Properties

Label 76.3.g.c.7.14
Level $76$
Weight $3$
Character 76.7
Analytic conductor $2.071$
Analytic rank $0$
Dimension $28$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 76 = 2^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 76.g (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.07085000914\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 7.14
Character \(\chi\) \(=\) 76.7
Dual form 76.3.g.c.11.14

$q$-expansion

\(f(q)\) \(=\) \(q+(1.72876 + 1.00569i) q^{2} +(-0.443154 + 0.255855i) q^{3} +(1.97719 + 3.47717i) q^{4} +(1.99023 + 3.44717i) q^{5} +(-1.02341 - 0.00336270i) q^{6} -9.66827i q^{7} +(-0.0788568 + 7.99961i) q^{8} +(-4.36908 + 7.56746i) q^{9} +O(q^{10})\) \(q+(1.72876 + 1.00569i) q^{2} +(-0.443154 + 0.255855i) q^{3} +(1.97719 + 3.47717i) q^{4} +(1.99023 + 3.44717i) q^{5} +(-1.02341 - 0.00336270i) q^{6} -9.66827i q^{7} +(-0.0788568 + 7.99961i) q^{8} +(-4.36908 + 7.56746i) q^{9} +(-0.0261575 + 7.96087i) q^{10} +2.62030i q^{11} +(-1.76585 - 1.03505i) q^{12} +(11.8012 - 20.4403i) q^{13} +(9.72324 - 16.7141i) q^{14} +(-1.76395 - 1.01842i) q^{15} +(-8.18142 + 13.7501i) q^{16} +(-3.40777 - 5.90242i) q^{17} +(-15.1636 + 8.68838i) q^{18} +(-12.0371 - 14.7006i) q^{19} +(-8.05135 + 13.7361i) q^{20} +(2.47368 + 4.28453i) q^{21} +(-2.63520 + 4.52985i) q^{22} +(-17.2580 - 9.96389i) q^{23} +(-2.01179 - 3.56523i) q^{24} +(4.57799 - 7.92932i) q^{25} +(40.9580 - 23.4680i) q^{26} -9.07679i q^{27} +(33.6182 - 19.1160i) q^{28} +(0.445777 - 0.772108i) q^{29} +(-2.02523 - 3.53458i) q^{30} +59.6042i q^{31} +(-27.9719 + 15.5426i) q^{32} +(-0.670416 - 1.16119i) q^{33} +(0.0447883 - 13.6310i) q^{34} +(33.3282 - 19.2421i) q^{35} +(-34.9519 - 0.229690i) q^{36} -7.80746 q^{37} +(-6.02492 - 37.5193i) q^{38} +12.0776i q^{39} +(-27.7330 + 15.6492i) q^{40} +(15.9560 + 27.6366i) q^{41} +(-0.0325115 + 9.89465i) q^{42} +(6.09346 - 3.51806i) q^{43} +(-9.11122 + 5.18083i) q^{44} -34.7818 q^{45} +(-19.8143 - 34.5812i) q^{46} +(47.7806 + 27.5861i) q^{47} +(0.107603 - 8.18665i) q^{48} -44.4755 q^{49} +(15.8886 - 9.10383i) q^{50} +(3.02033 + 1.74379i) q^{51} +(94.4078 + 0.620411i) q^{52} +(-33.4862 + 57.9998i) q^{53} +(9.12839 - 15.6915i) q^{54} +(-9.03262 + 5.21499i) q^{55} +(77.3424 + 0.762409i) q^{56} +(9.09550 + 3.43490i) q^{57} +(1.54714 - 0.886475i) q^{58} +(-51.3641 + 29.6551i) q^{59} +(0.0535400 - 8.14717i) q^{60} +(-1.23664 + 2.14192i) q^{61} +(-59.9431 + 103.041i) q^{62} +(73.1643 + 42.2414i) q^{63} +(-63.9876 - 1.26165i) q^{64} +93.9485 q^{65} +(0.00881127 - 2.68165i) q^{66} +(-36.4967 - 21.0714i) q^{67} +(13.7859 - 23.5196i) q^{68} +10.1972 q^{69} +(76.9678 + 0.252898i) q^{70} +(88.6632 - 51.1897i) q^{71} +(-60.1922 - 35.5477i) q^{72} +(-7.82182 - 13.5478i) q^{73} +(-13.4972 - 7.85185i) q^{74} +4.68521i q^{75} +(27.3170 - 70.9209i) q^{76} +25.3338 q^{77} +(-12.1463 + 20.8792i) q^{78} +(-63.6689 + 36.7592i) q^{79} +(-63.6818 - 0.837019i) q^{80} +(-36.9993 - 64.0848i) q^{81} +(-0.209710 + 63.8236i) q^{82} -18.4034i q^{83} +(-10.0071 + 17.0727i) q^{84} +(13.5645 - 23.4943i) q^{85} +(14.0722 + 0.0462378i) q^{86} +0.456217i q^{87} +(-20.9614 - 0.206628i) q^{88} +(-35.4778 + 61.4494i) q^{89} +(-60.1293 - 34.9796i) q^{90} +(-197.623 - 114.098i) q^{91} +(0.523819 - 79.7094i) q^{92} +(-15.2500 - 26.4138i) q^{93} +(54.8580 + 95.7420i) q^{94} +(26.7192 - 70.7515i) q^{95} +(8.41922 - 14.0445i) q^{96} +(-39.9967 - 69.2763i) q^{97} +(-76.8873 - 44.7284i) q^{98} +(-19.8290 - 11.4483i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28q - 5q^{2} - 11q^{4} + 6q^{5} - 3q^{6} - 62q^{8} + 20q^{9} + O(q^{10}) \) \( 28q - 5q^{2} - 11q^{4} + 6q^{5} - 3q^{6} - 62q^{8} + 20q^{9} + 26q^{12} + 30q^{13} - 30q^{14} - 19q^{16} + 38q^{17} - 60q^{18} - 44q^{20} + 80q^{21} + 45q^{22} + 17q^{24} - 16q^{25} - 56q^{26} + 54q^{28} + 6q^{29} + 96q^{30} - 45q^{32} - 176q^{33} - 20q^{34} + 30q^{36} + 104q^{37} - 258q^{38} + 94q^{40} - 2q^{41} - 2q^{42} + 201q^{44} - 360q^{45} + 164q^{46} - 17q^{48} - 20q^{49} + 490q^{50} - 102q^{52} - 242q^{53} - 13q^{54} + 276q^{56} - 254q^{57} + 96q^{58} + 10q^{60} - 58q^{61} - 36q^{62} - 74q^{64} - 260q^{65} + 167q^{66} + 396q^{68} + 340q^{69} + 60q^{70} - 422q^{72} - 82q^{73} - 136q^{74} + 123q^{76} - 144q^{77} + 224q^{78} - 174q^{80} + 410q^{81} - 305q^{82} + 252q^{84} + 714q^{85} + 166q^{86} - 718q^{88} + 150q^{89} - 272q^{90} - 588q^{92} + 344q^{93} - 488q^{94} - 122q^{96} + 94q^{97} + 307q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/76\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(39\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.72876 + 1.00569i 0.864378 + 0.502843i
\(3\) −0.443154 + 0.255855i −0.147718 + 0.0852850i −0.572037 0.820228i \(-0.693847\pi\)
0.424319 + 0.905513i \(0.360513\pi\)
\(4\) 1.97719 + 3.47717i 0.494298 + 0.869292i
\(5\) 1.99023 + 3.44717i 0.398045 + 0.689435i 0.993485 0.113965i \(-0.0363553\pi\)
−0.595439 + 0.803400i \(0.703022\pi\)
\(6\) −1.02341 0.00336270i −0.170569 0.000560450i
\(7\) 9.66827i 1.38118i −0.723246 0.690591i \(-0.757351\pi\)
0.723246 0.690591i \(-0.242649\pi\)
\(8\) −0.0788568 + 7.99961i −0.00985710 + 0.999951i
\(9\) −4.36908 + 7.56746i −0.485453 + 0.840829i
\(10\) −0.0261575 + 7.96087i −0.00261575 + 0.796087i
\(11\) 2.62030i 0.238209i 0.992882 + 0.119104i \(0.0380023\pi\)
−0.992882 + 0.119104i \(0.961998\pi\)
\(12\) −1.76585 1.03505i −0.147154 0.0862538i
\(13\) 11.8012 20.4403i 0.907787 1.57233i 0.0906551 0.995882i \(-0.471104\pi\)
0.817132 0.576451i \(-0.195563\pi\)
\(14\) 9.72324 16.7141i 0.694517 1.19386i
\(15\) −1.76395 1.01842i −0.117597 0.0678946i
\(16\) −8.18142 + 13.7501i −0.511339 + 0.859379i
\(17\) −3.40777 5.90242i −0.200457 0.347201i 0.748219 0.663452i \(-0.230909\pi\)
−0.948676 + 0.316251i \(0.897576\pi\)
\(18\) −15.1636 + 8.68838i −0.842420 + 0.482688i
\(19\) −12.0371 14.7006i −0.633530 0.773718i
\(20\) −8.05135 + 13.7361i −0.402567 + 0.686804i
\(21\) 2.47368 + 4.28453i 0.117794 + 0.204025i
\(22\) −2.63520 + 4.52985i −0.119782 + 0.205902i
\(23\) −17.2580 9.96389i −0.750346 0.433213i 0.0754728 0.997148i \(-0.475953\pi\)
−0.825819 + 0.563935i \(0.809287\pi\)
\(24\) −2.01179 3.56523i −0.0838247 0.148551i
