Properties

Label 76.3.g.c.7.5
Level $76$
Weight $3$
Character 76.7
Analytic conductor $2.071$
Analytic rank $0$
Dimension $28$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 76 = 2^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 76.g (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.07085000914\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 7.5
Character \(\chi\) \(=\) 76.7
Dual form 76.3.g.c.11.5

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.20067 - 1.59950i) q^{2} +(-1.67542 + 0.967303i) q^{3} +(-1.11680 + 3.84093i) q^{4} +(-1.80536 - 3.12697i) q^{5} +(3.55882 + 1.51842i) q^{6} +13.2414i q^{7} +(7.48448 - 2.82535i) q^{8} +(-2.62865 + 4.55296i) q^{9} +O(q^{10})\) \(q+(-1.20067 - 1.59950i) q^{2} +(-1.67542 + 0.967303i) q^{3} +(-1.11680 + 3.84093i) q^{4} +(-1.80536 - 3.12697i) q^{5} +(3.55882 + 1.51842i) q^{6} +13.2414i q^{7} +(7.48448 - 2.82535i) q^{8} +(-2.62865 + 4.55296i) q^{9} +(-2.83396 + 6.64212i) q^{10} +2.62998i q^{11} +(-1.84423 - 7.51545i) q^{12} +(-0.424512 + 0.735277i) q^{13} +(21.1796 - 15.8985i) q^{14} +(6.04946 + 3.49266i) q^{15} +(-13.5055 - 8.57912i) q^{16} +(6.24458 + 10.8159i) q^{17} +(10.4386 - 1.26205i) q^{18} +(-18.2707 + 5.21350i) q^{19} +(14.0267 - 3.44205i) q^{20} +(-12.8084 - 22.1849i) q^{21} +(4.20665 - 3.15772i) q^{22} +(-26.9066 - 15.5345i) q^{23} +(-9.80666 + 11.9734i) q^{24} +(5.98135 - 10.3600i) q^{25} +(1.68577 - 0.203814i) q^{26} -27.5823i q^{27} +(-50.8593 - 14.7880i) q^{28} +(-9.98430 + 17.2933i) q^{29} +(-1.67688 - 13.8696i) q^{30} +28.0966i q^{31} +(2.49330 + 31.9027i) q^{32} +(-2.54398 - 4.40631i) q^{33} +(9.80243 - 22.9745i) q^{34} +(41.4055 - 23.9055i) q^{35} +(-14.5519 - 15.1812i) q^{36} +61.9366 q^{37} +(30.2760 + 22.9644i) q^{38} -1.64253i q^{39} +(-22.3470 - 18.3030i) q^{40} +(10.4785 + 18.1493i) q^{41} +(-20.1060 + 47.1237i) q^{42} +(23.9849 - 13.8477i) q^{43} +(-10.1016 - 2.93716i) q^{44} +18.9826 q^{45} +(7.45836 + 61.6890i) q^{46} +(44.2902 + 25.5710i) q^{47} +(30.9260 + 1.30969i) q^{48} -126.335 q^{49} +(-23.7524 + 2.87173i) q^{50} +(-20.9246 - 12.0808i) q^{51} +(-2.35005 - 2.45168i) q^{52} +(9.57631 - 16.5867i) q^{53} +(-44.1178 + 33.1171i) q^{54} +(8.22387 - 4.74805i) q^{55} +(37.4116 + 99.1049i) q^{56} +(25.5681 - 26.4081i) q^{57} +(39.6485 - 4.79360i) q^{58} +(63.8560 - 36.8673i) q^{59} +(-20.1711 + 19.3350i) q^{60} +(-32.5850 + 56.4388i) q^{61} +(44.9405 - 33.7346i) q^{62} +(-60.2875 - 34.8070i) q^{63} +(48.0348 - 42.2925i) q^{64} +3.06559 q^{65} +(-3.99342 + 9.35961i) q^{66} +(21.6309 + 12.4886i) q^{67} +(-48.5172 + 11.9058i) q^{68} +60.1065 q^{69} +(-87.9510 - 37.5256i) q^{70} +(-32.3846 + 18.6972i) q^{71} +(-6.81037 + 41.5033i) q^{72} +(15.9102 + 27.5573i) q^{73} +(-74.3652 - 99.0677i) q^{74} +23.1431i q^{75} +(0.380083 - 75.9990i) q^{76} -34.8246 q^{77} +(-2.62722 + 1.97213i) q^{78} +(-82.1900 + 47.4524i) q^{79} +(-2.44439 + 57.7198i) q^{80} +(3.02255 + 5.23521i) q^{81} +(16.4487 - 38.5517i) q^{82} -22.6827i q^{83} +(99.5151 - 24.4202i) q^{84} +(22.5474 - 39.0533i) q^{85} +(-50.9472 - 21.7374i) q^{86} -38.6314i q^{87} +(7.43061 + 19.6840i) q^{88} +(60.9279 - 105.530i) q^{89} +(-22.7918 - 30.3627i) q^{90} +(-9.73609 - 5.62114i) q^{91} +(89.7165 - 85.9975i) q^{92} +(-27.1779 - 47.0735i) q^{93} +(-12.2770 - 101.544i) q^{94} +(49.2877 + 47.7198i) q^{95} +(-35.0369 - 51.0386i) q^{96} +(-10.1782 - 17.6292i) q^{97} +(151.686 + 202.072i) q^{98} +(-11.9742 - 6.91329i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28q - 5q^{2} - 11q^{4} + 6q^{5} - 3q^{6} - 62q^{8} + 20q^{9} + O(q^{10}) \) \( 28q - 5q^{2} - 11q^{4} + 6q^{5} - 3q^{6} - 62q^{8} + 20q^{9} + 26q^{12} + 30q^{13} - 30q^{14} - 19q^{16} + 38q^{17} - 60q^{18} - 44q^{20} + 80q^{21} + 45q^{22} + 17q^{24} - 16q^{25} - 56q^{26} + 54q^{28} + 6q^{29} + 96q^{30} - 45q^{32} - 176q^{33} - 20q^{34} + 30q^{36} + 104q^{37} - 258q^{38} + 94q^{40} - 2q^{41} - 2q^{42} + 201q^{44} - 360q^{45} + 164q^{46} - 17q^{48} - 20q^{49} + 490q^{50} - 102q^{52} - 242q^{53} - 13q^{54} + 276q^{56} - 254q^{57} + 96q^{58} + 10q^{60} - 58q^{61} - 36q^{62} - 74q^{64} - 260q^{65} + 167q^{66} + 396q^{68} + 340q^{69} + 60q^{70} - 422q^{72} - 82q^{73} - 136q^{74} + 123q^{76} - 144q^{77} + 224q^{78} - 174q^{80} + 410q^{81} - 305q^{82} + 252q^{84} + 714q^{85} + 166q^{86} - 718q^{88} + 150q^{89} - 272q^{90} - 588q^{92} + 344q^{93} - 488q^{94} - 122q^{96} + 94q^{97} + 307q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/76\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(39\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.20067 1.59950i −0.600333 0.799750i
\(3\) −1.67542 + 0.967303i −0.558473 + 0.322434i −0.752532 0.658555i \(-0.771168\pi\)
0.194060 + 0.980990i \(0.437834\pi\)
\(4\) −1.11680 + 3.84093i −0.279200 + 0.960233i
\(5\) −1.80536 3.12697i −0.361072 0.625395i 0.627066 0.778966i \(-0.284256\pi\)
−0.988138 + 0.153572i \(0.950922\pi\)
\(6\) 3.55882 + 1.51842i 0.593136 + 0.253071i
\(7\) 13.2414i 1.89163i 0.324708 + 0.945814i \(0.394734\pi\)
−0.324708 + 0.945814i \(0.605266\pi\)
\(8\) 7.48448 2.82535i 0.935560 0.353169i
\(9\) −2.62865 + 4.55296i −0.292072 + 0.505884i
\(10\) −2.83396 + 6.64212i −0.283396 + 0.664212i
\(11\) 2.62998i 0.239089i 0.992829 + 0.119544i \(0.0381434\pi\)
−0.992829 + 0.119544i \(0.961857\pi\)
\(12\) −1.84423 7.51545i −0.153686 0.626288i
\(13\) −0.424512 + 0.735277i −0.0326548 + 0.0565598i −0.881891 0.471453i \(-0.843730\pi\)
0.849236 + 0.528013i \(0.177063\pi\)
\(14\) 21.1796 15.8985i 1.51283 1.13561i
\(15\) 6.04946 + 3.49266i 0.403298 + 0.232844i
\(16\) −13.5055 8.57912i −0.844094 0.536195i
\(17\) 6.24458 + 10.8159i 0.367328 + 0.636231i 0.989147 0.146930i \(-0.0469392\pi\)
−0.621819 + 0.783161i \(0.713606\pi\)
\(18\) 10.4386 1.26205i 0.579921 0.0701140i
\(19\) −18.2707 + 5.21350i −0.961617 + 0.274395i
\(20\) 14.0267 3.44205i 0.701336 0.172103i
\(21\) −12.8084 22.1849i −0.609926 1.05642i
\(22\) 4.20665 3.15772i 0.191211 0.143533i
\(23\) −26.9066 15.5345i −1.16985 0.675415i −0.216208 0.976347i \(-0.569369\pi\)
−0.953645 + 0.300932i \(0.902702\pi\)
\(24\) −9.80666 + 11.9734i −0.408611 + 0.498892i
