Properties

Label 76.3.g.c.7.7
Level $76$
Weight $3$
Character 76.7
Analytic conductor $2.071$
Analytic rank $0$
Dimension $28$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 76 = 2^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 76.g (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.07085000914\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 7.7
Character \(\chi\) \(=\) 76.7
Dual form 76.3.g.c.11.7

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.0647951 - 1.99895i) q^{2} +(-3.11547 + 1.79872i) q^{3} +(-3.99160 + 0.259045i) q^{4} +(4.52938 + 7.84512i) q^{5} +(3.79741 + 6.11112i) q^{6} -2.81904i q^{7} +(0.776454 + 7.96223i) q^{8} +(1.97077 - 3.41347i) q^{9} +O(q^{10})\) \(q+(-0.0647951 - 1.99895i) q^{2} +(-3.11547 + 1.79872i) q^{3} +(-3.99160 + 0.259045i) q^{4} +(4.52938 + 7.84512i) q^{5} +(3.79741 + 6.11112i) q^{6} -2.81904i q^{7} +(0.776454 + 7.96223i) q^{8} +(1.97077 - 3.41347i) q^{9} +(15.3885 - 9.56233i) q^{10} +11.6740i q^{11} +(11.9698 - 7.98681i) q^{12} +(-2.20531 + 3.81970i) q^{13} +(-5.63512 + 0.182660i) q^{14} +(-28.2223 - 16.2941i) q^{15} +(15.8658 - 2.06801i) q^{16} +(-9.59663 - 16.6219i) q^{17} +(-6.95104 - 3.71829i) q^{18} +(-9.06982 + 16.6955i) q^{19} +(-20.1117 - 30.1413i) q^{20} +(5.07066 + 8.78264i) q^{21} +(23.3358 - 0.756420i) q^{22} +(25.2864 + 14.5991i) q^{23} +(-16.7408 - 23.4095i) q^{24} +(-28.5306 + 49.4164i) q^{25} +(7.77829 + 4.16080i) q^{26} -18.1975i q^{27} +(0.730257 + 11.2525i) q^{28} +(15.9091 - 27.5555i) q^{29} +(-30.7425 + 57.4707i) q^{30} -23.9508i q^{31} +(-5.16187 - 31.5809i) q^{32} +(-20.9983 - 36.3701i) q^{33} +(-32.6044 + 20.2602i) q^{34} +(22.1157 - 12.7685i) q^{35} +(-6.98227 + 14.1357i) q^{36} +19.3382 q^{37} +(33.9611 + 17.0483i) q^{38} -15.8669i q^{39} +(-58.9478 + 42.1553i) q^{40} +(2.87159 + 4.97375i) q^{41} +(17.2275 - 10.7051i) q^{42} +(12.4494 - 7.18768i) q^{43} +(-3.02409 - 46.5981i) q^{44} +35.7054 q^{45} +(27.5445 - 51.4922i) q^{46} +(36.4249 + 21.0299i) q^{47} +(-45.7096 + 34.9809i) q^{48} +41.0530 q^{49} +(100.630 + 53.8292i) q^{50} +(59.7960 + 34.5232i) q^{51} +(7.81323 - 15.8180i) q^{52} +(16.2901 - 28.2152i) q^{53} +(-36.3759 + 1.17911i) q^{54} +(-91.5841 + 52.8761i) q^{55} +(22.4459 - 2.18885i) q^{56} +(-1.77365 - 68.3282i) q^{57} +(-56.1128 - 30.0161i) q^{58} +(-9.13465 + 5.27389i) q^{59} +(116.873 + 57.7289i) q^{60} +(-53.5230 + 92.7045i) q^{61} +(-47.8764 + 1.55189i) q^{62} +(-9.62270 - 5.55567i) q^{63} +(-62.7942 + 12.3646i) q^{64} -39.9547 q^{65} +(-71.3414 + 44.3311i) q^{66} +(109.917 + 63.4605i) q^{67} +(42.6117 + 63.8619i) q^{68} -105.039 q^{69} +(-26.9566 - 43.3809i) q^{70} +(3.89373 - 2.24805i) q^{71} +(28.7090 + 13.0413i) q^{72} +(-12.5643 - 21.7620i) q^{73} +(-1.25302 - 38.6562i) q^{74} -205.274i q^{75} +(31.8783 - 68.9911i) q^{76} +32.9096 q^{77} +(-31.7171 + 1.02810i) q^{78} +(-70.4767 + 40.6897i) q^{79} +(88.0859 + 115.102i) q^{80} +(50.4691 + 87.4150i) q^{81} +(9.75621 - 6.06245i) q^{82} -138.888i q^{83} +(-22.5152 - 33.7433i) q^{84} +(86.9336 - 150.573i) q^{85} +(-15.1745 - 24.4200i) q^{86} +114.464i q^{87} +(-92.9513 + 9.06434i) q^{88} +(-24.1722 + 41.8675i) q^{89} +(-2.31354 - 71.3733i) q^{90} +(10.7679 + 6.21685i) q^{91} +(-104.715 - 51.7236i) q^{92} +(43.0807 + 74.6179i) q^{93} +(39.6776 - 74.1742i) q^{94} +(-172.058 + 4.46625i) q^{95} +(72.8868 + 89.1047i) q^{96} +(-26.7563 - 46.3434i) q^{97} +(-2.66004 - 82.0629i) q^{98} +(39.8489 + 23.0068i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28q - 5q^{2} - 11q^{4} + 6q^{5} - 3q^{6} - 62q^{8} + 20q^{9} + O(q^{10}) \) \( 28q - 5q^{2} - 11q^{4} + 6q^{5} - 3q^{6} - 62q^{8} + 20q^{9} + 26q^{12} + 30q^{13} - 30q^{14} - 19q^{16} + 38q^{17} - 60q^{18} - 44q^{20} + 80q^{21} + 45q^{22} + 17q^{24} - 16q^{25} - 56q^{26} + 54q^{28} + 6q^{29} + 96q^{30} - 45q^{32} - 176q^{33} - 20q^{34} + 30q^{36} + 104q^{37} - 258q^{38} + 94q^{40} - 2q^{41} - 2q^{42} + 201q^{44} - 360q^{45} + 164q^{46} - 17q^{48} - 20q^{49} + 490q^{50} - 102q^{52} - 242q^{53} - 13q^{54} + 276q^{56} - 254q^{57} + 96q^{58} + 10q^{60} - 58q^{61} - 36q^{62} - 74q^{64} - 260q^{65} + 167q^{66} + 396q^{68} + 340q^{69} + 60q^{70} - 422q^{72} - 82q^{73} - 136q^{74} + 123q^{76} - 144q^{77} + 224q^{78} - 174q^{80} + 410q^{81} - 305q^{82} + 252q^{84} + 714q^{85} + 166q^{86} - 718q^{88} + 150q^{89} - 272q^{90} - 588q^{92} + 344q^{93} - 488q^{94} - 122q^{96} + 94q^{97} + 307q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/76\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(39\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0647951 1.99895i −0.0323976 0.999475i
\(3\) −3.11547 + 1.79872i −1.03849 + 0.599572i −0.919405 0.393312i \(-0.871329\pi\)
−0.119085 + 0.992884i \(0.537996\pi\)
\(4\) −3.99160 + 0.259045i −0.997901 + 0.0647611i
\(5\) 4.52938 + 7.84512i 0.905876 + 1.56902i 0.819737 + 0.572740i \(0.194119\pi\)
0.0861387 + 0.996283i \(0.472547\pi\)
\(6\) 3.79741 + 6.11112i 0.632902 + 1.01852i
\(7\) 2.81904i 0.402720i −0.979517 0.201360i \(-0.935464\pi\)
0.979517 0.201360i \(-0.0645361\pi\)
\(8\) 0.776454 + 7.96223i 0.0970567 + 0.995279i
\(9\) 1.97077 3.41347i 0.218974 0.379274i
\(10\) 15.3885 9.56233i 1.53885 0.956233i
\(11\) 11.6740i 1.06128i 0.847599 + 0.530638i \(0.178048\pi\)
−0.847599 + 0.530638i \(0.821952\pi\)
\(12\) 11.9698 7.98681i 0.997481 0.665567i
\(13\) −2.20531 + 3.81970i −0.169639 + 0.293823i −0.938293 0.345841i \(-0.887593\pi\)
0.768654 + 0.639665i \(0.220927\pi\)
\(14\) −5.63512 + 0.182660i −0.402509 + 0.0130472i
\(15\) −28.2223 16.2941i −1.88149 1.08628i
\(16\) 15.8658 2.06801i 0.991612 0.129250i
\(17\) −9.59663 16.6219i −0.564508 0.977756i −0.997095 0.0761642i \(-0.975733\pi\)
0.432588 0.901592i \(-0.357601\pi\)
\(18\) −6.95104 3.71829i −0.386169 0.206571i
\(19\) −9.06982 + 16.6955i −0.477359 + 0.878708i
\(20\) −20.1117 30.1413i −1.00559 1.50706i
\(21\) 5.07066 + 8.78264i 0.241460 + 0.418221i
\(22\) 23.3358 0.756420i 1.06072 0.0343827i
\(23\) 25.2864 + 14.5991i 1.09941 + 0.634744i 0.936066 0.351825i \(-0.114439\pi\)
0.163343 + 0.986569i \(0.447772\pi\)
