 114.134 0.943257
\(122\) −4.29194 2.45918i −0.0351798 0.0201572i
\(123\) 14.1419 + 8.16484i 0.114975 + 0.0663808i
\(124\) 1.56675 + 238.412i 0.0126350 + 1.92267i
\(125\) 135.956 1.08765
\(126\) 84.0016 146.605i 0.666679 1.16353i
\(127\) −29.5205 17.0437i −0.232445 0.134202i 0.379254 0.925292i \(-0.376181\pi\)
−0.611700 + 0.791090i \(0.709514\pi\)
\(128\) −2.94378 127.966i −0.0229983 0.999736i
\(129\) −1.80023 + 3.11808i −0.0139552 + 0.0241712i
\(130\) 0.617382 + 187.896i 0.00474910 + 1.44535i
\(131\) −163.122 + 94.1785i −1.24521 + 0.718920i −0.970149 0.242508i \(-0.922030\pi\)
−0.275057 + 0.961428i \(0.588697\pi\)
\(132\) 2.71213 + 4.62706i 0.0205464 + 0.0350534i
\(133\) −142.130 + 116.378i −1.06865 + 0.875020i
\(134\) −41.9027 + 73.1315i −0.312707 + 0.545757i
\(135\) −31.2893 + 18.0649i −0.231772 + 0.133814i
\(136\) −46.9484 + 27.7263i −0.345209 + 0.203870i
\(137\) −81.9749 + 141.985i −0.598357 + 1.03638i 0.394707 + 0.918807i \(0.370846\pi\)
−0.993064 + 0.117577i \(0.962487\pi\)
\(138\) 0.0670111 + 20.3944i 0.000485588 + 0.147785i
\(139\) −33.2670 19.2067i −0.239331 0.138178i 0.375538 0.926807i \(-0.377458\pi\)
−0.614869 + 0.788629i \(0.710791\pi\)
\(140\) 132.804 77.8426i 0.948602 0.556019i
\(141\) −28.2322 −0.200228
\(142\) −102.962 176.989i −0.725081 1.24640i
\(143\) −53.5597 30.9227i −0.374544 0.216243i
\(144\) −68.3079 + 121.988i −0.474360 + 0.847137i
\(145\) 3.54879 0.0244744
\(146\) 27.0440 15.7326i 0.185233 0.107757i
\(147\) −19.7095 + 11.3793i −0.134078 + 0.0774101i
\(148\) 31.2292 0.205226i 0.211008 0.00138666i
\(149\) −115.159 199.461i −0.772877 1.33866i −0.935980 0.352053i \(-0.885484\pi\)
0.163104 0.986609i \(-0.447850\pi\)
\(150\) 9.37036 0.0307888i 0.0624691 0.000205259i
\(151\) 186.853i 1.23743i −0.785614 0.618717i \(-0.787653\pi\)
0.785614 0.618717i \(-0.212347\pi\)
\(152\) 116.650 97.4511i 0.767436 0.641126i
\(153\) 59.5552 0.389249
\(154\) 0.166481 + 50.6672i 0.00108104 + 0.329008i
\(155\) 205.466 118.626i 1.32559 0.765328i
\(156\) 0.317470 + 48.3094i 0.00203507 + 0.309676i
\(157\) 80.6157 + 139.630i 0.513476 + 0.889366i 0.999878 + 0.0156308i \(0.00497563\pi\)
−0.486402 + 0.873735i \(0.661691\pi\)
\(158\) 73.9365 + 127.095i 0.467952 + 0.804402i
\(159\) 34.2704i 0.215537i
\(160\) −109.248 + 65.4908i −0.682803 + 0.409318i
\(161\) −96.3336 + 166.855i −0.598345 + 1.03636i
\(162\) 127.926 74.4194i 0.789665 0.459379i
\(163\) 113.722i 0.697682i 0.937182 + 0.348841i \(0.113425\pi\)
−0.937182 + 0.348841i \(0.886575\pi\)
\(164\) −64.5491 110.125i −0.393592 0.671491i
\(165\) 2.66856 4.62208i 0.0161731 0.0280126i
\(166\) −36.8067 + 0.120938i −0.221727 + 0.000728543i
\(167\) −104.857 60.5392i −0.627886 0.362510i 0.152047 0.988373i \(-0.451414\pi\)
−0.779933 + 0.625863i \(0.784747\pi\)
\(168\) 34.0795 20.1263i 0.202854 0.119799i
\(169\) −194.038 336.084i −1.14815 1.98866i
\(170\) 47.0775 + 26.9744i 0.276927 + 0.158673i
\(171\) −163.837 + 26.8618i −0.958114 + 0.157087i
\(172\) 24.2808 14.2321i 0.141168 0.0827448i
\(173\) 59.6985 + 103.401i 0.345078 + 0.597693i 0.985368 0.170441i \(-0.0545191\pi\)
−0.640290 + 0.768133i \(0.721186\pi\)
\(174\) 0.912429 0.00299803i 0.00524384 1.72300e-5i
\(175\) 76.6628 + 44.2613i 0.438073 + 0.252922i
\(176\) −0.551002 41.9211i −0.00313069 0.238188i
\(177\) 15.1748 26.2835i 0.0857333 0.148494i
\(178\) −123.131 70.5515i −0.691749 0.396357i
\(179\) 238.109i 1.33022i −0.746746 0.665109i \(-0.768385\pi\)
0.746746 0.665109i \(-0.231615\pi\)
\(180\) 139.124 0.914270i 0.772913 0.00507928i
\(181\) 76.3894 132.310i 0.422041 0.730996i −0.574098 0.818787i \(-0.694647\pi\)
0.996139 + 0.0877903i \(0.0279805\pi\)
\(182\) −226.895 + 395.993i −1.24668 + 2.17579i
\(183\) 1.26560i 0.00691584i
\(184\) 78.3463 138.843i 0.425795 0.754580i
\(185\) −15.5386 26.9137i −0.0839925 0.145479i
\(186\) 52.7271 30.6734i 0.283479 0.164911i
\(187\) −15.4661 + 8.92936i −0.0827065 + 0.0477506i
\(188\) 191.843 + 109.086i 1.02044 + 0.580246i
\(189\) −87.7569 −0.464322
\(190\) −141.678 52.9732i −0.745673 0.278806i
\(191\) 318.713i 1.66865i −0.551269 0.834327i \(-0.685856\pi\)
0.551269 0.834327i \(-0.314144\pi\)
\(192\) −28.0335 + 16.9306i −0.146008 + 0.0881804i
\(193\) 30.7232 + 53.2141i 0.159187 + 0.275721i 0.934576 0.355764i \(-0.115779\pi\)
−0.775388 + 0.631485i \(0.782446\pi\)
\(194\) 138.289 80.4482i 0.712830 0.414681i
\(195\) 41.6336 24.0372i 0.213506 0.123268i
\(196\) 177.898 1.16908i 0.907644 0.00596468i
\(197\) −242.851 −1.23274 −0.616372 0.787455i \(-0.711398\pi\)
−0.616372 + 0.787455i \(0.711398\pi\)
\(198\) −22.7661 + 39.7330i −0.114980 + 0.200672i
\(199\) 207.809 + 119.979i 1.04427 + 0.602908i 0.921039 0.389470i \(-0.127342\pi\)