\(25\) 5.98135 10.3600i 0.239254 0.414400i
\(26\) 1.68577 0.203814i 0.0648374 0.00783902i
\(27\) 27.5823i 1.02157i
\(28\) −50.8593 14.7880i −1.81640 0.528144i
\(29\) −9.98430 + 17.2933i −0.344286 + 0.596321i −0.985224 0.171272i \(-0.945212\pi\)
0.640938 + 0.767593i \(0.278546\pi\)
\(30\) −1.67688 13.8696i −0.0558959 0.462321i
\(31\) 28.0966i 0.906341i 0.891424 + 0.453170i \(0.149707\pi\)
−0.891424 + 0.453170i \(0.850293\pi\)
\(32\) 2.49330 + 31.9027i 0.0779156 + 0.996960i
\(33\) −2.54398 4.40631i −0.0770904 0.133525i
\(34\) 9.80243 22.9745i 0.288307 0.675722i
\(35\) 41.4055 23.9055i 1.18301 0.683014i
\(36\) −14.5519 15.1812i −0.404220 0.421700i
\(37\) 61.9366 1.67396 0.836982 0.547231i \(-0.184318\pi\)
0.836982 + 0.547231i \(0.184318\pi\)
\(38\) 30.2760 + 22.9644i 0.796738 + 0.604325i
\(39\) 1.64253i 0.0421161i
\(40\) −22.3470 18.3030i −0.558674 0.457575i
\(41\) 10.4785 + 18.1493i 0.255574 + 0.442667i 0.965051 0.262061i \(-0.0844023\pi\)
−0.709477 + 0.704728i \(0.751069\pi\)
\(42\) −20.1060 + 47.1237i −0.478715 + 1.12199i
\(43\) 23.9849 13.8477i 0.557788 0.322039i −0.194469 0.980909i \(-0.562299\pi\)
0.752257 + 0.658870i \(0.228965\pi\)
\(44\) −10.1016 2.93716i −0.229581 0.0667537i
\(45\) 18.9826 0.421836
\(46\) 7.45836 + 61.6890i 0.162138 + 1.34106i
\(47\) 44.2902 + 25.5710i 0.942346 + 0.544064i 0.890695 0.454602i \(-0.150218\pi\)
0.0516508 + 0.998665i \(0.483552\pi\)
\(48\) 30.9260 + 1.30969i 0.644291 + 0.0272853i
\(49\) −126.335 −2.57826
\(50\) −23.7524 + 2.87173i −0.475049 + 0.0574347i
\(51\) −20.9246 12.0808i −0.410286 0.236879i
\(52\) −2.35005 2.45168i −0.0451933 0.0471477i
\(53\) 9.57631 16.5867i 0.180685 0.312956i −0.761429 0.648248i \(-0.775502\pi\)
0.942114 + 0.335293i \(0.108835\pi\)
\(54\) −44.1178 + 33.1171i −0.816997 + 0.613279i
\(55\) 8.22387 4.74805i 0.149525 0.0863283i
\(56\) 37.4116 + 99.1049i 0.668064 + 1.76973i
\(57\) 25.5681 26.4081i 0.448563 0.463300i
\(58\) 39.6485 4.79360i 0.683594 0.0826483i
\(59\) 63.8560 36.8673i 1.08231 0.624869i 0.150788 0.988566i \(-0.451819\pi\)
0.931517 + 0.363697i \(0.118486\pi\)
\(60\) −20.1711 + 19.3350i −0.336185 + 0.322249i
\(61\) −32.5850 + 56.4388i −0.534180 + 0.925227i 0.465023 + 0.885299i \(0.346046\pi\)
−0.999203 + 0.0399281i \(0.987287\pi\)
\(62\) 44.9405 33.7346i 0.724846 0.544106i
\(63\) −60.2875 34.8070i −0.956944 0.552492i
\(64\) 48.0348 42.2925i 0.750544 0.660821i
\(65\) 3.06559 0.0471629
\(66\) −3.99342 + 9.35961i −0.0605063 + 0.141812i
\(67\) 21.6309 + 12.4886i 0.322849 + 0.186397i 0.652662 0.757649i \(-0.273652\pi\)
−0.329813 + 0.944046i \(0.606986\pi\)
\(68\) −48.5172 + 11.9058i −0.713488 + 0.175085i
\(69\) 60.1065 0.871108
\(70\) −87.9510 37.5256i −1.25644 0.536080i
\(71\) −32.3846 + 18.6972i −0.456121 + 0.263342i −0.710412 0.703786i \(-0.751491\pi\)
0.254291 + 0.967128i \(0.418158\pi\)
\(72\) −6.81037 + 41.5033i −0.0945885 + 0.576435i
\(73\) 15.9102 + 27.5573i 0.217948 + 0.377498i 0.954181 0.299231i \(-0.0967302\pi\)
−0.736232 + 0.676729i \(0.763397\pi\)
\(74\) −74.3652 99.0677i −1.00494 1.33875i
\(75\) 23.1431i 0.308575i
\(76\) 0.380083 75.9990i 0.00500109 0.999987i
\(77\) −34.8246 −0.452267
\(78\) −2.62722 + 1.97213i −0.0336824 + 0.0252837i
\(79\) −82.1900 + 47.4524i −1.04038 + 0.600663i −0.919941 0.392058i \(-0.871763\pi\)
−0.120439 + 0.992721i \(0.538430\pi\)
\(80\) −2.44439 + 57.7198i −0.0305549 + 0.721497i
\(81\) 3.02255 + 5.23521i 0.0373154 + 0.0646322i
\(82\) 16.4487 38.5517i 0.200593 0.470142i
\(83\) 22.6827i 0.273285i −0.990620 0.136643i \(-0.956369\pi\)
0.990620 0.136643i \(-0.0436312\pi\)
\(84\) 99.5151 24.4202i 1.18470 0.290717i
\(85\) 22.5474 39.0533i 0.265264 0.459450i
\(86\) −50.9472 21.7374i −0.592409 0.252760i
\(87\) 38.6314i 0.444039i
\(88\) 7.43061 + 19.6840i 0.0844387 + 0.223682i
\(89\) 60.9279 105.530i 0.684583 1.18573i −0.288985 0.957334i \(-0.593318\pi\)
0.973568 0.228399i \(-0.0733490\pi\)
\(90\) −22.7918 30.3627i −0.253242 0.337364i
\(91\) −9.73609 5.62114i −0.106990 0.0617707i
\(92\) 89.7165 85.9975i 0.975179 0.934755i
\(93\) −27.1779 47.0735i −0.292235 0.506167i
\(94\) −12.2770 101.544i −0.130606 1.08026i
\(95\) 49.2877 + 47.7198i 0.518818 + 0.502314i
\(96\) −35.0369 51.0386i −0.364968 0.531652i
\(97\) −10.1782 17.6292i −0.104930 0.181744i 0.808779 0.588112i \(-0.200129\pi\)
−0.913710 + 0.406368i \(0.866795\pi\)
\(98\) 151.686 + 202.072i 1.54781 + 2.06196i
\(99\) −11.9742 6.91329i −0.120951 0.0698312i
\(100\) 33.1121 + 34.5440i 0.331121 + 0.345440i
\(101\) −62.0321 + 107.443i −0.614179 + 1.06379i 0.376349 + 0.926478i \(0.377179\pi\)
−0.990528 + 0.137312i \(0.956154\pi\)
\(102\) 5.80017 + 47.9739i 0.0568644 + 0.470332i
\(103\) 70.5949i 0.685388i 0.939447 + 0.342694i \(0.111339\pi\)
−0.939447 + 0.342694i \(0.888661\pi\)
\(104\) −1.09984 + 6.70256i −0.0105754 + 0.0644477i
\(105\) −46.2477 + 80.1034i −0.440454 + 0.762889i
\(106\) −38.0283 + 4.59773i −0.358758 + 0.0433748i
\(107\) 155.198i 1.45045i −0.688512 0.725225i \(-0.741736\pi\)
0.688512 0.725225i \(-0.258264\pi\)
\(108\) 105.942 + 30.8039i 0.980940 + 0.285221i
\(109\) 0.983093 + 1.70277i 0.00901920 + 0.0156217i 0.870500 0.492169i \(-0.163796\pi\)
−0.861481 + 0.507791i \(0.830462\pi\)
\(110\) −17.4686 7.45326i −0.158806 0.0677569i
\(111\) −103.770 + 59.9115i −0.934863 + 0.539743i
\(112\) 113.600 178.832i 1.01428 1.59671i
\(113\) 121.855 1.07836 0.539179 0.842191i \(-0.318735\pi\)
0.539179 + 0.842191i \(0.318735\pi\)
\(114\) −72.9385 9.18879i −0.639811 0.0806034i
\(115\) 112.182i 0.975494i
\(116\) −55.2719 57.6622i −0.476482 0.497088i
\(117\) −2.23179 3.86557i −0.0190751 0.0330391i
\(118\) −135.639 57.8724i −1.14948 0.490444i
\(119\) −143.218 + 82.6870i −1.20351 + 0.694849i
\(120\) 55.1451 + 9.04887i 0.459542 + 0.0754073i
\(121\) 114.083 0.942837
\(122\) 129.398 15.6445i 1.06064 0.128234i
\(123\) −35.1118 20.2718i −0.285462 0.164811i
\(124\) −107.917 31.3783i −0.870298 0.253051i
\(125\) −133.462 −1.06770
\(126\) 16.7113 + 138.221i 0.132630 + 1.09700i
\(127\) 200.043 + 115.495i 1.57514 + 0.909407i 0.995523 + 0.0945162i \(0.0301304\pi\)
0.579615 + 0.814890i \(0.303203\pi\)