\(25\) 4.57799 7.92932i 0.183120 0.317173i
\(26\) 40.9580 23.4680i 1.57531 0.902616i
\(27\) 9.07679i 0.336177i
\(28\) 33.6182 19.1160i 1.20065 0.682716i
\(29\) 0.445777 0.772108i 0.0153716 0.0266244i −0.858237 0.513253i \(-0.828440\pi\)
0.873609 + 0.486629i \(0.161774\pi\)
\(30\) −2.02523 3.53458i −0.0675078 0.117819i
\(31\) 59.6042i 1.92272i 0.275303 + 0.961358i \(0.411222\pi\)
−0.275303 + 0.961358i \(0.588778\pi\)
\(32\) −27.9719 + 15.5426i −0.874123 + 0.485705i
\(33\) −0.670416 1.16119i −0.0203156 0.0351877i
\(34\) 0.0447883 13.6310i 0.00131730 0.400912i
\(35\) 33.3282 19.2421i 0.952235 0.549773i
\(36\) −34.9519 0.229690i −0.970885 0.00638027i
\(37\) −7.80746 −0.211012 −0.105506 0.994419i \(-0.533646\pi\)
−0.105506 + 0.994419i \(0.533646\pi\)
\(38\) −6.02492 37.5193i −0.158550 0.987351i
\(39\) 12.0776i 0.309682i
\(40\) −27.7330 + 15.6492i −0.693325 + 0.391230i
\(41\) 15.9560 + 27.6366i 0.389171 + 0.674063i 0.992338 0.123551i \(-0.0394283\pi\)
−0.603168 + 0.797614i \(0.706095\pi\)
\(42\) −0.0325115 + 9.89465i −0.000774083 + 0.235587i
\(43\) 6.09346 3.51806i 0.141708 0.0818154i −0.427470 0.904030i \(-0.640595\pi\)
0.569178 + 0.822214i \(0.307262\pi\)
\(44\) −9.11122 + 5.18083i −0.207073 + 0.117746i
\(45\) −34.7818 −0.772929
\(46\) −19.8143 34.5812i −0.430745 0.751766i
\(47\) 47.7806 + 27.5861i 1.01661 + 0.586939i 0.913120 0.407692i \(-0.133666\pi\)
0.103489 + 0.994631i \(0.466999\pi\)
\(48\) 0.107603 8.18665i 0.00224174 0.170555i
\(49\) −44.4755 −0.907664
\(50\) 15.8886 9.10383i 0.317773 0.182077i
\(51\) 3.02033 + 1.74379i 0.0592221 + 0.0341919i
\(52\) 94.4078 + 0.620411i 1.81553 + 0.0119310i
\(53\) −33.4862 + 57.9998i −0.631815 + 1.09434i 0.355366 + 0.934727i \(0.384356\pi\)
−0.987180 + 0.159608i \(0.948977\pi\)
\(54\) 9.12839 15.6915i 0.169044 0.290584i
\(55\) −9.03262 + 5.21499i −0.164230 + 0.0948179i
\(56\) 77.3424 + 0.762409i 1.38111 + 0.0136145i
\(57\) 9.09550 + 3.43490i 0.159570 + 0.0602615i
\(58\) 1.54714 0.886475i 0.0266748 0.0152841i
\(59\) −51.3641 + 29.6551i −0.870578 + 0.502628i −0.867540 0.497367i \(-0.834300\pi\)
−0.00303759 + 0.999995i \(0.500967\pi\)
\(60\) 0.0535400 8.14717i 0.000892333 0.135786i
\(61\) −1.23664 + 2.14192i −0.0202727 + 0.0351134i −0.875984 0.482341i \(-0.839787\pi\)
0.855711 + 0.517454i \(0.173120\pi\)
\(62\) −59.9431 + 103.041i −0.966823 + 1.66195i
\(63\) 73.1643 + 42.2414i 1.16134 + 0.670499i
\(64\) −63.9876 1.26165i −0.999806 0.0197133i
\(65\) 93.9485 1.44536
\(66\) 0.00881127 2.68165i 0.000133504 0.0406310i
\(67\) −36.4967 21.0714i −0.544727 0.314498i 0.202266 0.979331i \(-0.435170\pi\)
−0.746992 + 0.664833i \(0.768503\pi\)
\(68\) 13.7859 23.5196i 0.202734 0.345877i
\(69\) 10.1972 0.147786
\(70\) 76.9678 + 0.252898i 1.09954 + 0.00361283i
\(71\) 88.6632 51.1897i 1.24878 0.720982i 0.277912 0.960607i \(-0.410358\pi\)
0.970866 + 0.239625i \(0.0770243\pi\)
\(72\) −60.1922 35.5477i −0.836003 0.493718i
\(73\) −7.82182 13.5478i −0.107148 0.185586i 0.807466 0.589915i \(-0.200839\pi\)
−0.914614 + 0.404328i \(0.867505\pi\)
\(74\) −13.4972 7.85185i −0.182394 0.106106i
\(75\) 4.68521i 0.0624694i
\(76\) 27.3170 70.9209i 0.359435 0.933170i
\(77\) 25.3338 0.329010
\(78\) −12.1463 + 20.8792i −0.155722 + 0.267683i
\(79\) −63.6689 + 36.7592i −0.805935 + 0.465307i −0.845542 0.533908i \(-0.820723\pi\)
0.0396072 + 0.999215i \(0.487389\pi\)
\(80\) −63.6818 0.837019i −0.796022 0.0104627i
\(81\) −36.9993 64.0848i −0.456782 0.791170i
\(82\) −0.209710 + 63.8236i −0.00255743 + 0.778337i
\(83\) 18.4034i 0.221728i −0.993836 0.110864i \(-0.964638\pi\)
0.993836 0.110864i \(-0.0353618\pi\)
\(84\) −10.0071 + 17.0727i −0.119132 + 0.203247i
\(85\) 13.5645 23.4943i 0.159582 0.276404i
\(86\) 14.0722 + 0.0462378i 0.163630 + 0.000537649i
\(87\) 0.456217i 0.00524387i
\(88\) −20.9614 0.206628i −0.238197 0.00234805i
\(89\) −35.4778 + 61.4494i −0.398627 + 0.690443i −0.993557 0.113335i \(-0.963847\pi\)
0.594929 + 0.803778i \(0.297180\pi\)
\(90\) −60.1293 34.9796i −0.668103 0.388662i
\(91\) −197.623 114.098i −2.17168 1.25382i
\(92\) 0.523819 79.7094i 0.00569368 0.866406i
\(93\) −15.2500 26.4138i −0.163979 0.284019i
\(94\) 54.8580 + 95.7420i 0.583596 + 1.01853i
\(95\) 26.7192 70.7515i 0.281255 0.744753i
\(96\) 8.41922 14.0445i 0.0877002 0.146297i
\(97\) −39.9967 69.2763i −0.412337 0.714189i 0.582808 0.812610i \(-0.301954\pi\)
−0.995145 + 0.0984213i \(0.968621\pi\)
\(98\) −76.8873 44.7284i −0.784564 0.456412i
\(99\) −19.8290 11.4483i −0.200293 0.115639i
\(100\) 36.6231 + 0.240673i 0.366231 + 0.00240673i
\(101\) 70.6125 122.304i 0.699133 1.21093i −0.269634 0.962963i \(-0.586903\pi\)
0.968767 0.247972i \(-0.0797639\pi\)
\(102\) 3.46771 + 6.05208i 0.0339971 + 0.0593342i
\(103\) 130.698i 1.26891i 0.772958 + 0.634457i \(0.218776\pi\)
−0.772958 + 0.634457i \(0.781224\pi\)
\(104\) 162.584 + 96.0171i 1.56331 + 0.923242i
\(105\) −9.84635 + 17.0544i −0.0937748 + 0.162423i
\(106\) −116.219 + 66.5909i −1.09641 + 0.628216i
\(107\) 83.9587i 0.784661i −0.919824 0.392331i \(-0.871669\pi\)
0.919824 0.392331i \(-0.128331\pi\)
\(108\) 31.5615 17.9466i 0.292236 0.166172i
\(109\) −46.1581 79.9481i −0.423468 0.733469i 0.572808 0.819690i \(-0.305854\pi\)
−0.996276 + 0.0862211i \(0.972521\pi\)
\(110\) −20.8598 0.0685405i −0.189635 0.000623096i
\(111\) 3.45990 1.99758i 0.0311703 0.0179962i
\(112\) 132.939 + 79.1002i 1.18696 + 0.706252i
\(113\) 26.6191 0.235567 0.117784 0.993039i \(-0.462421\pi\)
0.117784 + 0.993039i \(0.462421\pi\)
\(114\) 12.2695 + 15.0853i 0.107627 + 0.132327i
\(115\) 79.3216i 0.689753i
\(116\) 3.56614 + 0.0234353i 0.0307426 + 0.000202028i
\(117\) 103.121 + 178.611i 0.881376 + 1.52659i
\(118\) −118.620 0.389756i −1.00525 0.00330302i
\(119\) −57.0663 + 32.9472i −0.479548 + 0.276867i
\(120\) 8.28605 14.0306i 0.0690504 0.116922i
\(121\) 114.134 0.943257
\(122\) −4.29194 + 2.45918i −0.0351798 + 0.0201572i
\(123\) −14.1419 8.16484i −0.114975 0.0663808i
\(124\) −207.254 + 117.849i −1.67140 + 0.950394i
\(125\) 135.956 1.08765
\(126\) 84.0016 + 146.605i 0.666679 + 1.16353i
\(127\) 29.5205 + 17.0437i 0.232445 + 0.134202i 0.611700 0.791090i \(-0.290486\pi\)
