Properties

Label 76.3.g.c.7.13
Level $76$
Weight $3$
Character 76.7
Analytic conductor $2.071$
Analytic rank $0$
Dimension $28$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 76 = 2^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 76.g (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.07085000914\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 7.13
Character \(\chi\) \(=\) 76.7
Dual form 76.3.g.c.11.13

$q$-expansion

\(f(q)\) \(=\) \(q+(1.61779 - 1.17591i) q^{2} +(0.851777 - 0.491774i) q^{3} +(1.23446 - 3.80475i) q^{4} +(1.71651 + 2.97309i) q^{5} +(0.799709 - 1.79720i) q^{6} -2.43870i q^{7} +(-2.47697 - 7.60688i) q^{8} +(-4.01632 + 6.95647i) q^{9} +O(q^{10})\) \(q+(1.61779 - 1.17591i) q^{2} +(0.851777 - 0.491774i) q^{3} +(1.23446 - 3.80475i) q^{4} +(1.71651 + 2.97309i) q^{5} +(0.799709 - 1.79720i) q^{6} -2.43870i q^{7} +(-2.47697 - 7.60688i) q^{8} +(-4.01632 + 6.95647i) q^{9} +(6.27304 + 2.79135i) q^{10} -7.76499i q^{11} +(-0.819592 - 3.84787i) q^{12} +(-4.63516 + 8.02833i) q^{13} +(-2.86769 - 3.94529i) q^{14} +(2.92417 + 1.68827i) q^{15} +(-12.9522 - 9.39360i) q^{16} +(8.87198 + 15.3667i) q^{17} +(1.68266 + 15.9769i) q^{18} +(-6.84864 + 17.7228i) q^{19} +(13.4308 - 2.86075i) q^{20} +(-1.19929 - 2.07722i) q^{21} +(-9.13095 - 12.5621i) q^{22} +(-10.0507 - 5.80275i) q^{23} +(-5.85069 - 5.26126i) q^{24} +(6.60717 - 11.4440i) q^{25} +(1.94192 + 18.4387i) q^{26} +16.7524i q^{27} +(-9.27862 - 3.01047i) q^{28} +(2.64340 - 4.57851i) q^{29} +(6.71594 - 0.707310i) q^{30} +10.2531i q^{31} +(-32.0000 + 0.0338554i) q^{32} +(-3.81862 - 6.61404i) q^{33} +(32.4229 + 14.4274i) q^{34} +(7.25045 - 4.18605i) q^{35} +(21.5096 + 23.8685i) q^{36} -7.71952 q^{37} +(9.76078 + 36.7250i) q^{38} +9.11779i q^{39} +(18.3642 - 20.4215i) q^{40} +(-25.2287 - 43.6973i) q^{41} +(-4.38282 - 1.95025i) q^{42} +(43.2661 - 24.9797i) q^{43} +(-29.5438 - 9.58555i) q^{44} -27.5762 q^{45} +(-23.0833 + 2.43109i) q^{46} +(-74.9827 - 43.2913i) q^{47} +(-15.6519 - 1.63169i) q^{48} +43.0528 q^{49} +(-2.76811 - 26.2833i) q^{50} +(15.1139 + 8.72601i) q^{51} +(24.8239 + 27.5462i) q^{52} +(17.3665 - 30.0797i) q^{53} +(19.6994 + 27.1018i) q^{54} +(23.0860 - 13.3287i) q^{55} +(-18.5509 + 6.04056i) q^{56} +(2.88207 + 18.4638i) q^{57} +(-1.10747 - 10.5155i) q^{58} +(63.9961 - 36.9482i) q^{59} +(10.0332 - 9.04164i) q^{60} +(40.4426 - 70.0487i) q^{61} +(12.0567 + 16.5873i) q^{62} +(16.9647 + 9.79458i) q^{63} +(-51.7293 + 37.6840i) q^{64} -31.8252 q^{65} +(-13.9552 - 6.20973i) q^{66} +(14.8972 + 8.60089i) q^{67} +(69.4186 - 14.7861i) q^{68} -11.4146 q^{69} +(6.80724 - 15.2980i) q^{70} +(-47.9333 + 27.6743i) q^{71} +(62.8653 + 13.3207i) q^{72} +(27.9468 + 48.4053i) q^{73} +(-12.4885 + 9.07749i) q^{74} -12.9969i q^{75} +(58.9763 + 47.9354i) q^{76} -18.9364 q^{77} +(10.7217 + 14.7506i) q^{78} +(-95.2318 + 54.9821i) q^{79} +(5.69534 - 54.6323i) q^{80} +(-27.9085 - 48.3389i) q^{81} +(-92.1988 - 41.0262i) q^{82} +31.3464i q^{83} +(-9.38379 + 1.99874i) q^{84} +(-30.4577 + 52.7543i) q^{85} +(40.6213 - 91.2889i) q^{86} -5.19983i q^{87} +(-59.0674 + 19.2336i) q^{88} +(-5.29483 + 9.17091i) q^{89} +(-44.6124 + 32.4272i) q^{90} +(19.5786 + 11.3037i) q^{91} +(-34.4851 + 31.0770i) q^{92} +(5.04219 + 8.73334i) q^{93} +(-172.213 + 18.1371i) q^{94} +(-64.4471 + 10.0597i) q^{95} +(-27.2402 + 15.7656i) q^{96} +(65.4893 + 113.431i) q^{97} +(69.6501 - 50.6263i) q^{98} +(54.0169 + 31.1867i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28q - 5q^{2} - 11q^{4} + 6q^{5} - 3q^{6} - 62q^{8} + 20q^{9} + O(q^{10}) \) \( 28q - 5q^{2} - 11q^{4} + 6q^{5} - 3q^{6} - 62q^{8} + 20q^{9} + 26q^{12} + 30q^{13} - 30q^{14} - 19q^{16} + 38q^{17} - 60q^{18} - 44q^{20} + 80q^{21} + 45q^{22} + 17q^{24} - 16q^{25} - 56q^{26} + 54q^{28} + 6q^{29} + 96q^{30} - 45q^{32} - 176q^{33} - 20q^{34} + 30q^{36} + 104q^{37} - 258q^{38} + 94q^{40} - 2q^{41} - 2q^{42} + 201q^{44} - 360q^{45} + 164q^{46} - 17q^{48} - 20q^{49} + 490q^{50} - 102q^{52} - 242q^{53} - 13q^{54} + 276q^{56} - 254q^{57} + 96q^{58} + 10q^{60} - 58q^{61} - 36q^{62} - 74q^{64} - 260q^{65} + 167q^{66} + 396q^{68} + 340q^{69} + 60q^{70} - 422q^{72} - 82q^{73} - 136q^{74} + 123q^{76} - 144q^{77} + 224q^{78} - 174q^{80} + 410q^{81} - 305q^{82} + 252q^{84} + 714q^{85} + 166q^{86} - 718q^{88} + 150q^{89} - 272q^{90} - 588q^{92} + 344q^{93} - 488q^{94} - 122q^{96} + 94q^{97} + 307q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/76\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(39\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.61779 1.17591i 0.808893 0.587956i
\(3\) 0.851777 0.491774i 0.283926 0.163925i −0.351274 0.936273i \(-0.614251\pi\)
0.635199 + 0.772348i \(0.280918\pi\)
\(4\) 1.23446 3.80475i 0.308614 0.951187i
\(5\) 1.71651 + 2.97309i 0.343302 + 0.594617i 0.985044 0.172304i \(-0.0551211\pi\)
−0.641741 + 0.766921i \(0.721788\pi\)
\(6\) 0.799709 1.79720i 0.133285 0.299533i
\(7\) 2.43870i 0.348385i −0.984712 0.174193i \(-0.944268\pi\)
0.984712 0.174193i \(-0.0557315\pi\)
\(8\) −2.47697 7.60688i −0.309621 0.950860i
\(9\) −4.01632 + 6.95647i −0.446257 + 0.772941i
\(10\) 6.27304 + 2.79135i 0.627304 + 0.279135i
\(11\) 7.76499i 0.705908i −0.935641 0.352954i \(-0.885177\pi\)
0.935641 0.352954i \(-0.114823\pi\)
\(12\) −0.819592 3.84787i −0.0682994 0.320656i
\(13\) −4.63516 + 8.02833i −0.356551 + 0.617564i −0.987382 0.158356i \(-0.949381\pi\)
0.630832 + 0.775920i \(0.282714\pi\)
\(14\) −2.86769 3.94529i −0.204835 0.281806i
\(15\) 2.92417 + 1.68827i 0.194945 + 0.112551i
\(16\) −12.9522 9.39360i −0.809514 0.587100i
\(17\) 8.87198 + 15.3667i 0.521881 + 0.903924i 0.999676 + 0.0254531i \(0.00810285\pi\)
−0.477795 + 0.878471i \(0.658564\pi\)
\(18\) 1.68266 + 15.9769i 0.0934810 + 0.887606i
\(19\) −6.84864 + 17.7228i −0.360455 + 0.932777i
\(20\) 13.4308 2.86075i 0.671540 0.143037i
\(21\) −1.19929 2.07722i −0.0571089 0.0989155i
\(22\) −9.13095 12.5621i −0.415043 0.571004i
\(23\) −10.0507 5.80275i −0.436985 0.252293i 0.265333 0.964157i \(-0.414518\pi\)
−0.702318 + 0.711863i \(0.747852\pi\)
\(24\) −5.85069 5.26126i −0.243779 0.219219i
\(25\) 6.60717 11.4440i 0.264287 0.457758i
\(26\) 1.94192 + 18.4387i 0.0746894 + 0.709179i
\(27\) 16.7524i 0.620459i
\(28\) −9.27862 3.01047i −0.331379 0.107517i
\(29\) 2.64340 4.57851i 0.0911519 0.157880i −0.816844 0.576858i \(-0.804278\pi\)
0.907996 + 0.418979i \(0.137612\pi\)
\(30\) 6.71594 0.707310i 0.223865 0.0235770i
\(31\) 10.2531i 0.330744i 0.986231 + 0.165372i \(0.0528825\pi\)
−0.986231 + 0.165372i \(0.947117\pi\)
\(32\) −32.0000 + 0.0338554i −0.999999 + 0.00105798i
\(33\) −3.81862 6.61404i −0.115716 0.200425i
\(34\) 32.4229 + 14.4274i 0.953614 + 0.424335i
\(35\) 7.25045 4.18605i 0.207156 0.119601i