0.123228 + 0.992378i \(0.460675\pi\)
\(200\) −63.7924 35.9969i −0.318962 0.179984i
\(201\) 21.5649 0.107288
\(202\) 245.071 + 140.420i 1.21323 + 0.695151i
\(203\) 7.46496 + 4.30989i 0.0367732 + 0.0212310i
\(204\) 12.1269 + 6.89561i 0.0594455 + 0.0338020i
\(205\) −63.5121 + 110.006i −0.309815 + 0.536616i
\(206\) 261.395 0.858882i 1.26891 0.00416933i
\(207\) −150.803 + 87.0660i −0.728516 + 0.420609i
\(208\) 184.505 329.499i 0.887044 1.58413i
\(209\) 38.5201 31.5407i 0.184307 0.150912i
\(210\) −34.1733 19.5805i −0.162730 0.0932406i
\(211\) −75.6483 + 43.6755i −0.358523 + 0.206993i −0.668432 0.743773i \(-0.733034\pi\)
0.309910 + 0.950766i \(0.399701\pi\)
\(212\) 132.417 232.874i 0.624610 1.09846i
\(213\) −26.1943 + 45.3698i −0.122978 + 0.213004i
\(214\) −167.917 + 0.551735i −0.784657 + 0.00257820i
\(215\) −24.2547 14.0035i −0.112813 0.0651325i
\(216\) 72.6108 0.715767i 0.336161 0.00331373i
\(217\) 576.269 2.65562
\(218\) 159.592 92.8410i 0.732073 0.425876i
\(219\) −6.93254 4.00250i −0.0316554 0.0182763i
\(220\) −35.9926 + 21.0969i −0.163603 + 0.0958951i
\(221\) −160.863 −0.727888
\(222\) −4.01787 6.90664i −0.0180985 0.0311110i
\(223\) −149.218 + 86.1509i −0.669138 + 0.386327i −0.795750 0.605625i \(-0.792923\pi\)
0.126612 + 0.991952i \(0.459590\pi\)
\(224\) −309.343 + 5.08258i −1.38100 + 0.0226901i
\(225\) 40.0032 + 69.2876i 0.177792 + 0.307945i
\(226\) 0.174927 + 53.2379i 0.000774014 + 0.235566i
\(227\) 249.279i 1.09814i 0.835775 + 0.549072i \(0.185019\pi\)
−0.835775 + 0.549072i \(0.814981\pi\)
\(228\) −36.4715 13.5002i −0.159963 0.0592116i
\(229\) 198.117 0.865138 0.432569 0.901601i \(-0.357607\pi\)
0.432569 + 0.901601i \(0.357607\pi\)
\(230\) −158.642 + 0.521262i −0.689749 + 0.00226636i
\(231\) 11.2267 6.48176i 0.0486006 0.0280596i
\(232\) −6.21172 3.50516i −0.0267747 0.0151084i
\(233\) −144.366 250.049i −0.619596 1.07317i −0.989559 0.144126i \(-0.953963\pi\)
0.369963 0.929047i \(-0.379370\pi\)
\(234\) −356.542 + 207.415i −1.52368 + 0.886387i
\(235\) 219.611i 0.934514i
\(236\) −204.672 + 119.968i −0.867256 + 0.508338i
\(237\) 18.8101 32.5800i 0.0793674 0.137468i
\(238\) 66.2691 + 113.915i 0.278442 + 0.478636i
\(239\) 39.6307i 0.165819i 0.996557 + 0.0829094i \(0.0264212\pi\)
−0.996557 + 0.0829094i \(0.973579\pi\)
\(240\) 28.4350 + 15.9224i 0.118479 + 0.0663432i
\(241\) −151.983 + 263.242i −0.630634 + 1.09229i 0.356788 + 0.934185i \(0.383872\pi\)
−0.987422 + 0.158105i \(0.949461\pi\)
\(242\) 0.750032 + 228.267i 0.00309930 + 0.943251i
\(243\) −103.539 59.7785i −0.426088 0.246002i
\(244\) 4.89014 8.59999i 0.0200415 0.0352459i
\(245\) −88.5164 153.315i −0.361291 0.625775i
\(246\) −16.2367 + 28.3373i −0.0660027 + 0.115192i
\(247\) 442.538 72.5559i 1.79165 0.293749i
\(248\) −476.810 + 4.70020i −1.92262 + 0.0189524i
\(249\) 4.70861 + 8.15555i 0.0189101 + 0.0327532i
\(250\) 0.893437 + 271.911i 0.00357375 + 1.08764i
\(251\) 346.056 + 199.796i 1.37871 + 0.795998i 0.992004 0.126205i \(-0.0402798\pi\)
0.386705 + 0.922203i \(0.373613\pi\)
\(252\) 293.761 + 167.039i 1.16572 + 0.662853i
\(253\) 26.1084 45.2210i 0.103195 0.178739i
\(254\) 33.8932 59.1527i 0.133438 0.232885i
\(255\) 13.8821i 0.0544397i
\(256\) 255.912 6.72845i 0.999655 0.0262830i
\(257\) −6.41520 + 11.1115i −0.0249619 + 0.0432353i −0.878236 0.478227i \(-0.841280\pi\)
0.853275 + 0.521462i \(0.174613\pi\)
\(258\) −6.24796 3.57994i −0.0242169 0.0138757i
\(259\) 75.4846i 0.291447i
\(260\) −375.786 + 2.46952i −1.44533 + 0.00949814i
\(261\) 3.89527 + 6.74680i 0.0149244 + 0.0258498i
\(262\) −189.428 325.623i −0.723008 1.24284i
\(263\) −206.817 + 119.406i −0.786378 + 0.454015i −0.838686 0.544616i \(-0.816676\pi\)
0.0523082 + 0.998631i \(0.483342\pi\)
\(264\) −9.23624 + 5.45464i −0.0349857 + 0.0206615i
\(265\) −266.580 −1.00596
\(266\) −233.688 283.493i −0.878527 1.06576i
\(267\) 36.3087i 0.135988i
\(268\) −146.537 83.3243i −0.546782 0.310912i
\(269\) 103.018 + 178.433i 0.382968 + 0.663320i 0.991485 0.130221i \(-0.0415687\pi\)
−0.608517 + 0.793541i \(0.708235\pi\)
\(270\) −36.3352 62.4595i −0.134575 0.231331i
\(271\) −378.819 + 218.711i −1.39786 + 0.807053i −0.994168 0.107843i \(-0.965606\pi\)
−0.403690 + 0.914896i \(0.632272\pi\)
\(272\) −55.7607 93.7140i −0.205003 0.344537i
\(273\) 116.770 0.427728
\(274\) −284.507 163.016i −1.03834 0.594948i
\(275\) −20.7772 11.9957i −0.0755533 0.0436207i
\(276\) −40.7881 + 0.268043i −0.147783 + 0.000971171i
\(277\) 338.269 1.22119 0.610594 0.791943i \(-0.290931\pi\)
0.610594 + 0.791943i \(0.290931\pi\)
\(278\) 38.1946 66.6598i 0.137391 0.239783i
\(279\) 451.052 + 260.415i 1.61667 + 0.933388i
\(280\) 156.557 + 265.095i 0.559133 + 0.946770i