\(128\) −125.321 26.0524i −0.979068 0.203535i
\(129\) −26.7898 + 46.4013i −0.207673 + 0.359700i
\(130\) −3.68075 4.90341i −0.0283135 0.0377185i
\(131\) −72.8384 + 42.0533i −0.556019 + 0.321018i −0.751546 0.659681i \(-0.770692\pi\)
0.195527 + 0.980698i \(0.437358\pi\)
\(132\) 19.7655 4.85029i 0.149738 0.0367446i
\(133\) −69.0340 241.930i −0.519053 1.81902i
\(134\) −5.99596 49.5933i −0.0447460 0.370099i
\(135\) −86.2490 + 49.7959i −0.638882 + 0.368858i
\(136\) 77.2962 + 63.3085i 0.568355 + 0.465503i
\(137\) −93.3805 + 161.740i −0.681610 + 1.18058i 0.292880 + 0.956149i \(0.405386\pi\)
−0.974489 + 0.224433i \(0.927947\pi\)
\(138\) −72.1678 96.1403i −0.522955 0.696669i
\(139\) 98.0227 + 56.5934i 0.705199 + 0.407147i 0.809281 0.587422i \(-0.199857\pi\)
−0.104082 + 0.994569i \(0.533190\pi\)
\(140\) 45.5776 + 185.733i 0.325554 + 1.32667i
\(141\) −98.9396 −0.701699
\(142\) 68.7893 + 29.3500i 0.484432 + 0.206690i
\(143\) −1.93376 1.11646i −0.0135228 0.00780740i
\(144\) 74.5616 38.9385i 0.517789 0.270406i
\(145\) 72.1010 0.497248
\(146\) 24.9751 58.5356i 0.171062 0.400929i
\(147\) 211.663 122.204i 1.43989 0.831319i
\(148\) −69.1710 + 237.894i −0.467371 + 1.60739i
\(149\) −20.3310 35.2142i −0.136449 0.236337i 0.789701 0.613492i \(-0.210236\pi\)
−0.926150 + 0.377155i \(0.876902\pi\)
\(150\) 37.0174 27.7872i 0.246783 0.185248i
\(151\) 55.7881i 0.369458i −0.982790 0.184729i \(-0.940859\pi\)
0.982790 0.184729i \(-0.0591407\pi\)
\(152\) −122.017 + 90.6415i −0.802742 + 0.596326i
\(153\) −65.6593 −0.429146
\(154\) 41.8127 + 55.7019i 0.271511 + 0.361701i
\(155\) 87.8572 50.7244i 0.566821 0.327254i
\(156\) 6.30884 + 1.83438i 0.0404413 + 0.0117588i
\(157\) 108.233 + 187.465i 0.689384 + 1.19405i 0.972038 + 0.234826i \(0.0754519\pi\)
−0.282654 + 0.959222i \(0.591215\pi\)
\(158\) 174.583 + 74.4884i 1.10495 + 0.471445i
\(159\) 37.0528i 0.233036i
\(160\) 95.2577 65.3924i 0.595361 0.408702i
\(161\) 205.699 356.281i 1.27763 2.21293i
\(162\) 4.74465 11.1203i 0.0292879 0.0686439i
\(163\) 207.832i 1.27504i −0.770432 0.637522i \(-0.779959\pi\)
0.770432 0.637522i \(-0.220041\pi\)
\(164\) −81.4128 + 19.9781i −0.496419 + 0.121818i
\(165\) −9.18561 + 15.9099i −0.0556704 + 0.0964239i
\(166\) −36.2809 + 27.2343i −0.218560 + 0.164062i
\(167\) −121.114 69.9255i −0.725236 0.418715i 0.0914405 0.995811i \(-0.470853\pi\)
−0.816677 + 0.577095i \(0.804186\pi\)
\(168\) −158.545 129.854i −0.943718 0.772939i
\(169\) 84.1396 + 145.734i 0.497867 + 0.862332i
\(170\) −89.5377 + 10.8253i −0.526692 + 0.0636785i
\(171\) 24.2905 96.8903i 0.142050 0.566610i
\(172\) 26.4016 + 107.589i 0.153498 + 0.625519i
\(173\) 87.6690 + 151.847i 0.506757 + 0.877729i 0.999969 + 0.00782030i \(0.00248931\pi\)
−0.493212 + 0.869909i \(0.664177\pi\)
\(174\) −61.7909 + 46.3834i −0.355120 + 0.266571i
\(175\) 137.181 + 79.2015i 0.783891 + 0.452580i
\(176\) 22.5629 35.5192i 0.128198 0.201813i
\(177\) −71.3237 + 123.536i −0.402959 + 0.697945i
\(178\) −241.950 + 29.2524i −1.35927 + 0.164339i
\(179\) 75.1810i 0.420006i −0.977701 0.210003i \(-0.932653\pi\)
0.977701 0.210003i \(-0.0673473\pi\)
\(180\) −21.1998 + 72.9110i −0.117777 + 0.405061i
\(181\) −51.3996 + 89.0267i −0.283976 + 0.491860i −0.972360 0.233486i \(-0.924987\pi\)
0.688385 + 0.725346i \(0.258320\pi\)
\(182\) 2.69879 + 22.3220i 0.0148285 + 0.122648i
\(183\) 126.078i 0.688952i
\(184\) −245.273 40.2473i −1.33300 0.218735i
\(185\) −111.818 193.674i −0.604421 1.04689i
\(186\) −42.6625 + 99.9906i −0.229368 + 0.537584i
\(187\) −28.4457 + 16.4231i −0.152116 + 0.0878241i
\(188\) −147.680 + 141.558i −0.785531 + 0.752968i
\(189\) 365.228 1.93242
\(190\) 17.1498 136.131i 0.0902622 0.716481i
\(191\) 147.613i 0.772843i −0.922322 0.386421i \(-0.873711\pi\)
0.922322 0.386421i \(-0.126289\pi\)
\(192\) −39.5686 + 117.322i −0.206087 + 0.611051i
\(193\) −91.3318 158.191i −0.473222 0.819644i 0.526309 0.850294i \(-0.323576\pi\)
−0.999530 + 0.0306497i \(0.990242\pi\)
\(194\) −15.9773 + 37.4469i −0.0823571 + 0.193025i
\(195\) −5.13614 + 2.96535i −0.0263392 + 0.0152069i
\(196\) 141.091 485.243i 0.719851 2.47573i
\(197\) −71.2318 −0.361583 −0.180791 0.983521i \(-0.557866\pi\)
−0.180791 + 0.983521i \(0.557866\pi\)
\(198\) 3.31917 + 27.4532i 0.0167635 + 0.138653i
\(199\) 108.995 + 62.9282i 0.547713 + 0.316222i 0.748199 0.663474i \(-0.230919\pi\)
−0.200486 + 0.979697i \(0.564252\pi\)
\(200\) 15.4966 94.4387i 0.0774832 0.472193i
\(201\) −48.3211 −0.240403
\(202\) 246.335 29.7825i 1.21948 0.147438i
\(203\) −228.988 132.206i −1.12802 0.651261i
\(204\) 69.7701 66.8780i 0.342010 0.327833i
\(205\) 37.8350 65.5321i 0.184561 0.319669i
\(206\) 112.917 84.7609i 0.548139 0.411461i
\(207\) 141.456 81.6698i 0.683363 0.394540i
\(208\) 12.0413 6.28835i 0.0578908 0.0302324i
\(209\) −13.7114 48.0516i −0.0656047 0.229912i
\(210\) 183.653 22.2042i 0.874540 0.105734i
\(211\) 103.386 59.6899i 0.489981 0.282890i −0.234586 0.972095i \(-0.575373\pi\)
0.724566 + 0.689205i \(0.242040\pi\)
\(212\) 53.0134 + 55.3060i 0.250063 + 0.260877i
\(213\) 36.1718 62.6514i 0.169821 0.294138i
\(214\) −248.239 + 186.341i −1.16000 + 0.870753i
\(215\) −86.6026 50.0000i −0.402803 0.232558i
\(216\) −77.9296 206.439i −0.360785 0.955735i
\(217\) −372.038 −1.71446
\(218\) 1.54321 3.61691i 0.00707894 0.0165913i
\(219\) −53.3126 30.7800i −0.243436 0.140548i
\(220\) 9.05251 + 36.8900i 0.0411478 + 0.167682i
\(221\) −10.6036 −0.0479801
\(222\) 220.421 + 94.0460i 0.992888 + 0.423631i
\(223\) −288.078 + 166.322i −1.29183 + 0.745838i −0.978978 0.203964i \(-0.934617\pi\)
−0.312851 + 0.949802i \(0.601284\pi\)
\(224\) −422.437 + 33.0148i −1.88588 + 0.147387i
\(225\) 31.4458 + 54.4657i 0.139759 + 0.242070i
\(226\) −146.307 194.906i −0.647374 0.862417i
\(227\) 269.515i 1.18729i 0.804726 + 0.593646i \(0.202312\pi\)
−0.804726 + 0.593646i \(0.797688\pi\)
\(228\) 72.8773 + 127.698i 0.319637 + 0.560078i
\(229\) −125.987 −0.550163 −0.275081 0.961421i \(-0.588705\pi\)
−0.275081 + 0.961421i \(0.588705\pi\)
\(230\) 179.435 134.693i 0.780151 0.585621i
\(231\) 58.3457 33.6859i 0.252579 0.145826i
\(232\) −25.8676 + 157.640i −0.111498 + 0.679485i