\(36\) 21.5096 + 23.8685i 0.597490 + 0.663015i
\(37\) −7.71952 −0.208636 −0.104318 0.994544i \(-0.533266\pi\)
−0.104318 + 0.994544i \(0.533266\pi\)
\(38\) 9.76078 + 36.7250i 0.256863 + 0.966448i
\(39\) 9.11779i 0.233790i
\(40\) 18.3642 20.4215i 0.459104 0.510538i
\(41\) −25.2287 43.6973i −0.615333 1.06579i −0.990326 0.138761i \(-0.955688\pi\)
0.374992 0.927028i \(-0.377645\pi\)
\(42\) −4.38282 1.95025i −0.104353 0.0464345i
\(43\) 43.2661 24.9797i 1.00619 0.580923i 0.0961149 0.995370i \(-0.469358\pi\)
0.910073 + 0.414447i \(0.136025\pi\)
\(44\) −29.5438 9.58555i −0.671451 0.217854i
\(45\) −27.5762 −0.612805
\(46\) −23.0833 + 2.43109i −0.501812 + 0.0528499i
\(47\) −74.9827 43.2913i −1.59538 0.921091i −0.992362 0.123361i \(-0.960633\pi\)
−0.603015 0.797730i \(-0.706034\pi\)
\(48\) −15.6519 1.63169i −0.326082 0.0339936i
\(49\) 43.0528 0.878628
\(50\) −2.76811 26.2833i −0.0553622 0.525667i
\(51\) 15.1139 + 8.72601i 0.296351 + 0.171098i
\(52\) 24.8239 + 27.5462i 0.477382 + 0.529735i
\(53\) 17.3665 30.0797i 0.327671 0.567542i −0.654379 0.756167i \(-0.727070\pi\)
0.982049 + 0.188625i \(0.0604030\pi\)
\(54\) 19.6994 + 27.1018i 0.364803 + 0.501885i
\(55\) 23.0860 13.3287i 0.419745 0.242340i
\(56\) −18.5509 + 6.04056i −0.331265 + 0.107867i
\(57\) 2.88207 + 18.4638i 0.0505626 + 0.323927i
\(58\) −1.10747 10.5155i −0.0190943 0.181301i
\(59\) 63.9961 36.9482i 1.08468 0.626240i 0.152525 0.988300i \(-0.451259\pi\)
0.932155 + 0.362059i \(0.117926\pi\)
\(60\) 10.0332 9.04164i 0.167220 0.150694i
\(61\) 40.4426 70.0487i 0.662994 1.14834i −0.316831 0.948482i \(-0.602619\pi\)
0.979825 0.199857i \(-0.0640477\pi\)
\(62\) 12.0567 + 16.5873i 0.194463 + 0.267537i
\(63\) 16.9647 + 9.79458i 0.269281 + 0.155469i
\(64\) −51.7293 + 37.6840i −0.808270 + 0.588812i
\(65\) −31.8252 −0.489619
\(66\) −13.9552 6.20973i −0.211443 0.0940869i
\(67\) 14.8972 + 8.60089i 0.222346 + 0.128371i 0.607036 0.794674i \(-0.292358\pi\)
−0.384690 + 0.923046i \(0.625692\pi\)
\(68\) 69.4186 14.7861i 1.02086 0.217442i
\(69\) −11.4146 −0.165428
\(70\) 6.80724 15.2980i 0.0972463 0.218543i
\(71\) −47.9333 + 27.6743i −0.675117 + 0.389779i −0.798013 0.602640i \(-0.794115\pi\)
0.122896 + 0.992420i \(0.460782\pi\)
\(72\) 62.8653 + 13.3207i 0.873129 + 0.185010i
\(73\) 27.9468 + 48.4053i 0.382833 + 0.663087i 0.991466 0.130365i \(-0.0416150\pi\)
−0.608633 + 0.793452i \(0.708282\pi\)
\(74\) −12.4885 + 9.07749i −0.168764 + 0.122669i
\(75\) 12.9969i 0.173292i
\(76\) 58.9763 + 47.9354i 0.776004 + 0.630728i
\(77\) −18.9364 −0.245928
\(78\) 10.7217 + 14.7506i 0.137458 + 0.189111i
\(79\) −95.2318 + 54.9821i −1.20547 + 0.695976i −0.961765 0.273874i \(-0.911695\pi\)
−0.243701 + 0.969850i \(0.578361\pi\)
\(80\) 5.69534 54.6323i 0.0711918 0.682904i
\(81\) −27.9085 48.3389i −0.344549 0.596776i
\(82\) −92.1988 41.0262i −1.12438 0.500319i
\(83\) 31.3464i 0.377667i 0.982009 + 0.188834i \(0.0604707\pi\)
−0.982009 + 0.188834i \(0.939529\pi\)
\(84\) −9.38379 + 1.99874i −0.111712 + 0.0237945i
\(85\) −30.4577 + 52.7543i −0.358326 + 0.620639i
\(86\) 40.6213 91.2889i 0.472341 1.06150i
\(87\) 5.19983i 0.0597681i
\(88\) −59.0674 + 19.2336i −0.671220 + 0.218564i
\(89\) −5.29483 + 9.17091i −0.0594925 + 0.103044i −0.894238 0.447592i \(-0.852282\pi\)
0.834745 + 0.550636i \(0.185615\pi\)
\(90\) −44.6124 + 32.4272i −0.495693 + 0.360303i
\(91\) 19.5786 + 11.3037i 0.215150 + 0.124217i