\(24\) −16.7408 23.4095i −0.697534 0.975394i
\(25\) −28.5306 + 49.4164i −1.14122 + 1.97665i
\(26\) 7.77829 + 4.16080i 0.299165 + 0.160031i
\(27\) 18.1975i 0.673982i
\(28\) 0.730257 + 11.2525i 0.0260806 + 0.401875i
\(29\) 15.9091 27.5555i 0.548591 0.950188i −0.449780 0.893139i \(-0.648498\pi\)
0.998371 0.0570486i \(-0.0181690\pi\)
\(30\) −30.7425 + 57.4707i −1.02475 + 1.91569i
\(31\) 23.9508i 0.772606i −0.922372 0.386303i \(-0.873752\pi\)
0.922372 0.386303i \(-0.126248\pi\)
\(32\) −5.16187 31.5809i −0.161308 0.986904i
\(33\) −20.9983 36.3701i −0.636311 1.10212i
\(34\) −32.6044 + 20.2602i −0.958954 + 0.595888i
\(35\) 22.1157 12.7685i 0.631877 0.364815i
\(36\) −6.98227 + 14.1357i −0.193952 + 0.392659i
\(37\) 19.3382 0.522655 0.261327 0.965250i \(-0.415840\pi\)
0.261327 + 0.965250i \(0.415840\pi\)
\(38\) 33.9611 + 17.0483i 0.893712 + 0.448641i
\(39\) 15.8669i 0.406843i
\(40\) −58.9478 + 42.1553i −1.47369 + 1.05388i
\(41\) 2.87159 + 4.97375i 0.0700389 + 0.121311i 0.898918 0.438117i \(-0.144354\pi\)
−0.828879 + 0.559428i \(0.811021\pi\)
\(42\) 17.2275 10.7051i 0.410179 0.254883i
\(43\) 12.4494 7.18768i 0.289521 0.167155i −0.348205 0.937419i \(-0.613209\pi\)
0.637726 + 0.770263i \(0.279875\pi\)
\(44\) −3.02409 46.5981i −0.0687294 1.05905i
\(45\) 35.7054 0.793453
\(46\) 27.5445 51.4922i 0.598793 1.11940i
\(47\) 36.4249 + 21.0299i 0.774998 + 0.447445i 0.834655 0.550774i \(-0.185667\pi\)
−0.0596567 + 0.998219i \(0.519001\pi\)
\(48\) −45.7096 + 34.9809i −0.952284 + 0.728768i
\(49\) 41.0530 0.837816
\(50\) 100.630 + 53.8292i 2.01259 + 1.07658i
\(51\) 59.7960 + 34.5232i 1.17247 + 0.676926i
\(52\) 7.81323 15.8180i 0.150255 0.304192i
\(53\) 16.2901 28.2152i 0.307360 0.532362i −0.670424 0.741978i \(-0.733888\pi\)
0.977784 + 0.209616i \(0.0672212\pi\)
\(54\) −36.3759 + 1.17911i −0.673628 + 0.0218354i
\(55\) −91.5841 + 52.8761i −1.66517 + 0.961384i
\(56\) 22.4459 2.18885i 0.400819 0.0390867i
\(57\) −1.77365 68.3282i −0.0311166 1.19874i
\(58\) −56.1128 30.0161i −0.967462 0.517520i
\(59\) −9.13465 + 5.27389i −0.154825 + 0.0893880i −0.575411 0.817865i \(-0.695158\pi\)
0.420586 + 0.907253i \(0.361824\pi\)
\(60\) 116.873 + 57.7289i 1.94788 + 0.962149i
\(61\) −53.5230 + 92.7045i −0.877426 + 1.51975i −0.0232694 + 0.999729i \(0.507408\pi\)
−0.854156 + 0.520016i \(0.825926\pi\)
\(62\) −47.8764 + 1.55189i −0.772200 + 0.0250306i
\(63\) −9.62270 5.55567i −0.152741 0.0881852i
\(64\) −62.7942 + 12.3646i −0.981160 + 0.193197i
\(65\) −39.9547 −0.614687
\(66\) −71.3414 + 44.3311i −1.08093 + 0.671684i
\(67\) 109.917 + 63.4605i 1.64055 + 0.947172i 0.980638 + 0.195828i \(0.0627394\pi\)
0.659911 + 0.751344i \(0.270594\pi\)
\(68\) 42.6117 + 63.8619i 0.626643 + 0.939145i
\(69\) −105.039 −1.52230
\(70\) −26.9566 43.3809i −0.385094 0.619727i
\(71\) 3.89373 2.24805i 0.0548413 0.0316626i −0.472329 0.881423i \(-0.656586\pi\)
0.527170 + 0.849760i \(0.323253\pi\)
\(72\) 28.7090 + 13.0413i 0.398736 + 0.181129i
\(73\) −12.5643 21.7620i −0.172114 0.298110i 0.767045 0.641594i \(-0.221726\pi\)
−0.939159 + 0.343484i \(0.888393\pi\)
\(74\) −1.25302 38.6562i −0.0169327 0.522381i
\(75\) 205.274i 2.73698i
\(76\) 31.8783 68.9911i 0.419451 0.907778i
\(77\) 32.9096 0.427397
\(78\) −31.7171 + 1.02810i −0.406630 + 0.0131807i
\(79\) −70.4767 + 40.6897i −0.892110 + 0.515060i −0.874632 0.484788i \(-0.838897\pi\)
−0.0174777 + 0.999847i \(0.505564\pi\)
\(80\) 88.0859 + 115.102i 1.10107 + 1.43878i
\(81\) 50.4691 + 87.4150i 0.623075 + 1.07920i
\(82\) 9.75621 6.06245i 0.118978 0.0739323i
\(83\) 138.888i 1.67336i −0.547696 0.836678i \(-0.684495\pi\)
0.547696 0.836678i \(-0.315505\pi\)
\(84\) −22.5152 33.7433i −0.268038 0.401706i
\(85\) 86.9336 150.573i 1.02275 1.77145i
\(86\) −15.1745 24.4200i −0.176447 0.283954i
\(87\) 114.464i 1.31568i
\(88\) −92.9513 + 9.06434i −1.05627 + 0.103004i
\(89\) −24.1722 + 41.8675i −0.271598 + 0.470421i −0.969271 0.245995i \(-0.920885\pi\)
0.697673 + 0.716416i \(0.254219\pi\)
\(90\) −2.31354 71.3733i −0.0257059 0.793036i
\(91\) 10.7679 + 6.21685i 0.118329 + 0.0683170i
\(92\) −104.715 51.7236i −1.13821 0.562213i
\(93\) 43.0807 + 74.6179i 0.463233 + 0.802343i
\(94\) 39.6776 74.1742i 0.422102 0.789087i
\(95\) −172.058 + 4.46625i −1.81114 + 0.0470131i
\(96\) 72.8868 + 89.1047i 0.759237 + 0.928174i
\(97\) −26.7563 46.3434i −0.275839 0.477767i 0.694508 0.719485i \(-0.255622\pi\)
−0.970346 + 0.241719i \(0.922289\pi\)
\(98\) −2.66004 82.0629i −0.0271432 0.837377i
\(99\) 39.8489 + 23.0068i 0.402514 + 0.232392i
\(100\) 101.082 204.641i 1.01082 2.04641i
\(101\) −15.2493 + 26.4126i −0.150984 + 0.261511i −0.931589 0.363513i \(-0.881577\pi\)
0.780606 + 0.625024i \(0.214911\pi\)
\(102\) 65.1358 121.766i 0.638586 1.19379i
\(103\) 56.0986i 0.544646i −0.962206 0.272323i \(-0.912208\pi\)
0.962206 0.272323i \(-0.0877920\pi\)
\(104\) −32.1257 14.5933i −0.308901 0.140321i
\(105\) −45.9339 + 79.5598i −0.437465 + 0.757712i
\(106\) −57.4563 30.7348i −0.542041 0.289951i
\(107\) 8.87585i 0.0829519i −0.999140 0.0414759i \(-0.986794\pi\)
0.999140 0.0414759i \(-0.0132060\pi\)
\(108\) 4.71396 + 72.6372i 0.0436478 + 0.672567i
\(109\) −2.29522 3.97543i −0.0210570 0.0364718i 0.855305 0.518125i \(-0.173370\pi\)
−0.876362 + 0.481653i \(0.840036\pi\)
\(110\) 111.631 + 179.646i 1.01483 + 1.63315i
\(111\) −60.2477 + 34.7840i −0.542772 + 0.313369i
\(112\) −5.82979 44.7263i −0.0520517 0.399342i
\(113\) 174.766 1.54660 0.773301 0.634039i \(-0.218604\pi\)
0.773301 + 0.634039i \(0.218604\pi\)
\(114\) −136.470 + 7.97277i −1.19710 + 0.0699366i
\(115\) 264.500i 2.30000i
\(116\) −56.3649 + 114.112i −0.485904 + 0.983721i
\(117\) 8.69228 + 15.0555i 0.0742930 + 0.128679i
\(118\) 11.1341 + 17.9180i 0.0943571 + 0.151847i
\(119\) −46.8577 + 27.0533i −0.393762 + 0.227339i
\(120\) 107.824 237.364i 0.898537 1.97803i
\(121\) −15.2830 −0.126306
\(122\) 188.780 + 100.983i 1.54737 + 0.827729i
\(123\) −17.8927 10.3304i −0.145469 0.0839868i
\(124\) 6.20432 + 95.6020i 0.0500348 + 0.770984i
\(125\) −290.434 −2.32347
\(126\) −10.4820 + 19.5953i −0.0831905 + 0.155518i
\(127\) −145.773 84.1618i −1.14782 0.662691i −0.199461 0.979906i \(-0.563919\pi\)