\(233\) 122.359 + 211.933i 0.525148 + 0.909583i 0.999571 + 0.0292861i \(0.00932338\pi\)
−0.474423 + 0.880297i \(0.657343\pi\)
\(234\) −3.50335 + 8.21101i −0.0149716 + 0.0350898i
\(235\) 184.659i 0.785784i
\(236\) 70.2902 + 286.440i 0.297840 + 1.21373i
\(237\) 91.8017 159.005i 0.387349 0.670908i
\(238\) 304.215 + 129.798i 1.27821 + 0.545369i
\(239\) 304.299i 1.27322i 0.771187 + 0.636609i \(0.219663\pi\)
−0.771187 + 0.636609i \(0.780337\pi\)
\(240\) −51.7371 99.0692i −0.215571 0.412788i
\(241\) −79.0630 + 136.941i −0.328062 + 0.568220i −0.982127 0.188218i \(-0.939729\pi\)
0.654065 + 0.756438i \(0.273062\pi\)
\(242\) −136.976 182.476i −0.566016 0.754034i
\(243\) 204.854 + 118.273i 0.843022 + 0.486719i
\(244\) −180.387 188.188i −0.739290 0.771261i
\(245\) 228.079 + 395.045i 0.930936 + 1.61243i
\(246\) 9.73279 + 80.5010i 0.0395642 + 0.327240i
\(247\) 3.92278 15.6472i 0.0158817 0.0633491i
\(248\) 79.3827 + 210.288i 0.320091 + 0.847936i
\(249\) 21.9410 + 38.0029i 0.0881165 + 0.152622i
\(250\) 160.243 + 213.472i 0.640973 + 0.853890i
\(251\) −237.858 137.327i −0.947640 0.547120i −0.0552931 0.998470i \(-0.517609\pi\)
−0.892347 + 0.451350i \(0.850943\pi\)
\(252\) 201.020 192.688i 0.797700 0.764633i
\(253\) 40.8555 70.7638i 0.161484 0.279699i
\(254\) −55.4506 458.639i −0.218310 1.80566i
\(255\) 87.2408i 0.342121i
\(256\) 108.797 + 231.731i 0.424990 + 0.905198i
\(257\) 42.0095 72.7626i 0.163461 0.283123i −0.772647 0.634836i \(-0.781067\pi\)
0.936108 + 0.351713i \(0.114401\pi\)
\(258\) 106.384 12.8622i 0.412343 0.0498533i
\(259\) 820.128i 3.16652i
\(260\) −3.42366 + 11.7747i −0.0131679 + 0.0452874i
\(261\) −52.4904 90.9161i −0.201113 0.348338i
\(262\) 154.719 + 66.0131i 0.590530 + 0.251959i
\(263\) 323.995 187.059i 1.23192 0.711250i 0.264491 0.964388i \(-0.414796\pi\)
0.967430 + 0.253138i \(0.0814627\pi\)
\(264\) −31.4898 25.7913i −0.119279 0.0976942i
\(265\) −69.1547 −0.260961
\(266\) −304.080 + 400.897i −1.14316 + 1.50713i
\(267\) 235.743i 0.882932i
\(268\) −72.1253 + 69.1355i −0.269124 + 0.257968i
\(269\) −191.744 332.110i −0.712801 1.23461i −0.963801 0.266621i \(-0.914093\pi\)
0.251000 0.967987i \(-0.419240\pi\)
\(270\) 183.205 + 78.1671i 0.678536 + 0.289508i
\(271\) 231.039 133.390i 0.852541 0.492215i −0.00896635 0.999960i \(-0.502854\pi\)
0.861507 + 0.507745i \(0.169521\pi\)
\(272\) 8.45494 199.648i 0.0310843 0.733999i
\(273\) 21.7494 0.0796680
\(274\) 370.822 44.8333i 1.35336 0.163625i
\(275\) 27.2466 + 15.7308i 0.0990785 + 0.0572030i
\(276\) −67.1270 + 230.865i −0.243214 + 0.836466i
\(277\) −2.45823 −0.00887446 −0.00443723 0.999990i \(-0.501412\pi\)
−0.00443723 + 0.999990i \(0.501412\pi\)
\(278\) −27.1713 224.737i −0.0977385 0.808407i
\(279\) −127.922 73.8560i −0.458503 0.264717i
\(280\) 242.357 295.905i 0.865561 1.05680i
\(281\) 24.3228 42.1283i 0.0865580 0.149923i −0.819496 0.573085i \(-0.805747\pi\)
0.906054 + 0.423162i \(0.139080\pi\)
\(282\) 118.793 + 158.254i 0.421253 + 0.561184i
\(283\) −336.365 + 194.201i −1.18857 + 0.686221i −0.957981 0.286830i \(-0.907398\pi\)
−0.230588 + 0.973051i \(0.574065\pi\)
\(284\) −35.6477 145.268i −0.125520 0.511507i
\(285\) −128.737 32.2745i −0.451709 0.113244i
\(286\) 0.536027 + 4.43354i 0.00187422 + 0.0155019i
\(287\) −240.323 + 138.750i −0.837361 + 0.483450i
\(288\) −151.806 72.5092i −0.527103 0.251768i
\(289\) 66.5104 115.199i 0.230140 0.398614i
\(290\) −86.5692 115.326i −0.298514 0.397674i
\(291\) 34.1056 + 19.6909i 0.117201 + 0.0676662i
\(292\) −123.614 + 30.3340i −0.423337 + 0.103884i
\(293\) −303.235 −1.03493 −0.517465 0.855704i \(-0.673124\pi\)
−0.517465 + 0.855704i \(0.673124\pi\)
\(294\) −449.602 191.829i −1.52926 0.652481i
\(295\) −230.566 133.117i −0.781580 0.451245i
\(296\) 463.563 174.993i 1.56609 0.591192i
\(297\) 72.5407 0.244245
\(298\) −31.9145 + 74.7999i −0.107096 + 0.251006i
\(299\) 22.8444 13.1892i 0.0764026 0.0441111i
\(300\) −88.8912 25.8463i −0.296304 0.0861543i
\(301\) 183.363 + 317.593i 0.609178 + 1.05513i
\(302\) −89.2331 + 66.9829i −0.295474 + 0.221798i
\(303\) 240.015i 0.792130i
\(304\) 291.483 + 86.3358i 0.958825 + 0.283999i
\(305\) 235.310 0.771510
\(306\) 78.8349 + 105.022i 0.257630 + 0.343209i
\(307\) 57.7439 33.3385i 0.188091 0.108594i −0.402998 0.915201i \(-0.632032\pi\)
0.591089 + 0.806607i \(0.298698\pi\)
\(308\) 38.8921 133.759i 0.126273 0.434282i
\(309\) −68.2867 118.276i −0.220992 0.382770i
\(310\) −186.621 79.6246i −0.602003 0.256854i
\(311\) 336.974i 1.08352i 0.840534 + 0.541759i \(0.182241\pi\)
−0.840534 + 0.541759i \(0.817759\pi\)
\(312\) −4.64072 12.2935i −0.0148741 0.0394021i
\(313\) 102.792 178.041i 0.328409 0.568821i −0.653787 0.756678i \(-0.726821\pi\)
0.982196 + 0.187857i \(0.0601542\pi\)
\(314\) 169.899 398.202i 0.541080 1.26816i
\(315\) 251.357i 0.797957i
\(316\) −90.4715 368.681i −0.286302 1.16671i
\(317\) 283.961 491.835i 0.895777 1.55153i 0.0629359 0.998018i \(-0.479954\pi\)
0.832841 0.553513i \(-0.186713\pi\)
\(318\) 59.2659 44.4880i 0.186371 0.139899i
\(319\) −45.4810 26.2585i −0.142574 0.0823149i
\(320\) −218.968 73.8503i −0.684274 0.230782i
\(321\) 150.124 + 260.022i 0.467675 + 0.810036i
\(322\) −816.848 + 98.7591i −2.53680 + 0.306705i
\(323\) −170.482 165.059i −0.527808 0.511018i
\(324\) −23.4837 + 5.76271i −0.0724805 + 0.0177862i
\(325\) 5.07832 + 8.79590i 0.0156256 + 0.0270643i
\(326\) −332.428 + 249.537i −1.01972 + 0.765451i
\(327\) −3.29418 1.90190i −0.0100740 0.00581620i
\(328\) 129.704 + 106.233i 0.395440 + 0.323880i
\(329\) −338.596 + 586.465i −1.02917 + 1.78257i
\(330\) 36.4768 4.41015i 0.110536 0.0133641i
\(331\) 507.216i 1.53237i −0.642618 0.766187i \(-0.722152\pi\)
0.642618 0.766187i \(-0.277848\pi\)
\(332\) 87.1225 + 25.3320i 0.262417 + 0.0763013i
\(333\) −162.810 + 281.995i −0.488918 + 0.846831i
\(334\) 33.5722 + 277.680i 0.100516 + 0.831377i
\(335\) 90.1857i 0.269211i
\(336\) −17.3422 + 409.503i −0.0516136 + 1.21876i
\(337\) 92.2021 + 159.699i 0.273597 + 0.473883i 0.969780 0.243981i \(-0.0784533\pi\)
−0.696183 + 0.717864i \(0.745120\pi\)
\(338\) 132.078 309.559i 0.390764 0.915856i
\(339\) −204.157 + 117.870i −0.602234 + 0.347700i