\(92\) −34.4851 + 31.0770i −0.374838 + 0.337793i
\(93\) 5.04219 + 8.73334i 0.0542171 + 0.0939068i
\(94\) −172.213 + 18.1371i −1.83205 + 0.192948i
\(95\) −64.4471 + 10.0597i −0.678390 + 0.105892i
\(96\) −27.2402 + 15.7656i −0.283752 + 0.164225i
\(97\) 65.4893 + 113.431i 0.675148 + 1.16939i 0.976426 + 0.215854i \(0.0692535\pi\)
−0.301278 + 0.953536i \(0.597413\pi\)
\(98\) 69.6501 50.6263i 0.710716 0.516595i
\(99\) 54.0169 + 31.1867i 0.545625 + 0.315017i
\(100\) −35.3851 39.2657i −0.353851 0.392657i
\(101\) −43.6489 + 75.6021i −0.432167 + 0.748536i −0.997060 0.0766289i \(-0.975584\pi\)
0.564892 + 0.825165i \(0.308918\pi\)
\(102\) 34.7121 3.65581i 0.340314 0.0358413i
\(103\) 95.9601i 0.931651i 0.884877 + 0.465826i \(0.154243\pi\)
−0.884877 + 0.465826i \(0.845757\pi\)
\(104\) 72.5517 + 15.3732i 0.697612 + 0.147819i
\(105\) 4.11718 7.13116i 0.0392112 0.0679158i
\(106\) −7.27581 69.0841i −0.0686397 0.651737i
\(107\) 87.4042i 0.816861i −0.912789 0.408431i \(-0.866076\pi\)
0.912789 0.408431i \(-0.133924\pi\)
\(108\) 63.7387 + 20.6801i 0.590173 + 0.191483i
\(109\) 93.5748 + 162.076i 0.858485 + 1.48694i 0.873374 + 0.487050i \(0.161927\pi\)
−0.0148892 + 0.999889i \(0.504740\pi\)
\(110\) 21.6748 48.7101i 0.197043 0.442819i
\(111\) −6.57531 + 3.79626i −0.0592370 + 0.0342005i
\(112\) −22.9081 + 31.5865i −0.204537 + 0.282023i
\(113\) −181.373 −1.60507 −0.802534 0.596606i \(-0.796516\pi\)
−0.802534 + 0.596606i \(0.796516\pi\)
\(114\) 26.3744 + 26.4814i 0.231354 + 0.232293i
\(115\) 39.8420i 0.346452i
\(116\) −14.1569 15.7095i −0.122042 0.135426i
\(117\) −37.2325 64.4886i −0.318227 0.551185i
\(118\) 60.0842 135.028i 0.509188 1.14431i
\(119\) 37.4747 21.6361i 0.314914 0.181816i
\(120\) 5.59941 26.4256i 0.0466617 0.220213i
\(121\) 60.7049 0.501694
\(122\) −16.9437 160.881i −0.138882 1.31869i
\(123\) −42.9784 24.8136i −0.349418 0.201737i
\(124\) 39.0104 + 12.6570i 0.314600 + 0.102073i
\(125\) 131.191 1.04953
\(126\) 38.9628 4.10349i 0.309229 0.0325674i
\(127\) −141.699 81.8097i −1.11574 0.644171i −0.175428 0.984492i \(-0.556131\pi\)
−0.940309 + 0.340321i \(0.889464\pi\)
\(128\) −39.3738 + 121.794i −0.307608 + 0.951513i
\(129\) 24.5687 42.5543i 0.190455 0.329878i
\(130\) −51.4864 + 37.4237i −0.396049 + 0.287874i
\(131\) 179.080 103.392i 1.36702 0.789250i 0.376475 0.926427i \(-0.377136\pi\)
0.990547 + 0.137177i \(0.0438028\pi\)
\(132\) −29.8787 + 6.36413i −0.226354 + 0.0482131i
\(133\) 43.2204 + 16.7018i 0.324965 + 0.125577i
\(134\) 34.2143 3.60339i 0.255331 0.0268910i
\(135\) −49.8063 + 28.7557i −0.368936 + 0.213005i
\(136\) 94.9172 105.551i 0.697921 0.776110i
\(137\) 70.8332 122.687i 0.517031 0.895524i −0.482774 0.875745i \(-0.660371\pi\)
0.999804 0.0197784i \(-0.00629607\pi\)
\(138\) −18.4663 + 13.4225i −0.133814 + 0.0972647i
\(139\) 140.060 + 80.8637i 1.00763 + 0.581753i 0.910496 0.413519i \(-0.135700\pi\)
0.0971300 + 0.995272i \(0.469034\pi\)
\(140\) −6.97649 32.7536i −0.0498321 0.233955i
\(141\) −85.1581 −0.603958
\(142\) −45.0032 + 101.137i −0.316924 + 0.712229i
\(143\) 62.3399 + 35.9920i 0.435943 + 0.251692i
\(144\) 117.367 52.3740i 0.815045 0.363709i
\(145\) 18.1497 0.125171
\(146\) 102.132 + 45.4464i 0.699537 + 0.311277i
\(147\) 36.6714 21.1722i 0.249465 0.144029i
\(148\) −9.52943 + 29.3708i −0.0643880 + 0.198452i
\(149\) −3.94728 6.83690i −0.0264918 0.0458852i 0.852476 0.522767i \(-0.175100\pi\)
