Properties

Label 76.3.g.c.7.2
Level $76$
Weight $3$
Character 76.7
Analytic conductor $2.071$
Analytic rank $0$
Dimension $28$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 76 = 2^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 76.g (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.07085000914\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 7.2
Character \(\chi\) \(=\) 76.7
Dual form 76.3.g.c.11.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.93914 - 0.489616i) q^{2} +(-3.88623 + 2.24371i) q^{3} +(3.52055 + 1.89887i) q^{4} +(-0.133773 - 0.231701i) q^{5} +(8.63451 - 2.44812i) q^{6} -7.24937i q^{7} +(-5.89713 - 5.40590i) q^{8} +(5.56851 - 9.64495i) q^{9} +O(q^{10})\) \(q+(-1.93914 - 0.489616i) q^{2} +(-3.88623 + 2.24371i) q^{3} +(3.52055 + 1.89887i) q^{4} +(-0.133773 - 0.231701i) q^{5} +(8.63451 - 2.44812i) q^{6} -7.24937i q^{7} +(-5.89713 - 5.40590i) q^{8} +(5.56851 - 9.64495i) q^{9} +(0.145960 + 0.514800i) q^{10} -11.7422i q^{11} +(-17.9422 + 0.519664i) q^{12} +(4.17006 - 7.22276i) q^{13} +(-3.54941 + 14.0576i) q^{14} +(1.03974 + 0.600297i) q^{15} +(8.78857 + 13.3702i) q^{16} +(-7.11880 - 12.3301i) q^{17} +(-15.5205 + 15.9765i) q^{18} +(11.9609 + 14.7627i) q^{19} +(-0.0309829 - 1.06973i) q^{20} +(16.2655 + 28.1727i) q^{21} +(-5.74919 + 22.7699i) q^{22} +(-21.4900 - 12.4073i) q^{23} +(35.0469 + 7.77709i) q^{24} +(12.4642 - 21.5886i) q^{25} +(-11.6227 + 11.9642i) q^{26} +9.58976i q^{27} +(13.7656 - 25.5218i) q^{28} +(-25.7911 + 44.6716i) q^{29} +(-1.72230 - 1.67314i) q^{30} -26.3372i q^{31} +(-10.4960 - 30.2297i) q^{32} +(26.3462 + 45.6330i) q^{33} +(7.76734 + 27.3954i) q^{34} +(-1.67969 + 0.969769i) q^{35} +(37.9188 - 23.3816i) q^{36} -20.1243 q^{37} +(-15.9659 - 34.4832i) q^{38} +37.4257i q^{39} +(-0.463679 + 2.08954i) q^{40} +(-38.5881 - 66.8366i) q^{41} +(-17.7473 - 62.5947i) q^{42} +(-30.0199 + 17.3320i) q^{43} +(22.2970 - 41.3391i) q^{44} -2.97967 q^{45} +(35.5975 + 34.5814i) q^{46} +(31.9968 + 18.4733i) q^{47} +(-64.1532 - 32.2404i) q^{48} -3.55331 q^{49} +(-34.7400 + 35.7608i) q^{50} +(55.3306 + 31.9451i) q^{51} +(28.3960 - 17.5097i) q^{52} +(-8.75934 + 15.1716i) q^{53} +(4.69530 - 18.5959i) q^{54} +(-2.72069 + 1.57079i) q^{55} +(-39.1894 + 42.7505i) q^{56} +(-79.6061 - 30.5343i) q^{57} +(71.8847 - 73.9968i) q^{58} +(82.8741 - 47.8474i) q^{59} +(2.52059 + 4.08772i) q^{60} +(26.2074 - 45.3926i) q^{61} +(-12.8951 + 51.0716i) q^{62} +(-69.9198 - 40.3682i) q^{63} +(5.55239 + 63.7587i) q^{64} -2.23136 q^{65} +(-28.7464 - 101.388i) q^{66} +(11.8862 + 6.86248i) q^{67} +(-1.64877 - 56.9265i) q^{68} +111.354 q^{69} +(3.73197 - 1.05812i) q^{70} +(39.7717 - 22.9622i) q^{71} +(-84.9779 + 26.7747i) q^{72} +(20.0638 + 34.7515i) q^{73} +(39.0240 + 9.85320i) q^{74} +111.865i q^{75} +(14.0766 + 74.6850i) q^{76} -85.1238 q^{77} +(18.3242 - 72.5738i) q^{78} +(-106.053 + 61.2298i) q^{79} +(1.92221 - 3.82489i) q^{80} +(28.5999 + 49.5365i) q^{81} +(42.1036 + 148.499i) q^{82} +108.436i q^{83} +(3.76723 + 130.070i) q^{84} +(-1.90461 + 3.29887i) q^{85} +(66.6990 - 18.9110i) q^{86} -231.472i q^{87} +(-63.4774 + 69.2455i) q^{88} +(-26.2347 + 45.4398i) q^{89} +(5.77800 + 1.45889i) q^{90} +(-52.3604 - 30.2303i) q^{91} +(-52.0970 - 84.4873i) q^{92} +(59.0932 + 102.352i) q^{93} +(-53.0015 - 51.4886i) q^{94} +(1.82049 - 4.74621i) q^{95} +(108.617 + 93.9293i) q^{96} +(29.9055 + 51.7979i) q^{97} +(6.89038 + 1.73976i) q^{98} +(-113.253 - 65.3868i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28q - 5q^{2} - 11q^{4} + 6q^{5} - 3q^{6} - 62q^{8} + 20q^{9} + O(q^{10}) \) \( 28q - 5q^{2} - 11q^{4} + 6q^{5} - 3q^{6} - 62q^{8} + 20q^{9} + 26q^{12} + 30q^{13} - 30q^{14} - 19q^{16} + 38q^{17} - 60q^{18} - 44q^{20} + 80q^{21} + 45q^{22} + 17q^{24} - 16q^{25} - 56q^{26} + 54q^{28} + 6q^{29} + 96q^{30} - 45q^{32} - 176q^{33} - 20q^{34} + 30q^{36} + 104q^{37} - 258q^{38} + 94q^{40} - 2q^{41} - 2q^{42} + 201q^{44} - 360q^{45} + 164q^{46} - 17q^{48} - 20q^{49} + 490q^{50} - 102q^{52} - 242q^{53} - 13q^{54} + 276q^{56} - 254q^{57} + 96q^{58} + 10q^{60} - 58q^{61} - 36q^{62} - 74q^{64} - 260q^{65} + 167q^{66} + 396q^{68} + 340q^{69} + 60q^{70} - 422q^{72} - 82q^{73} - 136q^{74} + 123q^{76} - 144q^{77} + 224q^{78} - 174q^{80} + 410q^{81} - 305q^{82} + 252q^{84} + 714q^{85} + 166q^{86} - 718q^{88} + 150q^{89} - 272q^{90} - 588q^{92} + 344q^{93} - 488q^{94} - 122q^{96} + 94q^{97} + 307q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/76\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(39\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.93914 0.489616i −0.969572 0.244808i
\(3\) −3.88623 + 2.24371i −1.29541 + 0.747905i −0.979608 0.200920i \(-0.935607\pi\)
−0.315802 + 0.948825i \(0.602273\pi\)
\(4\) 3.52055 + 1.89887i 0.880138 + 0.474718i
\(5\) −0.133773 0.231701i −0.0267546 0.0463403i 0.852338 0.522991i \(-0.175184\pi\)
−0.879093 + 0.476651i \(0.841851\pi\)
\(6\) 8.63451 2.44812i 1.43909 0.408021i
\(7\) 7.24937i 1.03562i −0.855495 0.517812i \(-0.826747\pi\)
0.855495 0.517812i \(-0.173253\pi\)
\(8\) −5.89713 5.40590i −0.737142 0.675738i
\(9\) 5.56851 9.64495i 0.618724 1.07166i
\(10\) 0.145960 + 0.514800i 0.0145960 + 0.0514800i
\(11\) 11.7422i 1.06748i −0.845650 0.533738i \(-0.820787\pi\)
0.845650 0.533738i \(-0.179213\pi\)
\(12\) −17.9422 + 0.519664i −1.49518 + 0.0433053i
\(13\) 4.17006 7.22276i 0.320774 0.555597i −0.659874 0.751376i \(-0.729390\pi\)
0.980648 + 0.195780i \(0.0627237\pi\)
\(14\) −3.54941 + 14.0576i −0.253529 + 1.00411i
\(15\) 1.03974 + 0.600297i 0.0693163 + 0.0400198i
\(16\) 8.78857 + 13.3702i 0.549286 + 0.835635i
\(17\) −7.11880 12.3301i −0.418753 0.725301i 0.577061 0.816701i \(-0.304199\pi\)
−0.995814 + 0.0913994i \(0.970866\pi\)
\(18\) −15.5205 + 15.9765i −0.862248 + 0.887583i
\(19\) 11.9609 + 14.7627i 0.629522 + 0.776983i
\(20\) −0.0309829 1.06973i −0.00154915 0.0534867i
\(21\) 16.2655 + 28.1727i 0.774548 + 1.34156i
\(22\) −5.74919 + 22.7699i −0.261327 + 1.03499i
\(23\) −21.4900 12.4073i −0.934349 0.539447i −0.0461649 0.998934i \(-0.514700\pi\)
−0.888185 + 0.459487i \(0.848033\pi\)
\(24\) 35.0469 + 7.77709i 1.46029 + 0.324045i