−0.948354 + 0.317214i \(0.897253\pi\)
\(128\) 28.7850 + 124.721i 0.224883 + 0.974386i
\(129\) −25.8572 + 44.7860i −0.200443 + 0.347178i
\(130\) 2.58887 + 79.8674i 0.0199144 + 0.614365i
\(131\) 106.509 61.4929i 0.813044 0.469411i −0.0349677 0.999388i \(-0.511133\pi\)
0.848012 + 0.529977i \(0.177800\pi\)
\(132\) 93.2383 + 139.735i 0.706350 + 1.05860i
\(133\) 47.0652 + 25.5682i 0.353874 + 0.192242i
\(134\) 119.732 223.830i 0.893525 1.67037i
\(135\) 142.762 82.4234i 1.05749 0.610544i
\(136\) 124.896 89.3167i 0.918351 0.656740i
\(137\) 40.8518 70.7574i 0.298188 0.516477i −0.677533 0.735492i \(-0.736951\pi\)
0.975721 + 0.219015i \(0.0702844\pi\)
\(138\) 6.80600 + 209.967i 0.0493188 + 1.52150i
\(139\) −16.6104 9.59003i −0.119499 0.0689930i 0.439059 0.898458i \(-0.355312\pi\)
−0.558558 + 0.829465i \(0.688645\pi\)
\(140\) −84.9695 + 56.6958i −0.606925 + 0.404970i
\(141\) −151.308 −1.07310
\(142\) −4.74603 7.63771i −0.0334227 0.0537867i
\(143\) −44.5913 25.7448i −0.311827 0.180034i
\(144\) 24.2087 58.2329i 0.168116 0.404395i
\(145\) 288.234 1.98782
\(146\) −42.6871 + 26.5255i −0.292377 + 0.181682i
\(147\) −127.899 + 73.8427i −0.870064 + 0.502332i
\(148\) −77.1905 + 5.00946i −0.521558 + 0.0338477i
\(149\) 33.0378 + 57.2232i 0.221730 + 0.384048i 0.955333 0.295530i \(-0.0954962\pi\)
−0.733603 + 0.679578i \(0.762163\pi\)
\(150\) −410.332 + 13.3007i −2.73554 + 0.0886715i
\(151\) 12.6319i 0.0836552i −0.999125 0.0418276i \(-0.986682\pi\)
0.999125 0.0418276i \(-0.0133180\pi\)
\(152\) −139.975 59.2528i −0.920891 0.389821i
\(153\) −75.6508 −0.494450
\(154\) −2.13238 65.7846i −0.0138466 0.427173i
\(155\) 187.897 108.482i 1.21224 0.699885i
\(156\) 4.11023 + 63.3343i 0.0263476 + 0.405989i
\(157\) 22.5170 + 39.0005i 0.143420 + 0.248411i 0.928782 0.370625i \(-0.120857\pi\)
−0.785362 + 0.619037i \(0.787523\pi\)
\(158\) 85.9033 + 138.243i 0.543692 + 0.874955i
\(159\) 117.205i 0.737137i
\(160\) 224.376 183.537i 1.40235 1.14711i
\(161\) 41.1555 71.2834i 0.255624 0.442754i
\(162\) 171.468 106.549i 1.05844 0.657711i
\(163\) 80.7645i 0.495488i 0.968826 + 0.247744i \(0.0796892\pi\)
−0.968826 + 0.247744i \(0.920311\pi\)
\(164\) −12.7507 19.1094i −0.0777481 0.116520i
\(165\) 190.218 329.468i 1.15284 1.99677i
\(166\) −277.631 + 8.99930i −1.67248 + 0.0542126i
\(167\) 164.130 + 94.7605i 0.982814 + 0.567428i 0.903119 0.429391i \(-0.141272\pi\)
0.0796954 + 0.996819i \(0.474605\pi\)
\(168\) −65.9923 + 47.1931i −0.392811 + 0.280911i
\(169\) 74.7732 + 129.511i 0.442445 + 0.766338i
\(170\) −306.622 164.019i −1.80366 0.964820i
\(171\) 39.1149 + 63.8624i 0.228742 + 0.373464i
\(172\) −47.8312 + 31.9153i −0.278088 + 0.185554i
\(173\) −66.4142 115.033i −0.383897 0.664930i 0.607718 0.794153i \(-0.292085\pi\)
−0.991616 + 0.129223i \(0.958752\pi\)
\(174\) 228.808 7.41672i 1.31499 0.0426249i
\(175\) 139.307 + 80.4288i 0.796039 + 0.459593i
\(176\) 24.1420 + 185.218i 0.137170 + 1.05237i
\(177\) 18.9725 32.8613i 0.107189 0.185657i
\(178\) 85.2572 + 45.6062i 0.478973 + 0.256215i
\(179\) 71.2078i 0.397809i 0.980019 + 0.198904i \(0.0637384\pi\)
−0.980019 + 0.198904i \(0.936262\pi\)
\(180\) −142.522 + 9.24928i −0.791787 + 0.0513849i
\(181\) −74.3514 + 128.780i −0.410781 + 0.711494i −0.994975 0.100120i \(-0.968077\pi\)
0.584194 + 0.811614i \(0.301411\pi\)
\(182\) 11.7295 21.9273i 0.0644476 0.120480i
\(183\) 385.091i 2.10432i
\(184\) −96.6078 + 212.672i −0.525042 + 1.15582i
\(185\) 87.5902 + 151.711i 0.473460 + 0.820058i
\(186\) 146.366 90.9510i 0.786914 0.488984i
\(187\) 194.044 112.031i 1.03767 0.599098i
\(188\) −150.841 74.5075i −0.802348 0.396316i
\(189\) −51.2995 −0.271426
\(190\) 20.0764 + 343.647i 0.105665 + 1.80867i
\(191\) 158.757i 0.831187i −0.909550 0.415594i \(-0.863574\pi\)
0.909550 0.415594i \(-0.136426\pi\)
\(192\) 173.393 151.471i 0.903089 0.788909i
\(193\) −154.059 266.837i −0.798231 1.38258i −0.920767 0.390113i \(-0.872436\pi\)
0.122536 0.992464i \(-0.460897\pi\)
\(194\) −90.9044 + 56.4874i −0.468579 + 0.291172i
\(195\) 124.478 71.8672i 0.638346 0.368550i
\(196\) −163.867 + 10.6346i −0.836058 + 0.0542579i
\(197\) 44.2927 0.224836 0.112418 0.993661i \(-0.464140\pi\)
0.112418 + 0.993661i \(0.464140\pi\)
\(198\) 43.4074 81.1467i 0.219229 0.409832i
\(199\) −198.448 114.574i −0.997225 0.575748i −0.0897989 0.995960i \(-0.528622\pi\)
−0.907426 + 0.420212i \(0.861956\pi\)
\(200\) −415.617 188.797i −2.07809 0.943987i
\(201\) −456.590 −2.27159
\(202\) 53.7856 + 28.7713i 0.266265 + 0.142432i
\(203\) −77.6800 44.8485i −0.382660 0.220929i
\(204\) −247.625 122.313i −1.21385 0.599575i
\(205\) −26.0131 + 45.0560i −0.126893 + 0.219785i
\(206\) −112.138 + 3.63491i −0.544360 + 0.0176452i
\(207\) 99.6672 57.5429i 0.481484 0.277985i
\(208\) −27.0898 + 65.1632i −0.130239 + 0.313285i
\(209\) −194.903 105.881i −0.932552 0.506610i
\(210\) 162.012 + 86.6644i 0.771487 + 0.412688i
\(211\) −123.613 + 71.3683i −0.585846 + 0.338238i −0.763453 0.645863i \(-0.776498\pi\)
0.177607 + 0.984101i \(0.443164\pi\)
\(212\) −57.7145 + 116.844i −0.272238 + 0.551150i
\(213\) −8.08720 + 14.0074i −0.0379681 + 0.0657627i
\(214\) −17.7424 + 0.575112i −0.0829083 + 0.00268744i
\(215\) 112.776 + 65.1114i 0.524541 + 0.302844i
\(216\) 144.893 14.1295i 0.670800 0.0654144i
\(217\) −67.5183 −0.311144
\(218\) −7.79797 + 4.84561i −0.0357705 + 0.0222276i
\(219\) 78.2875 + 45.1993i 0.357477 + 0.206389i
\(220\) 351.870 234.785i 1.59941 1.06720i
\(221\) 84.6541 0.383050
\(222\) 73.4352 + 118.178i 0.330789 + 0.532334i
\(223\) −79.7297 + 46.0319i −0.357532 + 0.206421i −0.667998 0.744163i \(-0.732848\pi\)
0.310466 + 0.950585i \(0.399515\pi\)
\(224\) −89.0280 + 14.5515i −0.397446 + 0.0649621i
\(225\) 112.454 + 194.776i 0.499796 + 0.865672i
\(226\) −11.3240 349.349i −0.0501062 1.54579i
\(227\) 36.7352i 0.161829i 0.996721 + 0.0809145i \(0.0257841\pi\)
−0.996721 + 0.0809145i \(0.974216\pi\)
\(228\) 24.7797 + 272.280i 0.108683 + 1.19421i
\(229\) 45.3630 0.198092 0.0990459 0.995083i \(-0.468421\pi\)
0.0990459 + 0.995083i \(0.468421\pi\)
\(230\) 528.722 17.1383i 2.29879 0.0745143i