−0.379254 + 0.925292i \(0.623819\pi\)
\(128\) −109.350 66.5325i −0.854297 0.519785i
\(129\) −1.80023 + 3.11808i −0.0139552 + 0.0241712i
\(130\) 162.414 + 94.4827i 1.24934 + 0.726790i
\(131\) 163.122 94.1785i 1.24521 0.718920i 0.275057 0.961428i \(-0.411303\pi\)
0.970149 + 0.242508i \(0.0779700\pi\)
\(132\) 2.71213 4.62706i 0.0205464 0.0350534i
\(133\) −142.130 + 116.378i −1.06865 + 0.875020i
\(134\) −41.9027 73.1315i −0.312707 0.545757i
\(135\) 31.2893 18.0649i 0.231772 0.133814i
\(136\) 47.4858 26.7954i 0.349160 0.197025i
\(137\) −81.9749 + 141.985i −0.598357 + 1.03638i 0.394707 + 0.918807i \(0.370846\pi\)
−0.993064 + 0.117577i \(0.962487\pi\)
\(138\) 17.6285 + 10.2552i 0.127743 + 0.0743132i
\(139\) 33.2670 + 19.2067i 0.239331 + 0.138178i 0.614869 0.788629i \(-0.289209\pi\)
−0.375538 + 0.926807i \(0.622542\pi\)
\(140\) 132.804 + 77.8426i 0.948602 + 0.556019i
\(141\) −28.2322 −0.200228
\(142\) 204.758 + 0.672786i 1.44196 + 0.00473793i
\(143\) 53.5597 + 30.9227i 0.374544 + 0.216243i
\(144\) −68.3079 121.988i −0.474360 0.847137i
\(145\) 3.54879 0.0244744
\(146\) 0.102802 31.2871i 0.000704124 0.214295i
\(147\) 19.7095 11.3793i 0.134078 0.0774101i
\(148\) −15.4368 27.1479i −0.104303 0.183431i
\(149\) −115.159 199.461i −0.772877 1.33866i −0.935980 0.352053i \(-0.885484\pi\)
0.163104 0.986609i \(-0.447850\pi\)
\(150\) −4.71185 + 8.09958i −0.0314123 + 0.0539972i
\(151\) 186.853i 1.23743i 0.785614 + 0.618717i \(0.212347\pi\)
−0.785614 + 0.618717i \(0.787653\pi\)
\(152\) 118.549 95.1326i 0.779925 0.625872i
\(153\) 59.5552 0.389249
\(154\) 43.7959 + 25.4778i 0.284389 + 0.165440i
\(155\) −205.466 + 118.626i −1.32559 + 0.765328i
\(156\) −41.9959 + 23.8798i −0.269204 + 0.153075i
\(157\) 80.6157 + 139.630i 0.513476 + 0.889366i 0.999878 + 0.0156308i \(0.00497563\pi\)
−0.486402 + 0.873735i \(0.661691\pi\)
\(158\) −147.036 0.483127i −0.930609 0.00305776i
\(159\) 34.2704i 0.215537i
\(160\) −109.248 65.4908i −0.682803 0.409318i
\(161\) −96.3336 + 166.855i −0.598345 + 1.03636i
\(162\) 0.486282 147.997i 0.00300174 0.913559i
\(163\) 113.722i 0.697682i −0.937182 0.348841i \(-0.886575\pi\)
0.937182 0.348841i \(-0.113425\pi\)
\(164\) −64.5491 + 110.125i −0.393592 + 0.671491i
\(165\) 2.66856 4.62208i 0.0161731 0.0280126i
\(166\) 18.5081 31.8151i 0.111494 0.191657i
\(167\) 104.857 + 60.5392i 0.627886 + 0.362510i 0.779933 0.625863i \(-0.215253\pi\)
−0.152047 + 0.988373i \(0.548586\pi\)
\(168\) −34.4696 + 19.4506i −0.205176 + 0.115777i
\(169\) −194.038 336.084i −1.14815 1.98866i
\(170\) 47.0775 26.9744i 0.276927 0.158673i
\(171\) 163.837 26.8618i 0.958114 0.157087i
\(172\) 24.2808 + 14.2321i 0.141168 + 0.0827448i
\(173\) 59.6985 + 103.401i 0.345078 + 0.597693i 0.985368 0.170441i \(-0.0545191\pi\)
−0.640290 + 0.768133i \(0.721186\pi\)
\(174\) −0.458811 + 0.788688i −0.00263684 + 0.00453269i
\(175\) −76.6628 44.2613i −0.438073 0.252922i
\(176\) −36.0293 21.4378i −0.204712 0.121805i
\(177\) 15.1748 26.2835i 0.0857333 0.148494i
\(178\) −123.131 + 70.5515i −0.691749 + 0.396357i
\(179\) 238.109i 1.33022i 0.746746 + 0.665109i \(0.231615\pi\)
−0.746746 + 0.665109i \(0.768385\pi\)
\(180\) −68.7704 120.942i −0.382058 0.671902i
\(181\) 76.3894 132.310i 0.422041 0.730996i −0.574098 0.818787i \(-0.694647\pi\)
0.996139 + 0.0877903i \(0.0279805\pi\)
\(182\) −226.895 395.993i −1.24668 2.17579i
\(183\) 1.26560i 0.00691584i
\(184\) 81.0681 137.271i 0.440588 0.746039i
\(185\) −15.5386 26.9137i −0.0839925 0.145479i
\(186\) 0.200431 60.9997i 0.00107759 0.327956i
\(187\) 15.4661 8.92936i 0.0827065 0.0477506i
\(188\) −1.45025 + 220.684i −0.00771410 + 1.17385i
\(189\) −87.7569 −0.464322
\(190\) 117.345 95.4409i 0.617604 0.502321i
\(191\) 318.713i 1.66865i 0.551269 + 0.834327i \(0.314144\pi\)
−0.551269 + 0.834327i \(0.685856\pi\)
\(192\) 28.6791 15.8124i 0.149370 0.0823564i
\(193\) 30.7232 + 53.2141i 0.159187 + 0.275721i 0.934576 0.355764i \(-0.115779\pi\)
−0.775388 + 0.631485i \(0.782446\pi\)
\(194\) 0.525676 159.986i 0.00270967 0.824670i
\(195\) −41.6336 + 24.0372i −0.213506 + 0.123268i
\(196\) −87.9367 154.649i −0.448656 0.789025i
\(197\) −242.851 −1.23274 −0.616372 0.787455i \(-0.711398\pi\)
−0.616372 + 0.787455i \(0.711398\pi\)
\(198\) −22.7661 39.7330i −0.114980 0.200672i
\(199\) −207.809 119.979i −1.04427 0.602908i −0.123228 0.992378i \(-0.539325\pi\)
−0.921039 + 0.389470i \(0.872658\pi\)
\(200\) 63.0704 + 37.2474i 0.315352 + 0.186237i
\(201\) 21.5649 0.107288
\(202\) 245.071 140.420i 1.21323 0.695151i
\(203\) −7.46496 4.30989i −0.0367732 0.0212310i
\(204\) −0.0916739 + 13.9500i −0.000449382 + 0.0683823i
\(205\) −63.5121 + 110.006i −0.309815 + 0.536616i
\(206\) −131.441 + 225.945i −0.638064 + 1.09682i
\(207\) 150.803 87.0660i 0.728516 0.420609i
\(208\) 184.505 + 329.499i 0.887044 + 1.58413i
\(209\) 38.5201 31.5407i 0.184307 0.150912i
\(210\) −34.1733 + 19.5805i −0.162730 + 0.0932406i
\(211\) 75.6483 43.6755i 0.358523 0.206993i −0.309910 0.950766i \(-0.600299\pi\)
0.668432 + 0.743773i \(0.266966\pi\)
\(212\) −267.884 1.76043i −1.26360 0.00830389i
\(213\) −26.1943 + 45.3698i −0.122978 + 0.213004i
\(214\) 84.4361 145.144i 0.394561 0.678244i
\(215\) 24.2547 + 14.0035i 0.112813 + 0.0651325i
\(216\) 72.6108 + 0.715767i 0.336161 + 0.00331373i
\(217\) 576.269 2.65562
\(218\) 0.606655 184.631i 0.00278282 0.846932i
\(219\) 6.93254 + 4.00250i 0.0316554 + 0.0182763i
\(220\) −35.9926 21.0969i −0.163603 0.0958951i
\(221\) −160.863 −0.727888
\(222\) 7.99026 + 0.0262541i 0.0359922 + 0.000118262i
\(223\) 149.218 86.1509i 0.669138 0.386327i −0.126612 0.991952i \(-0.540410\pi\)
0.795750 + 0.605625i \(0.207077\pi\)
\(224\) 150.270 + 270.440i 0.670848 + 1.20732i
\(225\) 40.0032 + 69.2876i 0.177792 + 0.307945i
\(226\) 46.0179 + 26.7704i 0.203619 + 0.118453i
\(227\) 249.279i 1.09814i −0.835775 0.549072i \(-0.814981\pi\)
0.835775 0.549072i \(-0.185019\pi\)
\(228\) 6.03982 + 38.4181i 0.0264904 + 0.168500i
\(229\) 198.117 0.865138 0.432569 0.901601i \(-0.357607\pi\)
0.432569 + 0.901601i \(0.357607\pi\)
\(230\) 79.7726 137.128i 0.346837 0.596207i
\(231\) −11.2267 + 6.48176i −0.0486006 + 0.0280596i
\(232\) 6.14142 + 3.62693i 0.0264716 + 0.0156333i