\(25\) 12.4642 21.5886i 0.498568 0.863546i
\(26\) −11.6227 + 11.9642i −0.447028 + 0.460163i
\(27\) 9.58976i 0.355176i
\(28\) 13.7656 25.5218i 0.491629 0.911492i
\(29\) −25.7911 + 44.6716i −0.889350 + 1.54040i −0.0487047 + 0.998813i \(0.515509\pi\)
−0.840645 + 0.541586i \(0.817824\pi\)
\(30\) −1.72230 1.67314i −0.0574099 0.0557712i
\(31\) 26.3372i 0.849587i −0.905290 0.424793i \(-0.860347\pi\)
0.905290 0.424793i \(-0.139653\pi\)
\(32\) −10.4960 30.2297i −0.328001 0.944677i
\(33\) 26.3462 + 45.6330i 0.798371 + 1.38282i
\(34\) 7.76734 + 27.3954i 0.228451 + 0.805746i
\(35\) −1.67969 + 0.969769i −0.0479911 + 0.0277077i
\(36\) 37.9188 23.3816i 1.05330 0.649490i
\(37\) −20.1243 −0.543901 −0.271950 0.962311i \(-0.587669\pi\)
−0.271950 + 0.962311i \(0.587669\pi\)
\(38\) −15.9659 34.4832i −0.420154 0.907453i
\(39\) 37.4257i 0.959634i
\(40\) −0.463679 + 2.08954i −0.0115920 + 0.0522385i
\(41\) −38.5881 66.8366i −0.941174 1.63016i −0.763237 0.646119i \(-0.776391\pi\)
−0.177937 0.984042i \(-0.556942\pi\)
\(42\) −17.7473 62.5947i −0.422556 1.49035i
\(43\) −30.0199 + 17.3320i −0.698138 + 0.403070i −0.806654 0.591024i \(-0.798724\pi\)
0.108515 + 0.994095i \(0.465390\pi\)
\(44\) 22.2970 41.3391i 0.506750 0.939526i
\(45\) −2.97967 −0.0662148
\(46\) 35.5975 + 34.5814i 0.773858 + 0.751769i
\(47\) 31.9968 + 18.4733i 0.680782 + 0.393050i 0.800150 0.599800i \(-0.204753\pi\)
−0.119367 + 0.992850i \(0.538087\pi\)
\(48\) −64.1532 32.2404i −1.33653 0.671676i
\(49\) −3.55331 −0.0725166
\(50\) −34.7400 + 35.7608i −0.694801 + 0.715216i
\(51\) 55.3306 + 31.9451i 1.08491 + 0.626375i
\(52\) 28.3960 17.5097i 0.546077 0.336725i
\(53\) −8.75934 + 15.1716i −0.165271 + 0.286257i −0.936751 0.349996i \(-0.886183\pi\)
0.771481 + 0.636253i \(0.219516\pi\)
\(54\) 4.69530 18.5959i 0.0869501 0.344369i
\(55\) −2.72069 + 1.57079i −0.0494672 + 0.0285599i
\(56\) −39.1894 + 42.7505i −0.699810 + 0.763402i
\(57\) −79.6061 30.5343i −1.39660 0.535689i
\(58\) 71.8847 73.9968i 1.23939 1.27581i
\(59\) 82.8741 47.8474i 1.40465 0.810973i 0.409781 0.912184i \(-0.365605\pi\)
0.994865 + 0.101211i \(0.0322717\pi\)
\(60\) 2.52059 + 4.08772i 0.0420098 + 0.0681286i
\(61\) 26.2074 45.3926i 0.429630 0.744141i −0.567210 0.823573i \(-0.691977\pi\)
0.996840 + 0.0794323i \(0.0253107\pi\)
\(62\) −12.8951 + 51.0716i −0.207986 + 0.823735i
\(63\) −69.9198 40.3682i −1.10984 0.640765i
\(64\) 5.55239 + 63.7587i 0.0867561 + 0.996230i
\(65\) −2.23136 −0.0343287
\(66\) −28.7464 101.388i −0.435552 1.53619i
\(67\) 11.8862 + 6.86248i 0.177405 + 0.102425i 0.586073 0.810258i \(-0.300673\pi\)
−0.408668 + 0.912683i \(0.634006\pi\)
\(68\) −1.64877 56.9265i −0.0242467 0.837155i
\(69\) 111.354 1.61382
\(70\) 3.73197 1.05812i 0.0533139 0.0151160i
\(71\) 39.7717 22.9622i 0.560164 0.323411i −0.193047 0.981189i \(-0.561837\pi\)
0.753211 + 0.657778i \(0.228504\pi\)
\(72\) −84.9779 + 26.7747i −1.18025 + 0.371871i
\(73\) 20.0638 + 34.7515i 0.274846 + 0.476048i 0.970096 0.242720i \(-0.0780397\pi\)
−0.695250 + 0.718768i \(0.744706\pi\)
\(74\) 39.0240 + 9.85320i 0.527351 + 0.133151i
\(75\) 111.865i 1.49153i
\(76\) 14.0766 + 74.6850i 0.185218 + 0.982697i
\(77\) −85.1238 −1.10550
\(78\) 18.3242 72.5738i 0.234926 0.930433i
\(79\) −106.053 + 61.2298i −1.34245 + 0.775061i −0.987166 0.159699i \(-0.948948\pi\)
−0.355279 + 0.934760i \(0.615614\pi\)
\(80\) 1.92221 3.82489i 0.0240277 0.0478111i
\(81\) 28.5999 + 49.5365i 0.353086 + 0.611562i
\(82\) 42.1036 + 148.499i 0.513459 + 1.81096i
\(83\) 108.436i 1.30645i 0.757163 + 0.653226i \(0.226585\pi\)
−0.757163 + 0.653226i \(0.773415\pi\)
\(84\) 3.76723 + 130.070i 0.0448480 + 1.54845i
\(85\) −1.90461 + 3.29887i −0.0224071 + 0.0388103i
\(86\) 66.6990 18.9110i 0.775570 0.219896i
\(87\) 231.472i 2.66060i
\(88\) −63.4774 + 69.2455i −0.721334 + 0.786881i
\(89\) −26.2347 + 45.4398i −0.294772 + 0.510559i −0.974932 0.222504i \(-0.928577\pi\)
0.680160 + 0.733064i \(0.261910\pi\)
\(90\) 5.77800 + 1.45889i 0.0642000 + 0.0162099i
\(91\) −52.3604 30.2303i −0.575389 0.332201i
\(92\) −52.0970 84.4873i −0.566271 0.918340i
\(93\) 59.0932 + 102.352i 0.635410 + 1.10056i
\(94\) −53.0015 51.4886i −0.563845 0.547751i
\(95\) 1.82049 4.74621i 0.0191630 0.0499601i
\(96\) 108.617 + 93.9293i 1.13142 + 0.978430i
\(97\) 29.9055 + 51.7979i 0.308304 + 0.533999i 0.977992 0.208644i \(-0.0669051\pi\)
−0.669687 + 0.742643i \(0.733572\pi\)
\(98\) 6.89038 + 1.73976i 0.0703100 + 0.0177527i
\(99\) −113.253 65.3868i −1.14397 0.660473i
\(100\) 84.8750 52.3360i 0.848750 0.523360i
\(101\) 29.2672 50.6923i 0.289774 0.501904i −0.683981 0.729499i \(-0.739753\pi\)
0.973756 + 0.227596i \(0.0730864\pi\)
\(102\) −91.6530 89.0369i −0.898559 0.872911i
\(103\) 102.670i 0.996798i −0.866948 0.498399i \(-0.833922\pi\)
0.866948 0.498399i \(-0.166078\pi\)
\(104\) −63.6369 + 20.0506i −0.611894 + 0.192794i
\(105\) 4.35177 7.53749i 0.0414454 0.0717856i
\(106\) 24.4139 25.1312i 0.230320 0.237087i
\(107\) 17.8502i 0.166825i −0.996515 0.0834123i \(-0.973418\pi\)
0.996515 0.0834123i \(-0.0265818\pi\)
\(108\) −18.2097 + 33.7613i −0.168609 + 0.312604i
\(109\) −96.3984 166.967i −0.884389 1.53181i −0.846412 0.532529i \(-0.821242\pi\)
−0.0379776 0.999279i \(-0.512092\pi\)
\(110\) 6.04490 1.71390i 0.0549536 0.0155809i
\(111\) 78.2077 45.1533i 0.704574 0.406786i
\(112\) 96.9252 63.7116i 0.865403 0.568853i
\(113\) 191.548 1.69512 0.847558 0.530702i \(-0.178072\pi\)
0.847558 + 0.530702i \(0.178072\pi\)
\(114\) 139.417 + 98.1867i 1.22296 + 0.861287i
\(115\) 6.63903i 0.0577307i
\(116\) −175.625 + 108.295i −1.51401 + 0.933573i
\(117\) −46.4421 80.4400i −0.396941 0.687522i
\(118\) −184.132 + 52.2064i −1.56044 + 0.442427i
\(119\) −89.3856 + 51.6068i −0.751139 + 0.433670i
\(120\) −2.88637 9.16079i −0.0240530 0.0763399i
\(121\) −16.8801 −0.139505
\(122\) −73.0449 + 75.1911i −0.598728 + 0.616321i
\(123\) 299.925 + 173.162i 2.43841 + 1.40782i
\(124\) 50.0110 92.7215i 0.403314 0.747754i
\(125\) −13.3581 −0.106865
\(126\) 115.820 + 112.514i 0.919202 + 0.892965i
\(127\) −51.3632 29.6546i −0.404435 0.233501i 0.283961 0.958836i \(-0.408351\pi\)