\(231\) −102.529 + 59.1950i −0.443848 + 0.256255i
\(232\) 231.756 + 105.277i 0.998946 + 0.453779i
\(233\) −96.8854 167.810i −0.415817 0.720216i 0.579697 0.814832i \(-0.303171\pi\)
−0.995514 + 0.0946161i \(0.969838\pi\)
\(234\) 29.5319 18.3510i 0.126205 0.0784229i
\(235\) 381.010i 1.62132i
\(236\) 35.0957 23.4176i 0.148711 0.0992270i
\(237\) 146.379 253.535i 0.617631 1.06977i
\(238\) 57.1144 + 91.9133i 0.239976 + 0.386190i
\(239\) 172.376i 0.721238i 0.932713 + 0.360619i \(0.117435\pi\)
−0.932713 + 0.360619i \(0.882565\pi\)
\(240\) −481.465 200.156i −2.00611 0.833982i
\(241\) 136.476 236.384i 0.566291 0.980845i −0.430637 0.902525i \(-0.641711\pi\)
0.996928 0.0783202i \(-0.0249556\pi\)
\(242\) 0.990263 + 30.5499i 0.00409200 + 0.126239i
\(243\) −172.634 99.6703i −0.710428 0.410166i
\(244\) 189.628 383.904i 0.777163 1.57338i
\(245\) 185.945 + 322.066i 0.758958 + 1.31455i
\(246\) −19.4905 + 36.4360i −0.0792298 + 0.148114i
\(247\) −43.7699 71.4626i −0.177206 0.289322i
\(248\) 190.702 18.5967i 0.768958 0.0749866i
\(249\) 249.821 + 432.703i 1.00330 + 1.73776i
\(250\) 18.8187 + 580.563i 0.0752748 + 2.32225i
\(251\) −206.313 119.115i −0.821965 0.474562i 0.0291287 0.999576i \(-0.490727\pi\)
−0.851094 + 0.525014i \(0.824060\pi\)
\(252\) 39.8492 + 19.6833i 0.158132 + 0.0781084i
\(253\) −170.430 + 295.194i −0.673638 + 1.16678i
\(254\) −158.790 + 296.845i −0.625157 + 1.16868i
\(255\) 625.476i 2.45285i
\(256\) 247.447 65.6211i 0.966589 0.256332i
\(257\) −70.1915 + 121.575i −0.273119 + 0.473055i −0.969659 0.244463i \(-0.921388\pi\)
0.696540 + 0.717518i \(0.254722\pi\)
\(258\) 91.2003 + 48.7853i 0.353490 + 0.189090i
\(259\) 54.5153i 0.210484i
\(260\) 159.483 10.3500i 0.613397 0.0398078i
\(261\) −62.7064 108.611i −0.240254 0.416133i
\(262\) −129.822 208.921i −0.495506 0.797410i
\(263\) −140.437 + 81.0814i −0.533981 + 0.308294i −0.742636 0.669695i \(-0.766425\pi\)
0.208655 + 0.977989i \(0.433091\pi\)
\(264\) 273.283 195.433i 1.03516 0.740276i
\(265\) 295.135 1.11372
\(266\) 48.0600 95.7377i 0.180677 0.359916i
\(267\) 173.916i 0.651370i
\(268\) −455.183 224.836i −1.69845 0.838939i
\(269\) 117.202 + 203.000i 0.435695 + 0.754647i 0.997352 0.0727237i \(-0.0231691\pi\)
−0.561657 + 0.827370i \(0.689836\pi\)
\(270\) −174.011 280.033i −0.644484 1.03716i
\(271\) 107.762 62.2163i 0.397645 0.229581i −0.287822 0.957684i \(-0.592931\pi\)
0.685467 + 0.728103i \(0.259598\pi\)
\(272\) −186.632 243.873i −0.686148 0.896592i
\(273\) −44.7294 −0.163844
\(274\) −144.087 77.0759i −0.525867 0.281299i
\(275\) −576.888 333.067i −2.09778 1.21115i
\(276\) 419.273 27.2097i 1.51910 0.0985859i
\(277\) 240.837 0.869447 0.434724 0.900564i \(-0.356846\pi\)
0.434724 + 0.900564i \(0.356846\pi\)
\(278\) −18.0937 + 33.8248i −0.0650853 + 0.121672i
\(279\) −81.7552 47.2014i −0.293029 0.169181i
\(280\) 118.838 + 166.176i 0.424420 + 0.593486i
\(281\) 155.780 269.819i 0.554378 0.960211i −0.443574 0.896238i \(-0.646290\pi\)
0.997952 0.0639730i \(-0.0203772\pi\)
\(282\) 9.80399 + 302.456i 0.0347659 + 1.07254i
\(283\) 342.914 197.981i 1.21171 0.699581i 0.248578 0.968612i \(-0.420037\pi\)
0.963132 + 0.269031i \(0.0867034\pi\)
\(284\) −14.9599 + 9.98196i −0.0526757 + 0.0351478i
\(285\) 528.009 323.399i 1.85266 1.13473i
\(286\) −48.5733 + 90.8040i −0.169837 + 0.317496i
\(287\) 14.0212 8.09515i 0.0488544 0.0282061i
\(288\) −117.973 44.6188i −0.409629 0.154926i
\(289\) −39.6907 + 68.7463i −0.137338 + 0.237876i
\(290\) −18.6762 576.166i −0.0644006 1.98678i
\(291\) 166.717 + 96.2542i 0.572911 + 0.330770i
\(292\) 55.7891 + 83.6107i 0.191059 + 0.286338i
\(293\) −455.316 −1.55398 −0.776990 0.629513i \(-0.783254\pi\)
−0.776990 + 0.629513i \(0.783254\pi\)
\(294\) 155.895 + 250.880i 0.530256 + 0.853333i
\(295\) −82.7486 47.7749i −0.280504 0.161949i
\(296\) 15.0152 + 153.975i 0.0507272 + 0.520187i
\(297\) 212.438 0.715280
\(298\) 112.246 69.7487i 0.376663 0.234056i
\(299\) −111.529 + 64.3910i −0.373005 + 0.215355i
\(300\) 53.1750 + 819.371i 0.177250 + 2.73124i
\(301\) −20.2624 35.0954i −0.0673168 0.116596i
\(302\) −25.2506 + 0.818488i −0.0836113 + 0.00271023i
\(303\) 109.717i 0.362102i
\(304\) −109.374 + 283.643i −0.359782 + 0.933037i
\(305\) −969.703 −3.17935
\(306\) 4.90181 + 151.222i 0.0160190 + 0.494190i
\(307\) −306.496 + 176.956i −0.998358 + 0.576403i −0.907762 0.419485i \(-0.862211\pi\)
−0.0905962 + 0.995888i \(0.528877\pi\)
\(308\) −131.362 + 8.52505i −0.426500 + 0.0276787i
\(309\) 100.905 + 174.773i 0.326555 + 0.565610i
\(310\) −229.025 368.567i −0.738791 1.18893i
\(311\) 508.683i 1.63564i −0.575475 0.817819i \(-0.695183\pi\)
0.575475 0.817819i \(-0.304817\pi\)
\(312\) 126.336 12.3199i 0.404923 0.0394869i
\(313\) −227.534 + 394.101i −0.726946 + 1.25911i 0.231222 + 0.972901i \(0.425728\pi\)
−0.958168 + 0.286206i \(0.907606\pi\)
\(314\) 76.5012 47.5374i 0.243634 0.151393i
\(315\) 100.655i 0.319540i
\(316\) 270.774 180.674i 0.856881 0.571753i
\(317\) −299.225 + 518.273i −0.943927 + 1.63493i −0.186041 + 0.982542i \(0.559566\pi\)
−0.757886 + 0.652387i \(0.773768\pi\)
\(318\) 234.287 7.59430i 0.736750 0.0238815i
\(319\) 321.683 + 185.724i 1.00841 + 0.582206i
\(320\) −381.421 436.624i −1.19194 1.36445i
\(321\) 15.9651 + 27.6524i 0.0497356 + 0.0861446i
\(322\) −145.159 77.6490i −0.450803 0.241146i
\(323\) 364.549 9.46287i 1.12864 0.0292968i
\(324\) −224.097 335.852i −0.691657 1.03658i
\(325\) −125.837 217.956i −0.387191 0.670635i
\(326\) 161.444 5.23315i 0.495228 0.0160526i
\(327\) 14.3013 + 8.25689i 0.0437350 + 0.0252504i
\(328\) −37.3725 + 26.7262i −0.113940 + 0.0814823i
\(329\) 59.2842 102.683i 0.180195 0.312107i
\(330\) −670.915 358.889i −2.03308 1.08754i
\(331\) 282.230i 0.852657i −0.904568 0.426329i \(-0.859807\pi\)
0.904568 0.426329i \(-0.140193\pi\)
\(332\) 35.9783 + 554.388i 0.108368 + 1.66984i
\(333\) 38.1111 66.0104i 0.114448 0.198229i
\(334\) 178.787 334.228i 0.535289 1.00068i
\(335\) 1149.75i 3.43208i
\(336\) 98.6126 + 128.857i 0.293490 + 0.383504i
\(337\) −39.3112 68.0891i −0.116651 0.202045i 0.801788 0.597609i \(-0.203882\pi\)
−0.918438 + 0.395564i \(0.870549\pi\)