\(233\) −144.366 250.049i −0.619596 1.07317i −0.989559 0.144126i \(-0.953963\pi\)
0.369963 0.929047i \(-0.379370\pi\)
\(234\) −1.35532 + 412.482i −0.00579196 + 1.76274i
\(235\) 219.611i 0.934514i
\(236\) −204.672 119.968i −0.867256 0.508338i
\(237\) 18.8101 32.5800i 0.0793674 0.137468i
\(238\) −131.788 0.433025i −0.553732 0.00181943i
\(239\) 39.6307i 0.165819i −0.996557 0.0829094i \(-0.973579\pi\)
0.996557 0.0829094i \(-0.0264212\pi\)
\(240\) 28.4350 15.9224i 0.118479 0.0663432i
\(241\) −151.983 + 263.242i −0.630634 + 1.09229i 0.356788 + 0.934185i \(0.383872\pi\)
−0.987422 + 0.158105i \(0.949461\pi\)
\(242\) 197.310 + 114.783i 0.815330 + 0.474310i
\(243\) 103.539 + 59.7785i 0.426088 + 0.246002i
\(244\) −9.89288 0.0650121i −0.0405446 0.000266443i
\(245\) −88.5164 153.315i −0.361291 0.625775i
\(246\) −16.2367 28.3373i −0.0660027 0.115192i
\(247\) −442.538 + 72.5559i −1.79165 + 0.293749i
\(248\) −476.810 4.70020i −1.92262 0.0189524i
\(249\) 4.70861 + 8.15555i 0.0189101 + 0.0327532i
\(250\) 235.035 + 136.729i 0.940141 + 0.546917i
\(251\) −346.056 199.796i −1.37871 0.795998i −0.386705 0.922203i \(-0.626387\pi\)
−0.992004 + 0.126205i \(0.959720\pi\)
\(252\) −2.22070 + 337.924i −0.00881232 + 1.34097i
\(253\) 26.1084 45.2210i 0.103195 0.178739i
\(254\) 33.8932 + 59.1527i 0.133438 + 0.232885i
\(255\) 13.8821i 0.0544397i
\(256\) −122.129 224.990i −0.477066 0.878868i
\(257\) −6.41520 + 11.1115i −0.0249619 + 0.0432353i −0.878236 0.478227i \(-0.841280\pi\)
0.853275 + 0.521462i \(0.174613\pi\)
\(258\) −6.24796 + 3.57994i −0.0242169 + 0.0138757i
\(259\) 75.4846i 0.291447i
\(260\) 185.754 + 326.675i 0.714440 + 1.25644i
\(261\) 3.89527 + 6.74680i 0.0149244 + 0.0258498i
\(262\) 376.712 + 1.23779i 1.43783 + 0.00472438i
\(263\) 206.817 119.406i 0.786378 0.454015i −0.0523082 0.998631i \(-0.516658\pi\)
0.838686 + 0.544616i \(0.183324\pi\)
\(264\) 9.34197 5.27150i 0.0353863 0.0199678i
\(265\) −266.580 −1.00596
\(266\) −362.747 + 58.2505i −1.36371 + 0.218987i
\(267\) 36.3087i 0.135988i
\(268\) 1.10776 168.567i 0.00413343 0.628983i
\(269\) 103.018 + 178.433i 0.382968 + 0.663320i 0.991485 0.130221i \(-0.0415687\pi\)
−0.608517 + 0.793541i \(0.708235\pi\)
\(270\) 72.2591 + 0.237426i 0.267626 + 0.000879357i
\(271\) 378.819 218.711i 1.39786 0.807053i 0.403690 0.914896i \(-0.367728\pi\)
0.994168 + 0.107843i \(0.0343943\pi\)
\(272\) 109.039 + 1.43319i 0.400879 + 0.00526906i
\(273\) 116.770 0.427728
\(274\) −284.507 + 163.016i −1.03834 + 0.594948i
\(275\) 20.7772 + 11.9957i 0.0755533 + 0.0436207i
\(276\) 20.1619 + 35.4575i 0.0730504 + 0.128469i
\(277\) 338.269 1.22119 0.610594 0.791943i \(-0.290931\pi\)
0.610594 + 0.791943i \(0.290931\pi\)
\(278\) 38.1946 + 66.6598i 0.137391 + 0.239783i
\(279\) −451.052 260.415i −1.61667 0.933388i
\(280\) 151.301 + 268.130i 0.540360 + 0.957608i
\(281\) −123.429 + 213.786i −0.439250 + 0.760804i −0.997632 0.0687802i \(-0.978089\pi\)
0.558381 + 0.829584i \(0.311423\pi\)
\(282\) −48.8066 28.3927i −0.173073 0.100683i
\(283\) 292.581 168.921i 1.03385 0.596896i 0.115767 0.993276i \(-0.463067\pi\)
0.918086 + 0.396381i \(0.129734\pi\)
\(284\) 353.300 + 207.085i 1.24401 + 0.729173i
\(285\) 6.26140 + 38.1900i 0.0219698 + 0.134000i
\(286\) 61.4932 + 107.322i 0.215011 + 0.375252i
\(287\) 267.198 154.267i 0.931004 0.537515i
\(288\) 4.59362 279.583i 0.0159501 0.970775i
\(289\) 121.274 210.053i 0.419634 0.726828i
\(290\) 6.13499 + 3.56897i 0.0211551 + 0.0123068i
\(291\) 35.4494 + 20.4667i 0.121819 + 0.0703323i
\(292\) 31.6427 53.9844i 0.108366 0.184878i
\(293\) 247.442 0.844511 0.422256 0.906477i \(-0.361238\pi\)
0.422256 + 0.906477i \(0.361238\pi\)
\(294\) 45.5169 + 0.149558i 0.154819 + 0.000508700i
\(295\) −204.452 118.041i −0.693059 0.400138i
\(296\) 0.615671 62.4566i 0.00207997 0.211002i
\(297\) 23.7839 0.0800804
\(298\) 1.51353 460.632i 0.00507896 1.54574i
\(299\) −407.330 + 235.172i −1.36231 + 0.786529i
\(300\) −16.2913 + 9.26356i −0.0543042 + 0.0308785i
\(301\) −34.0136 58.9132i −0.113002 0.195725i
\(302\) −187.915 + 323.023i −0.622235 + 1.06961i
\(303\) 72.2662i 0.238502i
\(304\) 300.615 45.2383i 0.988866 0.148810i
\(305\) −9.84475 −0.0322779
\(306\) 102.956 + 59.8938i 0.336459 + 0.195731i
\(307\) −85.9857 + 49.6439i −0.280084 + 0.161706i −0.633461 0.773774i \(-0.718366\pi\)
0.353378 + 0.935481i \(0.385033\pi\)
\(308\) 50.0897 + 88.0898i 0.162629 + 0.286006i
\(309\) −33.4397 57.9193i −0.108219 0.187441i
\(310\) −474.501 1.55910i −1.53065 0.00502935i
\(311\) 72.4217i 0.232867i −0.993198 0.116434i \(-0.962854\pi\)
0.993198 0.116434i \(-0.0371462\pi\)
\(312\) −96.6162 0.952402i −0.309667 0.00305257i
\(313\) −210.651 + 364.858i −0.673006 + 1.16568i 0.304042 + 0.952659i \(0.401664\pi\)
−0.977048 + 0.213021i \(0.931670\pi\)
\(314\) −1.05953 + 322.461i −0.00337430 + 1.02695i
\(315\) 336.280i 1.06756i
\(316\) −253.704 148.707i −0.802860 0.470593i
\(317\) 142.726 247.209i 0.450241 0.779840i −0.548160 0.836374i \(-0.684671\pi\)
0.998401 + 0.0565337i \(0.0180048\pi\)
\(318\) 34.4653 59.2452i 0.108381 0.186306i
\(319\) 2.02315 + 1.16807i 0.00634218 + 0.00366166i
\(320\) −123.001 223.087i −0.384377 0.697148i
\(321\) 21.4813 + 37.2066i 0.0669198 + 0.115908i
\(322\) −334.341 + 191.570i −1.03833 + 0.594937i
\(323\) −45.7499 + 121.144i −0.141641 + 0.375060i
\(324\) 149.679 255.361i 0.461971 0.788151i
\(325\) −108.052 187.151i −0.332467 0.575850i
\(326\) 114.369 196.598i 0.350824 0.603061i
\(327\) 40.9102 + 23.6195i 0.125108 + 0.0722310i
\(328\) −222.340 + 125.462i −0.677867 + 0.382507i
\(329\) 266.710 461.956i 0.810670 1.40412i
\(330\) 9.26165 5.30672i 0.0280656 0.0160810i
\(331\) 13.5916i 0.0410621i −0.999789 0.0205311i \(-0.993464\pi\)
0.999789 0.0205311i \(-0.00653570\pi\)
\(332\) 63.9919 36.3871i 0.192747 0.109600i
\(333\) 34.1114 59.0826i 0.102437 0.177425i
\(334\) 120.389 + 210.111i 0.360445 + 0.629074i
\(335\) 167.747i 0.500738i
\(336\) −79.1508 1.04034i −0.235568 0.00309625i
\(337\) −112.071 194.113i −0.332556 0.576003i 0.650456 0.759544i \(-0.274578\pi\)
−0.983012 + 0.183540i \(0.941244\pi\)
\(338\) 2.55024 776.148i 0.00754509 2.29630i
\(339\) −11.7963 + 6.81062i −0.0347975 + 0.0200903i