−0.688396 + 0.725335i \(0.741685\pi\)
\(128\) 20.4504 126.356i 0.159769 0.987154i
\(129\) 77.7763 134.712i 0.602917 1.04428i
\(130\) 4.32694 + 1.09251i 0.0332841 + 0.00840394i
\(131\) −25.3061 + 14.6105i −0.193177 + 0.111531i −0.593469 0.804857i \(-0.702242\pi\)
0.400292 + 0.916388i \(0.368909\pi\)
\(132\) 6.10201 + 210.681i 0.0462274 + 1.59607i
\(133\) 107.020 86.7090i 0.804662 0.651947i
\(134\) −19.6890 19.1270i −0.146933 0.142739i
\(135\) 2.22196 1.28285i 0.0164590 0.00950260i
\(136\) −24.6749 + 111.196i −0.181433 + 0.817617i
\(137\) 2.83485 4.91011i 0.0206924 0.0358402i −0.855494 0.517813i \(-0.826746\pi\)
0.876186 + 0.481973i \(0.160080\pi\)
\(138\) −215.931 54.5205i −1.56471 0.395076i
\(139\) −43.5024 25.1161i −0.312967 0.180692i 0.335286 0.942116i \(-0.391167\pi\)
−0.648253 + 0.761425i \(0.724500\pi\)
\(140\) −7.75490 + 0.224607i −0.0553921 + 0.00160433i
\(141\) −165.796 −1.17586
\(142\) −88.3656 + 25.0541i −0.622293 + 0.176437i
\(143\) −84.8113 48.9658i −0.593086 0.342418i
\(144\) 177.894 10.3134i 1.23537 0.0716208i
\(145\) 13.8006 0.0951768
\(146\) −21.8917 77.2117i −0.149943 0.528847i
\(147\) 13.8090 7.97262i 0.0939387 0.0542355i
\(148\) −70.8487 38.2135i −0.478708 0.258200i
\(149\) 81.0049 + 140.305i 0.543657 + 0.941642i 0.998690 + 0.0511672i \(0.0162941\pi\)
−0.455033 + 0.890475i \(0.650373\pi\)
\(150\) 54.7707 216.921i 0.365138 1.44614i
\(151\) 123.556i 0.818250i 0.912478 + 0.409125i \(0.134166\pi\)
−0.912478 + 0.409125i \(0.865834\pi\)
\(152\) 9.27054 151.717i 0.0609904 0.998138i
\(153\) −158.565 −1.03637
\(154\) 165.067 + 41.6780i 1.07186 + 0.270636i
\(155\) −6.10237 + 3.52320i −0.0393701 + 0.0227303i
\(156\) −71.0666 + 131.759i −0.455555 + 0.844610i
\(157\) −115.986 200.893i −0.738763 1.27958i −0.953052 0.302806i \(-0.902077\pi\)
0.214289 0.976770i \(-0.431257\pi\)
\(158\) 235.631 66.8080i 1.49134 0.422836i
\(159\) 78.6138i 0.494427i
\(160\) −5.60017 + 6.47586i −0.0350011 + 0.0404741i
\(161\) −89.9449 + 155.789i −0.558664 + 0.967635i
\(162\) −31.2055 110.061i −0.192626 0.679392i
\(163\) 72.2434i 0.443211i 0.975136 + 0.221606i \(0.0711298\pi\)
−0.975136 + 0.221606i \(0.928870\pi\)
\(164\) −8.93734 308.576i −0.0544960 1.88156i
\(165\) 7.04882 12.2089i 0.0427201 0.0739935i
\(166\) 53.0918 210.272i 0.319830 1.26670i
\(167\) 101.024 + 58.3264i 0.604936 + 0.349260i 0.770981 0.636858i \(-0.219766\pi\)
−0.166045 + 0.986118i \(0.553100\pi\)
\(168\) 56.3790 254.068i 0.335589 1.51231i
\(169\) 49.7212 + 86.1196i 0.294208 + 0.509584i
\(170\) 5.30848 5.46446i 0.0312264 0.0321439i
\(171\) 208.990 33.1562i 1.22216 0.193896i
\(172\) −138.598 + 4.01425i −0.805803 + 0.0233386i
\(173\) 66.5048 + 115.190i 0.384421 + 0.665836i 0.991689 0.128661i \(-0.0410679\pi\)
−0.607268 + 0.794497i \(0.707735\pi\)
\(174\) −113.332 + 448.857i −0.651336 + 2.57964i
\(175\) −156.504 90.3576i −0.894309 0.516329i
\(176\) 156.996 103.197i 0.892020 0.586349i
\(177\) −214.712 + 371.892i −1.21306 + 2.10108i
\(178\) 73.1208 75.2693i 0.410791 0.422861i
\(179\) 99.3625i 0.555098i −0.960711 0.277549i \(-0.910478\pi\)
0.960711 0.277549i \(-0.0895221\pi\)
\(180\) −10.4901 5.65800i −0.0582781 0.0314334i
\(181\) −21.9433 + 38.0069i −0.121234 + 0.209983i −0.920254 0.391321i \(-0.872018\pi\)
0.799021 + 0.601303i \(0.205352\pi\)
\(182\) 86.7331 + 84.2574i 0.476555 + 0.462953i
\(183\) 235.208i 1.28529i
\(184\) 59.6571 + 189.340i 0.324223 + 1.02902i
\(185\) 2.69209 + 4.66284i 0.0145518 + 0.0252045i
\(186\) −64.4767 227.409i −0.346649 1.22263i
\(187\) −144.783 + 83.5906i −0.774242 + 0.447009i
\(188\) 77.5678 + 125.794i 0.412594 + 0.669118i
\(189\) 69.5197 0.367829
\(190\) −5.85401 + 8.31223i −0.0308106 + 0.0437486i
\(191\) 63.2363i 0.331080i −0.986203 0.165540i \(-0.947063\pi\)
0.986203 0.165540i \(-0.0529367\pi\)
\(192\) −164.634 235.323i −0.857470 1.22564i
\(193\) 23.1161 + 40.0383i 0.119773 + 0.207452i 0.919678 0.392674i \(-0.128450\pi\)
−0.799905 + 0.600127i \(0.795117\pi\)
\(194\) −32.6300 115.086i −0.168196 0.593226i
\(195\) 8.67159 5.00655i 0.0444697 0.0256746i
\(196\) −12.5096 6.74729i −0.0638246 0.0344249i
\(197\) 76.2113 0.386859 0.193430 0.981114i \(-0.438039\pi\)
0.193430 + 0.981114i \(0.438039\pi\)
\(198\) 187.600 + 182.245i 0.947474 + 0.920429i
\(199\) 89.6573 + 51.7637i 0.450539 + 0.260119i 0.708058 0.706154i \(-0.249572\pi\)
−0.257519 + 0.966273i \(0.582905\pi\)
\(200\) −190.209 + 59.9308i −0.951046 + 0.299654i
\(201\) −61.5898 −0.306417
\(202\) −81.5731 + 83.9699i −0.403827 + 0.415693i
\(203\) 323.841 + 186.969i 1.59527 + 0.921032i
\(204\) 134.134 + 217.530i 0.657522 + 1.06632i
\(205\) −10.3241 + 17.8819i −0.0503614 + 0.0872285i
\(206\) −50.2690 + 199.092i −0.244024 + 0.966467i
\(207\) −239.335 + 138.180i −1.15621 + 0.667537i
\(208\) 133.218 7.72333i 0.640472 0.0371314i
\(209\) 173.347 140.448i 0.829411 0.671999i
\(210\) −12.1292 + 12.4856i −0.0577580 + 0.0594551i
\(211\) −107.264 + 61.9287i −0.508359 + 0.293501i −0.732159 0.681134i \(-0.761487\pi\)
0.223800 + 0.974635i \(0.428154\pi\)
\(212\) −59.6467 + 36.7796i −0.281352 + 0.173489i
\(213\) −103.041 + 178.473i −0.483761 + 0.837899i
\(214\) −8.73976 + 34.6141i −0.0408400 + 0.161748i
\(215\) 8.03171 + 4.63711i 0.0373568 + 0.0215680i
\(216\) 51.8413 56.5521i 0.240006 0.261815i
\(217\) −190.928 −0.879852
\(218\) 105.181 + 370.971i 0.482480 + 1.70170i
\(219\) −155.945 90.0348i −0.712077 0.411118i
\(220\) −12.5611 + 0.363809i −0.0570958 + 0.00165368i
\(221\) −118.743 −0.537300
\(222\) −173.764 + 49.2668i −0.782720 + 0.221923i
\(223\) 189.587 109.458i 0.850167 0.490844i −0.0105403 0.999944i \(-0.503355\pi\)
0.860707 + 0.509100i \(0.170022\pi\)
\(224\) −219.146 + 76.0897i −0.978330 + 0.339686i
\(225\) −138.814 240.433i −0.616952 1.06859i
\(226\) −371.439 93.7851i −1.64354 0.414978i
\(227\) 116.805i 0.514558i 0.966337 + 0.257279i \(0.0828260\pi\)
−0.966337 + 0.257279i \(0.917174\pi\)
\(228\) −222.277 258.659i −0.974897 1.13447i
\(229\) 162.657 0.710291 0.355145 0.934811i \(-0.384431\pi\)
0.355145 + 0.934811i \(0.384431\pi\)
\(230\) 3.25058 12.8740i 0.0141329 0.0559741i
\(231\) 330.810 190.993i 1.43208 0.826812i