\(281\) −123.429 + 213.786i −0.439250 + 0.760804i −0.997632 0.0687802i \(-0.978089\pi\)
0.558381 + 0.829584i \(0.311423\pi\)
\(282\) −0.185528 56.4641i −0.000657900 0.200227i
\(283\) −292.581 + 168.921i −1.03385 + 0.596896i −0.918086 0.396381i \(-0.870266\pi\)
−0.115767 + 0.993276i \(0.536933\pi\)
\(284\) 353.300 207.085i 1.24401 0.729173i
\(285\) 6.26140 + 38.1900i 0.0219698 + 0.134000i
\(286\) 61.4932 107.322i 0.215011 0.375252i
\(287\) −267.198 + 154.267i −0.931004 + 0.537515i
\(288\) −244.423 135.813i −0.848691 0.471574i
\(289\) 121.274 210.053i 0.419634 0.726828i
\(290\) 0.0233209 + 7.09754i 8.04168e−5 + 0.0244743i
\(291\) −35.4494 20.4667i −0.121819 0.0703323i
\(292\) 31.6427 + 53.9844i 0.108366 + 0.184878i
\(293\) 247.442 0.844511 0.422256 0.906477i \(-0.361238\pi\)
0.422256 + 0.906477i \(0.361238\pi\)
\(294\) −22.8880 39.3440i −0.0778502 0.133823i
\(295\) 204.452 + 118.041i 0.693059 + 0.400138i
\(296\) 0.615671 + 62.4566i 0.00207997 + 0.211002i
\(297\) 23.7839 0.0800804
\(298\) 398.162 231.627i 1.33611 0.777271i
\(299\) 407.330 235.172i 1.36231 0.786529i
\(300\) 0.123155 + 18.7404i 0.000410515 + 0.0624681i
\(301\) −34.0136 58.9132i −0.113002 0.195725i
\(302\) 373.703 1.22790i 1.23743 0.00406590i
\(303\) 72.2662i 0.238502i
\(304\) 195.668 + 232.659i 0.643644 + 0.765325i
\(305\) −9.84475 −0.0322779
\(306\) 0.391367 + 119.110i 0.00127898 + 0.389247i
\(307\) 85.9857 49.6439i 0.280084 0.161706i −0.353378 0.935481i \(-0.614967\pi\)
0.633461 + 0.773774i \(0.281634\pi\)
\(308\) −101.333 + 0.665919i −0.329003 + 0.00216208i
\(309\) −33.4397 57.9193i −0.108219 0.187441i
\(310\) 238.601 + 410.150i 0.769679 + 1.32306i
\(311\) 72.4217i 0.232867i 0.993198 + 0.116434i \(0.0371462\pi\)
−0.993198 + 0.116434i \(0.962854\pi\)
\(312\) −96.6162 + 0.952402i −0.309667 + 0.00305257i
\(313\) −210.651 + 364.858i −0.673006 + 1.16568i 0.304042 + 0.952659i \(0.401664\pi\)
−0.977048 + 0.213021i \(0.931670\pi\)
\(314\) −278.730 + 162.148i −0.887674 + 0.516395i
\(315\) 336.280i 1.06756i
\(316\) −253.704 + 148.707i −0.802860 + 0.470593i
\(317\) 142.726 247.209i 0.450241 0.779840i −0.548160 0.836374i \(-0.684671\pi\)
0.998401 + 0.0565337i \(0.0180048\pi\)
\(318\) −68.5405 + 0.225208i −0.215536 + 0.000708201i
\(319\) −2.02315 1.16807i −0.00634218 0.00366166i
\(320\) −131.699 218.065i −0.411559 0.681454i
\(321\) 21.4813 + 37.2066i 0.0669198 + 0.115908i
\(322\) −334.341 191.570i −1.03833 0.594937i
\(323\) 45.7499 121.144i 0.141641 0.375060i
\(324\) 149.679 + 255.361i 0.461971 + 0.788151i
\(325\) −108.052 187.151i −0.332467 0.575850i
\(326\) −227.443 + 0.747325i −0.697678 + 0.00229241i
\(327\) −40.9102 23.6195i −0.125108 0.0722310i
\(328\) 219.824 129.821i 0.670194 0.395796i
\(329\) 266.710 461.956i 0.810670 1.40412i
\(330\) 9.26165 + 5.30672i 0.0280656 + 0.0160810i
\(331\) 13.5916i 0.0410621i 0.999789 + 0.0205311i \(0.00653570\pi\)
−0.999789 + 0.0205311i \(0.993464\pi\)
\(332\) −0.483750 73.6122i −0.00145708 0.221723i
\(333\) 34.1114 59.0826i 0.102437 0.177425i
\(334\) 120.389 210.111i 0.360445 0.629074i
\(335\) 167.747i 0.500738i
\(336\) 40.4763 + 68.0264i 0.120465 + 0.202460i
\(337\) −112.071 194.113i −0.332556 0.576003i 0.650456 0.759544i \(-0.274578\pi\)
−0.983012 + 0.183540i \(0.941244\pi\)
\(338\) 670.889 390.283i 1.98488 1.15468i
\(339\) 11.7963 6.81062i 0.0347975 0.0200903i
\(340\) −53.6391 + 94.3318i −0.157762 + 0.277447i
\(341\) −156.181 −0.458008
\(342\) −54.8000 327.497i −0.160234 0.957592i
\(343\) 43.7439i 0.127533i
\(344\) 28.6236 + 48.4679i 0.0832082 + 0.140895i
\(345\) 20.2948 + 35.1517i 0.0588256 + 0.101889i
\(346\) −206.408 + 120.076i −0.596556 + 0.347040i
\(347\) −66.9198 + 38.6361i −0.192852 + 0.111343i −0.593317 0.804969i \(-0.702182\pi\)
0.400465 + 0.916312i \(0.368849\pi\)
\(348\) 0.0119920 + 1.82483i 3.44599e−5 + 0.00524376i
\(349\) −137.502 −0.393990 −0.196995 0.980405i \(-0.563118\pi\)
−0.196995 + 0.980405i \(0.563118\pi\)
\(350\) −88.0183 + 153.616i −0.251481 + 0.438902i
\(351\) 185.533 + 107.117i 0.528583 + 0.305177i
\(352\) 83.8382 1.37748i 0.238177 0.00391330i
\(353\) −50.4441 −0.142901 −0.0714505 0.997444i \(-0.522763\pi\)
−0.0714505 + 0.997444i \(0.522763\pi\)
\(354\) 52.6665 + 30.1767i 0.148775 + 0.0852449i
\(355\) −352.920 203.758i −0.994140 0.573967i
\(356\) 140.293 246.725i 0.394082 0.693047i
\(357\) 16.8594 29.2014i 0.0472252 0.0817965i
\(358\) 476.215 1.56473i 1.33021 0.00437076i
\(359\) 437.654 252.679i 1.21909 0.703843i 0.254368 0.967108i \(-0.418133\pi\)
0.964724 + 0.263265i \(0.0847994\pi\)
\(360\) 2.74278 + 278.241i 0.00761884 + 0.772892i
\(361\) −71.2181 + 353.905i −0.197280 + 0.980347i