−0.878967 + 0.476882i \(0.841767\pi\)
\(150\) −15.2833 21.0263i −0.101888 0.140175i
\(151\) 214.335i 1.41944i −0.704484 0.709719i \(-0.748822\pi\)
0.704484 0.709719i \(-0.251178\pi\)
\(152\) 151.779 + 8.19816i 0.998544 + 0.0539353i
\(153\) −142.531 −0.931573
\(154\) −30.6351 + 22.2676i −0.198929 + 0.144595i
\(155\) −30.4833 + 17.5995i −0.196666 + 0.113545i
\(156\) 34.6909 + 11.2555i 0.222378 + 0.0721508i
\(157\) −5.93576 10.2810i −0.0378074 0.0654844i 0.846503 0.532385i \(-0.178704\pi\)
−0.884310 + 0.466900i \(0.845371\pi\)
\(158\) −89.4105 + 200.934i −0.565889 + 1.27173i
\(159\) 34.1616i 0.214853i
\(160\) −55.0290 95.0806i −0.343931 0.594254i
\(161\) −14.1511 + 24.5105i −0.0878953 + 0.152239i
\(162\) −101.992 45.3840i −0.629582 0.280148i
\(163\) 309.533i 1.89897i 0.313807 + 0.949487i \(0.398396\pi\)
−0.313807 + 0.949487i \(0.601604\pi\)
\(164\) −197.401 + 42.0462i −1.20367 + 0.256379i
\(165\) 13.1094 22.7062i 0.0794509 0.137613i
\(166\) 36.8606 + 50.7117i 0.222052 + 0.305492i
\(167\) −133.887 77.2997i −0.801719 0.462872i 0.0423532 0.999103i \(-0.486515\pi\)
−0.844072 + 0.536230i \(0.819848\pi\)
\(168\) −12.8306 + 14.2680i −0.0763727 + 0.0849288i
\(169\) 41.5306 + 71.9332i 0.245743 + 0.425640i
\(170\) 12.7604 + 121.161i 0.0750613 + 0.712710i
\(171\) −95.7814 118.823i −0.560125 0.694869i
\(172\) −41.6313 195.453i −0.242042 1.13635i
\(173\) −120.328 208.413i −0.695535 1.20470i −0.970000 0.243105i \(-0.921834\pi\)
0.274465 0.961597i \(-0.411499\pi\)
\(174\) −6.11454 8.41220i −0.0351411 0.0483460i
\(175\) −27.9083 16.1129i −0.159476 0.0920736i
\(176\) −72.9413 + 100.574i −0.414439 + 0.571443i
\(177\) 36.3403 62.9432i 0.205312 0.355611i
\(178\) 2.21830 + 21.0628i 0.0124623 + 0.118330i
\(179\) 261.566i 1.46126i 0.682772 + 0.730632i \(0.260774\pi\)
−0.682772 + 0.730632i \(0.739226\pi\)
\(180\) −34.0417 + 104.921i −0.189121 + 0.582892i
\(181\) 57.7654 100.053i 0.319146 0.552777i −0.661164 0.750241i \(-0.729937\pi\)
0.980310 + 0.197464i \(0.0632706\pi\)
\(182\) 44.9663 4.73576i 0.247067 0.0260207i
\(183\) 79.5545i 0.434724i
\(184\) −19.2457 + 90.8274i −0.104596 + 0.493627i
\(185\) −13.2507 22.9508i −0.0716252 0.124058i
\(186\) 18.4268 + 8.19948i 0.0990690 + 0.0440832i
\(187\) 119.322 68.8908i 0.638088 0.368400i
\(188\) −257.275 + 231.849i −1.36849 + 1.23324i
\(189\) 40.8540 0.216159
\(190\) −92.4321 + 92.0586i −0.486485 + 0.484519i
\(191\) 359.726i 1.88338i 0.336482 + 0.941690i \(0.390763\pi\)
−0.336482 + 0.941690i \(0.609237\pi\)
\(192\) −25.5298 + 57.5374i −0.132968 + 0.299674i
\(193\) −123.197 213.383i −0.638325 1.10561i −0.985800 0.167922i \(-0.946294\pi\)
0.347475 0.937689i \(-0.387039\pi\)
\(194\) 239.332 + 106.497i 1.23367 + 0.548954i
\(195\) −27.1080 + 15.6508i −0.139015 + 0.0802605i
\(196\) 53.1468 163.805i 0.271157 0.835740i
\(197\) −69.4731 −0.352655 −0.176328 0.984332i \(-0.556422\pi\)
−0.176328 + 0.984332i \(0.556422\pi\)
\(198\) 124.061 13.0658i 0.626568 0.0659890i
\(199\) −119.714 69.1172i −0.601580 0.347322i 0.168083 0.985773i \(-0.446242\pi\)
−0.769663 + 0.638450i \(0.779576\pi\)
\(200\) −103.419 21.9137i −0.517093 0.109568i
\(201\) 16.9188 0.0841730
\(202\) 18.2869 + 173.635i 0.0905294 + 0.859580i
\(203\) −11.1656 6.44646i −0.0550029 0.0317560i
\(204\) 51.8577 46.7327i 0.254205 0.229082i
\(205\) 86.6106 150.014i 0.422491 0.731776i