\(232\) 393.584 124.010i 1.69648 0.534525i
\(233\) 144.534 + 250.340i 0.620316 + 1.07442i 0.989427 + 0.145034i \(0.0463290\pi\)
−0.369111 + 0.929385i \(0.620338\pi\)
\(234\) 50.6731 + 178.724i 0.216552 + 0.763776i
\(235\) 9.88493i 0.0420635i
\(236\) 382.619 11.0819i 1.62127 0.0469571i
\(237\) 274.765 475.906i 1.15934 2.00804i
\(238\) 198.599 56.3083i 0.834449 0.236590i
\(239\) 283.451i 1.18599i −0.805208 0.592993i \(-0.797946\pi\)
0.805208 0.592993i \(-0.202054\pi\)
\(240\) 1.11180 + 19.1773i 0.00463252 + 0.0799054i
\(241\) 224.651 389.108i 0.932164 1.61456i 0.152549 0.988296i \(-0.451252\pi\)
0.779615 0.626259i \(-0.215415\pi\)
\(242\) 32.7329 + 8.26477i 0.135260 + 0.0341519i
\(243\) −297.037 171.494i −1.22237 0.705737i
\(244\) 178.459 110.042i 0.731390 0.450993i
\(245\) 0.475337 + 0.823308i 0.00194015 + 0.00336044i
\(246\) −496.814 482.633i −2.01957 1.96192i
\(247\) 156.505 24.8295i 0.633623 0.100524i
\(248\) −142.376 + 155.314i −0.574098 + 0.626266i
\(249\) −243.299 421.405i −0.977103 1.69239i
\(250\) 25.9033 + 6.54036i 0.103613 + 0.0261615i
\(251\) 59.8145 + 34.5339i 0.238305 + 0.137585i 0.614397 0.788997i \(-0.289399\pi\)
−0.376093 + 0.926582i \(0.622733\pi\)
\(252\) −169.502 274.887i −0.672627 1.09082i
\(253\) −145.689 + 252.341i −0.575847 + 0.997396i
\(254\) 85.0813 + 82.6527i 0.334966 + 0.325405i
\(255\) 17.0936i 0.0670336i
\(256\) −101.522 + 235.009i −0.396571 + 0.918004i
\(257\) 55.5635 96.2387i 0.216200 0.374470i −0.737443 0.675409i \(-0.763967\pi\)
0.953643 + 0.300940i \(0.0973003\pi\)
\(258\) −216.777 + 223.146i −0.840220 + 0.864907i
\(259\) 145.889i 0.563277i
\(260\) −7.85564 4.23708i −0.0302140 0.0162964i
\(261\) 287.237 + 497.509i 1.10052 + 1.90616i
\(262\) 56.2258 15.9416i 0.214602 0.0608457i
\(263\) 168.328 97.1841i 0.640030 0.369521i −0.144596 0.989491i \(-0.546188\pi\)
0.784626 + 0.619969i \(0.212855\pi\)
\(264\) 91.3204 411.529i 0.345911 1.55882i
\(265\) 4.68705 0.0176870
\(266\) −249.981 + 115.742i −0.939780 + 0.435122i
\(267\) 235.453i 0.881845i
\(268\) 28.8149 + 46.7300i 0.107518 + 0.174366i
\(269\) −122.994 213.032i −0.457226 0.791939i 0.541587 0.840645i \(-0.317824\pi\)
−0.998813 + 0.0487054i \(0.984490\pi\)
\(270\) −4.93681 + 1.39972i −0.0182845 + 0.00518415i
\(271\) −361.577 + 208.757i −1.33423 + 0.770320i −0.985945 0.167068i \(-0.946570\pi\)
−0.348287 + 0.937388i \(0.613237\pi\)
\(272\) 102.292 203.544i 0.376072 0.748322i
\(273\) 271.313 0.993819
\(274\) −7.90126 + 8.13342i −0.0288367 + 0.0296840i
\(275\) −253.499 146.358i −0.921814 0.532210i
\(276\) 392.026 + 211.446i 1.42038 + 0.766110i
\(277\) −408.968 −1.47642 −0.738209 0.674572i \(-0.764328\pi\)
−0.738209 + 0.674572i \(0.764328\pi\)
\(278\) 72.0602 + 70.0033i 0.259209 + 0.251810i
\(279\) −254.021 146.659i −0.910469 0.525660i
\(280\) 15.1478 + 3.36138i 0.0540994 + 0.0120049i
\(281\) 39.1063 67.7340i 0.139168 0.241046i −0.788014 0.615658i \(-0.788890\pi\)
0.927182 + 0.374611i \(0.122224\pi\)
\(282\) 321.502 + 81.1763i 1.14008 + 0.287859i
\(283\) 101.132 58.3887i 0.357357 0.206320i −0.310563 0.950553i \(-0.600518\pi\)
0.667921 + 0.744232i \(0.267184\pi\)
\(284\) 183.620 5.31824i 0.646551 0.0187262i
\(285\) 3.57430 + 22.5295i 0.0125414 + 0.0790509i
\(286\) 140.487 + 136.477i 0.491213 + 0.477191i
\(287\) −484.523 + 279.739i −1.68823 + 0.974702i
\(288\) −350.011 67.1005i −1.21532 0.232988i
\(289\) 43.1454 74.7300i 0.149292 0.258581i
\(290\) −26.7614 6.75701i −0.0922807 0.0233000i
\(291\) −232.439 134.199i −0.798761 0.461165i
\(292\) 4.64694 + 160.443i 0.0159142 + 0.549462i
\(293\) 121.092 0.413284 0.206642 0.978417i \(-0.433746\pi\)
0.206642 + 0.978417i \(0.433746\pi\)
\(294\) −30.6811 + 8.69895i −0.104358 + 0.0295883i
\(295\) −22.1726 12.8014i −0.0751614 0.0433945i
\(296\) 118.676 + 108.790i 0.400932 + 0.367534i
\(297\) 112.605 0.379142
\(298\) −88.3847 311.732i −0.296593 1.04608i
\(299\) −179.230 + 103.478i −0.599430 + 0.346081i
\(300\) −212.416 + 393.825i −0.708055 + 1.31275i
\(301\) 125.646 + 217.626i 0.417429 + 0.723009i
\(302\) 60.4949 239.592i 0.200314 0.793352i
\(303\) 262.669i 0.866895i
\(304\) −92.2600 + 289.662i −0.303487 + 0.952836i
\(305\) −14.0234 −0.0459783
\(306\) 307.479 + 77.6358i 1.00483 + 0.253712i
\(307\) 459.430 265.252i 1.49652 0.864013i 0.496523 0.868023i \(-0.334610\pi\)
0.999992 + 0.00401001i \(0.00127643\pi\)
\(308\) −299.683 161.639i −0.972996 0.524802i
\(309\) 230.363 + 399.000i 0.745510 + 1.29126i
\(310\) 13.5584 3.84418i 0.0437367 0.0124006i
\(311\) 54.0586i 0.173822i −0.996216 0.0869109i \(-0.972300\pi\)
0.996216 0.0869109i \(-0.0276995\pi\)
\(312\) 202.320 220.704i 0.648461 0.707386i
\(313\) 157.796 273.310i 0.504139 0.873195i −0.495849 0.868409i \(-0.665143\pi\)
0.999989 0.00478603i \(-0.00152345\pi\)
\(314\) 126.552 + 446.350i 0.403033 + 1.42150i
\(315\) 21.6007i 0.0685736i
\(316\) −489.633 + 14.1814i −1.54947 + 0.0448777i
\(317\) −140.142 + 242.732i −0.442087 + 0.765717i −0.997844 0.0656277i \(-0.979095\pi\)
0.555757 + 0.831345i \(0.312428\pi\)
\(318\) −38.4906 + 152.443i −0.121040 + 0.479382i
\(319\) 524.544 + 302.846i 1.64434 + 0.949360i
\(320\) 14.0302 9.81568i 0.0438445 0.0306740i
\(321\) 40.0508 + 69.3701i 0.124769 + 0.216106i
\(322\) 250.693 258.059i 0.778550 0.801425i
\(323\) 96.8783 252.572i 0.299933 0.781957i
\(324\) 6.62399 + 228.704i 0.0204444 + 0.705875i
\(325\) −103.953 180.052i −0.319855 0.554006i
\(326\) 35.3716 140.090i 0.108502 0.429725i
\(327\) 749.253 + 432.581i 2.29129 + 1.32288i
\(328\) −133.753 + 602.748i −0.407783 + 1.83765i
\(329\) 133.920 231.956i 0.407052 0.705034i
\(330\) −19.6464 + 20.2236i −0.0595344 + 0.0612837i
\(331\) 443.490i 1.33985i −0.742429 0.669924i \(-0.766327\pi\)
0.742429 0.669924i \(-0.233673\pi\)
\(332\) −205.905 + 381.753i −0.620197 + 1.14986i
\(333\) −112.063 + 194.098i −0.336524 + 0.582877i
\(334\) −167.343 162.566i −0.501027 0.486725i
\(335\) 3.67206i 0.0109614i
\(336\) −233.723 + 465.070i −0.695603 + 1.38414i
\(337\) 94.1888 + 163.140i 0.279492 + 0.484094i 0.971259 0.238027i \(-0.0765007\pi\)
−0.691767 + 0.722121i \(0.743167\pi\)
\(338\) −54.2509 191.343i −0.160506 0.566102i