\(340\) 108.513 + 0.713107i 0.319157 + 0.00209737i
\(341\) −156.181 −0.458008
\(342\) 310.249 + 118.332i 0.907162 + 0.345999i
\(343\) 43.7439i 0.127533i
\(344\) 27.6626 + 49.0227i 0.0804145 + 0.142508i
\(345\) 20.2948 + 35.1517i 0.0588256 + 0.101889i
\(346\) −0.784617 + 238.793i −0.00226768 + 0.690152i
\(347\) 66.9198 38.6361i 0.192852 0.111343i −0.400465 0.916312i \(-0.631151\pi\)
0.593317 + 0.804969i \(0.297818\pi\)
\(348\) −1.58634 + 0.902029i −0.00455846 + 0.00259204i
\(349\) −137.502 −0.393990 −0.196995 0.980405i \(-0.563118\pi\)
−0.196995 + 0.980405i \(0.563118\pi\)
\(350\) −88.0183 153.616i −0.251481 0.438902i
\(351\) −185.533 107.117i −0.528583 0.305177i
\(352\) −40.7262 73.2948i −0.115699 0.208224i
\(353\) −50.4441 −0.142901 −0.0714505 0.997444i \(-0.522763\pi\)
−0.0714505 + 0.997444i \(0.522763\pi\)
\(354\) 52.6665 30.1767i 0.148775 0.0852449i
\(355\) 352.920 + 203.758i 0.994140 + 0.573967i
\(356\) −283.817 1.86513i −0.797237 0.00523913i
\(357\) 16.8594 29.2014i 0.0472252 0.0817965i
\(358\) −239.463 + 411.632i −0.668891 + 1.14981i
\(359\) −437.654 + 252.679i −1.21909 + 0.703843i −0.964724 0.263265i \(-0.915201\pi\)
−0.254368 + 0.967108i \(0.581867\pi\)
\(360\) 2.74278 278.241i 0.00761884 0.772892i
\(361\) −71.2181 + 353.905i −0.197280 + 0.980347i
\(362\) 265.121 151.908i 0.732379 0.419637i
\(363\) −50.5789 + 29.2018i −0.139336 + 0.0804456i
\(364\) 5.99830 912.761i 0.0164788 2.50758i
\(365\) 31.1344 53.9264i 0.0852997 0.147743i
\(366\) 1.27279 2.18791i 0.00347758 0.00597790i
\(367\) 160.944 + 92.9213i 0.438541 + 0.253192i 0.702978 0.711211i \(-0.251853\pi\)
−0.264438 + 0.964403i \(0.585186\pi\)
\(368\) 278.199 155.779i 0.755975 0.423314i
\(369\) −278.852 −0.755696
\(370\) 0.204224 62.1541i 0.000551957 0.167984i
\(371\) 560.758 + 323.754i 1.51148 + 0.872651i
\(372\) 61.6931 105.252i 0.165842 0.282936i
\(373\) −438.747 −1.17627 −0.588133 0.808764i \(-0.700137\pi\)
−0.588133 + 0.808764i \(0.700137\pi\)
\(374\) 35.7173 + 0.117359i 0.0955007 + 0.000313793i
\(375\) −60.2495 + 34.7851i −0.160665 + 0.0927602i
\(376\) −224.446 + 380.051i −0.596931 + 1.01077i
\(377\) −10.5214 18.2237i −0.0279083 0.0483386i
\(378\) −151.710 88.2558i −0.401350 0.233481i
\(379\) 152.410i 0.402138i −0.979577 0.201069i \(-0.935558\pi\)
0.979577 0.201069i \(-0.0644416\pi\)
\(380\) 298.844 46.9821i 0.786431 0.123637i
\(381\) −17.4428 −0.0457817
\(382\) −320.525 + 550.977i −0.839071 + 1.44235i
\(383\) 68.7065 39.6677i 0.179390 0.103571i −0.407616 0.913153i \(-0.633640\pi\)
0.587006 + 0.809582i \(0.300306\pi\)
\(384\) 65.4815 + 1.50636i 0.170525 + 0.00392281i
\(385\) 50.4199 + 87.3299i 0.130961 + 0.226831i
\(386\) −0.403795 + 122.892i −0.00104610 + 0.318373i
\(387\) 61.4827i 0.158870i
\(388\) 161.804 276.048i 0.417021 0.711464i
\(389\) −241.258 + 417.872i −0.620201 + 1.07422i 0.369247 + 0.929331i \(0.379616\pi\)
−0.989448 + 0.144889i \(0.953718\pi\)
\(390\) −96.1482 0.315921i −0.246534 0.000810053i
\(391\) 135.818i 0.347362i
\(392\) 3.50720 355.787i 0.00894693 0.907620i
\(393\) −48.1921 + 83.4711i −0.122626 + 0.212395i
\(394\) −419.829 244.231i −1.06556 0.619877i
\(395\) −253.431 146.318i −0.641598 0.370427i
\(396\) 0.601856 91.5843i 0.00151984 0.231273i
\(397\) 14.2395 + 24.6635i 0.0358677 + 0.0621247i 0.883402 0.468616i \(-0.155247\pi\)
−0.847534 + 0.530741i \(0.821914\pi\)
\(398\) −238.590 416.405i −0.599474 1.04624i
\(399\) 33.2096 87.9378i 0.0832320 0.220396i
\(400\) 71.5742 + 127.821i 0.178935 + 0.319552i
\(401\) 98.1016 + 169.917i 0.244642 + 0.423733i 0.962031 0.272940i \(-0.0879961\pi\)
−0.717389 + 0.696673i \(0.754663\pi\)
\(402\) 37.2804 + 21.6875i 0.0927372 + 0.0539489i
\(403\) 1218.33 + 703.403i 3.02315 + 1.74542i
\(404\) 564.887 + 3.71222i 1.39824 + 0.00918866i
\(405\) 147.274 255.086i 0.363640 0.629843i
\(406\) −8.57069 14.9582i −0.0211101 0.0368427i
\(407\) 20.4579i 0.0502650i
\(408\) −14.1878 + 24.0239i −0.0347740 + 0.0588822i
\(409\) 20.7557 35.9499i 0.0507474 0.0878971i −0.839536 0.543304i \(-0.817173\pi\)
0.890283 + 0.455407i \(0.150506\pi\)
\(410\) −220.429 + 126.301i −0.537631 + 0.308050i
\(411\) 83.8947i 0.204123i
\(412\) −454.459 + 258.415i −1.10306 + 0.627221i
\(413\) 286.713 + 496.602i 0.694221 + 1.20243i
\(414\) 348.262 + 1.14431i 0.841213 + 0.00276403i
\(415\) 63.4399 36.6270i 0.152867 0.0882579i
\(416\) −12.4077 + 755.177i −0.0298263 + 1.81533i
\(417\) −19.6565 −0.0471379
\(418\) 98.3118 15.7871i 0.235196 0.0377681i
\(419\) 207.738i 0.495794i −0.968786 0.247897i \(-0.920261\pi\)
0.968786 0.247897i \(-0.0797394\pi\)
\(420\) −78.7691 0.517639i −0.187545 0.00123247i
\(421\) 306.179 + 530.317i 0.727266 + 1.25966i 0.958035 + 0.286653i \(0.0925425\pi\)
−0.230769 + 0.973009i \(0.574124\pi\)
\(422\) 174.701 + 0.574027i 0.413984 + 0.00136025i
\(423\) −417.514 + 241.052i −0.987031 + 0.569863i
\(424\) −461.335 272.450i −1.08805 0.642571i
\(425\) −62.4029 −0.146830
\(426\) −90.9113 + 52.0901i −0.213407 + 0.122277i
\(427\) 20.7086 + 11.9561i 0.0484980 + 0.0280003i
\(428\) 291.939 166.003i 0.682100 0.387857i
\(429\) −31.6469 −0.0737691
\(430\) 27.8474 + 48.6012i 0.0647614 + 0.113026i
\(431\) 56.0531 + 32.3623i 0.130054 + 0.0750865i 0.563615 0.826037i \(-0.309410\pi\)
−0.433562 + 0.901124i \(0.642743\pi\)
\(432\) 124.806 + 74.2610i 0.288904 + 0.171900i
\(433\) 73.2567 126.884i 0.169184 0.293036i −0.768949 0.639310i \(-0.779220\pi\)
0.938133 + 0.346274i \(0.112553\pi\)
\(434\) 996.229 + 579.546i 2.29546 + 1.33536i
\(435\) −1.57266 + 0.907975i −0.00361531 + 0.00208730i
\(436\) 186.730 318.572i 0.428279 0.730670i
\(437\) 61.2596 + 373.639i 0.140182 + 0.855010i
\(438\) 7.95941 + 13.8913i 0.0181722 + 0.0317153i
\(439\) −333.920 + 192.789i −0.760638 + 0.439155i −0.829525 0.558470i \(-0.811389\pi\)
0.0688866 + 0.997624i \(0.478055\pi\)
\(440\) −41.0056 72.6687i −0.0931945 0.165156i
\(441\) 194.317 336.567i 0.440628 0.763190i
\(442\) −278.093 161.778i −0.629171 0.366013i
\(443\) 30.9999 + 17.8978i 0.0699771 + 0.0404013i 0.534580 0.845118i \(-0.320470\pi\)
−0.464603 + 0.885519i \(0.653803\pi\)
\(444\) 13.7868 + 8.08108i 0.0310514 + 0.0182006i
\(445\) −282.436 −0.634687