\(206\) 112.841 + 155.243i 0.547770 + 0.753606i
\(207\) 80.7333 46.6114i 0.390016 0.225176i
\(208\) 135.451 60.4439i 0.651205 0.290596i
\(209\) 137.617 + 53.1796i 0.658455 + 0.254448i
\(210\) −1.72491 16.3781i −0.00821388 0.0779911i
\(211\) −83.2015 + 48.0364i −0.394320 + 0.227661i −0.684030 0.729454i \(-0.739774\pi\)
0.289710 + 0.957114i \(0.406441\pi\)
\(212\) −93.0076 103.207i −0.438715 0.486828i
\(213\) −27.2190 + 47.1447i −0.127789 + 0.221337i
\(214\) −102.780 141.401i −0.480279 0.660753i
\(215\) 148.534 + 85.7559i 0.690854 + 0.398865i
\(216\) 127.434 41.4951i 0.589970 0.192107i
\(217\) 25.0041 0.115226
\(218\) 341.972 + 152.169i 1.56868 + 0.698023i
\(219\) 47.6089 + 27.4870i 0.217392 + 0.125512i
\(220\) −22.2137 104.290i −0.100971 0.474046i
\(221\) −164.492 −0.744308
\(222\) −6.17337 + 13.8735i −0.0278080 + 0.0624934i
\(223\) 118.020 68.1387i 0.529236 0.305555i −0.211469 0.977385i \(-0.567825\pi\)
0.740705 + 0.671830i \(0.234491\pi\)
\(224\) 0.0825630 + 78.0382i 0.000368585 + 0.348385i
\(225\) 53.0730 + 91.9252i 0.235880 + 0.408556i
\(226\) −293.422 + 213.279i −1.29833 + 0.943710i
\(227\) 237.981i 1.04838i −0.851602 0.524188i \(-0.824369\pi\)
0.851602 0.524188i \(-0.175631\pi\)
\(228\) 73.8080 + 11.8273i 0.323719 + 0.0518739i
\(229\) 162.743 0.710668 0.355334 0.934739i \(-0.384367\pi\)
0.355334 + 0.934739i \(0.384367\pi\)
\(230\) −46.8507 64.4557i −0.203699 0.280242i
\(231\) −16.1296 + 9.31245i −0.0698252 + 0.0403136i
\(232\) −41.3758 8.76725i −0.178344 0.0377899i
\(233\) −2.50814 4.34423i −0.0107646 0.0186448i 0.860593 0.509293i \(-0.170093\pi\)
−0.871358 + 0.490649i \(0.836760\pi\)
\(234\) −136.067 60.5465i −0.581484 0.258746i
\(235\) 297.240i 1.26485i
\(236\) −61.5780 289.100i −0.260924 1.22500i
\(237\) −54.0775 + 93.6650i −0.228175 + 0.395211i
\(238\) 35.1840 79.0695i 0.147832 0.332225i
\(239\) 324.149i 1.35627i 0.734936 + 0.678137i \(0.237212\pi\)
−0.734936 + 0.678137i \(0.762788\pi\)
\(240\) −22.0156 49.3354i −0.0917316 0.205564i
\(241\) −115.832 + 200.626i −0.480629 + 0.832474i −0.999753 0.0222253i \(-0.992925\pi\)
0.519124 + 0.854699i \(0.326258\pi\)
\(242\) 98.2075 71.3837i 0.405816 0.294974i
\(243\) −178.116 102.835i −0.732986 0.423190i
\(244\) −216.593 240.346i −0.887676 0.985025i
\(245\) 73.9006 + 128.000i 0.301635 + 0.522447i
\(246\) −98.7084 + 10.3958i −0.401254 + 0.0422593i
\(247\) −110.540 137.131i −0.447529 0.555186i
\(248\) 77.9939 25.3965i 0.314492 0.102405i
\(249\) 15.4153 + 26.7001i 0.0619089 + 0.107229i
\(250\) 212.238 154.269i 0.848954 0.617076i
\(251\) −29.0811 16.7900i −0.115861 0.0668923i 0.440950 0.897532i \(-0.354642\pi\)
−0.556810 + 0.830640i \(0.687975\pi\)
\(252\) 58.2081 52.4554i 0.230985 0.208157i
\(253\) −45.0583 + 78.0433i −0.178096 + 0.308471i
\(254\) −325.439 + 34.2746i −1.28126 + 0.134940i
\(255\) 59.9132i 0.234954i
\(256\) 79.5204 + 243.336i 0.310626 + 0.950532i
\(257\) −68.8685 + 119.284i −0.267971 + 0.464139i −0.968338 0.249644i \(-0.919686\pi\)
0.700367 + 0.713783i \(0.253020\pi\)
\(258\) −10.2932 97.7343i −0.0398961 0.378815i
\(259\) 18.8256i 0.0726856i
\(260\) −39.2869 + 121.087i −0.151103 + 0.465719i
\(261\) 21.2335 + 36.7775i 0.0813544 + 0.140910i
\(262\) 168.133 377.848i 0.641729 1.44217i
\(263\) 312.128 180.207i 1.18680 0.685198i 0.229220 0.973375i \(-0.426382\pi\)
0.957577 + 0.288177i \(0.0930491\pi\)