\(339\) −744.400 + 429.779i −2.19587 + 1.26779i
\(340\) −12.9694 + 7.99725i −0.0381453 + 0.0235213i
\(341\) −309.258 −0.906914
\(342\) −421.495 38.0302i −1.23244 0.111199i
\(343\) 329.460i 0.960524i
\(344\) 270.727 + 60.0757i 0.786997 + 0.174639i
\(345\) −14.8961 25.8008i −0.0431771 0.0747849i
\(346\) −72.5635 255.931i −0.209721 0.739685i
\(347\) 468.604 270.549i 1.35044 0.779679i 0.362132 0.932127i \(-0.382049\pi\)
0.988312 + 0.152447i \(0.0487155\pi\)
\(348\) 439.536 814.909i 1.26303 2.34169i
\(349\) 39.0675 0.111941 0.0559706 0.998432i \(-0.482175\pi\)
0.0559706 + 0.998432i \(0.482175\pi\)
\(350\) 259.243 + 251.843i 0.740694 + 0.719552i
\(351\) 69.2645 + 39.9899i 0.197335 + 0.113931i
\(352\) −354.964 + 123.247i −1.00842 + 0.350134i
\(353\) −389.987 −1.10478 −0.552389 0.833586i \(-0.686284\pi\)
−0.552389 + 0.833586i \(0.686284\pi\)
\(354\) 598.441 616.025i 1.69051 1.74018i
\(355\) −10.6407 6.14344i −0.0299739 0.0173055i
\(356\) −178.645 + 110.157i −0.501811 + 0.309429i
\(357\) 231.582 401.112i 0.648689 1.12356i
\(358\) −48.6495 + 192.678i −0.135893 + 0.538207i
\(359\) −475.099 + 274.299i −1.32340 + 0.764063i −0.984269 0.176677i \(-0.943465\pi\)
−0.339127 + 0.940740i \(0.610132\pi\)
\(360\) 17.5715 + 16.1078i 0.0488097 + 0.0447439i
\(361\) −74.8733 + 353.150i −0.207405 + 0.978255i
\(362\) 61.1600 62.9570i 0.168950 0.173914i
\(363\) 65.5999 37.8741i 0.180716 0.104336i
\(364\) −126.934 205.853i −0.348720 0.565530i
\(365\) 5.36798 9.29762i 0.0147068 0.0254729i
\(366\) 115.162 456.102i 0.314649 1.24618i
\(367\) 193.800 + 111.891i 0.528066 + 0.304879i 0.740228 0.672355i \(-0.234717\pi\)
−0.212163 + 0.977234i \(0.568051\pi\)
\(368\) −22.9794 396.367i −0.0624441 1.07709i
\(369\) −859.514 −2.32931
\(370\) −2.93735 10.3600i −0.00793878 0.0280000i
\(371\) 109.985 + 63.4996i 0.296454 + 0.171158i
\(372\) 13.6865 + 472.547i 0.0367916 + 1.27029i
\(373\) −655.054 −1.75618 −0.878089 0.478498i \(-0.841182\pi\)
−0.878089 + 0.478498i \(0.841182\pi\)
\(374\) 321.683 91.2060i 0.860114 0.243866i
\(375\) 51.9128 29.9719i 0.138434 0.0799250i
\(376\) −88.8241 281.911i −0.236234 0.749764i
\(377\) 215.101 + 372.566i 0.570561 + 0.988240i
\(378\) −134.809 34.0380i −0.356637 0.0900476i
\(379\) 205.788i 0.542977i −0.962442 0.271488i \(-0.912484\pi\)
0.962442 0.271488i \(-0.0875159\pi\)
\(380\) 15.4216 13.2524i 0.0405831 0.0348747i
\(381\) 266.146 0.698545
\(382\) −30.9615 + 122.624i −0.0810511 + 0.321006i
\(383\) 107.827 62.2538i 0.281532 0.162542i −0.352585 0.935780i \(-0.614697\pi\)
0.634117 + 0.773237i \(0.281364\pi\)
\(384\) 204.031 + 536.932i 0.531332 + 1.39826i
\(385\) 11.3873 + 19.7233i 0.0295773 + 0.0512294i
\(386\) −25.2221 88.9581i −0.0653422 0.230461i
\(387\) 386.054i 0.997557i
\(388\) 6.92637 + 239.144i 0.0178515 + 0.616350i
\(389\) 210.874 365.244i 0.542092 0.938932i −0.456691 0.889625i \(-0.650966\pi\)
0.998784 0.0493064i \(-0.0157011\pi\)
\(390\) −19.2667 + 5.46266i −0.0494019 + 0.0140068i
\(391\) 353.300i 0.903580i
\(392\) 20.9544 + 19.2089i 0.0534550 + 0.0490022i
\(393\) 65.5636 113.560i 0.166829 0.288956i
\(394\) −147.785 37.3143i −0.375088 0.0947063i
\(395\) 28.3741 + 16.3818i 0.0718331 + 0.0414729i
\(396\) −274.553 445.251i −0.693315 1.12437i
\(397\) 312.624 + 541.481i 0.787467 + 1.36393i 0.927514 + 0.373788i \(0.121941\pi\)
−0.140047 + 0.990145i \(0.544725\pi\)
\(398\) −148.514 144.275i −0.373151 0.362500i
\(399\) −221.354 + 577.094i −0.554772 + 1.44635i
\(400\) 398.186 23.0849i 0.995465 0.0577121i
\(401\) 61.9807 + 107.354i 0.154565 + 0.267715i 0.932901 0.360134i \(-0.117269\pi\)
−0.778335 + 0.627849i \(0.783936\pi\)
\(402\) 119.431 + 30.1554i 0.297093 + 0.0750134i
\(403\) −190.227 109.828i −0.472028 0.272525i
\(404\) 199.295 122.890i 0.493304 0.304184i
\(405\) 7.65179 13.2533i 0.0188933 0.0327242i
\(406\) −536.430 521.118i −1.32126 1.28354i
\(407\) 236.305i 0.580601i
\(408\) −153.600 487.496i −0.376469 1.19484i
\(409\) −50.9014 + 88.1639i −0.124453 + 0.215560i −0.921519 0.388333i \(-0.873051\pi\)
0.797066 + 0.603893i \(0.206384\pi\)
\(410\) 28.7751 29.6206i 0.0701833 0.0722454i
\(411\) 25.4424i 0.0619037i
\(412\) 194.957 361.456i 0.473198 0.877319i
\(413\) −346.863 600.785i −0.839863 1.45468i
\(414\) 531.760 150.769i 1.28445 0.364176i
\(415\) 25.1247 14.5057i 0.0605414 0.0349536i
\(416\) −262.111 50.2492i −0.630074 0.120791i
\(417\) 225.414 0.540561
\(418\) −404.910 + 187.475i −0.968684 + 0.448505i
\(419\) 155.139i 0.370261i −0.982714 0.185130i \(-0.940729\pi\)
0.982714 0.185130i \(-0.0592708\pi\)
\(420\) 29.6334 18.2727i 0.0705556 0.0435063i
\(421\) 114.921 + 199.049i 0.272972 + 0.472802i 0.969621 0.244610i \(-0.0786600\pi\)
−0.696649 + 0.717412i \(0.745327\pi\)
\(422\) 238.321 67.5706i 0.564741 0.160120i
\(423\) 356.349 205.738i 0.842432 0.486379i
\(424\) 133.671 42.1169i 0.315262 0.0993324i
\(425\) −354.921 −0.835108
\(426\) 287.195 295.633i 0.674166 0.693975i
\(427\) −329.067 189.987i −0.770650 0.444935i
\(428\) 33.8953 62.8426i 0.0791946 0.146829i
\(429\) 439.461 1.02439
\(430\) −13.3042 12.9245i −0.0309401 0.0300569i
\(431\) 21.9723 + 12.6857i 0.0509799 + 0.0294333i 0.525273 0.850934i \(-0.323963\pi\)
−0.474293 + 0.880367i \(0.657296\pi\)
\(432\) −128.217 + 84.2803i −0.296798 + 0.195093i
\(433\) −325.392 + 563.595i −0.751482 + 1.30160i 0.195623 + 0.980679i \(0.437327\pi\)
−0.947104 + 0.320926i \(0.896006\pi\)
\(434\) 370.237 + 93.4814i 0.853080 + 0.215395i
\(435\) −53.6324 + 30.9647i −0.123293 + 0.0711832i
\(436\) −22.3267 770.864i −0.0512080 1.76804i
\(437\) −73.8757 465.653i −0.169052 1.06557i
\(438\) 258.317 + 250.944i 0.589765 + 0.572931i
\(439\) 582.157 336.108i 1.32610 0.765623i 0.341404 0.939917i \(-0.389098\pi\)
0.984694 + 0.174294i \(0.0557643\pi\)
\(440\) 24.5359 + 5.44463i 0.0557633 + 0.0123742i
\(441\) −19.7867 + 34.2715i −0.0448677 + 0.0777132i
\(442\) 230.260 + 58.1387i 0.520951 + 0.131535i
\(443\) −98.6335 56.9461i −0.222649 0.128546i 0.384527 0.923114i \(-0.374364\pi\)
−0.607176 + 0.794567i \(0.707698\pi\)
\(444\) 361.075 10.4579i 0.813231 0.0235538i
\(445\) 14.0380 0.0315460
\(446\) −421.229 + 119.430i −0.944460 + 0.267781i