\(446\) 344.602 + 1.13228i 0.772650 + 0.00253875i
\(447\) 102.066 + 58.9278i 0.228335 + 0.131830i
\(448\) −12.1980 + 618.649i −0.0272276 + 1.38091i
\(449\) 729.651 1.62506 0.812529 0.582921i \(-0.198090\pi\)
0.812529 + 0.582921i \(0.198090\pi\)
\(450\) −0.525762 + 160.012i −0.00116836 + 0.355582i
\(451\) −72.4161 + 41.8095i −0.160568 + 0.0927039i
\(452\) 52.6311 + 92.5591i 0.116440 + 0.204777i
\(453\) −47.8072 82.8044i −0.105535 0.182791i
\(454\) 250.696 430.942i 0.552193 0.949211i
\(455\) 908.320i 1.99631i
\(456\) −28.1951 + 72.4896i −0.0618314 + 0.158968i
\(457\) −402.710 −0.881204 −0.440602 0.897703i \(-0.645235\pi\)
−0.440602 + 0.897703i \(0.645235\pi\)
\(458\) 342.495 + 199.243i 0.747806 + 0.435028i
\(459\) −53.5750 + 30.9316i −0.116721 + 0.0673890i
\(460\) 275.815 156.834i 0.599597 0.340944i
\(461\) −256.224 443.793i −0.555800 0.962674i −0.997841 0.0656788i \(-0.979079\pi\)
0.442041 0.896995i \(-0.354255\pi\)
\(462\) −25.9269 0.0851898i −0.0561189 0.000184394i
\(463\) 732.188i 1.58140i −0.612204 0.790700i \(-0.709717\pi\)
0.612204 0.790700i \(-0.290283\pi\)
\(464\) 6.96946 + 12.4464i 0.0150204 + 0.0268242i
\(465\) 60.7020 105.139i 0.130542 0.226105i
\(466\) 1.89740 577.461i 0.00407168 1.23919i
\(467\) 634.798i 1.35931i 0.733532 + 0.679655i \(0.237870\pi\)
−0.733532 + 0.679655i \(0.762130\pi\)
\(468\) −417.170 + 711.717i −0.891389 + 1.52076i
\(469\) −203.724 + 352.860i −0.434379 + 0.752367i
\(470\) −220.859 + 379.653i −0.469914 + 0.807773i
\(471\) −71.4503 41.2518i −0.151699 0.0875835i
\(472\) −233.179 413.231i −0.494023 0.875490i
\(473\) 9.21836 + 15.9667i 0.0194891 + 0.0337562i
\(474\) 65.2832 37.4058i 0.137728 0.0789152i
\(475\) −171.672 + 28.1462i −0.361414 + 0.0592553i
\(476\) −227.394 133.286i −0.477719 0.280013i
\(477\) −292.607 506.811i −0.613433 1.06250i
\(478\) 39.8560 68.5118i 0.0833808 0.143330i
\(479\) −194.227 112.137i −0.405484 0.234106i 0.283364 0.959013i \(-0.408550\pi\)
−0.688847 + 0.724906i \(0.741883\pi\)
\(480\) 65.1700 + 1.07076i 0.135771 + 0.00223075i
\(481\) −92.1376 + 159.587i −0.191554 + 0.331782i
\(482\) −527.480 + 302.234i −1.09436 + 0.627042i
\(483\) 98.5897i 0.204119i
\(484\) 225.665 + 396.863i 0.466250 + 0.819966i
\(485\) 159.205 275.751i 0.328258 0.568559i
\(486\) 118.876 + 207.470i 0.244601 + 0.426894i
\(487\) 177.686i 0.364857i −0.983219 0.182429i \(-0.941604\pi\)
0.983219 0.182429i \(-0.0583959\pi\)
\(488\) −17.0370 10.0615i −0.0349119 0.0206179i
\(489\) 29.0964 + 50.3964i 0.0595018 + 0.103060i
\(490\) 1.16337 354.064i 0.00237423 0.722579i
\(491\) −463.870 + 267.815i −0.944745 + 0.545449i −0.891444 0.453130i \(-0.850307\pi\)
−0.0533002 + 0.998579i \(0.516974\pi\)
\(492\) 0.429239 65.3173i 0.000872438 0.132759i
\(493\) −6.07642 −0.0123254
\(494\) −838.009 319.623i −1.69637 0.647010i
\(495\) 91.1387i 0.184119i
\(496\) −819.561 487.647i −1.65234 0.983159i
\(497\) −494.916 857.220i −0.995807 1.72479i
\(498\) −0.0618852 + 18.8343i −0.000124268 + 0.0378200i
\(499\) 419.926 242.445i 0.841536 0.485861i −0.0162502 0.999868i \(-0.505173\pi\)
0.857786 + 0.514007i \(0.171840\pi\)
\(500\) 268.812 + 472.743i 0.537624 + 0.945486i
\(501\) −61.9570 −0.123667
\(502\) −397.315 693.421i −0.791464 1.38132i
\(503\) −279.526 161.384i −0.555718 0.320844i 0.195707 0.980662i \(-0.437300\pi\)
−0.751425 + 0.659819i \(0.770633\pi\)
\(504\) −343.685 + 581.955i −0.681914 + 1.15467i
\(505\) 562.139 1.11315
\(506\) 90.6131 51.9193i 0.179077 0.102607i
\(507\) 171.977 + 99.2912i 0.339206 + 0.195841i
\(508\) −0.896015 + 136.347i −0.00176381 + 0.268399i
\(509\) 213.275 369.403i 0.419008 0.725742i −0.576832 0.816863i \(-0.695711\pi\)
0.995840 + 0.0911201i \(0.0290447\pi\)
\(510\) −13.9611 + 23.9988i −0.0273746 + 0.0470565i
\(511\) −130.984 + 75.6235i −0.256328 + 0.147991i
\(512\) 15.1386 511.776i 0.0295675 0.999563i
\(513\) −133.435 + 109.258i −0.260107 + 0.212978i
\(514\) −22.2650 + 12.7573i −0.0433170 + 0.0248197i
\(515\) −450.539 + 260.119i −0.874833 + 0.505085i
\(516\) −14.4015 0.0946409i −0.0279099 0.000183413i
\(517\) −72.2839 + 125.199i −0.139814 + 0.242165i
\(518\) −75.9138 + 130.495i −0.146552 + 0.251920i
\(519\) −52.9112 30.5483i −0.101948 0.0588599i
\(520\) −7.40848 + 751.552i −0.0142471 + 1.44529i
\(521\) 528.882 1.01513 0.507564 0.861614i \(-0.330546\pi\)
0.507564 + 0.861614i \(0.330546\pi\)
\(522\) −0.0511955 + 15.5810i −9.80756e−5 + 0.0298486i
\(523\) −402.414 232.334i −0.769434 0.444233i 0.0632386 0.997998i \(-0.479857\pi\)
−0.832673 + 0.553765i \(0.813190\pi\)
\(524\) 649.998 + 380.994i 1.24046 + 0.727088i
\(525\) 45.2979 0.0862816
\(526\) 477.622 + 1.56935i 0.908026 + 0.00298356i
\(527\) 351.809 203.117i 0.667569 0.385421i
\(528\) 21.4515 + 0.281953i 0.0406278 + 0.000534002i
\(529\) −65.9418 114.215i −0.124654 0.215907i
\(530\) −460.852 268.096i −0.869533 0.505842i
\(531\) 518.261i 0.976010i
\(532\) −685.683 264.109i −1.28888 0.496445i
\(533\) 753.201 1.41314
\(534\) 36.5151 62.7689i 0.0683804 0.117545i
\(535\) 289.420 167.097i 0.540973 0.312331i
\(536\) 171.441 290.298i 0.319852 0.541600i
\(537\) −60.9214 105.519i −0.113448 0.196497i
\(538\) −1.35397 + 412.071i −0.00251667 + 0.765931i
\(539\) 116.539i 0.216214i
\(540\) 124.680 + 73.0804i 0.230888 + 0.135334i
\(541\) 318.729 552.054i 0.589147 1.02043i −0.405197 0.914229i \(-0.632797\pi\)
0.994344 0.106204i \(-0.0338696\pi\)
\(542\) 874.841 + 2.87452i 1.61410 + 0.00530355i
\(543\) 78.1784i 0.143975i
\(544\) 187.061 + 112.137i 0.343861 + 0.206134i
\(545\) 183.730 318.230i 0.337119 0.583908i
\(546\) 201.866 + 117.434i 0.369718 + 0.215080i
\(547\) −16.4275 9.48444i −0.0300320 0.0173390i 0.484909 0.874565i \(-0.338853\pi\)
−0.514941 + 0.857226i \(0.672186\pi\)
\(548\) −655.785 4.30956i −1.19669 0.00786416i
\(549\) −10.8059 18.7164i −0.0196829 0.0340918i
\(550\) 23.8547 + 41.6329i 0.0433723 + 0.0756963i
\(551\) −16.7163 + 2.74071i −0.0303382 + 0.00497407i
\(552\) −0.804122 + 81.5739i −0.00145674 + 0.147779i
\(553\) 355.398 + 615.568i 0.642673 + 1.11314i
\(554\) 584.785 + 340.193i 1.05557 + 0.614066i
\(555\) 13.7720 + 7.95126i 0.0248144 + 0.0143266i
\(556\) −1.00973 + 153.650i −0.00181606 + 0.276349i