\(264\) −40.8536 + 45.4305i −0.154749 + 0.172085i
\(265\) 119.240 0.449960
\(266\) 89.5611 23.8036i 0.336696 0.0894871i
\(267\) 10.4154i 0.0390091i
\(268\) 51.1142 46.0626i 0.190725 0.171875i
\(269\) 183.963 + 318.633i 0.683876 + 1.18451i 0.973789 + 0.227455i \(0.0730404\pi\)
−0.289913 + 0.957053i \(0.593626\pi\)
\(270\) −46.7617 + 105.088i −0.173192 + 0.389216i
\(271\) −18.4102 + 10.6292i −0.0679345 + 0.0392220i −0.533583 0.845748i \(-0.679155\pi\)
0.465648 + 0.884970i \(0.345821\pi\)
\(272\) 29.4370 282.373i 0.108224 1.03814i
\(273\) 22.2355 0.0814488
\(274\) −29.6760 281.774i −0.108306 1.02837i
\(275\) −88.8622 51.3046i −0.323135 0.186562i
\(276\) −14.0908 + 43.4295i −0.0510536 + 0.157353i
\(277\) −221.207 −0.798581 −0.399290 0.916825i \(-0.630743\pi\)
−0.399290 + 0.916825i \(0.630743\pi\)
\(278\) 321.676 33.8783i 1.15711 0.121864i
\(279\) −71.3252 41.1796i −0.255646 0.147597i
\(280\) −49.8019 44.7846i −0.177864 0.159945i
\(281\) −56.6252 + 98.0777i −0.201513 + 0.349031i −0.949016 0.315227i \(-0.897919\pi\)
0.747503 + 0.664258i \(0.231253\pi\)
\(282\) −137.767 + 100.138i −0.488537 + 0.355101i
\(283\) 136.312 78.7000i 0.481669 0.278092i −0.239443 0.970911i \(-0.576965\pi\)
0.721112 + 0.692819i \(0.243631\pi\)
\(284\) 46.1222 + 216.537i 0.162402 + 0.762454i
\(285\) −49.9474 + 40.2620i −0.175254 + 0.141270i
\(286\) 143.176 15.0790i 0.500615 0.0527239i
\(287\) −106.565 + 61.5250i −0.371305 + 0.214373i
\(288\) 128.287 222.743i 0.445439 0.773412i
\(289\) −12.9240 + 22.3850i −0.0447196 + 0.0774567i
\(290\) 29.3624 21.3425i 0.101250 0.0735949i
\(291\) 111.565 + 64.4119i 0.383384 + 0.221347i
\(292\) 218.669 46.5763i 0.748868 0.159508i
\(293\) −206.366 −0.704322 −0.352161 0.935939i \(-0.614553\pi\)
−0.352161 + 0.935939i \(0.614553\pi\)
\(294\) 34.4297 77.3744i 0.117108 0.263178i
\(295\) 219.700 + 126.844i 0.744747 + 0.429980i
\(296\) 19.1210 + 58.7215i 0.0645979 + 0.198383i
\(297\) 130.082 0.437987
\(298\) −14.4255 6.41897i −0.0484076 0.0215402i
\(299\) 93.1728 53.7933i 0.311615 0.179911i
\(300\) −49.4501 16.0442i −0.164834 0.0534806i
\(301\) −60.9179 105.513i −0.202385 0.350541i
\(302\) −252.040 346.748i −0.834568 1.14817i
\(303\) 85.8615i 0.283371i
\(304\) 255.186 165.216i 0.839427 0.543473i
\(305\) 277.681 0.910429
\(306\) −230.584 + 167.604i −0.753543 + 0.547724i
\(307\) −475.527 + 274.546i −1.54895 + 0.894285i −0.550725 + 0.834687i \(0.685649\pi\)
−0.998222 + 0.0595984i \(0.981018\pi\)
\(308\) −23.3762 + 72.0484i −0.0758969 + 0.233923i
\(309\) 47.1906 + 81.7366i 0.152721 + 0.264520i
\(310\) −28.6199 + 64.3179i −0.0923222 + 0.207477i
\(311\) 189.205i 0.608375i −0.952612 0.304188i \(-0.901615\pi\)
0.952612 0.304188i \(-0.0983850\pi\)
\(312\) 69.3580 22.5845i 0.222301 0.0723861i
\(313\) 44.4599 77.0067i 0.142044 0.246028i −0.786222 0.617944i \(-0.787966\pi\)
0.928266 + 0.371916i \(0.121299\pi\)
\(314\) −21.6924 9.65258i −0.0690841 0.0307407i
\(315\) 67.2500i 0.213492i
\(316\) 91.6335 + 430.206i 0.289979 + 1.36141i
\(317\) 175.632 304.204i 0.554045 0.959634i −0.443932 0.896060i \(-0.646417\pi\)
0.997977 0.0635735i \(-0.0202497\pi\)
\(318\) −40.1711 55.2662i −0.126324 0.173793i
\(319\) −35.5521 20.5260i −0.111449 0.0643449i
\(320\) −200.832 89.1106i −0.627599 0.278471i
\(321\) −42.9831 74.4489i −0.133904 0.231928i
\(322\) 5.92870 + 56.2932i 0.0184121 + 0.174824i