\(362\) 265.121 + 151.908i 0.732379 + 0.419637i
\(363\) 50.5789 29.2018i 0.139336 0.0804456i
\(364\) −793.473 451.186i −2.17987 1.23952i
\(365\) 31.1344 53.9264i 0.0852997 0.147743i
\(366\) −2.53118 + 0.00831687i −0.00691580 + 2.27237e-5i
\(367\) −160.944 92.9213i −0.438541 0.253192i 0.264438 0.964403i \(-0.414814\pi\)
−0.702978 + 0.711211i \(0.748147\pi\)
\(368\) 278.199 + 155.779i 0.755975 + 0.423314i
\(369\) −278.852 −0.755696
\(370\) 53.7249 31.2539i 0.145203 0.0844701i
\(371\) −560.758 323.754i −1.51148 0.872651i
\(372\) 61.6931 + 105.252i 0.165842 + 0.282936i
\(373\) −438.747 −1.17627 −0.588133 0.808764i \(-0.700137\pi\)
−0.588133 + 0.808764i \(0.700137\pi\)
\(374\) −17.9603 30.8734i −0.0480221 0.0825491i
\(375\) 60.2495 34.7851i 0.160665 0.0927602i
\(376\) −216.911 + 384.402i −0.576890 + 1.02234i
\(377\) −10.5214 18.2237i −0.0279083 0.0483386i
\(378\) −0.576694 175.513i −0.00152565 0.464319i
\(379\) 152.410i 0.402138i 0.979577 + 0.201069i \(0.0644416\pi\)
−0.979577 + 0.201069i \(0.935558\pi\)
\(380\) 105.015 283.702i 0.276355 0.746585i
\(381\) −17.4428 −0.0457817
\(382\) 637.423 2.09442i 1.66865 0.00548278i
\(383\) −68.7065 + 39.6677i −0.179390 + 0.103571i −0.587006 0.809582i \(-0.699694\pi\)
0.407616 + 0.913153i \(0.366360\pi\)
\(384\) −34.0453 55.9555i −0.0886597 0.145717i
\(385\) 50.4199 + 87.3299i 0.130961 + 0.226831i
\(386\) −106.226 + 61.7957i −0.275196 + 0.160093i
\(387\) 61.4827i 0.158870i
\(388\) 161.804 + 276.048i 0.417021 + 0.711464i
\(389\) −241.258 + 417.872i −0.620201 + 1.07422i 0.369247 + 0.929331i \(0.379616\pi\)
−0.989448 + 0.144889i \(0.953718\pi\)
\(390\) 48.3477 + 83.1088i 0.123968 + 0.213100i
\(391\) 135.818i 0.347362i
\(392\) 3.50720 + 355.787i 0.00894693 + 0.907620i
\(393\) −48.1921 + 83.4711i −0.122626 + 0.212395i
\(394\) −1.59589 485.699i −0.00405049 1.23274i
\(395\) 253.431 + 146.318i 0.641598 + 0.370427i
\(396\) −79.6152 45.2709i −0.201049 0.114320i
\(397\) 14.2395 + 24.6635i 0.0358677 + 0.0621247i 0.883402 0.468616i \(-0.155247\pi\)
−0.847534 + 0.530741i \(0.821914\pi\)
\(398\) −238.590 + 416.405i −0.599474 + 1.04624i
\(399\) −33.2096 + 87.9378i −0.0832320 + 0.220396i
\(400\) 71.5742 127.821i 0.178935 0.319552i
\(401\) 98.1016 + 169.917i 0.244642 + 0.423733i 0.962031 0.272940i \(-0.0879961\pi\)
−0.717389 + 0.696673i \(0.754663\pi\)
\(402\) 0.141713 + 43.1295i 0.000352521 + 0.107287i
\(403\) −1218.33 703.403i −3.02315 1.74542i
\(404\) −279.229 + 491.063i −0.691161 + 1.21550i
\(405\) 147.274 255.086i 0.363640 0.629843i
\(406\) −8.57069 + 14.9582i −0.0211101 + 0.0368427i
\(407\) 20.4579i 0.0502650i
\(408\) −13.7114 + 24.2990i −0.0336065 + 0.0595563i
\(409\) 20.7557 35.9499i 0.0507474 0.0878971i −0.839536 0.543304i \(-0.817173\pi\)
0.890283 + 0.455407i \(0.150506\pi\)
\(410\) −220.429 126.301i −0.537631 0.308050i
\(411\) 83.8947i 0.204123i
\(412\) 3.43551 + 522.781i 0.00833861 + 1.26889i
\(413\) 286.713 + 496.602i 0.694221 + 1.20243i
\(414\) −175.122 301.032i −0.423000 0.727130i
\(415\) −63.4399 + 36.6270i −0.152867 + 0.0882579i
\(416\) 660.206 + 366.843i 1.58703 + 0.881834i
\(417\) −19.6565 −0.0471379
\(418\) 63.3342 + 76.8325i 0.151517 + 0.183810i
\(419\) 207.738i 0.495794i 0.968786 + 0.247897i \(0.0797394\pi\)
−0.968786 + 0.247897i \(0.920261\pi\)
\(420\) 38.9363 68.4749i 0.0927054 0.163035i
\(421\) 306.179 + 530.317i 0.727266 + 1.25966i 0.958035 + 0.286653i \(0.0925425\pi\)
−0.230769 + 0.973009i \(0.574124\pi\)
\(422\) −87.8477 151.009i −0.208170 0.357840i
\(423\) 417.514 241.052i 0.987031 0.569863i
\(424\) 466.616 + 263.303i 1.10051 + 0.620997i
\(425\) −62.4029 −0.146830
\(426\) −90.9113 52.0901i −0.213407 0.122277i
\(427\) −20.7086 11.9561i −0.0484980 0.0280003i
\(428\) −2.20693 335.828i −0.00515637 0.784644i
\(429\) −31.6469 −0.0737691
\(430\) 27.8474 48.6012i 0.0647614 0.113026i
\(431\) −56.0531 32.3623i −0.130054 0.0750865i 0.433562 0.901124i \(-0.357257\pi\)
−0.563615 + 0.826037i \(0.690590\pi\)
\(432\) 1.90869 + 145.216i 0.00441826 + 0.336148i
\(433\) 73.2567 126.884i 0.169184 0.293036i −0.768949 0.639310i \(-0.779220\pi\)
0.938133 + 0.346274i \(0.112553\pi\)
\(434\) 3.78695 + 1152.53i 0.00872570 + 2.65560i
\(435\) 1.57266 0.907975i 0.00361531 0.00208730i
\(436\) 186.730 + 318.572i 0.428279 + 0.730670i
\(437\) 61.2596 + 373.639i 0.140182 + 0.855010i
\(438\) 7.95941 13.8913i 0.0181722 0.0317153i
\(439\) 333.920 192.789i 0.760638 0.439155i −0.0688866 0.997624i \(-0.521945\pi\)
0.829525 + 0.558470i \(0.188611\pi\)
\(440\) −42.4302 71.8462i −0.0964322 0.163287i
\(441\) 194.317 336.567i 0.440628 0.763190i
\(442\) −1.05711 321.725i −0.00239166 0.727885i