\(557\) −496.557 + 860.062i −0.891485 + 1.54410i −0.0533887 + 0.998574i \(0.517002\pi\)
−0.838096 + 0.545523i \(0.816331\pi\)
\(558\) −517.863 903.811i −0.928071 1.61973i
\(559\) 166.070i 0.297084i
\(560\) −8.09253 + 615.693i −0.0144509 + 1.09945i
\(561\) −4.56924 + 7.91416i −0.00814482 + 0.0141072i
\(562\) −428.381 + 245.453i −0.762243 + 0.436748i
\(563\) 412.624i 0.732903i −0.930437 0.366451i \(-0.880573\pi\)
0.930437 0.366451i \(-0.119427\pi\)
\(564\) −55.8205 98.1681i −0.0989725 0.174057i
\(565\) 52.9780 + 91.7606i 0.0937664 + 0.162408i
\(566\) 675.682 + 2.22013i 1.19378 + 0.00392250i
\(567\) −619.589 + 357.720i −1.09275 + 0.630899i
\(568\) 402.506 + 713.308i 0.708638 + 1.25582i
\(569\) −749.109 −1.31654 −0.658268 0.752784i \(-0.728711\pi\)
−0.658268 + 0.752784i \(0.728711\pi\)
\(570\) −27.5827 + 72.3182i −0.0483907 + 0.126874i
\(571\) 530.406i 0.928907i 0.885598 + 0.464453i \(0.153749\pi\)
−0.885598 + 0.464453i \(0.846251\pi\)
\(572\) −1.62566 + 247.377i −0.00284206 + 0.432476i
\(573\) −81.5443 141.239i −0.142311 0.246490i
\(574\) 617.064 + 2.02753i 1.07503 + 0.00353228i
\(575\) −158.014 + 91.2292i −0.274806 + 0.158660i
\(576\) 289.114 478.711i 0.501934 0.831096i
\(577\) −103.722 −0.179762 −0.0898808 0.995953i \(-0.528649\pi\)
−0.0898808 + 0.995953i \(0.528649\pi\)
\(578\) 420.901 241.167i 0.728202 0.417244i
\(579\) −27.2302 15.7214i −0.0470297 0.0271526i
\(580\) 7.01664 + 12.3397i 0.0120977 + 0.0212754i
\(581\) −177.929 −0.306247
\(582\) 40.7002 + 71.0328i 0.0699317 + 0.122050i
\(583\) −151.977 87.7438i −0.260680 0.150504i
\(584\) 108.994 61.5032i 0.186633 0.105314i
\(585\) −410.468 + 710.952i −0.701655 + 1.21530i
\(586\) 427.767 + 248.849i 0.729977 + 0.424657i
\(587\) −491.362 + 283.688i −0.837074 + 0.483285i −0.856269 0.516531i \(-0.827223\pi\)
0.0191946 + 0.999816i \(0.493890\pi\)
\(588\) 78.5371 + 46.0342i 0.133567 + 0.0782895i
\(589\) 876.220 717.459i 1.48764 1.21810i
\(590\) −234.736 409.678i −0.397858 0.694370i
\(591\) 107.620 62.1345i 0.182098 0.105135i
\(592\) 63.8761 107.353i 0.107899 0.181340i
\(593\) −157.268 + 272.396i −0.265207 + 0.459352i −0.967618 0.252420i \(-0.918774\pi\)
0.702411 + 0.711772i \(0.252107\pi\)
\(594\) 41.1165 + 23.9191i 0.0692197 + 0.0402679i
\(595\) −227.150 131.145i −0.381764 0.220412i
\(596\) 465.868 794.798i 0.781657 1.33355i
\(597\) 122.789 0.205676
\(598\) −940.684 3.09087i −1.57305 0.00516868i
\(599\) 503.360 + 290.615i 0.840333 + 0.485167i 0.857378 0.514688i \(-0.172092\pi\)
−0.0170441 + 0.999855i \(0.505426\pi\)
\(600\) −37.4798 0.369461i −0.0624664 0.000615768i
\(601\) −191.970 −0.319418 −0.159709 0.987164i \(-0.551056\pi\)
−0.159709 + 0.987164i \(0.551056\pi\)
\(602\) 0.447040 136.054i 0.000742592 0.226003i
\(603\) 318.914 184.125i 0.528878 0.305348i
\(604\) −649.718 + 369.444i −1.07569 + 0.611662i
\(605\) 227.153 + 393.440i 0.375459 + 0.650314i
\(606\) −72.6771 + 124.931i −0.119929 + 0.206156i
\(607\) 503.612i 0.829675i 0.909896 + 0.414837i \(0.136162\pi\)
−0.909896 + 0.414837i \(0.863838\pi\)
\(608\) 565.186 + 224.118i 0.929582 + 0.368616i
\(609\) 4.41083 0.00724274
\(610\) −17.0192 9.90072i −0.0279003 0.0162307i
\(611\) 1127.74 651.101i 1.84573 1.06563i
\(612\) 117.752 + 207.083i 0.192405 + 0.338372i
\(613\) −72.2021 125.058i −0.117785 0.204009i 0.801105 0.598524i \(-0.204246\pi\)
−0.918890 + 0.394515i \(0.870913\pi\)
\(614\) −198.574 0.652469i −0.323411 0.00106265i
\(615\) 64.9995i 0.105690i
\(616\) −1.99774 + 202.660i −0.00324308 + 0.328994i
\(617\) −73.7633 + 127.762i −0.119552 + 0.207069i −0.919590 0.392879i \(-0.871479\pi\)
0.800038 + 0.599949i \(0.204812\pi\)
\(618\) 0.439498 133.758i 0.000711162 0.216437i
\(619\) 240.726i 0.388895i −0.980913 0.194448i \(-0.937709\pi\)
0.980913 0.194448i \(-0.0622915\pi\)
\(620\) −818.728 479.894i −1.32053 0.774022i
\(621\) −90.4401 + 156.647i −0.145636 + 0.252249i
\(622\) 72.8335 125.199i 0.117096 0.201285i
\(623\) 594.110 + 343.009i 0.953627 + 0.550577i
\(624\) −166.068 98.8120i −0.266135 0.158353i
\(625\) 156.134 + 270.432i 0.249815 + 0.432692i
\(626\) −731.096 + 418.902i −1.16788 + 0.669172i
\(627\) −9.00047 + 23.8329i −0.0143548 + 0.0380110i
\(628\) −326.126 + 556.391i −0.519309 + 0.885972i
\(629\) 26.6060 + 46.0829i 0.0422989 + 0.0732638i
\(630\) −338.192 + 581.346i −0.536813 + 0.922772i
\(631\) 641.965 + 370.639i 1.01738 + 0.587383i 0.913343 0.407191i \(-0.133492\pi\)
0.104034 + 0.994574i \(0.466825\pi\)
\(632\) −289.039 512.225i −0.457340 0.810483i
\(633\) −22.3492 + 38.7100i −0.0353068 + 0.0611532i
\(634\) 495.354 283.827i 0.781315 0.447676i
\(635\) 135.683i 0.213674i
\(636\) 119.164 67.7592i 0.187365 0.106540i
\(637\) −524.866 + 909.094i −0.823965 + 1.42715i
\(638\) 2.32283 + 4.05396i 0.00364080 + 0.00635417i
\(639\) 894.607i 1.40001i
\(640\) 11.7176 509.363i 0.0183087 0.795880i
\(641\) −168.177 291.291i −0.262366 0.454432i 0.704504 0.709700i \(-0.251169\pi\)
−0.966870 + 0.255268i \(0.917836\pi\)
\(642\) −0.282328 + 85.9246i −0.000439763 + 0.133839i
\(643\) 530.178 306.098i 0.824538 0.476047i −0.0274407 0.999623i \(-0.508736\pi\)
0.851979 + 0.523576i \(0.175402\pi\)
\(644\) −770.652 5.06442i −1.19666 0.00786401i
\(645\) −14.3314 −0.0222193
\(646\) −200.924 + 163.419i −0.311027 + 0.252970i
\(647\) 22.0321i 0.0340527i −0.999855 0.0170263i \(-0.994580\pi\)
0.999855 0.0170263i \(-0.00541992\pi\)
\(648\) 515.571 290.927i 0.795634 0.448961i
\(649\) −77.7051 134.589i −0.119731 0.207379i
\(650\) 1.42013 432.205i 0.00218481 0.664931i
\(651\) −255.376 + 147.441i −0.392282 + 0.226484i
\(652\) 395.431 224.851i 0.606490 0.344863i
\(653\) 432.929 0.662984 0.331492 0.943458i \(-0.392448\pi\)
0.331492 + 0.943458i \(0.392448\pi\)
\(654\) 46.9700 + 81.9752i 0.0718195 + 0.125344i
\(655\) 649.300 + 374.873i 0.991297 + 0.572326i
\(656\) −510.548 6.71052i −0.778274 0.0102295i
\(657\) 136.697 0.208062
\(658\) 925.659 530.382i 1.40678 0.806052i
\(659\) −550.072 317.584i −0.834707 0.481918i 0.0207547 0.999785i \(-0.493393\pi\)
−0.855462 + 0.517866i \(0.826726\pi\)
\(660\) 21.3480 + 0.140291i 0.0323455 + 0.000212562i
\(661\) 555.362 961.915i 0.840184 1.45524i −0.0495545 0.998771i \(-0.515780\pi\)