\(338\) 254.041 157.860i 0.751601 0.467040i
\(339\) −544.478 + 314.355i −1.60613 + 0.927300i
\(340\) −307.999 + 623.549i −0.905880 + 1.83397i
\(341\) 279.602 0.819948
\(342\) 125.123 82.3267i 0.365857 0.240721i
\(343\) 253.863i 0.740126i
\(344\) 66.8963 + 93.5443i 0.194466 + 0.271931i
\(345\) −475.760 824.041i −1.37901 2.38852i
\(346\) −225.642 + 140.212i −0.652143 + 0.405238i
\(347\) 155.605 89.8386i 0.448429 0.258901i −0.258737 0.965948i \(-0.583306\pi\)
0.707167 + 0.707047i \(0.249973\pi\)
\(348\) −29.6513 456.896i −0.0852050 1.31292i
\(349\) −93.3245 −0.267405 −0.133703 0.991021i \(-0.542687\pi\)
−0.133703 + 0.991021i \(0.542687\pi\)
\(350\) 151.747 283.679i 0.433562 0.810511i
\(351\) 69.5091 + 40.1311i 0.198032 + 0.114334i
\(352\) 368.677 60.2598i 1.04738 0.171193i
\(353\) 474.560 1.34436 0.672182 0.740386i \(-0.265357\pi\)
0.672182 + 0.740386i \(0.265357\pi\)
\(354\) −66.9174 35.7958i −0.189032 0.101118i
\(355\) 35.2724 + 20.3645i 0.0993588 + 0.0573648i
\(356\) 85.6403 173.380i 0.240563 0.487022i
\(357\) 97.3225 168.567i 0.272612 0.472178i
\(358\) 142.341 4.61392i 0.397600 0.0128880i
\(359\) 409.552 236.455i 1.14081 0.658649i 0.194182 0.980966i \(-0.437795\pi\)
0.946632 + 0.322316i \(0.104461\pi\)
\(360\) 27.7236 + 284.294i 0.0770099 + 0.789707i
\(361\) −196.477 302.850i −0.544257 0.838919i
\(362\) 262.243 + 140.280i 0.724429 + 0.387515i
\(363\) 47.6137 27.4898i 0.131167 0.0757294i
\(364\) −44.5916 22.0258i −0.122504 0.0605105i
\(365\) 113.817 197.137i 0.311828 0.540101i
\(366\) −769.777 + 24.9520i −2.10322 + 0.0681749i
\(367\) −48.5847 28.0504i −0.132383 0.0764316i 0.432346 0.901708i \(-0.357686\pi\)
−0.564729 + 0.825276i \(0.691019\pi\)
\(368\) 431.380 + 179.334i 1.17223 + 0.487321i
\(369\) 22.6370 0.0613468
\(370\) 297.587 184.919i 0.804288 0.499780i
\(371\) −79.5399 45.9224i −0.214393 0.123780i
\(372\) −191.290 286.685i −0.514221 0.770659i
\(373\) −491.645 −1.31808 −0.659042 0.752106i \(-0.729038\pi\)
−0.659042 + 0.752106i \(0.729038\pi\)
\(374\) −236.518 380.625i −0.632402 1.01771i
\(375\) 904.838 522.408i 2.41290 1.39309i
\(376\) −139.163 + 306.352i −0.370114 + 0.814767i
\(377\) 70.1691 + 121.536i 0.186125 + 0.322378i
\(378\) 3.32396 + 102.545i 0.00879355 + 0.271284i
\(379\) 401.210i 1.05860i 0.848434 + 0.529301i \(0.177546\pi\)
−0.848434 + 0.529301i \(0.822454\pi\)
\(380\) 685.632 62.3983i 1.80430 0.164206i
\(381\) 605.533 1.58933
\(382\) −317.347 + 10.2867i −0.830751 + 0.0269285i
\(383\) 74.9428 43.2682i 0.195673 0.112972i −0.398963 0.916967i \(-0.630630\pi\)
0.594636 + 0.803995i \(0.297296\pi\)
\(384\) −314.017 336.790i −0.817753 0.877056i
\(385\) 149.060 + 258.179i 0.387169 + 0.670596i
\(386\) −523.412 + 325.245i −1.35599 + 0.842604i
\(387\) 56.6609i 0.146411i
\(388\) 118.806 + 178.053i 0.306200 + 0.458900i
\(389\) 303.042 524.884i 0.779028 1.34932i −0.153474 0.988153i \(-0.549046\pi\)
0.932502 0.361164i \(-0.117621\pi\)
\(390\) −151.724 244.168i −0.389037 0.626071i
\(391\) 560.409i 1.43327i
\(392\) 31.8757 + 326.873i 0.0813157 + 0.833861i
\(393\) −221.217 + 383.158i −0.562892 + 0.974958i
\(394\) −2.86995 88.5389i −0.00728414 0.224718i
\(395\) −638.431 368.598i −1.61628 0.933160i
\(396\) −165.021 81.5113i −0.416719 0.205837i
\(397\) −85.6583 148.365i −0.215764 0.373714i 0.737745 0.675080i \(-0.235891\pi\)
−0.953509 + 0.301366i \(0.902558\pi\)
\(398\) −216.169 + 404.111i −0.543138 + 1.01535i
\(399\) −192.620 + 4.99998i −0.482757 + 0.0125313i
\(400\) −350.467 + 843.031i −0.876166 + 2.10758i
\(401\) 133.478 + 231.191i 0.332864 + 0.576537i 0.983072 0.183219i \(-0.0586517\pi\)
−0.650208 + 0.759756i \(0.725318\pi\)
\(402\) 29.5848 + 912.700i 0.0735940 + 2.27040i
\(403\) 91.4849 + 52.8188i 0.227010 + 0.131064i
\(404\) 54.0273 109.379i 0.133731 0.270740i
\(405\) −457.187 + 791.871i −1.12886 + 1.95524i
\(406\) −84.6167 + 158.184i −0.208416 + 0.389617i
\(407\) 225.755i 0.554681i
\(408\) −228.453 + 502.915i −0.559934 + 1.23264i
\(409\) 62.1792 107.697i 0.152027 0.263319i −0.779945 0.625848i \(-0.784753\pi\)
0.931973 + 0.362529i \(0.118087\pi\)
\(410\) 91.7502 + 49.0795i 0.223781 + 0.119706i
\(411\) 293.923i 0.715141i
\(412\) 14.5320 + 223.923i 0.0352719 + 0.543503i
\(413\) 14.8673 + 25.7510i 0.0359984 + 0.0623510i
\(414\) −121.483 195.501i −0.293438 0.472225i
\(415\) 1089.60 629.079i 2.62553 1.51585i
\(416\) 132.013 + 49.9288i 0.317340 + 0.120021i
\(417\) 68.9990 0.165465
\(418\) −199.023 + 396.463i −0.476131 + 0.948475i
\(419\) 248.914i 0.594068i 0.954867 + 0.297034i \(0.0959974\pi\)
−0.954867 + 0.297034i \(0.904003\pi\)
\(420\) 162.740 329.470i 0.387477 0.784453i
\(421\) −162.941 282.223i −0.387034 0.670362i 0.605015 0.796214i \(-0.293167\pi\)
−0.992049 + 0.125852i \(0.959834\pi\)
\(422\) 150.671 + 242.473i 0.357041 + 0.574580i
\(423\) 143.570 82.8901i 0.339409 0.195958i
\(424\) 237.304 + 107.797i 0.559680 + 0.254239i
\(425\) 1095.19 2.57692
\(426\) 28.5242 + 15.2583i 0.0669582 + 0.0358176i
\(427\) 261.338 + 150.883i 0.612032 + 0.353357i
\(428\) 2.29924 + 35.4289i 0.00537206 + 0.0827777i
\(429\) 185.231 0.431773
\(430\) 122.847 229.653i 0.285691 0.534077i
\(431\) 401.407 + 231.752i 0.931338 + 0.537708i 0.887235 0.461319i \(-0.152623\pi\)
0.0441038 + 0.999027i \(0.485957\pi\)
\(432\) −37.6326 288.718i −0.0871124 0.668328i
\(433\) 138.967 240.698i 0.320940 0.555884i −0.659742 0.751492i \(-0.729335\pi\)
0.980682 + 0.195608i \(0.0626679\pi\)
\(434\) 4.37485 + 134.966i 0.0100803 + 0.310981i
\(435\) −897.985 + 518.452i −2.06433 + 1.19184i
\(436\) 10.1914 + 15.2738i 0.0233748 + 0.0350316i
\(437\) −473.082 + 289.757i −1.08257 + 0.663059i
\(438\) 85.2785 159.421i 0.194700 0.363976i
\(439\) −675.968 + 390.271i −1.53979 + 0.888999i −0.540941 + 0.841061i \(0.681932\pi\)
−0.998850 + 0.0479384i \(0.984735\pi\)
\(440\) −492.123 688.158i −1.11846 1.56400i
\(441\) 80.9058 140.133i 0.183460 0.317762i
\(442\) −5.48517 169.219i −0.0124099 0.382849i
\(443\) 563.843 + 325.535i 1.27278 + 0.734842i 0.975511 0.219950i \(-0.0705894\pi\)
0.297273 + 0.954792i \(0.403923\pi\)
\(444\) 231.474 154.451i 0.521338 0.347862i
\(445\) −437.940 −0.984135