\(443\) −30.9999 17.8978i −0.0699771 0.0404013i 0.464603 0.885519i \(-0.346197\pi\)
−0.534580 + 0.845118i \(0.679530\pi\)
\(444\) 13.7868 8.08108i 0.0310514 0.0182006i
\(445\) −282.436 −0.634687
\(446\) −173.281 297.868i −0.388524 0.667865i
\(447\) −102.066 58.9278i −0.228335 0.131830i
\(448\) −12.1980 618.649i −0.0272276 1.38091i
\(449\) 729.651 1.62506 0.812529 0.582921i \(-0.198090\pi\)
0.812529 + 0.582921i \(0.198090\pi\)
\(450\) −138.312 + 80.4613i −0.307359 + 0.178803i
\(451\) 72.4161 41.8095i 0.160568 0.0927039i
\(452\) −106.474 + 0.699705i −0.235562 + 0.00154802i
\(453\) −47.8072 82.8044i −0.105535 0.182791i
\(454\) −498.554 + 1.63813i −1.09814 + 0.00360822i
\(455\) 908.320i 1.99631i
\(456\) 26.7606 73.0314i 0.0586856 0.160156i
\(457\) −402.710 −0.881204 −0.440602 0.897703i \(-0.645235\pi\)
−0.440602 + 0.897703i \(0.645235\pi\)
\(458\) 1.30192 + 396.231i 0.00284263 + 0.865133i
\(459\) 53.5750 30.9316i 0.116721 0.0673890i
\(460\) −2.08504 317.280i −0.00453269 0.689738i
\(461\) −256.224 443.793i −0.555800 0.962674i −0.997841 0.0656788i \(-0.979079\pi\)
0.442041 0.896995i \(-0.354255\pi\)
\(462\) 13.0372 + 22.4108i 0.0282191 + 0.0485082i
\(463\) 732.188i 1.58140i 0.612204 + 0.790700i \(0.290283\pi\)
−0.612204 + 0.790700i \(0.709717\pi\)
\(464\) 6.96946 12.4464i 0.0150204 0.0268242i
\(465\) 60.7020 105.139i 0.130542 0.226105i
\(466\) 499.147 290.374i 1.07113 0.623119i
\(467\) 634.798i 1.35931i −0.733532 0.679655i \(-0.762130\pi\)
0.733532 0.679655i \(-0.237870\pi\)
\(468\) −417.170 711.717i −0.891389 1.52076i
\(469\) −203.724 + 352.860i −0.434379 + 0.752367i
\(470\) 439.219 1.44317i 0.934509 0.00307058i
\(471\) 71.4503 + 41.2518i 0.151699 + 0.0875835i
\(472\) −241.279 408.554i −0.511185 0.865581i
\(473\) 9.21836 + 15.9667i 0.0194891 + 0.0337562i
\(474\) 65.2832 + 37.4058i 0.137728 + 0.0789152i
\(475\) 171.672 28.1462i 0.361414 0.0592553i
\(476\) −227.394 + 133.286i −0.477719 + 0.280013i
\(477\) −292.607 506.811i −0.613433 1.06250i
\(478\) −79.2609 + 0.260433i −0.165818 + 0.000544839i
\(479\) 194.227 + 112.137i 0.405484 + 0.234106i 0.688847 0.724906i \(-0.258117\pi\)
−0.283364 + 0.959013i \(0.591450\pi\)
\(480\) −31.6577 + 56.9743i −0.0659535 + 0.118696i
\(481\) −92.1376 + 159.587i −0.191554 + 0.331782i
\(482\) −527.480 302.234i −1.09436 0.627042i
\(483\) 98.5897i 0.204119i
\(484\) −456.526 + 3.00011i −0.943236 + 0.00619857i
\(485\) 159.205 275.751i 0.328258 0.568559i
\(486\) 118.876 207.470i 0.244601 0.426894i
\(487\) 177.686i 0.364857i 0.983219 + 0.182429i \(0.0583959\pi\)
−0.983219 + 0.182429i \(0.941604\pi\)
\(488\) 17.2320 + 9.72371i 0.0353115 + 0.0199256i
\(489\) 29.0964 + 50.3964i 0.0595018 + 0.103060i
\(490\) 306.046 178.039i 0.624584 0.363346i
\(491\) 463.870 267.815i 0.944745 0.545449i 0.0533002 0.998579i \(-0.483026\pi\)
0.891444 + 0.453130i \(0.149693\pi\)
\(492\) −56.7811 32.2869i −0.115409 0.0656238i
\(493\) −6.07642 −0.0123254
\(494\) 148.019 + 884.595i 0.299634 + 1.79068i
\(495\) 91.1387i 0.184119i
\(496\) −12.5337 953.584i −0.0252696 1.92255i
\(497\) −494.916 857.220i −0.995807 1.72479i
\(498\) −16.2801 + 9.47076i −0.0326909 + 0.0190176i
\(499\) −419.926 + 242.445i −0.841536 + 0.485861i −0.857786 0.514007i \(-0.828160\pi\)
0.0162502 + 0.999868i \(0.494827\pi\)
\(500\) −543.814 + 3.57373i −1.08763 + 0.00714745i
\(501\) −61.9570 −0.123667
\(502\) −397.315 + 693.421i −0.791464 + 1.38132i
\(503\) 279.526 + 161.384i 0.555718 + 0.320844i 0.751425 0.659819i \(-0.229367\pi\)
−0.195707 + 0.980662i \(0.562700\pi\)
\(504\) −332.146 + 588.617i −0.659019 + 1.16789i
\(505\) 562.139 1.11315
\(506\) 90.6131 + 51.9193i 0.179077 + 0.102607i
\(507\) −171.977 99.2912i −0.339206 0.195841i
\(508\) 118.528 + 67.3973i 0.233322 + 0.132672i
\(509\) 213.275 369.403i 0.419008 0.725742i −0.576832 0.816863i \(-0.695711\pi\)
0.995840 + 0.0911201i \(0.0290447\pi\)
\(510\) 27.7641 0.0912264i 0.0544394 0.000178875i
\(511\) 130.984 75.6235i 0.256328 0.147991i
\(512\) 15.1386 + 511.776i 0.0295675 + 0.999563i
\(513\) −133.435 + 109.258i −0.260107 + 0.212978i
\(514\) −22.2650 12.7573i −0.0433170 0.0248197i
\(515\) 450.539 260.119i 0.874833 0.505085i
\(516\) 7.11879 12.5194i 0.0137961 0.0242624i
\(517\) −72.2839 + 125.199i −0.139814 + 0.242165i
\(518\) 150.968 0.496047i 0.291445 0.000957620i
\(519\) 52.9112 + 30.5483i 0.101948 + 0.0588599i
\(520\) −7.40848 751.552i −0.0142471 1.44529i
\(521\) 528.882 1.01513 0.507564 0.861614i \(-0.330546\pi\)
0.507564 + 0.861614i \(0.330546\pi\)
\(522\) −13.4679 + 7.83483i −0.0258006 + 0.0150093i
\(523\) 402.414 + 232.334i 0.769434 + 0.444233i 0.832673 0.553765i \(-0.186810\pi\)
−0.0632386 + 0.997998i \(0.520143\pi\)