\(447\) −629.607 363.504i −1.40852 0.813208i
\(448\) 462.210 40.2513i 1.03172 0.0898467i
\(449\) 96.0975 0.214026 0.107013 0.994258i \(-0.465871\pi\)
0.107013 + 0.994258i \(0.465871\pi\)
\(450\) 151.461 + 534.200i 0.336579 + 1.18711i
\(451\) −784.811 + 453.111i −1.74016 + 1.00468i
\(452\) 674.355 + 363.725i 1.49194 + 0.804702i
\(453\) −277.224 480.166i −0.611973 1.05997i
\(454\) 57.1895 226.501i 0.125968 0.498901i
\(455\) 16.1760i 0.0355516i
\(456\) 304.382 + 610.407i 0.667505 + 1.33861i
\(457\) 526.215 1.15146 0.575728 0.817641i \(-0.304719\pi\)
0.575728 + 0.817641i \(0.304719\pi\)
\(458\) −315.414 79.6393i −0.688678 0.173885i
\(459\) 118.243 68.2676i 0.257610 0.148731i
\(460\) −12.6067 + 23.3731i −0.0274058 + 0.0508110i
\(461\) −243.622 421.966i −0.528464 0.915327i −0.999449 0.0331859i \(-0.989435\pi\)
0.470985 0.882141i \(-0.343899\pi\)
\(462\) −735.002 + 208.393i −1.59091 + 0.451068i
\(463\) 151.027i 0.326193i −0.986610 0.163096i \(-0.947852\pi\)
0.986610 0.163096i \(-0.0521481\pi\)
\(464\) −823.933 + 47.7676i −1.77572 + 0.102947i
\(465\) 15.8101 27.3839i 0.0340003 0.0588902i
\(466\) −157.701 556.210i −0.338414 1.19358i
\(467\) 211.728i 0.453379i 0.973967 + 0.226690i \(0.0727903\pi\)
−0.973967 + 0.226690i \(0.927210\pi\)
\(468\) −10.7564 371.381i −0.0229837 0.793549i
\(469\) 49.7486 86.1672i 0.106074 0.183725i
\(470\) −4.83982 + 19.1683i −0.0102975 + 0.0407836i
\(471\) 901.495 + 520.478i 1.91400 + 1.10505i
\(472\) −747.378 165.847i −1.58343 0.351371i
\(473\) 203.517 + 352.501i 0.430268 + 0.745246i
\(474\) −765.819 + 788.321i −1.61565 + 1.66312i
\(475\) 467.789 74.2147i 0.984820 0.156241i
\(476\) −412.681 + 11.9526i −0.866977 + 0.0251104i
\(477\) 97.5530 + 168.967i 0.204514 + 0.354228i
\(478\) −138.782 + 549.651i −0.290339 + 1.14990i
\(479\) −88.5573 51.1286i −0.184879 0.106740i 0.404704 0.914448i \(-0.367375\pi\)
−0.589583 + 0.807708i \(0.700708\pi\)
\(480\) 7.23357 37.7319i 0.0150699 0.0786081i
\(481\) −83.9197 + 145.353i −0.174469 + 0.302190i
\(482\) −626.145 + 644.543i −1.29906 + 1.33723i
\(483\) 807.243i 1.67131i
\(484\) −59.4272 32.0531i −0.122784 0.0662255i
\(485\) 8.00110 13.8583i 0.0164971 0.0285738i
\(486\) 492.030 + 477.986i 1.01241 + 0.983509i
\(487\) 15.7559i 0.0323530i −0.999869 0.0161765i \(-0.994851\pi\)
0.999869 0.0161765i \(-0.00514936\pi\)
\(488\) −399.937 + 126.011i −0.819542 + 0.258220i
\(489\) −162.094 280.755i −0.331480 0.574140i
\(490\) −0.518641 1.82924i −0.00105845 0.00373315i
\(491\) 181.944 105.045i 0.370558 0.213942i −0.303144 0.952945i \(-0.598036\pi\)
0.673702 + 0.739003i \(0.264703\pi\)
\(492\) 727.088 + 1179.14i 1.47782 + 2.39663i
\(493\) 734.408 1.48967
\(494\) −315.642 28.4795i −0.638952 0.0576508i
\(495\) 34.9879i 0.0706827i
\(496\) 352.132 231.466i 0.709944 0.466666i
\(497\) −166.461 288.319i −0.334932 0.580119i
\(498\) 265.464 + 936.288i 0.533060 + 1.88010i
\(499\) −208.860 + 120.586i −0.418558 + 0.241655i −0.694460 0.719531i \(-0.744357\pi\)
0.275902 + 0.961186i \(0.411023\pi\)
\(500\) −47.0280 25.3654i −0.0940561 0.0507308i
\(501\) −523.471 −1.04485
\(502\) −99.0805 96.2524i −0.197372 0.191738i
\(503\) 8.31936 + 4.80318i 0.0165395 + 0.00954908i 0.508247 0.861211i \(-0.330294\pi\)
−0.491707 + 0.870760i \(0.663627\pi\)
\(504\) 194.100 + 616.036i 0.385118 + 1.22229i
\(505\) −15.6606 −0.0310112
\(506\) 406.063 417.994i 0.802495 0.826074i
\(507\) −386.456 223.120i −0.762240 0.440080i
\(508\) −124.517 201.933i −0.245112 0.397505i
\(509\) 66.9546 115.969i 0.131541 0.227836i −0.792730 0.609574i \(-0.791341\pi\)
0.924271 + 0.381737i \(0.124674\pi\)
\(510\) −8.36929 + 33.1469i −0.0164104 + 0.0649939i
\(511\) 251.926 145.450i 0.493007 0.284637i
\(512\) 311.930 406.009i 0.609239 0.792987i
\(513\) −141.571 + 114.702i −0.275966 + 0.223591i
\(514\) −154.866 + 159.416i −0.301295 + 0.310148i
\(515\) −23.7888 + 13.7345i −0.0461919 + 0.0266689i
\(516\) 529.617 326.575i 1.02639 0.632897i
\(517\) 216.918 375.714i 0.419571 0.726719i
\(518\) 71.4295 282.899i 0.137895 0.546137i
\(519\) −516.906 298.436i −0.995964 0.575020i
\(520\) 13.1587 + 12.0625i 0.0253051 + 0.0231972i
\(521\) 869.670 1.66923 0.834616 0.550832i \(-0.185689\pi\)
0.834616 + 0.550832i \(0.185689\pi\)
\(522\) −313.405 1105.38i −0.600392 2.11758i
\(523\) 775.040 + 447.469i 1.48191 + 0.855582i 0.999789 0.0205217i \(-0.00653270\pi\)
0.482122 + 0.876104i \(0.339866\pi\)
\(524\) −116.835 + 3.38392i −0.222968 + 0.00645786i
\(525\) 810.947 1.54466
\(526\) −373.995 + 106.038i −0.711016 + 0.201593i
\(527\) −324.741 + 187.489i −0.616207 + 0.355767i
\(528\) −378.575 + 753.302i −0.716998 + 1.42671i
\(529\) 43.3812 + 75.1384i 0.0820060 + 0.142039i
\(530\) −9.08886 2.29486i −0.0171488 0.00432992i
\(531\) 1065.76i 2.00707i
\(532\) 541.419 102.046i 1.01770 0.191816i
\(533\) −643.659 −1.20762
\(534\) −115.281 + 456.576i −0.215883 + 0.855011i
\(535\) −4.13592 + 2.38788i −0.00773070 + 0.00446332i
\(536\) −32.9964 104.724i −0.0615605 0.195381i
\(537\) 222.941 + 386.146i 0.415161 + 0.719079i
\(538\) 134.199 + 473.319i 0.249441 + 0.879775i
\(539\) 41.7238i 0.0774097i
\(540\) 10.2585 0.297119i 0.0189972 0.000550221i
\(541\) −473.984 + 820.965i −0.876127 + 1.51750i −0.0205687 + 0.999788i \(0.506548\pi\)
−0.855558 + 0.517707i \(0.826786\pi\)
\(542\) 803.360 227.775i 1.48221 0.420249i
\(543\) 196.938i 0.362685i
\(544\) −298.016 + 344.617i −0.547824 + 0.633486i
\(545\) −25.7910 + 44.6713i −0.0473229 + 0.0819657i
\(546\) −526.114 132.839i −0.963579 0.243295i
\(547\) −476.141 274.900i −0.870459 0.502560i −0.00295823 0.999996i \(-0.500942\pi\)
−0.867501 + 0.497436i \(0.834275\pi\)
\(548\) 19.3039 11.9033i 0.0352261 0.0217213i
\(549\) −291.873 505.538i −0.531644 0.920835i
\(550\) 419.912 + 407.926i 0.763476 + 0.741683i
\(551\) −967.958 + 153.566i −1.75673 + 0.278705i
\(552\) −656.667 601.967i −1.18961 1.09052i
\(553\) 443.877 + 768.818i 0.802672 + 1.39027i
\(554\) 793.047 + 200.237i 1.43149 + 0.361439i
\(555\) −20.9242 12.0806i −0.0377012 0.0217668i
\(556\) −105.460 171.028i −0.189677 0.307605i
\(557\) −293.392 + 508.170i −0.526736 + 0.912334i 0.472779 + 0.881181i \(0.343251\pi\)