\(446\) 97.1816 + 156.393i 0.217896 + 0.350657i
\(447\) −205.857 118.851i −0.460529 0.265887i
\(448\) 34.8563 + 177.020i 0.0778043 + 0.395133i
\(449\) 170.370 0.379444 0.189722 0.981838i \(-0.439241\pi\)
0.189722 + 0.981838i \(0.439241\pi\)
\(450\) 382.061 237.411i 0.849025 0.527579i
\(451\) −58.0637 + 33.5231i −0.128744 + 0.0743306i
\(452\) −697.597 + 45.2722i −1.54336 + 0.100160i
\(453\) 22.7213 + 39.3544i 0.0501574 + 0.0868751i
\(454\) 73.4318 2.38026i 0.161744 0.00524287i
\(455\) 112.634i 0.247547i
\(456\) 542.668 67.1759i 1.19006 0.147316i
\(457\) 131.115 0.286903 0.143451 0.989657i \(-0.454180\pi\)
0.143451 + 0.989657i \(0.454180\pi\)
\(458\) −2.93930 90.6784i −0.00641769 0.197988i
\(459\) −302.476 + 174.635i −0.658990 + 0.380468i
\(460\) −68.5172 1055.78i −0.148950 2.29517i
\(461\) 41.3870 + 71.6845i 0.0897767 + 0.155498i 0.907417 0.420232i \(-0.138051\pi\)
−0.817640 + 0.575730i \(0.804718\pi\)
\(462\) 124.971 + 201.114i 0.270501 + 0.435312i
\(463\) 211.533i 0.456874i −0.973559 0.228437i \(-0.926639\pi\)
0.973559 0.228437i \(-0.0733615\pi\)
\(464\) 195.426 470.089i 0.421178 1.01312i
\(465\) −390.257 + 675.946i −0.839263 + 1.45365i
\(466\) −329.167 + 204.542i −0.706367 + 0.438932i
\(467\) 522.505i 1.11885i 0.828879 + 0.559427i \(0.188979\pi\)
−0.828879 + 0.559427i \(0.811021\pi\)
\(468\) −38.5962 57.8438i −0.0824705 0.123598i
\(469\) 178.898 309.860i 0.381445 0.660682i
\(470\) 761.620 24.6876i 1.62047 0.0525268i
\(471\) −140.302 81.0033i −0.297881 0.171982i
\(472\) −49.0846 68.6373i −0.103993 0.145418i
\(473\) 83.9092 + 145.335i 0.177398 + 0.307262i
\(474\) −516.289 276.176i −1.08922 0.582649i
\(475\) −566.262 924.528i −1.19213 1.94638i
\(476\) 180.029 120.124i 0.378213 0.252362i
\(477\) −64.2078 111.211i −0.134607 0.233147i
\(478\) 344.571 11.1691i 0.720860 0.0233664i
\(479\) −428.067 247.144i −0.893668 0.515959i −0.0185273 0.999828i \(-0.505898\pi\)
−0.875140 + 0.483869i \(0.839231\pi\)
\(480\) −368.905 + 975.394i −0.768551 + 2.03207i
\(481\) −42.6467 + 73.8663i −0.0886626 + 0.153568i
\(482\) −481.362 257.493i −0.998677 0.534217i
\(483\) 296.108i 0.613061i
\(484\) 61.0036 3.95897i 0.126041 0.00817970i
\(485\) 242.379 419.813i 0.499751 0.865594i
\(486\) −188.050 + 351.545i −0.386934 + 0.723344i
\(487\) 872.042i 1.79064i −0.445422 0.895321i \(-0.646946\pi\)
0.445422 0.895321i \(-0.353054\pi\)
\(488\) −779.693 354.181i −1.59773 0.725782i
\(489\) −145.273 251.619i −0.297081 0.514559i
\(490\) 631.745 392.562i 1.28927 0.801148i
\(491\) 31.5500 18.2154i 0.0642565 0.0370985i −0.467528 0.883979i \(-0.654855\pi\)
0.531784 + 0.846880i \(0.321522\pi\)
\(492\) 74.0967 + 36.5997i 0.150603 + 0.0743897i
\(493\) −610.697 −1.23874
\(494\) −140.014 + 92.1244i −0.283429 + 0.186487i
\(495\) 416.826i 0.842072i
\(496\) −49.5304 379.998i −0.0998596 0.766125i
\(497\) −6.33734 10.9766i −0.0127512 0.0220857i
\(498\) 848.764 527.417i 1.70435 1.05907i
\(499\) 61.2620 35.3696i 0.122769 0.0708810i −0.437358 0.899288i \(-0.644086\pi\)
0.560127 + 0.828407i \(0.310752\pi\)
\(500\) 1159.30 75.2353i 2.31859 0.150471i
\(501\) −681.789 −1.36086
\(502\) −224.737 + 420.128i −0.447683 + 0.836908i
\(503\) 236.493 + 136.539i 0.470166 + 0.271450i 0.716309 0.697783i \(-0.245830\pi\)
−0.246143 + 0.969233i \(0.579163\pi\)
\(504\) 36.7639 80.9319i 0.0729443 0.160579i
\(505\) −276.280 −0.547089
\(506\) 601.122 + 321.555i 1.18799 + 0.635484i
\(507\) −465.907 268.992i −0.918950 0.530556i
\(508\) 603.668 + 298.179i 1.18832 + 0.586966i
\(509\) 240.778 417.040i 0.473041 0.819331i −0.526483 0.850186i \(-0.676490\pi\)
0.999524 + 0.0308545i \(0.00982285\pi\)
\(510\) 1250.29 40.5278i 2.45156 0.0794662i
\(511\) −61.3481 + 35.4193i −0.120055 + 0.0693137i
\(512\) −147.207 490.382i −0.287513 0.957777i
\(513\) 303.816 + 165.048i 0.592233 + 0.321731i
\(514\) 247.571 + 132.432i 0.481655 + 0.257649i
\(515\) 440.100 254.092i 0.854563 0.493382i
\(516\) 91.6101 185.466i 0.177539 0.359430i
\(517\) −245.504 + 425.225i −0.474863 + 0.822486i
\(518\) −108.973 + 3.53233i −0.210373 + 0.00681916i
\(519\) 413.823 + 238.921i 0.797347 + 0.460348i
\(520\) −31.0230 318.128i −0.0596595 0.611785i
\(521\) 136.712 0.262403 0.131202 0.991356i \(-0.458116\pi\)
0.131202 + 0.991356i \(0.458116\pi\)
\(522\) −213.044 + 132.384i −0.408131 + 0.253610i
\(523\) −22.0583 12.7354i −0.0421764 0.0243506i 0.478764 0.877944i \(-0.341085\pi\)
−0.520940 + 0.853593i \(0.674418\pi\)
\(524\) −409.211 + 273.046i −0.780938 + 0.521080i
\(525\) −578.675 −1.10224
\(526\) 171.177 + 275.473i 0.325432 + 0.523713i
\(527\) −398.106 + 229.847i −0.755420 + 0.436142i
\(528\) −408.368 533.616i −0.773424 1.01064i
\(529\) 161.768 + 280.191i 0.305800 + 0.529661i
\(530\) −19.1233 589.961i −0.0360818 1.11313i
\(531\) 41.5744i 0.0782946i
\(532\) −194.489 89.8662i −0.365581 0.168921i
\(533\) −25.3310 −0.0475253
\(534\) −347.649 + 11.2689i −0.651028 + 0.0211028i
\(535\) 69.6321 40.2021i 0.130153 0.0751441i
\(536\) −419.942 + 924.457i −0.783474 + 1.72473i
\(537\) −128.083 221.846i −0.238515 0.413121i
\(538\) 398.193 247.435i 0.740135 0.459915i
\(539\) 479.254i 0.889154i
\(540\) −548.496 + 365.983i −1.01573 + 0.677747i
\(541\) 311.445 539.439i 0.575685 0.997115i −0.420282 0.907393i \(-0.638069\pi\)
0.995967 0.0897216i \(-0.0285977\pi\)
\(542\) −131.350 211.379i −0.242343 0.389999i
\(543\) 534.949i 0.985172i
\(544\) −475.397 + 388.870i −0.873892 + 0.714835i
\(545\) 20.7918 36.0125i 0.0381501 0.0660779i
\(546\) 2.89825 + 89.4119i 0.00530815 + 0.163758i
\(547\) −765.593 442.015i −1.39962 0.808072i −0.405269 0.914197i \(-0.632822\pi\)
−0.994353 + 0.106125i \(0.966155\pi\)
\(548\) −144.735 + 293.018i −0.264115 + 0.534704i
\(549\) 210.962 + 365.398i 0.384267 + 0.665569i
\(550\) −628.404 + 1174.75i −1.14255 + 2.13591i
\(551\) 315.758 + 515.534i 0.573063 + 0.935633i
\(552\) −81.5577 836.342i −0.147749 1.51511i
\(553\) 114.706 + 198.677i 0.207425 + 0.359271i
\(554\) −15.6051 481.421i −0.0281680 0.868991i
\(555\) −545.769 315.100i −0.983368 0.567748i
\(556\) 68.7865 + 33.9768i 0.123717 + 0.0611093i