\(340\) 124.820 + 130.218i 0.367118 + 0.382994i
\(341\) −73.8933 −0.216696
\(342\) −184.141 + 77.4802i −0.538423 + 0.226550i
\(343\) 1024.02i 2.98548i
\(344\) 140.390 171.408i 0.408109 0.498280i
\(345\) −108.514 187.951i −0.314533 0.544786i
\(346\) 137.618 322.544i 0.397741 0.932209i
\(347\) 150.609 86.9544i 0.434033 0.250589i −0.267030 0.963688i \(-0.586042\pi\)
0.701063 + 0.713099i \(0.252709\pi\)
\(348\) 148.380 + 43.1436i 0.426380 + 0.123976i
\(349\) −148.499 −0.425500 −0.212750 0.977107i \(-0.568242\pi\)
−0.212750 + 0.977107i \(0.568242\pi\)
\(350\) −38.0258 314.516i −0.108645 0.898616i
\(351\) 20.2806 + 11.7090i 0.0577795 + 0.0333590i
\(352\) −83.9034 + 6.55732i −0.238362 + 0.0186288i
\(353\) −348.424 −0.987037 −0.493519 0.869735i \(-0.664289\pi\)
−0.493519 + 0.869735i \(0.664289\pi\)
\(354\) 283.232 34.2435i 0.800091 0.0967331i
\(355\) 116.932 + 67.5105i 0.329385 + 0.190170i
\(356\) 337.290 + 351.876i 0.947444 + 0.988416i
\(357\) 159.967 277.071i 0.448086 0.776108i
\(358\) −120.252 + 90.2673i −0.335900 + 0.252143i
\(359\) 444.774 256.791i 1.23893 0.715294i 0.270051 0.962846i \(-0.412959\pi\)
0.968875 + 0.247552i \(0.0796261\pi\)
\(360\) 142.075 53.6326i 0.394653 0.148979i
\(361\) 306.639 190.509i 0.849415 0.527725i
\(362\) 204.112 24.6777i 0.563845 0.0681704i
\(363\) −191.137 + 110.353i −0.526548 + 0.304003i
\(364\) 32.4637 31.1180i 0.0891860 0.0854889i
\(365\) 57.4474 99.5018i 0.157390 0.272608i
\(366\) −201.662 + 151.378i −0.550989 + 0.413601i
\(367\) 169.780 + 98.0228i 0.462617 + 0.267092i 0.713144 0.701018i \(-0.247271\pi\)
−0.250527 + 0.968110i \(0.580604\pi\)
\(368\) 230.115 + 440.637i 0.625312 + 1.19738i
\(369\) −110.177 −0.298584
\(370\) −175.526 + 411.391i −0.474395 + 1.11187i
\(371\) 219.631 + 126.804i 0.591996 + 0.341789i
\(372\) 211.158 51.8166i 0.567630 0.139292i
\(373\) 425.298 1.14021 0.570105 0.821572i \(-0.306903\pi\)
0.570105 + 0.821572i \(0.306903\pi\)
\(374\) 60.4225 + 25.7802i 0.161557 + 0.0689309i
\(375\) 223.605 129.098i 0.596279 0.344262i
\(376\) 403.736 + 66.2500i 1.07377 + 0.176197i
\(377\) −8.47691 14.6824i −0.0224852 0.0389455i
\(378\) −438.516 584.182i −1.16010 1.54545i
\(379\) 23.4489i 0.0618705i 0.999521 + 0.0309353i \(0.00984857\pi\)
−0.999521 + 0.0309353i \(0.990151\pi\)
\(380\) −238.333 + 136.017i −0.627193 + 0.357940i
\(381\) −446.873 −1.17290
\(382\) −236.107 + 177.234i −0.618081 + 0.463963i
\(383\) 62.2303 35.9287i 0.162481 0.0938085i −0.416555 0.909111i \(-0.636763\pi\)
0.579036 + 0.815302i \(0.303429\pi\)
\(384\) 235.165 77.5744i 0.612409 0.202017i
\(385\) 62.8709 + 108.896i 0.163301 + 0.282846i
\(386\) −143.368 + 336.020i −0.371420 + 0.870518i
\(387\) 145.603i 0.376234i
\(388\) 79.0797 19.4055i 0.203814 0.0500143i
\(389\) −119.182 + 206.429i −0.306380 + 0.530666i −0.977568 0.210622i \(-0.932451\pi\)
0.671188 + 0.741288i \(0.265785\pi\)
\(390\) 10.9099 + 4.65486i 0.0279740 + 0.0119355i
\(391\) 388.027i 0.992396i
\(392\) −945.549 + 356.940i −2.41211 + 0.910560i
\(393\) 81.3566 140.914i 0.207014 0.358559i
\(394\) 85.5256 + 113.935i 0.217070 + 0.289176i
\(395\) 296.765 + 171.337i 0.751303 + 0.433765i
\(396\) 39.9262 38.2712i 0.100824 0.0966444i
\(397\) 49.3584 + 85.4912i 0.124328 + 0.215343i 0.921470 0.388449i \(-0.126989\pi\)
−0.797142 + 0.603792i \(0.793656\pi\)
\(398\) −30.2127 249.893i −0.0759114 0.627872i
\(399\) 349.680 + 338.557i 0.876392 + 0.848514i
\(400\) −169.661 + 88.6024i −0.424152 + 0.221506i
\(401\) −43.0056 74.4879i −0.107246 0.185755i 0.807408 0.589994i \(-0.200870\pi\)
−0.914654 + 0.404239i \(0.867537\pi\)
\(402\) 58.0175 + 77.2896i 0.144322 + 0.192263i
\(403\) −20.6588 11.9273i −0.0512624 0.0295964i
\(404\) −343.403 358.253i −0.850007 0.886766i
\(405\) 10.9136 18.9029i 0.0269471 0.0466738i
\(406\) 63.4740 + 525.001i 0.156340 + 1.29311i
\(407\) 162.892i 0.400226i
\(408\) −190.742 31.2993i −0.467505 0.0767139i
\(409\) 179.889 311.578i 0.439827 0.761803i −0.557848 0.829943i \(-0.688373\pi\)
0.997676 + 0.0681394i \(0.0217063\pi\)
\(410\) −150.246 + 18.1651i −0.366453 + 0.0443052i
\(411\) 361.309i 0.879097i
\(412\) −271.150 78.8406i −0.658132 0.191361i
\(413\) 488.174 + 845.543i 1.18202 + 2.04732i
\(414\) −300.472 128.201i −0.725779 0.309664i
\(415\) −70.9281 + 40.9504i −0.170911 + 0.0986756i
\(416\) −24.5158 11.7098i −0.0589321 0.0281486i
\(417\) −218.972 −0.525113
\(418\) −60.3957 + 79.6253i −0.144487 + 0.190491i
\(419\) 636.788i 1.51978i 0.650052 + 0.759890i \(0.274747\pi\)
−0.650052 + 0.759890i \(0.725253\pi\)
\(420\) −256.022 267.094i −0.609576 0.635938i
\(421\) −54.5448 94.4743i −0.129560 0.224405i 0.793946 0.607988i \(-0.208023\pi\)
−0.923506 + 0.383584i \(0.874690\pi\)
\(422\) −219.606 93.6982i −0.520393 0.222034i
\(423\) −232.847 + 134.434i −0.550466 + 0.317812i
\(424\) 24.8106 151.199i 0.0585155 0.356601i
\(425\) 149.404 0.351539
\(426\) −143.641 + 17.3666i −0.337186 + 0.0407667i
\(427\) −747.329 431.471i −1.75019 1.01047i
\(428\) 596.105 + 173.325i 1.39277 + 0.404966i
\(429\) 4.31981 0.0100695
\(430\) 24.0057 + 198.554i 0.0558273 + 0.461754i
\(431\) 299.091 + 172.680i 0.693947 + 0.400650i 0.805089 0.593154i \(-0.202118\pi\)
−0.111142 + 0.993805i \(0.535451\pi\)
\(432\) −236.631 + 372.512i −0.547758 + 0.862297i
\(433\) 48.9951 84.8620i 0.113153 0.195986i −0.803887 0.594782i \(-0.797238\pi\)
0.917040 + 0.398796i \(0.130572\pi\)
\(434\) 446.693 + 595.075i 1.02925 + 1.37114i
\(435\) −120.799 + 69.7435i −0.277699 + 0.160330i
\(436\) −7.63813 + 1.87434i −0.0175186 + 0.00429894i
\(437\) 572.593 + 143.550i 1.31028 + 0.328489i
\(438\) 14.7779 + 122.230i 0.0337396 + 0.279064i
\(439\) 214.684 123.948i 0.489030 0.282342i −0.235142 0.971961i \(-0.575555\pi\)
0.724172 + 0.689619i \(0.242222\pi\)
\(440\) 48.1364 58.7720i 0.109401 0.133573i
\(441\) 332.090 575.196i 0.753037 1.30430i
\(442\) 12.7314 + 16.9605i 0.0288041 + 0.0383721i
\(443\) −269.414 155.546i −0.608157 0.351120i 0.164087 0.986446i \(-0.447532\pi\)
−0.772244 + 0.635326i \(0.780866\pi\)
\(444\) −114.226 465.482i −0.257265 1.04838i
\(445\) −439.987 −0.988735
\(446\) 611.917 + 261.084i 1.37201 + 0.585390i