\(524\) 649.998 380.994i 1.24046 0.727088i
\(525\) 45.2979 0.0862816
\(526\) −240.170 412.848i −0.456597 0.784882i
\(527\) −351.809 + 203.117i −0.667569 + 0.385421i
\(528\) −10.9699 18.4365i −0.0207763 0.0349177i
\(529\) −65.9418 114.215i −0.124654 0.215907i
\(530\) −1.75183 533.158i −0.00330534 1.00596i
\(531\) 518.261i 0.976010i
\(532\) 565.448 469.237i 1.06287 0.882024i
\(533\) 753.201 1.41314
\(534\) −72.6170 + 0.238603i −0.135987 + 0.000446821i
\(535\) −289.420 + 167.097i −0.540973 + 0.312331i
\(536\) 165.685 293.621i 0.309113 0.547800i
\(537\) −60.9214 105.519i −0.113448 0.196497i
\(538\) −356.187 + 207.208i −0.662058 + 0.385145i
\(539\) 116.539i 0.216214i
\(540\) 124.680 73.0804i 0.230888 0.135334i
\(541\) 318.729 552.054i 0.589147 1.02043i −0.405197 0.914229i \(-0.632797\pi\)
0.994344 0.106204i \(-0.0338696\pi\)
\(542\) −439.910 756.197i −0.811642 1.39520i
\(543\) 78.1784i 0.143975i
\(544\) 187.061 112.137i 0.343861 0.206134i
\(545\) 183.730 318.230i 0.337119 0.583908i
\(546\) 0.767351 + 233.538i 0.00140541 + 0.427725i
\(547\) 16.4275 + 9.48444i 0.0300320 + 0.0173390i 0.514941 0.857226i \(-0.327814\pi\)
−0.484909 + 0.874565i \(0.661147\pi\)
\(548\) 324.160 570.081i 0.591533 1.04029i
\(549\) −10.8059 18.7164i −0.0196829 0.0340918i
\(550\) 23.8547 41.6329i 0.0433723 0.0756963i
\(551\) 16.7163 2.74071i 0.0303382 0.00497407i
\(552\) −0.804122 81.5739i −0.00145674 0.147779i
\(553\) 355.398 + 615.568i 0.642673 + 1.11314i
\(554\) 2.22294 + 676.535i 0.00401252 + 1.22118i
\(555\) −13.7720 7.95126i −0.0248144 0.0143266i
\(556\) 133.570 + 75.9507i 0.240234 + 0.136602i
\(557\) −496.557 + 860.062i −0.891485 + 1.54410i −0.0533887 + 0.998574i \(0.517002\pi\)
−0.838096 + 0.545523i \(0.816331\pi\)
\(558\) −517.863 + 903.811i −0.928071 + 1.61973i
\(559\) 166.070i 0.297084i
\(560\) −529.159 + 314.855i −0.944927 + 0.562241i
\(561\) −4.56924 + 7.91416i −0.00814482 + 0.0141072i
\(562\) −428.381 245.453i −0.762243 0.436748i
\(563\) 412.624i 0.732903i 0.930437 + 0.366451i \(0.119427\pi\)
−0.930437 + 0.366451i \(0.880573\pi\)
\(564\) 112.926 0.742107i 0.200224 0.00131579i
\(565\) 52.9780 + 91.7606i 0.0937664 + 0.162408i
\(566\) −339.764 584.048i −0.600289 1.03189i
\(567\) 619.589 357.720i 1.09275 0.630899i
\(568\) 416.490 + 705.234i 0.733256 + 1.24161i
\(569\) −749.109 −1.31654 −0.658268 0.752784i \(-0.728711\pi\)
−0.658268 + 0.752784i \(0.728711\pi\)
\(570\) −76.3385 + 12.7737i −0.133927 + 0.0224100i
\(571\) 530.406i 0.928907i −0.885598 0.464453i \(-0.846251\pi\)
0.885598 0.464453i \(-0.153749\pi\)
\(572\) 215.047 + 122.280i 0.375957 + 0.213777i
\(573\) −81.5443 141.239i −0.142311 0.246490i
\(574\) −310.288 533.380i −0.540572 0.929233i
\(575\) 158.014 91.2292i 0.274806 0.158660i
\(576\) 270.019 489.736i 0.468783 0.850236i
\(577\) −103.722 −0.179762 −0.0898808 0.995953i \(-0.528649\pi\)
−0.0898808 + 0.995953i \(0.528649\pi\)
\(578\) 420.901 + 241.167i 0.728202 + 0.417244i
\(579\) 27.2302 + 15.7214i 0.0470297 + 0.0271526i
\(580\) −14.1949 + 0.0932830i −0.0244739 + 0.000160833i
\(581\) −177.929 −0.306247
\(582\) 40.7002 71.0328i 0.0699317 0.122050i
\(583\) 151.977 + 87.7438i 0.260680 + 0.150504i
\(584\) −107.760 + 63.6399i −0.184521 + 0.108972i
\(585\) −410.468 + 710.952i −0.701655 + 1.21530i
\(586\) 1.62606 + 494.881i 0.00277485 + 0.844507i
\(587\) 491.362 283.688i 0.837074 0.483285i −0.0191946 0.999816i \(-0.506110\pi\)
0.856269 + 0.516531i \(0.172777\pi\)
\(588\) 78.5371 46.0342i 0.133567 0.0782895i
\(589\) 876.220 717.459i 1.48764 1.21810i
\(590\) −234.736 + 409.678i −0.397858 + 0.694370i
\(591\) −107.620 + 62.1345i −0.182098 + 0.105135i
\(592\) −124.909 + 1.64177i −0.210994 + 0.00277326i
\(593\) −157.268 + 272.396i −0.265207 + 0.459352i −0.967618 0.252420i \(-0.918774\pi\)
0.702411 + 0.711772i \(0.252107\pi\)
\(594\) 0.156296 + 47.5675i 0.000263124 + 0.0800800i
\(595\) 227.150 + 131.145i 0.381764 + 0.220412i
\(596\) 465.868 + 794.798i 0.781657 + 1.33355i
\(597\) 122.789 0.205676
\(598\) 473.019 + 813.111i 0.791001 + 1.35972i
\(599\) −503.360 290.615i −0.840333 0.485167i 0.0170441 0.999855i \(-0.494574\pi\)
−0.857378 + 0.514688i \(0.827908\pi\)
\(600\) −37.4798 + 0.369461i −0.0624664 + 0.000615768i
\(601\) −191.970 −0.319418 −0.159709 0.987164i \(-0.551056\pi\)
−0.159709 + 0.987164i \(0.551056\pi\)
\(602\) 117.602 68.4139i 0.195353 0.113644i
\(603\) −318.914 + 184.125i −0.528878 + 0.305348i
\(604\) 4.91158 + 747.394i 0.00813176 + 1.23741i
\(605\) 227.153 + 393.440i 0.375459 + 0.650314i
\(606\) 144.532 0.474897i 0.238501 0.000783658i
\(607\) 503.612i 0.829675i −0.909896 0.414837i \(-0.863838\pi\)
0.909896 0.414837i \(-0.136162\pi\)