0.889739 0.456470i \(-0.150887\pi\)
\(662\) 13.6688 23.4965i 0.0206478 0.0354932i
\(663\) 71.2872 41.1577i 0.107522 0.0620779i
\(664\) 147.220 + 1.45124i 0.221717 + 0.00218560i
\(665\) −684.045 258.329i −1.02864 0.388464i
\(666\) 118.389 67.8341i 0.177761 0.101853i
\(667\) −15.3864 + 8.88335i −0.0230681 + 0.0133184i
\(668\) −3.18265 + 484.303i −0.00476445 + 0.725005i
\(669\) −44.0843 + 76.3562i −0.0658958 + 0.114135i
\(670\) 168.701 289.994i 0.251793 0.432827i
\(671\) −5.61246 3.24036i −0.00836432 0.00482914i
\(672\) −135.786 81.3993i −0.202063 0.121130i
\(673\) −1159.87 −1.72344 −0.861718 0.507388i \(-0.830611\pi\)
−0.861718 + 0.507388i \(0.830611\pi\)
\(674\) 1.47295 448.283i 0.00218539 0.665108i
\(675\) −71.9727 41.5535i −0.106626 0.0615607i
\(676\) 784.970 1339.21i 1.16120 1.98107i
\(677\) −1044.27 −1.54250 −0.771248 0.636535i \(-0.780367\pi\)
−0.771248 + 0.636535i \(0.780367\pi\)
\(678\) −27.2423 0.0895120i −0.0401805 0.000132024i
\(679\) −669.782 + 386.699i −0.986425 + 0.569513i
\(680\) 186.876 + 110.363i 0.274817 + 0.162299i
\(681\) 63.7791 + 110.469i 0.0936551 + 0.162215i
\(682\) −269.998 157.069i −0.395892 0.230306i
\(683\) 1038.26i 1.52014i 0.649841 + 0.760070i \(0.274835\pi\)
−0.649841 + 0.760070i \(0.725165\pi\)
\(684\) 417.341 + 516.580i 0.610148 + 0.755234i
\(685\) −652.595 −0.952693
\(686\) 43.9927 75.6226i 0.0641292 0.110237i
\(687\) −87.7961 + 50.6891i −0.127796 + 0.0737833i
\(688\) −1.47957 + 112.568i −0.00215054 + 0.163617i
\(689\) 790.356 + 1368.94i 1.14711 + 1.98685i
\(690\) −0.266735 + 81.1788i −0.000386572 + 0.117650i
\(691\) 240.378i 0.347870i 0.984757 + 0.173935i \(0.0556483\pi\)
−0.984757 + 0.173935i \(0.944352\pi\)
\(692\) −241.507 + 412.025i −0.348998 + 0.595412i
\(693\) −110.685 + 191.712i −0.159719 + 0.276641i
\(694\) 154.544 + 0.507795i 0.222685 + 0.000731692i
\(695\) 152.903i 0.220004i
\(696\) −3.64956 0.0359758i −0.00524362 5.16894e-5i
\(697\) 108.749 188.358i 0.156024 0.270241i
\(698\) −237.708 138.284i −0.340556 0.198115i
\(699\) 127.953 + 73.8735i 0.183051 + 0.105685i
\(700\) 2.32689 354.083i 0.00332413 0.505832i
\(701\) 52.8209 + 91.4885i 0.0753508 + 0.130511i 0.901239 0.433323i \(-0.142659\pi\)
−0.825888 + 0.563834i \(0.809326\pi\)
\(702\) −213.014 371.767i −0.303439 0.529583i
\(703\) 93.9789 + 114.775i 0.133683 + 0.163264i
\(704\) 3.30589 167.666i 0.00469587 0.238163i
\(705\) −56.1885 97.3213i −0.0797000 0.138044i
\(706\) −87.2054 50.7309i −0.123520 0.0718567i
\(707\) −1182.47 682.701i −1.67252 0.965630i
\(708\) 121.396 + 0.797764i 0.171463 + 0.00112679i
\(709\) 133.751 231.663i 0.188647 0.326747i −0.756152 0.654396i \(-0.772923\pi\)
0.944799 + 0.327649i \(0.106256\pi\)
\(710\) 405.195 + 707.175i 0.570698 + 0.996021i
\(711\) 642.416i 0.903538i
\(712\) −488.774 288.655i −0.686480 0.405414i
\(713\) 593.889 1028.65i 0.832944 1.44270i
\(714\) 58.5132 33.5267i 0.0819513 0.0469562i
\(715\) 246.173i 0.344298i
\(716\) −827.946 + 470.787i −1.15635 + 0.657524i
\(717\) 10.1397 + 17.5625i 0.0141418 + 0.0244944i
\(718\) −1010.71 3.32097i −1.40768 0.00462530i
\(719\) 931.697 537.915i 1.29582 0.748144i 0.316143 0.948711i \(-0.397612\pi\)
0.979680 + 0.200567i \(0.0642786\pi\)
\(720\) 284.565 478.252i 0.395229 0.664239i
\(721\) 1263.62 1.75260
\(722\) −479.036 + 540.193i −0.663485 + 0.748190i
\(723\) 155.542i 0.215134i
\(724\) 611.102 + 4.01592i 0.844063 + 0.00554685i
\(725\) −4.08153 7.06941i −0.00562969 0.00975092i
\(726\) −116.806 0.383798i −0.160890 0.000528648i
\(727\) 231.915 133.896i 0.319003 0.184176i −0.331945 0.943299i \(-0.607705\pi\)
0.650948 + 0.759122i \(0.274372\pi\)
\(728\) 928.320 1571.91i 1.27516 2.15921i
\(729\) 604.810 0.829643
\(730\) 108.057 61.9141i 0.148023 0.0848138i
\(731\) −41.5302 23.9775i −0.0568128 0.0328009i
\(732\) 4.40070 2.50233i 0.00601188 0.00341848i
\(733\) −517.076 −0.705424 −0.352712 0.935732i \(-0.614740\pi\)
−0.352712 + 0.935732i \(0.614740\pi\)
\(734\) 184.784 + 322.498i 0.251749 + 0.439370i
\(735\) 78.4527 + 45.2947i 0.106738 + 0.0616254i
\(736\) 637.603 + 10.4760i 0.866308 + 0.0142337i
\(737\) 55.2133 95.6322i 0.0749162 0.129759i
\(738\) −482.067 280.437i −0.653207 0.379996i
\(739\) 74.5529 43.0432i 0.100884 0.0582451i −0.448709 0.893678i \(-0.648116\pi\)
0.549593 + 0.835433i \(0.314783\pi\)
\(740\) 62.8606 107.244i 0.0849467 0.144924i
\(741\) 177.549 145.379i 0.239607 0.196193i
\(742\) 643.819 + 1123.64i 0.867680 + 1.51434i
\(743\) 22.5854 13.0397i 0.0303976 0.0175501i −0.484724 0.874667i \(-0.661080\pi\)
0.515122 + 0.857117i \(0.327747\pi\)
\(744\) 212.503 119.911i 0.285622 0.161171i
\(745\) 458.384 793.944i 0.615280 1.06570i
\(746\) −758.487 441.242i −1.01674 0.591477i
\(747\) 139.267 + 80.4060i 0.186436 + 0.107639i
\(748\) 61.6284 + 36.1232i 0.0823909 + 0.0482931i
\(749\) −811.736 −1.08376
\(750\) −139.140 0.457180i −0.185519 0.000609574i
\(751\) −715.806 413.271i −0.953137 0.550294i −0.0590833 0.998253i \(-0.518818\pi\)
−0.894054 + 0.447959i \(0.852151\pi\)
\(752\) −770.224 + 431.293i −1.02423 + 0.573528i
\(753\) 204.475 0.271547
\(754\) 0.138283 42.0855i 0.000183399 0.0558163i
\(755\) −644.114 + 371.879i −0.853131 + 0.492555i
\(756\) −173.512 305.145i −0.229513 0.403632i
\(757\) −6.25471 10.8335i −0.00826249 0.0143111i 0.861865 0.507138i \(-0.169297\pi\)
−0.870127 + 0.492827i \(0.835963\pi\)
\(758\) 153.277 263.480i 0.202212 0.347599i
\(759\) 26.7198i 0.0352040i
\(760\) 563.877 + 219.322i 0.741944 + 0.288582i
\(761\) −722.622 −0.949568 −0.474784 0.880102i \(-0.657474\pi\)
−0.474784 + 0.880102i \(0.657474\pi\)
\(762\) −30.1544 17.5420i −0.0395727 0.0230210i
\(763\) −772.960 + 446.269i −1.01305 + 0.584887i
\(764\) −1108.22 + 630.157i −1.45055 + 0.824813i
\(765\) 118.528 + 205.297i 0.154939 + 0.268362i
\(766\) 158.670 + 0.521352i 0.207141 + 0.000680617i
\(767\) 1399.87i 1.82512i
\(768\) 111.687 + 68.4580i 0.145425 + 0.0891380i
\(769\) 173.928 301.252i 0.226174 0.391745i −0.730497 0.682916i \(-0.760711\pi\)
0.956671 + 0.291171i \(0.0940448\pi\)
\(770\) −0.662669 + 201.679i −0.000860609 + 0.261920i
\(771\) 6.56545i 0.00851549i
\(772\) −124.289 + 212.044i −0.160996 + 0.274669i
\(773\) 224.641 389.089i 0.290609