\(447\) 68.1257 + 39.3324i 0.152406 + 0.0879919i
\(448\) 560.012 + 636.048i 1.25003 + 1.41975i
\(449\) −689.669 −1.53601 −0.768005 0.640444i \(-0.778751\pi\)
−0.768005 + 0.640444i \(0.778751\pi\)
\(450\) 49.3620 115.693i 0.109693 0.257095i
\(451\) −47.7323 + 27.5583i −0.105837 + 0.0611048i
\(452\) −136.087 + 468.035i −0.301078 + 1.03548i
\(453\) 53.9640 + 93.4684i 0.119126 + 0.206332i
\(454\) 431.090 323.598i 0.949537 0.712771i
\(455\) 40.5927i 0.0892147i
\(456\) 116.751 269.890i 0.256034 0.591863i
\(457\) −303.667 −0.664480 −0.332240 0.943195i \(-0.607804\pi\)
−0.332240 + 0.943195i \(0.607804\pi\)
\(458\) 151.269 + 201.517i 0.330281 + 0.439993i
\(459\) 298.328 172.240i 0.649952 0.375250i
\(460\) −430.882 125.285i −0.936701 0.272358i
\(461\) −355.189 615.206i −0.770475 1.33450i −0.937303 0.348516i \(-0.886686\pi\)
0.166828 0.985986i \(-0.446648\pi\)
\(462\) −123.934 52.8784i −0.268256 0.114456i
\(463\) 423.953i 0.915664i −0.889039 0.457832i \(-0.848626\pi\)
0.889039 0.457832i \(-0.151374\pi\)
\(464\) 283.204 147.898i 0.610354 0.318747i
\(465\) −98.1317 + 169.969i −0.211036 + 0.365525i
\(466\) 192.074 450.175i 0.412175 0.966040i
\(467\) 58.2823i 0.124802i −0.998051 0.0624008i \(-0.980124\pi\)
0.998051 0.0624008i \(-0.0198757\pi\)
\(468\) 17.3399 4.25507i 0.0370510 0.00909203i
\(469\) −165.367 + 286.423i −0.352594 + 0.610711i
\(470\) −295.363 + 221.714i −0.628431 + 0.471732i
\(471\) −362.672 209.389i −0.770004 0.444562i
\(472\) 373.766 456.348i 0.791877 0.966839i
\(473\) 36.4191 + 63.0796i 0.0769959 + 0.133361i
\(474\) −364.552 + 44.0753i −0.769097 + 0.0929859i
\(475\) −55.2718 + 220.469i −0.116362 + 0.464145i
\(476\) −157.649 642.436i −0.331195 1.34965i
\(477\) 50.3455 + 87.2010i 0.105546 + 0.182811i
\(478\) 486.726 365.361i 1.01826 0.764354i
\(479\) 734.439 + 424.029i 1.53328 + 0.885238i 0.999208 + 0.0397964i \(0.0126709\pi\)
0.534069 + 0.845441i \(0.320662\pi\)
\(480\) −96.3422 + 201.703i −0.200713 + 0.420214i
\(481\) −26.2929 + 45.5406i −0.0546629 + 0.0946789i
\(482\) 313.966 37.9593i 0.651381 0.0787537i
\(483\) 795.893i 1.64781i
\(484\) −127.408 + 438.186i −0.263240 + 0.905343i
\(485\) −36.7507 + 63.6541i −0.0757747 + 0.131246i
\(486\) −56.7844 469.671i −0.116840 0.966400i
\(487\) 351.483i 0.721732i −0.932618 0.360866i \(-0.882481\pi\)
0.932618 0.360866i \(-0.117519\pi\)
\(488\) −84.4220 + 514.479i −0.172996 + 1.05426i
\(489\) 201.037 + 348.206i 0.411118 + 0.712077i
\(490\) 358.028 839.130i 0.730669 1.71251i
\(491\) −553.288 + 319.441i −1.12686 + 0.650592i −0.943143 0.332387i \(-0.892146\pi\)
−0.183716 + 0.982979i \(0.558813\pi\)
\(492\) 117.076 112.222i 0.237958 0.228094i
\(493\) −249.391 −0.505864
\(494\) −29.7377 + 12.5126i −0.0601978 + 0.0253292i
\(495\) 49.9239i 0.100856i
\(496\) 241.044 379.458i 0.485975 0.765037i
\(497\) −247.578 428.817i −0.498144 0.862811i
\(498\) 34.4419 80.7235i 0.0691604 0.162095i
\(499\) −85.6129 + 49.4286i −0.171569 + 0.0990553i −0.583325 0.812239i \(-0.698249\pi\)
0.411757 + 0.911294i \(0.364915\pi\)
\(500\) 149.051 512.618i 0.298101 1.02524i
\(501\) 270.556 0.540033
\(502\) 65.9328 + 545.338i 0.131340 + 1.08633i
\(503\) 148.888 + 85.9607i 0.296001 + 0.170896i 0.640645 0.767837i \(-0.278667\pi\)
−0.344644 + 0.938733i \(0.612000\pi\)
\(504\) −549.562 90.1789i −1.09040 0.178926i
\(505\) 447.961 0.887051
\(506\) −162.241 + 19.6153i −0.320633 + 0.0387654i
\(507\) −281.938 162.777i −0.556091 0.321059i
\(508\) −667.015 + 639.365i −1.31302 + 1.25859i
\(509\) 292.811 507.164i 0.575268 0.996393i −0.420745 0.907179i \(-0.638231\pi\)
0.996012 0.0892141i \(-0.0284355\pi\)
\(510\) 139.542 104.747i 0.273611 0.205386i
\(511\) −364.898 + 210.674i −0.714085 + 0.412277i
\(512\) 240.024 452.253i 0.468797 0.883306i
\(513\) 143.800 + 503.948i 0.280312 + 0.982354i
\(514\) −166.823 + 20.1694i −0.324559 + 0.0392400i
\(515\) 220.749 127.449i 0.428638 0.247474i
\(516\) −148.305 154.719i −0.287413 0.299843i
\(517\) −67.2511 + 116.482i −0.130080 + 0.225304i
\(518\) 1311.79 984.699i 2.53242 1.90096i
\(519\) −293.764 169.605i −0.566020 0.326792i
\(520\) 22.9443 8.66137i 0.0441237 0.0166565i
\(521\) 429.700 0.824760 0.412380 0.911012i \(-0.364698\pi\)
0.412380 + 0.911012i \(0.364698\pi\)
\(522\) −82.3968 + 193.118i −0.157848 + 0.369959i
\(523\) 101.561 + 58.6364i 0.194190 + 0.112116i 0.593942 0.804508i \(-0.297571\pi\)
−0.399753 + 0.916623i \(0.630904\pi\)
\(524\) −80.1777 326.733i −0.153011 0.623536i
\(525\) −306.447 −0.583709
\(526\) −688.211 293.635i −1.30839 0.558242i
\(527\) −303.891 + 175.451i −0.576642 + 0.332925i
\(528\) −3.44446 + 81.3346i −0.00652360 + 0.154043i
\(529\) 218.144 + 377.837i 0.412371 + 0.714248i
\(530\) 83.0318 + 110.613i 0.156664 + 0.208704i
\(531\) 387.645i 0.730028i
\(532\) 1006.33 + 5.03283i 1.89160 + 0.00946021i
\(533\) −17.7930 −0.0333828
\(534\) 377.071 283.049i 0.706125 0.530053i
\(535\) −485.300 + 280.188i −0.907103 + 0.523716i
\(536\) 197.181 + 32.3558i 0.367874 + 0.0603653i
\(537\) 72.7228 + 125.960i 0.135424 + 0.234562i
\(538\) −300.989 + 705.446i −0.559460 + 1.31124i
\(539\) 332.257i 0.616433i
\(540\) −94.9395 386.889i −0.175814 0.716461i
\(541\) −314.473 + 544.683i −0.581281 + 1.00681i 0.414047 + 0.910256i \(0.364115\pi\)
−0.995328 + 0.0965527i \(0.969218\pi\)
\(542\) −490.758 209.389i −0.905457 0.386327i
\(543\) 198.876i 0.366254i
\(544\) −329.488 + 226.186i −0.605677 + 0.415784i
\(545\) 3.54967 6.14821i 0.00651316 0.0112811i
\(546\) −26.1137 34.7881i −0.0478273 0.0637145i
\(547\) −518.367 299.279i −0.947654 0.547128i −0.0553026 0.998470i \(-0.517612\pi\)
−0.892351 + 0.451341i \(0.850946\pi\)
\(548\) −516.944 539.299i −0.943328 0.984123i
\(549\) −171.309 296.716i −0.312038 0.540466i
\(550\) −7.55259 62.4684i −0.0137320 0.113579i
\(551\) 92.2617 368.014i 0.167444 0.667903i
\(552\) 449.865 169.822i 0.814973 0.307648i
\(553\) −628.336 1088.31i −1.13623 1.96801i
\(554\) 2.95151 + 3.93193i 0.00532763 + 0.00709735i
\(555\) 374.683 + 216.324i 0.675105 + 0.389772i
\(556\) −326.843 + 313.295i −0.587848 + 0.563480i
\(557\) 80.6000 139.603i 0.144704 0.250634i −0.784559 0.620055i \(-0.787110\pi\)