\(608\) −464.029 + 392.862i −0.763206 + 0.646155i
\(609\) 4.41083 0.00724274
\(610\) −0.0646947 19.6894i −0.000106057 0.0322777i
\(611\) −1127.74 + 651.101i −1.84573 + 1.06563i
\(612\) −238.216 + 1.56546i −0.389241 + 0.00255794i
\(613\) −72.2021 125.058i −0.117785 0.204009i 0.801105 0.598524i \(-0.204246\pi\)
−0.918890 + 0.394515i \(0.870913\pi\)
\(614\) 99.8523 + 171.644i 0.162626 + 0.279551i
\(615\) 64.9995i 0.105690i
\(616\) −1.99774 202.660i −0.00324308 0.328994i
\(617\) −73.7633 + 127.762i −0.119552 + 0.207069i −0.919590 0.392879i \(-0.871479\pi\)
0.800038 + 0.599949i \(0.204812\pi\)
\(618\) 115.618 67.2597i 0.187085 0.108835i
\(619\) 240.726i 0.388895i 0.980913 + 0.194448i \(0.0622915\pi\)
−0.980913 + 0.194448i \(0.937709\pi\)
\(620\) −818.728 + 479.894i −1.32053 + 0.774022i
\(621\) −90.4401 + 156.647i −0.145636 + 0.252249i
\(622\) −144.843 + 0.475919i −0.232866 + 0.000765143i
\(623\) −594.110 343.009i −0.953627 0.550577i
\(624\) −2.53971 193.225i −0.00407004 0.309656i
\(625\) 156.134 + 270.432i 0.249815 + 0.432692i
\(626\) −731.096 418.902i −1.16788 0.669172i
\(627\) 9.00047 23.8329i 0.0143548 0.0380110i
\(628\) −326.126 556.391i −0.519309 0.885972i
\(629\) 26.6060 + 46.0829i 0.0422989 + 0.0732638i
\(630\) 672.557 2.20986i 1.06755 0.00350772i
\(631\) −641.965 370.639i −1.01738 0.587383i −0.104034 0.994574i \(-0.533175\pi\)
−0.913343 + 0.407191i \(0.866508\pi\)
\(632\) −299.080 506.428i −0.473228 0.801309i
\(633\) −22.3492 + 38.7100i −0.0353068 + 0.0611532i
\(634\) 495.354 + 283.827i 0.781315 + 0.447676i
\(635\) 135.683i 0.213674i
\(636\) −0.900827 137.079i −0.00141639 0.215533i
\(637\) −524.866 + 909.094i −0.823965 + 1.42715i
\(638\) 2.32283 4.05396i 0.00364080 0.00635417i
\(639\) 894.607i 1.40001i
\(640\) 435.263 264.829i 0.680098 0.413796i
\(641\) −168.177 291.291i −0.262366 0.454432i 0.704504 0.709700i \(-0.251169\pi\)
−0.966870 + 0.255268i \(0.917836\pi\)
\(642\) −74.2717 + 43.2068i −0.115688 + 0.0673003i
\(643\) −530.178 + 306.098i −0.824538 + 0.476047i −0.851979 0.523576i \(-0.824598\pi\)
0.0274407 + 0.999623i \(0.491264\pi\)
\(644\) 380.940 669.937i 0.591522 1.04027i
\(645\) −14.3314 −0.0222193
\(646\) 242.588 + 90.7033i 0.375523 + 0.140408i
\(647\) 22.0321i 0.0340527i 0.999855 + 0.0170263i \(0.00541992\pi\)
−0.999855 + 0.0170263i \(0.994580\pi\)
\(648\) −509.735 + 301.034i −0.786629 + 0.464559i
\(649\) −77.7051 134.589i −0.119731 0.207379i
\(650\) 373.591 217.332i 0.574755 0.334358i
\(651\) 255.376 147.441i 0.392282 0.226484i
\(652\) −2.98928 454.879i −0.00458479 0.697667i
\(653\) 432.929 0.662984 0.331492 0.943458i \(-0.392448\pi\)
0.331492 + 0.943458i \(0.392448\pi\)
\(654\) 46.9700 81.9752i 0.0718195 0.125344i
\(655\) −649.300 374.873i −0.991297 0.572326i
\(656\) 261.085 + 438.792i 0.397996 + 0.668890i
\(657\) 136.697 0.208062
\(658\) 925.659 + 530.382i 1.40678 + 0.806052i
\(659\) 550.072 + 317.584i 0.834707 + 0.481918i 0.855462 0.517866i \(-0.173274\pi\)
−0.0207547 + 0.999785i \(0.506607\pi\)
\(660\) −10.5525 + 18.5581i −0.0159887 + 0.0281183i
\(661\) 555.362 961.915i 0.840184 1.45524i −0.0495545 0.998771i \(-0.515780\pi\)
0.889739 0.456470i \(-0.150887\pi\)
\(662\) −27.1830 + 0.0893170i −0.0410619 + 0.000134920i
\(663\) −71.2872 + 41.1577i −0.107522 + 0.0620779i
\(664\) 147.220 1.45124i 0.221717 0.00218560i
\(665\) −684.045 258.329i −1.02864 0.388464i
\(666\) 118.389 + 67.8341i 0.177761 + 0.101853i
\(667\) 15.3864 8.88335i 0.0230681 0.0133184i
\(668\) 421.010 + 239.395i 0.630255 + 0.358376i
\(669\) −44.0843 + 76.3562i −0.0658958 + 0.114135i
\(670\) −335.493 + 1.10235i −0.500735 + 0.00164530i
\(671\) 5.61246 + 3.24036i 0.00836432 + 0.00482914i
\(672\) −135.786 + 81.3993i −0.202063 + 0.121130i
\(673\) −1159.87 −1.72344 −0.861718 0.507388i \(-0.830611\pi\)
−0.861718 + 0.507388i \(0.830611\pi\)
\(674\) 387.488 225.417i 0.574908 0.334447i
\(675\) 71.9727 + 41.5535i 0.106626 + 0.0615607i
\(676\) 784.970 + 1339.21i 1.16120 + 1.98107i
\(677\) −1044.27 −1.54250 −0.771248 0.636535i \(-0.780367\pi\)
−0.771248 + 0.636535i \(0.780367\pi\)
\(678\) 13.6987 + 23.5478i 0.0202046 + 0.0347313i
\(679\) 669.782 386.699i 0.986425 0.569513i
\(680\) −189.015 106.658i −0.277963 0.156850i
\(681\) 63.7791 + 110.469i 0.0936551 + 0.162215i
\(682\) −1.02634 312.360i −0.00150490 0.458005i
\(683\) 1038.26i 1.52014i −0.649841 0.760070i \(-0.725165\pi\)
0.649841 0.760070i \(-0.274835\pi\)
\(684\) 654.630 111.751i 0.957061 0.163379i
\(685\) −652.595 −0.952693
\(686\) −87.4874 + 0.287463i −0.127533 + 0.000419043i
\(687\) 87.7961 50.6891i 0.127796 0.0737833i
\(688\) −96.7471 + 57.5654i −0.140621 + 0.0836707i
\(689\) 790.356 + 1368.94i 1.14711 + 1.98685i