\(557\) 309.026 535.249i 0.554805 0.960950i −0.443114 0.896465i \(-0.646126\pi\)
0.997919 0.0644847i \(-0.0205404\pi\)
\(558\) −89.0559 + 166.483i −0.159598 + 0.298357i
\(559\) 63.4041i 0.113424i
\(560\) 324.478 248.318i 0.579425 0.443425i
\(561\) −403.025 + 698.061i −0.718405 + 1.24431i
\(562\) −549.449 293.914i −0.977667 0.522979i
\(563\) 169.277i 0.300670i −0.988635 0.150335i \(-0.951965\pi\)
0.988635 0.150335i \(-0.0480352\pi\)
\(564\) 603.960 39.1954i 1.07085 0.0694954i
\(565\) 791.582 + 1371.06i 1.40103 + 2.42666i
\(566\) −417.974 672.639i −0.738470 1.18841i
\(567\) 246.426 142.274i 0.434615 0.250925i
\(568\) 20.9228 + 29.2573i 0.0368359 + 0.0515093i
\(569\) −403.875 −0.709798 −0.354899 0.934905i \(-0.615485\pi\)
−0.354899 + 0.934905i \(0.615485\pi\)
\(570\) −680.671 1034.51i −1.19416 1.81493i
\(571\) 175.870i 0.308003i −0.988071 0.154001i \(-0.950784\pi\)
0.988071 0.154001i \(-0.0492160\pi\)
\(572\) 184.660 + 91.2119i 0.322832 + 0.159461i
\(573\) 285.559 + 494.602i 0.498357 + 0.863180i
\(574\) −17.0903 27.5032i −0.0297740 0.0479149i
\(575\) −1442.87 + 833.042i −2.50934 + 1.44877i
\(576\) −81.5466 + 238.714i −0.141574 + 0.414434i
\(577\) −386.929 −0.670587 −0.335293 0.942114i \(-0.608835\pi\)
−0.335293 + 0.942114i \(0.608835\pi\)
\(578\) 139.992 + 74.8853i 0.242201 + 0.129559i
\(579\) 959.929 + 554.216i 1.65791 + 0.957194i
\(580\) −1150.52 + 74.6655i −1.98365 + 0.128734i
\(581\) −391.532 −0.673894
\(582\) 181.605 339.496i 0.312036 0.583327i
\(583\) 329.385 + 190.171i 0.564983 + 0.326193i
\(584\) 163.519 116.937i 0.279998 0.200235i
\(585\) −78.7413 + 136.384i −0.134601 + 0.233135i
\(586\) 29.5023 + 910.154i 0.0503452 + 1.55316i
\(587\) 643.631 371.601i 1.09648 0.633050i 0.161182 0.986925i \(-0.448469\pi\)
0.935293 + 0.353874i \(0.115136\pi\)
\(588\) 491.395 327.883i 0.835706 0.557623i
\(589\) 399.869 + 217.229i 0.678895 + 0.368810i
\(590\) −90.1380 + 168.506i −0.152776 + 0.285603i
\(591\) −137.992 + 79.6700i −0.233490 + 0.134805i
\(592\) 306.816 39.9916i 0.518271 0.0675533i
\(593\) 485.862 841.537i 0.819328 1.41912i −0.0868496 0.996221i \(-0.527680\pi\)
0.906178 0.422897i \(-0.138987\pi\)
\(594\) −13.7650 424.653i −0.0231733 0.714905i
\(595\) −424.473 245.069i −0.713399 0.411881i
\(596\) −146.697 219.854i −0.246136 0.368882i
\(597\) 824.344 1.38081
\(598\) 135.941 + 218.768i 0.227326 + 0.365832i
\(599\) −256.016 147.811i −0.427405 0.246762i 0.270836 0.962626i \(-0.412700\pi\)
−0.698241 + 0.715863i \(0.746033\pi\)
\(600\) 1634.44 159.385i 2.72406 0.265642i
\(601\) 790.283 1.31495 0.657474 0.753477i \(-0.271625\pi\)
0.657474 + 0.753477i \(0.271625\pi\)
\(602\) −68.8411 + 42.7775i −0.114354 + 0.0710589i
\(603\) 433.240 250.132i 0.718475 0.414812i
\(604\) 3.27224 + 50.4217i 0.00541761 + 0.0834796i
\(605\) −69.2225 119.897i −0.114417 0.198177i
\(606\) −219.319 + 7.10913i −0.361912 + 0.0117312i
\(607\) 370.431i 0.610265i 0.952310 + 0.305133i \(0.0987008\pi\)
−0.952310 + 0.305133i \(0.901299\pi\)
\(608\) 574.075 + 200.254i 0.944203 + 0.329365i
\(609\) 322.679 0.529851
\(610\) 62.8321 + 1938.39i 0.103003 + 3.17769i
\(611\) −160.656 + 92.7549i −0.262940 + 0.151808i
\(612\) 301.968 19.5969i 0.493412 0.0320211i
\(613\) −180.132 311.998i −0.293854 0.508969i 0.680864 0.732410i \(-0.261604\pi\)
−0.974718 + 0.223441i \(0.928271\pi\)
\(614\) 373.585 + 601.204i 0.608444 + 0.979160i
\(615\) 187.161i 0.304326i
\(616\) 25.5528 + 262.034i 0.0414818 + 0.425379i
\(617\) −11.3914 + 19.7305i −0.0184626 + 0.0319782i −0.875109 0.483926i \(-0.839211\pi\)
0.856646 + 0.515904i \(0.172544\pi\)
\(618\) 342.825 213.029i 0.554733 0.344708i
\(619\) 362.401i 0.585462i 0.956195 + 0.292731i \(0.0945641\pi\)
−0.956195 + 0.292731i \(0.905436\pi\)
\(620\) −721.907 + 481.691i −1.16437 + 0.776922i
\(621\) 265.667 460.150i 0.427806 0.740982i
\(622\) −1016.83 + 32.9602i −1.63478 + 0.0529907i
\(623\) 118.026 + 68.1424i 0.189448 + 0.109378i
\(624\) −32.8128 251.741i −0.0525846 0.403431i
\(625\) −602.221 1043.08i −0.963554 1.66892i
\(626\) 802.531 + 429.293i 1.28200 + 0.685772i
\(627\) 797.666 20.7056i 1.27219 0.0330233i
\(628\) −99.9817 149.842i −0.159207 0.238602i
\(629\) −185.582 321.437i −0.295043 0.511029i
\(630\) −201.204 + 6.52195i −0.319372 + 0.0103523i
\(631\) 667.833 + 385.574i 1.05837 + 0.611052i 0.924982 0.380011i \(-0.124080\pi\)
0.133391 + 0.991063i \(0.457413\pi\)
\(632\) −378.703 529.558i −0.599213 0.837908i
\(633\) 256.743 444.691i 0.405597 0.702514i
\(634\) 1055.39 + 564.554i 1.66465 + 0.890464i
\(635\) 1524.80i 2.40126i
\(636\) −30.3613 467.835i −0.0477378 0.735590i
\(637\) −90.5345 + 156.810i −0.142126 + 0.246170i
\(638\) 350.409 655.063i 0.549231 1.02674i
\(639\) 17.7215i 0.0277332i
\(640\) −848.076 + 790.732i −1.32512 + 1.23552i
\(641\) 22.1679 + 38.3960i 0.0345834 + 0.0599001i 0.882799 0.469751i \(-0.155656\pi\)
−0.848216 + 0.529651i \(0.822323\pi\)
\(642\) 54.2414 33.7053i 0.0844881 0.0525004i
\(643\) −1034.78 + 597.433i −1.60931 + 0.929133i −0.619781 + 0.784775i \(0.712778\pi\)
−0.989525 + 0.144358i \(0.953888\pi\)
\(644\) −145.811 + 295.196i −0.226414 + 0.458379i
\(645\) −468.468 −0.726307
\(646\) −42.5368 728.103i −0.0658465 1.12709i
\(647\) 143.888i 0.222393i 0.993798 + 0.111196i \(0.0354683\pi\)
−0.993798 + 0.111196i \(0.964532\pi\)
\(648\) −656.831 + 469.720i −1.01363 + 0.724876i
\(649\) −61.5676 106.638i −0.0948653 0.164312i
\(650\) −427.530 + 265.665i −0.657739 + 0.408715i
\(651\) 210.351 121.446i 0.323120 0.186553i
\(652\) −20.9216 322.380i −0.0320884 0.494448i
\(653\) −604.063 −0.925058 −0.462529 0.886604i \(-0.653058\pi\)
−0.462529 + 0.886604i \(0.653058\pi\)
\(654\) 15.5784 29.1227i 0.0238203 0.0445301i
\(655\) 964.837 + 557.049i 1.47303 + 0.850457i
\(656\) 55.8459 + 72.9740i 0.0851309 + 0.111241i
\(657\) −99.0453 −0.150754
\(658\) −209.100 111.853i −0.317781 0.169989i
\(659\) 640.313 + 369.685i 0.971643 + 0.560978i 0.899737 0.436433i \(-0.143758\pi\)
0.0719062 + 0.997411i \(0.477092\pi\)
\(660\) −673.929 + 1364.38i −1.02110 + 2.06724i
\(661\) −364.477 + 631.293i −0.551403 + 0.955058i 0.446771 + 0.894649i \(0.352574\pi\)
−0.998174 + 0.0604096i \(0.980759\pi\)