0.929262 + 0.369420i \(0.120444\pi\)
\(558\) 35.4593 + 293.288i 0.0635472 + 0.525606i
\(559\) 23.5140i 0.0420644i
\(560\) −764.290 32.3672i −1.36480 0.0577985i
\(561\) 31.7722 55.0311i 0.0566350 0.0980947i
\(562\) −96.5878 + 11.6777i −0.171864 + 0.0207789i
\(563\) 339.756i 0.603475i −0.953391 0.301738i \(-0.902433\pi\)
0.953391 0.301738i \(-0.0975666\pi\)
\(564\) 110.496 380.020i 0.195915 0.673794i
\(565\) −219.991 381.036i −0.389365 0.674400i
\(566\) 714.486 + 304.846i 1.26234 + 0.538598i
\(567\) −69.3215 + 40.0228i −0.122260 + 0.0705869i
\(568\) −189.555 + 231.437i −0.333724 + 0.407459i
\(569\) 142.791 0.250950 0.125475 0.992097i \(-0.459955\pi\)
0.125475 + 0.992097i \(0.459955\pi\)
\(570\) 102.947 + 244.666i 0.180609 + 0.429238i
\(571\) 478.509i 0.838020i 0.907982 + 0.419010i \(0.137623\pi\)
−0.907982 + 0.419010i \(0.862377\pi\)
\(572\) 6.44787 6.18058i 0.0112725 0.0108052i
\(573\) 142.786 + 247.313i 0.249191 + 0.431612i
\(574\) 510.478 + 217.803i 0.889335 + 0.379448i
\(575\) −321.876 + 185.835i −0.559785 + 0.323192i
\(576\) 66.2894 + 329.873i 0.115086 + 0.572695i
\(577\) 465.870 0.807400 0.403700 0.914891i \(-0.367724\pi\)
0.403700 + 0.914891i \(0.367724\pi\)
\(578\) −264.118 + 31.9326i −0.456952 + 0.0552467i
\(579\) 306.038 + 176.691i 0.528563 + 0.305166i
\(580\) −80.5225 + 276.935i −0.138832 + 0.477474i
\(581\) 300.350 0.516954
\(582\) −9.45387 78.1941i −0.0162438 0.134354i
\(583\) 43.6225 + 25.1855i 0.0748242 + 0.0431998i
\(584\) 196.939 + 161.300i 0.337224 + 0.276199i
\(585\) −8.05836 + 13.9575i −0.0137750 + 0.0238590i
\(586\) 364.083 + 485.024i 0.621303 + 0.827686i
\(587\) −73.8865 + 42.6584i −0.125871 + 0.0726719i −0.561614 0.827400i \(-0.689819\pi\)
0.435742 + 0.900072i \(0.356486\pi\)
\(588\) 232.991 + 949.462i 0.396243 + 1.61473i
\(589\) −146.481 513.345i −0.248695 0.871553i
\(590\) 63.9116 + 528.620i 0.108325 + 0.895966i
\(591\) 119.343 68.9027i 0.201934 0.116587i
\(592\) −836.486 531.362i −1.41298 0.897571i
\(593\) −183.086 + 317.114i −0.308745 + 0.534762i −0.978088 0.208192i \(-0.933242\pi\)
0.669343 + 0.742953i \(0.266576\pi\)
\(594\) −87.0972 116.029i −0.146628 0.195335i
\(595\) 517.120 + 298.559i 0.869110 + 0.501781i
\(596\) 157.961 38.7625i 0.265035 0.0650377i
\(597\) −243.482 −0.407843
\(598\) −48.5246 20.7038i −0.0811449 0.0346217i
\(599\) −72.7772 42.0179i −0.121498 0.0701468i 0.438019 0.898966i \(-0.355680\pi\)
−0.559517 + 0.828819i \(0.689013\pi\)
\(600\) 65.3875 + 173.214i 0.108979 + 0.288690i
\(601\) 414.461 0.689620 0.344810 0.938673i \(-0.387943\pi\)
0.344810 + 0.938673i \(0.387943\pi\)
\(602\) 287.833 674.612i 0.478128 1.12062i
\(603\) −113.720 + 65.6564i −0.188591 + 0.108883i
\(604\) 214.278 + 62.3043i 0.354766 + 0.103153i
\(605\) −205.961 356.735i −0.340432 0.589645i
\(606\) −383.905 + 288.178i −0.633506 + 0.475542i
\(607\) 449.401i 0.740365i −0.928959 0.370182i \(-0.879295\pi\)
0.928959 0.370182i \(-0.120705\pi\)
\(608\) −211.879 569.887i −0.348486 0.937314i
\(609\) 511.533 0.839956
\(610\) −282.529 376.379i −0.463163 0.617015i
\(611\) −37.6035 + 21.7104i −0.0615442 + 0.0355326i
\(612\) 73.3284 252.193i 0.119818 0.412080i
\(613\) −57.7740 100.068i −0.0942480 0.163242i 0.815047 0.579396i \(-0.196711\pi\)
−0.909294 + 0.416153i \(0.863378\pi\)
\(614\) −122.656 52.3331i −0.199766 0.0852330i
\(615\) 146.392i 0.238035i
\(616\) −260.644 + 98.3916i −0.423123 + 0.159727i
\(617\) −232.155 + 402.104i −0.376264 + 0.651708i −0.990515 0.137402i \(-0.956125\pi\)
0.614251 + 0.789110i \(0.289458\pi\)
\(618\) −107.193 + 251.235i −0.173451 + 0.406528i
\(619\) 425.346i 0.687150i 0.939125 + 0.343575i \(0.111638\pi\)
−0.939125 + 0.343575i \(0.888362\pi\)
\(620\) 96.7098 + 394.103i 0.155984 + 0.635650i
\(621\) −428.478 + 742.145i −0.689980 + 1.19508i
\(622\) 538.990 404.593i 0.866543 0.650471i
\(623\) 1397.37 + 806.771i 2.24297 + 1.29498i
\(624\) −14.0914 + 22.1832i −0.0225824 + 0.0355500i
\(625\) 91.4130 + 158.332i 0.146261 + 0.253331i
\(626\) −408.196 + 49.3520i −0.652070 + 0.0788370i
\(627\) 69.4527 + 67.2434i 0.110770 + 0.107246i
\(628\) −840.917 + 206.355i −1.33904 + 0.328590i
\(629\) 386.768 + 669.902i 0.614894 + 1.06503i
\(630\) 402.045 301.795i 0.638167 0.479040i
\(631\) −713.017 411.661i −1.12998 0.652394i −0.186050 0.982540i \(-0.559569\pi\)
−0.943930 + 0.330147i \(0.892902\pi\)
\(632\) −481.079 + 587.372i −0.761201 + 0.929386i
\(633\) −115.476 + 200.011i −0.182427 + 0.315973i
\(634\) −1127.63 + 136.334i −1.77860 + 0.215038i
\(635\) 834.037i 1.31344i
\(636\) −142.317 41.3806i −0.223769 0.0650639i
\(637\) 53.6306 92.8909i 0.0841925 0.145826i
\(638\) 12.6071 + 104.275i 0.0197603 + 0.163440i
\(639\) 196.594i 0.307659i
\(640\) 144.784 + 438.909i 0.226224 + 0.685795i
\(641\) −121.499 210.442i −0.189545 0.328302i 0.755553 0.655087i \(-0.227368\pi\)
−0.945099 + 0.326785i \(0.894035\pi\)
\(642\) 235.656 552.322i 0.367066 0.860314i
\(643\) 759.987 438.779i 1.18194 0.682393i 0.225477 0.974248i \(-0.427606\pi\)
0.956462 + 0.291855i \(0.0942726\pi\)
\(644\) 1138.73 + 1187.97i 1.76821 + 1.84468i
\(645\) 193.461 0.299939
\(646\) −59.3197 + 470.866i −0.0918262 + 0.728895i
\(647\) 242.955i 0.375510i 0.982216 + 0.187755i \(0.0601210\pi\)
−0.982216 + 0.187755i \(0.939879\pi\)
\(648\) 37.4135 + 30.6430i 0.0577369 + 0.0472886i
\(649\) 96.9601 + 167.940i 0.149399 + 0.258767i
\(650\) 7.97169 18.6837i 0.0122641 0.0287442i
\(651\) 623.319 359.873i 0.957479 0.552801i
\(652\) 798.269 + 232.107i 1.22434 + 0.355993i
\(653\) −350.922 −0.537400 −0.268700 0.963224i \(-0.586594\pi\)
−0.268700 + 0.963224i \(0.586594\pi\)
\(654\) 0.913128 + 7.55259i 0.00139622 + 0.0115483i
\(655\) 262.999 + 151.843i 0.401525 + 0.231821i
\(656\) 14.1875 335.012i 0.0216273 0.510690i
\(657\) −167.290 −0.254627
\(658\) 1344.59 162.565i 2.04345 0.247059i
\(659\) 421.170 + 243.163i 0.639105 + 0.368987i 0.784270 0.620420i \(-0.213038\pi\)
−0.145165 + 0.989408i \(0.546371\pi\)
\(660\) −50.8505 53.0496i −0.0770462 0.0803781i
\(661\) 25.5338 44.2258i 0.0386290 0.0669074i −0.846065 0.533081i \(-0.821034\pi\)
0.884694 + 0.466173i \(0.154368\pi\)