−0.999515 + 0.0311523i \(0.990082\pi\)
\(558\) 420.776 + 408.766i 0.754079 + 0.732555i
\(559\) 289.102i 0.517178i
\(560\) −27.7280 13.9348i −0.0495143 0.0248836i
\(561\) 375.107 649.705i 0.668640 1.15812i
\(562\) −108.996 + 112.199i −0.193944 + 0.199642i
\(563\) 545.417i 0.968770i −0.874855 0.484385i \(-0.839043\pi\)
0.874855 0.484385i \(-0.160957\pi\)
\(564\) −583.692 314.825i −1.03492 0.558200i
\(565\) −25.6240 44.3820i −0.0453521 0.0785522i
\(566\) −224.698 + 63.7081i −0.396993 + 0.112558i
\(567\) 359.109 207.331i 0.633348 0.365664i
\(568\) −358.670 79.5907i −0.631462 0.140125i
\(569\) −548.968 −0.964795 −0.482397 0.875953i \(-0.660234\pi\)
−0.482397 + 0.875953i \(0.660234\pi\)
\(570\) 4.09973 45.4380i 0.00719251 0.0797157i
\(571\) 1004.32i 1.75888i 0.476012 + 0.879439i \(0.342082\pi\)
−0.476012 + 0.879439i \(0.657918\pi\)
\(572\) −205.603 333.433i −0.359445 0.582924i
\(573\) 141.884 + 245.751i 0.247617 + 0.428884i
\(574\) 1076.52 305.224i 1.87548 0.531750i
\(575\) −535.713 + 309.294i −0.931674 + 0.537902i
\(576\) 645.868 + 301.489i 1.12130 + 0.523418i
\(577\) 377.294 0.653890 0.326945 0.945043i \(-0.393981\pi\)
0.326945 + 0.945043i \(0.393981\pi\)
\(578\) −120.254 + 123.787i −0.208052 + 0.214165i
\(579\) −179.669 103.732i −0.310309 0.179157i
\(580\) 48.5858 + 26.2056i 0.0837687 + 0.0451821i
\(581\) 786.089 1.35299
\(582\) 385.027 + 374.037i 0.661559 + 0.642675i
\(583\) 178.149 + 102.854i 0.305572 + 0.176422i
\(584\) 69.5444 313.397i 0.119083 0.536639i
\(585\) −12.4254 + 21.5214i −0.0212400 + 0.0367887i
\(586\) −234.815 59.2888i −0.400709 0.101175i
\(587\) −262.988 + 151.836i −0.448020 + 0.258665i −0.706994 0.707220i \(-0.749949\pi\)
0.258973 + 0.965884i \(0.416616\pi\)
\(588\) 63.7542 1.84653i 0.108426 0.00314035i
\(589\) 388.808 315.017i 0.660115 0.534833i
\(590\) 36.7281 + 35.6798i 0.0622511 + 0.0604742i
\(591\) −296.174 + 170.996i −0.501141 + 0.289334i
\(592\) −176.864 269.065i −0.298757 0.454502i
\(593\) 51.2041 88.6881i 0.0863475 0.149558i −0.819617 0.572912i \(-0.805814\pi\)
0.905965 + 0.423353i \(0.139147\pi\)
\(594\) −218.358 55.1334i −0.367605 0.0928171i
\(595\) 23.9147 + 13.8072i 0.0401928 + 0.0232053i
\(596\) 18.7614 + 647.768i 0.0314789 + 1.08686i
\(597\) −464.572 −0.778177
\(598\) 398.216 112.905i 0.665914 0.188805i
\(599\) 669.678 + 386.639i 1.11799 + 0.645474i 0.940888 0.338718i \(-0.109993\pi\)
0.177105 + 0.984192i \(0.443327\pi\)
\(600\) 604.729 659.680i 1.00788 1.09947i
\(601\) 399.651 0.664977 0.332489 0.943107i \(-0.392112\pi\)
0.332489 + 0.943107i \(0.392112\pi\)
\(602\) −137.093 483.526i −0.227729 0.803199i
\(603\) 132.377 76.4277i 0.219530 0.126746i
\(604\) −234.617 + 434.984i −0.388438 + 0.720173i
\(605\) 2.25810 + 3.91114i 0.00373239 + 0.00646470i
\(606\) 128.607 509.353i 0.212223 0.840516i
\(607\) 244.707i 0.403142i −0.979474 0.201571i \(-0.935395\pi\)
0.979474 0.201571i \(-0.0646046\pi\)
\(608\) 320.729 516.524i 0.527514 0.849546i
\(609\) −1678.02 −2.75538
\(610\) 27.1933 + 6.86607i 0.0445792 + 0.0112559i
\(611\) 266.857 154.070i 0.436754 0.252160i
\(612\) −558.235 301.094i −0.912148 0.491983i
\(613\) −396.466 686.700i −0.646764 1.12023i −0.983891 0.178769i \(-0.942789\pi\)
0.337127 0.941459i \(-0.390545\pi\)
\(614\) −1020.77 + 289.417i −1.66250 + 0.471364i
\(615\) 92.6573i 0.150662i
\(616\) 501.986 + 460.171i 0.814913 + 0.747031i
\(617\) −142.607 + 247.003i −0.231130 + 0.400328i −0.958141 0.286297i \(-0.907576\pi\)
0.727011 + 0.686626i \(0.240909\pi\)
\(618\) −251.349 886.507i −0.406714 1.43448i
\(619\) 249.474i 0.403028i 0.979486 + 0.201514i \(0.0645861\pi\)
−0.979486 + 0.201514i \(0.935414\pi\)
\(620\) −28.1738 + 0.816004i −0.0454416 + 0.00131614i
\(621\) 118.983 206.084i 0.191599 0.331859i
\(622\) −26.4680 + 104.827i −0.0425530 + 0.168533i
\(623\) 329.410 + 190.185i 0.528747 + 0.305272i
\(624\) −500.388 + 328.918i −0.801903 + 0.527113i
\(625\) −309.818 536.621i −0.495709 0.858594i
\(626\) −439.805 + 452.728i −0.702564 + 0.723207i
\(627\) −358.541 + 934.753i −0.571835 + 1.49083i
\(628\) −26.8633 927.498i −0.0427760 1.47691i
\(629\) 143.261 + 248.135i 0.227760 + 0.394492i
\(630\) 10.5760 41.8868i 0.0167874 0.0664870i
\(631\) 672.867 + 388.480i 1.06635 + 0.615658i 0.927182 0.374611i \(-0.122224\pi\)
0.139169 + 0.990269i \(0.455557\pi\)
\(632\) 956.412 + 212.233i 1.51331 + 0.335811i
\(633\) 277.901 481.338i 0.439022 0.760408i
\(634\) 390.600 402.077i 0.616089 0.634191i
\(635\) 15.8679i 0.0249888i
\(636\) 149.278 276.764i 0.234713 0.435164i
\(637\) −14.8175 + 25.6647i −0.0232614 + 0.0402900i
\(638\) −868.888 844.087i −1.36189 1.32302i
\(639\) 511.461i 0.800408i
\(640\) −32.0125 + 12.1646i −0.0500196 + 0.0190072i
\(641\) −237.718 411.740i −0.370855 0.642340i 0.618842 0.785515i \(-0.287602\pi\)
−0.989697 + 0.143175i \(0.954269\pi\)
\(642\) −43.6996 154.128i −0.0680679 0.240075i
\(643\) −153.600 + 88.6809i −0.238880 + 0.137917i −0.614662 0.788791i \(-0.710708\pi\)
0.375782 + 0.926708i \(0.377374\pi\)
\(644\) −612.479 + 377.670i −0.951055 + 0.586444i
\(645\) −41.6174 −0.0645231
\(646\) −311.524 + 442.340i −0.482236 + 0.684737i
\(647\) 779.535i 1.20484i −0.798177 0.602422i \(-0.794202\pi\)
0.798177 0.602422i \(-0.205798\pi\)
\(648\) 99.1321 446.732i 0.152982 0.689401i
\(649\) −561.835 973.127i −0.865694 1.49943i
\(650\) 113.423 + 400.044i 0.174498 + 0.615452i
\(651\) 741.990 428.388i 1.13977 0.658046i
\(652\) −137.181 + 254.337i −0.210400 + 0.390087i
\(653\) −235.113 −0.360050 −0.180025 0.983662i \(-0.557618\pi\)
−0.180025 + 0.983662i \(0.557618\pi\)
\(654\) −1241.11 1205.68i −1.89772 1.84355i
\(655\) 6.77055 + 3.90898i 0.0103367 + 0.00596791i
\(656\) 554.481 1103.33i 0.845246 1.68190i
\(657\) 446.902 0.680216
\(658\) −373.260 + 384.227i −0.567264 + 0.583932i
\(659\) 713.472 + 411.923i 1.08266 + 0.625073i 0.931612 0.363454i \(-0.118403\pi\)
0.151046 + 0.988527i \(0.451736\pi\)
\(660\) 47.9989 29.5973i 0.0727257 0.0448444i
\(661\) −448.256 + 776.402i −0.678148 + 1.17459i 0.297390 + 0.954756i \(0.403884\pi\)
−0.975538 + 0.219830i \(0.929450\pi\)
\(662\) −217.140 + 859.990i −0.328006 + 1.29908i