\(662\) −564.163 + 18.2871i −0.852210 + 0.0276240i
\(663\) −263.737 + 152.269i −0.397794 + 0.229666i
\(664\) 1105.86 107.840i 1.66545 0.162410i
\(665\) 12.5905 + 485.040i 0.0189331 + 0.729383i
\(666\) −134.421 71.9051i −0.201833 0.107966i
\(667\) 804.570 464.519i 1.20625 0.696430i
\(668\) −679.689 335.729i −1.01750 0.502589i
\(669\) 165.597 286.822i 0.247529 0.428733i
\(670\) 2298.29 74.4980i 3.43028 0.111191i
\(671\) −1082.24 624.829i −1.61287 0.931190i
\(672\) 251.190 205.471i 0.373794 0.305760i
\(673\) −630.954 −0.937525 −0.468762 0.883324i \(-0.655300\pi\)
−0.468762 + 0.883324i \(0.655300\pi\)
\(674\) −133.559 + 82.9930i −0.198159 + 0.123135i
\(675\) 899.255 + 519.185i 1.33223 + 0.769163i
\(676\) −332.014 497.587i −0.491145 0.736076i
\(677\) −1243.47 −1.83673 −0.918365 0.395734i \(-0.870490\pi\)
−0.918365 + 0.395734i \(0.870490\pi\)
\(678\) 663.659 + 1068.02i 0.978848 + 1.57525i
\(679\) −130.644 + 75.4273i −0.192406 + 0.111086i
\(680\) 1266.40 + 575.272i 1.86235 + 0.845988i
\(681\) −66.0762 114.447i −0.0970282 0.168058i
\(682\) −18.1169 558.911i −0.0265643 0.819517i
\(683\) 903.750i 1.32321i −0.749854 0.661604i \(-0.769876\pi\)
0.749854 0.661604i \(-0.230124\pi\)
\(684\) −172.674 244.781i −0.252448 0.357867i
\(685\) 740.133 1.08049
\(686\) −507.460 + 16.4491i −0.739737 + 0.0239783i
\(687\) −141.327 + 81.5952i −0.205716 + 0.118770i
\(688\) 182.656 139.784i 0.265488 0.203174i
\(689\) 71.8491 + 124.446i 0.104280 + 0.180619i
\(690\) −1616.39 + 1004.41i −2.34259 + 1.45567i
\(691\) 132.044i 0.191091i −0.995425 0.0955454i \(-0.969540\pi\)
0.995425 0.0955454i \(-0.0304595\pi\)
\(692\) 294.898 + 441.961i 0.426153 + 0.638672i
\(693\) 64.8571 112.336i 0.0935888 0.162101i
\(694\) −189.665 305.225i −0.273293 0.439806i
\(695\) 173.748i 0.249997i
\(696\) −911.390 + 88.8761i −1.30947 + 0.127696i
\(697\) 55.1153 95.4625i 0.0790750 0.136962i
\(698\) 6.04697 + 186.551i 0.00866329 + 0.267265i
\(699\) 603.687 + 348.539i 0.863643 + 0.498625i
\(700\) −576.892 284.953i −0.824132 0.407076i
\(701\) 516.865 + 895.236i 0.737325 + 1.27708i 0.953696 + 0.300773i \(0.0972445\pi\)
−0.216371 + 0.976311i \(0.569422\pi\)
\(702\) 75.7162 141.545i 0.107858 0.201632i
\(703\) −175.394 + 322.861i −0.249494 + 0.459261i
\(704\) −144.345 733.062i −0.205035 1.04128i
\(705\) −685.329 1187.03i −0.972098 1.68372i
\(706\) −30.7492 948.622i −0.0435541 1.34366i
\(707\) 74.4583 + 42.9885i 0.105316 + 0.0608041i
\(708\) −67.2181 + 136.084i −0.0949408 + 0.192209i
\(709\) 553.592 958.849i 0.780806 1.35240i −0.150667 0.988585i \(-0.548142\pi\)
0.931473 0.363811i \(-0.118525\pi\)
\(710\) 38.4222 71.8273i 0.0541157 0.101165i
\(711\) 320.760i 0.451139i
\(712\) −352.127 159.956i −0.494560 0.224658i
\(713\) 349.660 605.629i 0.490407 0.849410i
\(714\) −343.264 183.620i −0.480762 0.257171i
\(715\) 466.432i 0.652353i
\(716\) −18.4460 284.233i −0.0257626 0.396974i
\(717\) −310.056 537.032i −0.432435 0.748999i
\(718\) −499.199 803.353i −0.695263 1.11888i
\(719\) 758.635 437.998i 1.05513 0.609177i 0.131045 0.991376i \(-0.458167\pi\)
0.924080 + 0.382200i \(0.124833\pi\)
\(720\) 566.494 73.8389i 0.786797 0.102554i
\(721\) −158.144 −0.219340
\(722\) −592.651 + 412.370i −0.820846 + 0.571150i
\(723\) 981.928i 1.35813i
\(724\) 263.421 533.301i 0.363842 0.736603i
\(725\) 907.794 + 1572.34i 1.25213 + 2.16875i
\(726\) −58.0358 93.3962i −0.0799391 0.128645i
\(727\) −632.345 + 365.085i −0.869801 + 0.502180i −0.867282 0.497817i \(-0.834135\pi\)
−0.00251881 + 0.999997i \(0.500802\pi\)
\(728\) −41.1392 + 90.5636i −0.0565099 + 0.124401i
\(729\) −191.328 −0.262453
\(730\) −401.442 214.741i −0.549920 0.294166i
\(731\) −238.945 137.955i −0.326874 0.188721i
\(732\) 99.7556 + 1537.13i 0.136278 + 2.09990i
\(733\) 690.943 0.942624 0.471312 0.881967i \(-0.343781\pi\)
0.471312 + 0.881967i \(0.343781\pi\)
\(734\) −52.9233 + 98.9360i −0.0721026 + 0.134790i
\(735\) −1158.61 668.924i −1.57634 0.910100i
\(736\) 330.529 873.927i 0.449088 1.18740i
\(737\) −740.840 + 1283.17i −1.00521 + 1.74107i
\(738\) −1.46677 45.2502i −0.00198749 0.0613146i
\(739\) 514.152 296.846i 0.695741 0.401686i −0.110018 0.993930i \(-0.535091\pi\)
0.805759 + 0.592243i \(0.201758\pi\)
\(740\) −388.925 582.879i −0.525574 0.787674i
\(741\) 264.905 + 143.910i 0.357497 + 0.194210i
\(742\) −86.6427 + 161.972i −0.116769 + 0.218291i
\(743\) 48.6881 28.1101i 0.0655291 0.0378332i −0.466877 0.884322i \(-0.654621\pi\)
0.532407 + 0.846489i \(0.321288\pi\)
\(744\) −560.675 + 400.956i −0.753595 + 0.538919i
\(745\) −299.282 + 518.371i −0.401720 + 0.695800i
\(746\) 31.8562 + 982.775i 0.0427027 + 1.31739i
\(747\) −474.091 273.717i −0.634660 0.366421i
\(748\) −745.526 + 497.451i −0.996692 + 0.665041i
\(749\) −25.0214 −0.0334064
\(750\) −1102.90 1774.88i −1.47053 2.36650i
\(751\) 119.216 + 68.8295i 0.158743 + 0.0916504i 0.577267 0.816555i \(-0.304119\pi\)
−0.418524 + 0.908206i \(0.637452\pi\)
\(752\) 621.400 + 258.330i 0.826330 + 0.343523i
\(753\) 857.016 1.13814
\(754\) 238.399 148.139i 0.316179 0.196471i
\(755\) 99.0990 57.2149i 0.131257 0.0757813i
\(756\) 204.767 13.2889i 0.270856 0.0175779i
\(757\) −452.623 783.966i −0.597916 1.03562i −0.993128 0.117032i \(-0.962662\pi\)
0.395212 0.918590i \(-0.370671\pi\)
\(758\) 802.000 25.9965i 1.05805 0.0342962i
\(759\) 1226.22i 1.61558i
\(760\) −169.157 1366.50i −0.222575 1.79803i
\(761\) −1082.43 −1.42238 −0.711190 0.703000i \(-0.751844\pi\)
−0.711190 + 0.703000i \(0.751844\pi\)
\(762\) −39.2356 1210.43i −0.0514903 1.58849i
\(763\) −11.2069 + 6.47031i −0.0146879 + 0.00848009i
\(764\) 41.1251 + 633.694i 0.0538286 + 0.829443i
\(765\) −342.651 593.490i −0.447910 0.775803i
\(766\) −91.3470 147.003i −0.119252 0.191910i
\(767\) 46.5222i 0.0606548i
\(768\) −652.879 + 649.527i −0.850103 + 0.845738i
\(769\) −508.059 + 879.984i −0.660675 + 1.14432i 0.319764 + 0.947497i \(0.396396\pi\)
−0.980439 + 0.196825i \(0.936937\pi\)
\(770\) 506.429 314.692i 0.657701 0.408691i
\(771\) 505.018i 0.655017i
\(772\) 684.063 + 1025.20i 0.886093 + 1.32798i
\(773\) 497.920 862.423i 0.644140 1.11568i −0.340359 &m