\(690\) −70.1696 + 40.8204i −0.101695 + 0.0591600i
\(691\) 240.378i 0.347870i −0.984757 0.173935i \(-0.944352\pi\)
0.984757 0.173935i \(-0.0556483\pi\)
\(692\) −241.507 412.025i −0.348998 0.595412i
\(693\) −110.685 + 191.712i −0.159719 + 0.276641i
\(694\) −77.7116 133.585i −0.111976 0.192485i
\(695\) 152.903i 0.220004i
\(696\) −3.64956 + 0.0359758i −0.00524362 + 5.16894e-5i
\(697\) 108.749 188.358i 0.156024 0.270241i
\(698\) −0.903597 275.003i −0.00129455 0.393987i
\(699\) −127.953 73.8735i −0.183051 0.105685i
\(700\) −307.808 175.026i −0.439726 0.250037i
\(701\) 52.8209 + 91.4885i 0.0753508 + 0.130511i 0.901239 0.433323i \(-0.142659\pi\)
−0.825888 + 0.563834i \(0.809326\pi\)
\(702\) −213.014 + 371.767i −0.303439 + 0.529583i
\(703\) −93.9789 114.775i −0.133683 0.163264i
\(704\) 3.30589 + 167.666i 0.00469587 + 0.238163i
\(705\) −56.1885 97.3213i −0.0797000 0.138044i
\(706\) −0.331493 100.888i −0.000469537 0.142900i
\(707\) 1182.47 + 682.701i 1.67252 + 0.965630i
\(708\) −60.0070 + 105.531i −0.0847556 + 0.149055i
\(709\) 133.751 231.663i 0.188647 0.326747i −0.756152 0.654396i \(-0.772923\pi\)
0.944799 + 0.327649i \(0.106256\pi\)
\(710\) 405.195 707.175i 0.570698 0.996021i
\(711\) 642.416i 0.903538i
\(712\) 494.369 + 278.963i 0.694339 + 0.391802i
\(713\) 593.889 1028.65i 0.832944 1.44270i
\(714\) 58.5132 + 33.5267i 0.0819513 + 0.0469562i
\(715\) 246.173i 0.344298i
\(716\) 6.25890 + 952.416i 0.00874148 + 1.33019i
\(717\) 10.1397 + 17.5625i 0.0141418 + 0.0244944i
\(718\) 508.232 + 873.642i 0.707844 + 1.21677i
\(719\) −931.697 + 537.915i −1.29582 + 0.748144i −0.979680 0.200567i \(-0.935721\pi\)
−0.316143 + 0.948711i \(0.602388\pi\)
\(720\) −556.461 + 7.31400i −0.772863 + 0.0101583i
\(721\) 1263.62 1.75260
\(722\) −708.275 140.110i −0.980990 0.194058i
\(723\) 155.542i 0.215134i
\(724\) −302.073 + 531.238i −0.417228 + 0.733754i
\(725\) −4.08153 7.06941i −0.00562969 0.00975092i
\(726\) 58.7356 + 100.965i 0.0809030 + 0.139071i
\(727\) −231.915 + 133.896i −0.319003 + 0.184176i −0.650948 0.759122i \(-0.725628\pi\)
0.331945 + 0.943299i \(0.392295\pi\)
\(728\) 897.152 1589.90i 1.23235 2.18393i
\(729\) 604.810 0.829643
\(730\) 108.057 + 61.9141i 0.148023 + 0.0848138i
\(731\) 41.5302 + 23.9775i 0.0568128 + 0.0328009i
\(732\) −0.0332673 5.06228i −4.54472e−5 0.00691569i
\(733\) −517.076 −0.705424 −0.352712 0.935732i \(-0.614740\pi\)
−0.352712 + 0.935732i \(0.614740\pi\)
\(734\) 184.784 322.498i 0.251749 0.439370i
\(735\) −78.4527 45.2947i −0.106738 0.0616254i
\(736\) −309.729 + 557.418i −0.420827 + 0.757362i
\(737\) 55.2133 95.6322i 0.0749162 0.129759i
\(738\) −1.83247 557.701i −0.00248303 0.755692i
\(739\) −74.5529 + 43.0432i −0.100884 + 0.0582451i −0.549593 0.835433i \(-0.685217\pi\)
0.448709 + 0.893678i \(0.351884\pi\)
\(740\) 62.8606 + 107.244i 0.0849467 + 0.144924i
\(741\) 177.549 145.379i 0.239607 0.196193i
\(742\) 643.819 1123.64i 0.867680 1.51434i
\(743\) −22.5854 + 13.0397i −0.0303976 + 0.0175501i −0.515122 0.857117i \(-0.672253\pi\)
0.484724 + 0.874667i \(0.338920\pi\)
\(744\) −210.098 + 124.077i −0.282389 + 0.166770i
\(745\) 458.384 793.944i 0.615280 1.06570i
\(746\) −2.88323 877.490i −0.00386491 1.17626i
\(747\) −139.267 80.4060i −0.186436 0.107639i
\(748\) 61.6284 36.1232i 0.0823909 0.0482931i
\(749\) −811.736 −1.08376
\(750\) 69.9657 + 120.270i 0.0932877 + 0.160360i
\(751\) 715.806 + 413.271i 0.953137 + 0.550294i 0.894054 0.447959i \(-0.147849\pi\)
0.0590833 + 0.998253i \(0.481182\pi\)
\(752\) −770.224 431.293i −1.02423 0.573528i
\(753\) 204.475 0.271547
\(754\) 36.3780 21.1625i 0.0482467 0.0280670i
\(755\) 644.114 371.879i 0.853131 0.492555i
\(756\) 351.020 2.30676i 0.464312 0.00305127i
\(757\) −6.25471 10.8335i −0.00826249 0.0143111i 0.861865 0.507138i \(-0.169297\pi\)
−0.870127 + 0.492827i \(0.835963\pi\)
\(758\) −304.819 + 1.00156i −0.402136 + 0.00132132i
\(759\) 26.7198i 0.0352040i
\(760\) 568.091 + 208.164i 0.747489 + 0.273900i
\(761\) −722.622 −0.949568 −0.474784 0.880102i \(-0.657474\pi\)
−0.474784 + 0.880102i \(0.657474\pi\)
\(762\) −0.114626 34.8855i −0.000150427 0.0457815i
\(763\) 772.960 446.269i 1.01305 0.584887i
\(764\) 8.37764 + 1274.82i 0.0109655 + 1.66862i
\(765\) 118.528 + 205.297i 0.154939 + 0.268362i
\(766\) −79.7865 137.152i −0.104160 0.179049i
\(767\) 1399.87i 1.82512i
\(768\) 111.687 68.4580i 0.145425 0.0891380i
\(769\) 173.928 301.252i 0.226174 0.391745i −0.730497 0.682916i \(-0.760711\pi\)
0.956671 + 0.291171i \(0.0940448\pi\)
\(770\) −174.327 + 101.413i −0.226399 + 0.131705i
\(771\) 6.56545i 0.00851549i
\(772\) −124.289 212.044i −0.160996 0.274669i
\(773\) 224.641 389.089i 0.290609