\(662\) −811.292 + 608.997i −1.22552 + 0.919935i
\(663\) 17.7655 10.2569i 0.0267956 0.0154704i
\(664\) −64.0865 169.768i −0.0965158 0.255674i
\(665\) −631.877 + 652.638i −0.950192 + 0.981411i
\(666\) 646.531 78.1673i 0.970767 0.117368i
\(667\) 537.287 310.203i 0.805528 0.465072i
\(668\) 403.840 387.099i 0.604551 0.579490i
\(669\) 321.767 557.317i 0.480968 0.833060i
\(670\) −144.252 + 108.283i −0.215302 + 0.161616i
\(671\) −148.433 85.6977i −0.221211 0.127716i
\(672\) 675.823 463.938i 1.00569 0.690384i
\(673\) 71.8554 0.106769 0.0533844 0.998574i \(-0.482999\pi\)
0.0533844 + 0.998574i \(0.482999\pi\)
\(674\) 144.734 339.222i 0.214739 0.503297i
\(675\) −285.752 164.979i −0.423337 0.244414i
\(676\) −653.722 + 160.418i −0.967044 + 0.237305i
\(677\) −692.124 −1.02234 −0.511170 0.859480i \(-0.670788\pi\)
−0.511170 + 0.859480i \(0.670788\pi\)
\(678\) 433.658 + 185.027i 0.639614 + 0.272901i
\(679\) 233.435 134.774i 0.343793 0.198489i
\(680\) 58.4165 355.998i 0.0859065 0.523526i
\(681\) −260.703 451.551i −0.382824 0.663070i
\(682\) 88.7212 + 118.192i 0.130090 + 0.173303i
\(683\) 916.976i 1.34257i −0.741199 0.671286i \(-0.765742\pi\)
0.741199 0.671286i \(-0.234258\pi\)
\(684\) 345.021 + 201.505i 0.504417 + 0.294599i
\(685\) 674.342 0.984440
\(686\) −1637.92 + 1229.50i −2.38764 + 1.79228i
\(687\) 211.081 121.868i 0.307251 0.177391i
\(688\) −442.729 18.7492i −0.643501 0.0272518i
\(689\) 8.13052 + 14.0825i 0.0118005 + 0.0204390i
\(690\) −170.339 + 399.235i −0.246869 + 0.578601i
\(691\) 693.870i 1.00415i 0.864823 + 0.502077i \(0.167431\pi\)
−0.864823 + 0.502077i \(0.832569\pi\)
\(692\) −681.144 + 167.147i −0.984311 + 0.241543i
\(693\) 91.5416 158.555i 0.132095 0.228795i
\(694\) −319.915 136.497i −0.460973 0.196681i
\(695\) 408.686i 0.588037i
\(696\) −109.147 289.135i −0.156821 0.415425i
\(697\) −130.868 + 226.670i −0.187759 + 0.325208i
\(698\) 178.298 + 237.525i 0.255442 + 0.340294i
\(699\) −410.007 236.717i −0.586562 0.338651i
\(700\) −457.412 + 438.450i −0.653445 + 0.626358i
\(701\) −65.7537 113.889i −0.0937999 0.162466i 0.815307 0.579029i \(-0.196568\pi\)
−0.909107 + 0.416562i \(0.863235\pi\)
\(702\) −5.62166 46.4974i −0.00800807 0.0662357i
\(703\) −1131.63 + 322.907i −1.60971 + 0.459327i
\(704\) 111.228 + 126.330i 0.157995 + 0.179447i
\(705\) 178.621 + 309.381i 0.253364 + 0.438839i
\(706\) 418.341 + 557.304i 0.592551 + 0.789383i
\(707\) −1422.69 821.392i −2.01229 1.16180i
\(708\) −394.840 411.915i −0.557683 0.581801i
\(709\) 215.886 373.925i 0.304493 0.527398i −0.672655 0.739956i \(-0.734846\pi\)
0.977148 + 0.212558i \(0.0681796\pi\)
\(710\) −32.4128 268.090i −0.0456518 0.377591i
\(711\) 498.943i 0.701748i
\(712\) 157.854 961.981i 0.221704 1.35110i
\(713\) 436.467 755.984i 0.612156 1.06029i
\(714\) −635.241 + 76.8023i −0.889693 + 0.107566i
\(715\) 8.06243i 0.0112761i
\(716\) 288.765 + 83.9623i 0.403303 + 0.117266i
\(717\) −294.349 509.828i −0.410529 0.711057i
\(718\) −944.762 403.097i −1.31582 0.561416i
\(719\) 404.948 233.797i 0.563211 0.325170i −0.191223 0.981547i \(-0.561245\pi\)
0.754433 + 0.656377i \(0.227912\pi\)
\(720\) −256.370 162.854i −0.356070 0.226186i
\(721\) −934.776 −1.29650
\(722\) −672.890 261.731i −0.931980 0.362509i
\(723\) 305.911i 0.423114i
\(724\) −284.542 296.847i −0.393014 0.410010i
\(725\) 119.439 + 206.875i 0.164744 + 0.285345i
\(726\) 406.002 + 173.227i 0.559231 + 0.238604i
\(727\) −398.635 + 230.152i −0.548329 + 0.316578i −0.748448 0.663194i \(-0.769200\pi\)
0.200119 + 0.979772i \(0.435867\pi\)
\(728\) −88.7513 14.5634i −0.121911 0.0200046i
\(729\) −512.028 −0.702370
\(730\) −228.128 + 27.5813i −0.312504 + 0.0377826i
\(731\) 299.551 + 172.946i 0.409782 + 0.236588i
\(732\) 484.258 + 140.804i 0.661554 + 0.192356i
\(733\) 1375.87 1.87704 0.938520 0.345225i \(-0.112197\pi\)
0.938520 + 0.345225i \(0.112197\pi\)
\(734\) −47.0622 389.257i −0.0641174 0.530322i
\(735\) −764.257 441.244i −1.03980 0.600332i
\(736\) 428.508 897.127i 0.582212 1.21892i
\(737\) −32.8448 + 56.8888i −0.0445655 + 0.0771897i
\(738\) 132.286 + 176.229i 0.179250 + 0.238793i
\(739\) 948.158 547.419i 1.28303 0.740757i 0.305628 0.952151i \(-0.401134\pi\)
0.977401 + 0.211394i \(0.0678003\pi\)
\(740\) 868.768 213.189i 1.17401 0.288093i
\(741\) 8.56332 + 30.0102i 0.0115564 + 0.0404996i
\(742\) −60.8803 503.548i −0.0820489 0.678636i
\(743\) −599.054 + 345.864i −0.806264 + 0.465497i −0.845657 0.533727i \(-0.820791\pi\)
0.0393928 + 0.999224i \(0.487458\pi\)
\(744\) −336.411 275.533i −0.452166 0.370341i
\(745\) −73.4094 + 127.149i −0.0985361 + 0.170669i
\(746\) −510.641 680.265i −0.684506 0.911883i
\(747\) 103.273 + 59.6248i 0.138251 + 0.0798190i
\(748\) −31.3119 127.599i −0.0418608 0.170587i
\(749\) 2055.04 2.74371
\(750\) −474.967 202.652i −0.633289 0.270202i
\(751\) 417.980 + 241.321i 0.556564 + 0.321332i 0.751765 0.659431i \(-0.229203\pi\)
−0.195201 + 0.980763i \(0.562536\pi\)
\(752\) −378.786 725.320i −0.503704 0.964522i
\(753\) 531.348 0.705641
\(754\) −13.3066 + 31.1875i −0.0176481 + 0.0413628i
\(755\) −174.448 + 100.718i −0.231057 + 0.133401i
\(756\) −407.887 + 1402.81i −0.539533 + 1.85557i
\(757\) 429.714 + 744.287i 0.567654 + 0.983206i 0.996797 + 0.0799692i \(0.0254822\pi\)
−0.429143 + 0.903236i \(0.641184\pi\)
\(758\) 37.5066 28.1543i 0.0494810 0.0371429i
\(759\) 158.079i 0.208272i
\(760\) 503.718 + 217.903i 0.662787 + 0.286714i
\(761\) −301.943 −0.396771 −0.198386 0.980124i \(-0.563570\pi\)
−0.198386 + 0.980124i \(0.563570\pi\)
\(762\) 536.546 + 714.774i 0.704128 + 0.938023i
\(763\) −22.5470 + 13.0175i −0.0295505 + 0.0170610i
\(764\) 566.971 + 164.854i 0.742109 + 0.215778i
\(765\) 118.539 + 205.315i 0.154952 + 0.268385i
\(766\) −132.186 56.3990i −0.172566 0.0736279i
\(767\) 62.6025i 0.0816199i
\(768\) −406.435 283.006i −0.529212 0.368497i
\(769\) −155.833 + 269.911i −0.202644 + 0.350989i −0.949379 0.314132i \(-0.898287\pi\)
0.746736 + 0.665121i \(0.231620\pi\)
\(770\) 98.6915 231.309i 0.128171 0.300401i
\(771\) 162.544i 0.210822i
\(772\) 709.601 174.131i 0.919173 0.225558i
\(773\) −131.689 + 228.092i −0.170361 + 0.295073i −0.938546 0.345154i \(-0.887827\pi\)