\(663\) 461.464 266.426i 0.696024 0.401849i
\(664\) 586.192 639.459i 0.882820 0.963041i
\(665\) −34.4070 13.1974i −0.0517398 0.0198457i
\(666\) 312.339 321.516i 0.468978 0.482757i
\(667\) 1108.51 639.996i 1.66193 0.959514i
\(668\) 244.907 + 397.173i 0.366627 + 0.594571i
\(669\) −491.186 + 850.759i −0.734209 + 1.27169i
\(670\) −1.79790 + 7.12064i −0.00268343 + 0.0106278i
\(671\) −533.010 307.734i −0.794352 0.458619i
\(672\) 680.928 787.403i 1.01329 1.17173i
\(673\) 769.535 1.14344 0.571720 0.820449i \(-0.306276\pi\)
0.571720 + 0.820449i \(0.306276\pi\)
\(674\) −102.770 362.468i −0.152477 0.537786i
\(675\) 207.030 + 119.529i 0.306711 + 0.177080i
\(676\) 11.5159 + 397.603i 0.0170353 + 0.588170i
\(677\) 371.960 0.549424 0.274712 0.961527i \(-0.411417\pi\)
0.274712 + 0.961527i \(0.411417\pi\)
\(678\) 1653.92 468.934i 2.43942 0.691642i
\(679\) 375.502 216.796i 0.553022 0.319287i
\(680\) 29.0651 9.15778i 0.0427428 0.0134673i
\(681\) −262.076 453.930i −0.384841 0.666564i
\(682\) 599.695 + 151.418i 0.879318 + 0.222020i
\(683\) 1047.47i 1.53363i 0.641866 + 0.766817i \(0.278160\pi\)
−0.641866 + 0.766817i \(0.721840\pi\)
\(684\) 798.719 + 280.117i 1.16772 + 0.409527i
\(685\) −1.51691 −0.00221446
\(686\) −161.309 + 638.869i −0.235144 + 0.931297i
\(687\) −632.121 + 364.955i −0.920117 + 0.531230i
\(688\) −495.564 249.048i −0.720297 0.361988i
\(689\) 73.0539 + 126.533i 0.106029 + 0.183647i
\(690\) 16.2532 + 57.3248i 0.0235553 + 0.0830794i
\(691\) 75.1204i 0.108713i 0.998522 + 0.0543563i \(0.0173107\pi\)
−0.998522 + 0.0543563i \(0.982689\pi\)
\(692\) 15.4031 + 531.815i 0.0222588 + 0.768519i
\(693\) −474.013 + 821.014i −0.684001 + 1.18472i
\(694\) −1041.16 + 295.196i −1.50022 + 0.425355i
\(695\) 13.4394i 0.0193373i
\(696\) −1251.32 + 1365.02i −1.79787 + 1.96124i
\(697\) −549.402 + 951.593i −0.788239 + 1.36527i
\(698\) −75.7574 19.1281i −0.108535 0.0274041i
\(699\) −1123.38 648.585i −1.60713 0.927875i
\(700\) −379.403 615.290i −0.542004 0.878985i
\(701\) −210.478 364.558i −0.300253 0.520054i 0.675940 0.736957i \(-0.263738\pi\)
−0.976193 + 0.216903i \(0.930405\pi\)
\(702\) −114.734 111.459i −0.163439 0.158774i
\(703\) −240.705 297.089i −0.342397 0.422602i
\(704\) 748.670 65.1975i 1.06345 0.0926101i
\(705\) 22.1790 + 38.4151i 0.0314595 + 0.0544895i
\(706\) 756.240 + 190.944i 1.07116 + 0.270459i
\(707\) −367.487 212.169i −0.519784 0.300097i
\(708\) −1462.08 + 901.554i −2.06508 + 1.27338i
\(709\) 562.723 974.665i 0.793686 1.37470i −0.129984 0.991516i \(-0.541493\pi\)
0.923670 0.383188i \(-0.125174\pi\)
\(710\) 17.6260 + 17.1229i 0.0248253 + 0.0241167i
\(711\) 1363.84i 1.91819i
\(712\) 400.353 126.142i 0.562293 0.177166i
\(713\) −326.773 + 565.987i −0.458307 + 0.793811i
\(714\) −645.461 + 664.426i −0.904007 + 0.930569i
\(715\) 26.2012i 0.0366450i
\(716\) 188.677 349.811i 0.263515 0.488563i
\(717\) 635.983 + 1101.55i 0.887005 + 1.53634i
\(718\) 1055.59 299.288i 1.47018 0.416836i
\(719\) 185.767 107.253i 0.258369 0.149169i −0.365221 0.930921i \(-0.619007\pi\)
0.623590 + 0.781751i \(0.285673\pi\)
\(720\) −26.1870 39.8386i −0.0363708 0.0553314i
\(721\) −744.293 −1.03231
\(722\) 318.098 648.149i 0.440579 0.897714i
\(723\) 2016.22i 2.78868i
\(724\) −149.423 + 92.1377i −0.206385 + 0.127262i
\(725\) 642.933 + 1113.59i 0.886804 + 1.53599i
\(726\) −145.751 + 41.3245i −0.200759 + 0.0569209i
\(727\) −611.381 + 352.981i −0.840964 + 0.485531i −0.857592 0.514331i \(-0.828040\pi\)
0.0166275 + 0.999862i \(0.494707\pi\)
\(728\) 145.354 + 461.328i 0.199662 + 0.633692i
\(729\) 1024.34 1.40513
\(730\) −14.9616 + 15.4012i −0.0204953 + 0.0210975i
\(731\) 427.412 + 246.766i 0.584695 + 0.337574i
\(732\) −446.630 + 828.062i −0.610150 + 1.13123i
\(733\) −333.184 −0.454549 −0.227274 0.973831i \(-0.572981\pi\)
−0.227274 + 0.973831i \(0.572981\pi\)
\(734\) −321.023 311.859i −0.437361 0.424877i
\(735\) −3.69454 2.13304i −0.00502658 0.00290210i
\(736\) −149.508 + 779.864i −0.203135 + 1.05960i
\(737\) 80.5809 139.570i 0.109336 0.189376i
\(738\) 1666.72 + 420.832i 2.25843 + 0.570233i
\(739\) −103.982 + 60.0342i −0.140707 + 0.0812370i −0.568701 0.822545i \(-0.692554\pi\)
0.427994 + 0.903782i \(0.359220\pi\)
\(740\) 0.623511 + 21.5277i 0.000842583 + 0.0290915i
\(741\) −552.504 + 447.646i −0.745619 + 0.604110i
\(742\) −182.185 176.985i −0.245533 0.238524i
\(743\) −207.224 + 119.641i −0.278901 + 0.161024i −0.632926 0.774212i \(-0.718146\pi\)
0.354025 + 0.935236i \(0.384813\pi\)
\(744\) 204.827 923.038i 0.275305 1.24064i
\(745\) 21.6725 37.5379i 0.0290906 0.0503865i
\(746\) 1270.24 + 320.725i 1.70274 + 0.429927i
\(747\) 1045.86 + 603.825i 1.40007 + 0.808333i
\(748\) −668.445 + 19.3603i −0.893643 + 0.0258828i
\(749\) −129.403 −0.172767
\(750\) −115.341 + 32.7024i −0.153788 + 0.0436032i
\(751\) −788.836 455.435i −1.05038 0.606438i −0.127625 0.991822i \(-0.540736\pi\)
−0.922756 + 0.385384i \(0.874069\pi\)
\(752\) 34.2143 + 590.156i 0.0454978 + 0.784782i
\(753\) −309.937 −0.411603
\(754\) −234.698 827.777i −0.311270 1.09785i
\(755\) 28.6280 16.5284i 0.0379179 0.0218919i
\(756\) 244.748 + 132.009i 0.323740 + 0.174615i
\(757\) 387.365 + 670.935i 0.511710 + 0.886308i 0.999908 + 0.0135751i \(0.00432124\pi\)
−0.488198 + 0.872733i \(0.662345\pi\)
\(758\) −100.757 + 399.053i −0.132925 + 0.526455i
\(759\) 1307.54i 1.72271i
\(760\) −36.3932 + 18.1476i −0.0478858 + 0.0238785i
\(761\) 1111.15 1.46011 0.730057 0.683386i \(-0.239494\pi\)
0.730057 + 0.683386i \(0.239494\pi\)
\(762\) −516.095 130.309i −0.677289 0.171010i
\(763\) −1210.41 + 698.828i −1.58638 + 0.915895i
\(764\) 120.078 222.627i 0.157170 0.291396i
\(765\) 21.2116 + 36.7396i 0.0277276 + 0.0480257i
\(766\) −239.572 + 67.9253i −0.312757 + 0.0886753i
\(767\) 798.106i 1.04056i
\(768\) −132.755 1141.09i −0.172858 1.48579i
\(769\) 299.646 519.002i 0.389657 0.674905i −0.602747 0.797933i \(-0.705927\pi\)
0.992403 + 0.123028i \(0.0392603\pi\)
\(770\) −12.4247 43.8217i −0.0161359 0.0569113i
\(771\) 498.674i 0.646789i
\(772\) 5.35389 + 184.852i 0.00693510 + 0.239445i
\(773\) 104.830 181.572i 0.135615 0.234892i −0.790217 0.612827i