\(323\) −333.102 + 51.9948i −1.03127 + 0.160974i
\(324\) −218.369 + 46.5124i −0.673979 + 0.143557i
\(325\) 61.2506 + 106.089i 0.188463 + 0.326428i
\(326\) 363.984 + 500.757i 1.11651 + 1.53607i
\(327\) 159.410 + 92.0353i 0.487492 + 0.281453i
\(328\) −269.910 + 300.148i −0.822896 + 0.915086i
\(329\) −105.574 + 182.860i −0.320894 + 0.555805i
\(330\) −5.49226 52.1492i −0.0166432 0.158028i
\(331\) 428.498i 1.29456i 0.762254 + 0.647278i \(0.224093\pi\)
−0.762254 + 0.647278i \(0.775907\pi\)
\(332\) 119.265 + 38.6958i 0.359232 + 0.116554i
\(333\) 31.0041 53.7006i 0.0931053 0.161263i
\(334\) −307.498 + 32.3851i −0.920653 + 0.0969615i
\(335\) 59.0541i 0.176281i
\(336\) −3.97920 + 38.1703i −0.0118429 + 0.113602i
\(337\) −145.765 252.472i −0.432537 0.749176i 0.564554 0.825396i \(-0.309048\pi\)
−0.997091 + 0.0762204i \(0.975715\pi\)
\(338\) 151.775 + 67.5360i 0.449038 + 0.199811i
\(339\) −154.489 + 89.1943i −0.455720 + 0.263110i
\(340\) 163.118 + 181.007i 0.479759 + 0.532373i
\(341\) 79.6150 0.233475
\(342\) −294.679 79.5988i −0.861634 0.232745i
\(343\) 224.489i 0.654486i
\(344\) −297.186 267.246i −0.863913 0.776879i
\(345\) −19.5932 33.9365i −0.0567920 0.0983666i
\(346\) −439.740 195.673i −1.27093 0.565530i
\(347\) 243.463 140.563i 0.701622 0.405082i −0.106329 0.994331i \(-0.533910\pi\)
0.807951 + 0.589249i \(0.200576\pi\)
\(348\) −19.7840 6.41897i −0.0568507 0.0184453i
\(349\) −18.0923 −0.0518403 −0.0259202 0.999664i \(-0.508252\pi\)
−0.0259202 + 0.999664i \(0.508252\pi\)
\(350\) −64.0970 + 6.75058i −0.183134 + 0.0192874i
\(351\) −134.494 77.6500i −0.383173 0.221225i
\(352\) 0.262887 + 248.480i 0.000746837 + 0.705908i
\(353\) −258.038 −0.730985 −0.365492 0.930814i \(-0.619099\pi\)
−0.365492 + 0.930814i \(0.619099\pi\)
\(354\) −15.2250 144.562i −0.0430084 0.408366i
\(355\) −164.556 95.0066i −0.463539 0.267624i
\(356\) 28.3568 + 31.4666i 0.0796539 + 0.0883893i
\(357\) 21.2801 36.8582i 0.0596081 0.103244i
\(358\) 307.579 + 423.158i 0.859159 + 1.18201i
\(359\) 237.555 137.153i 0.661714 0.382041i −0.131216 0.991354i \(-0.541888\pi\)
0.792930 + 0.609313i \(0.208555\pi\)
\(360\) 68.3054 + 209.769i 0.189737 + 0.582692i
\(361\) −267.192 242.754i −0.740145 0.672448i
\(362\) −24.2012 229.791i −0.0668540 0.634781i
\(363\) 51.7071 29.8531i 0.142444 0.0822399i
\(364\) 67.1769 60.5378i 0.184552 0.166313i
\(365\) −95.9421 + 166.177i −0.262855 + 0.455279i
\(366\) −93.5491 128.702i −0.255599 0.351645i
\(367\) 523.494 + 302.240i 1.42642 + 0.823541i 0.996836 0.0794877i \(-0.0253284\pi\)
0.429580 + 0.903029i \(0.358662\pi\)
\(368\) 75.6697 + 169.570i 0.205624 + 0.460789i
\(369\) 405.305 1.09839
\(370\) −48.4249 21.5479i −0.130878 0.0582375i
\(371\) −73.3553 42.3517i −0.197723 0.114156i
\(372\) 39.4525 8.40334i 0.106055 0.0225896i
\(373\) −277.069 −0.742813 −0.371406 0.928470i \(-0.621124\pi\)
−0.371406 + 0.928470i \(0.621124\pi\)
\(374\) 112.028 251.763i 0.299541 0.673164i
\(375\) 111.745 64.5162i 0.297987 0.172043i
\(376\) −143.582 + 677.616i −0.381867 + 1.80217i
\(377\) 24.5052 + 42.4442i 0.0650005 + 0.112584i
\(378\) 66.0930 48.0408i 0.174849 0.127092i
\(379\) 335.762i 0.885915i −0.896543 0.442958i \(-0.853929\pi\)
0.896543 0.442958i \(-0.146071\pi\)
\(380\) −41.2825 + 257.623i −0.108638 + 0.677956i
\(381\) −160.927 −0.422382
\(382\) 423.006 + 581.959i 1.10735 + 1.52345i
\(383\) −256.524 + 148.104i −0.669775 + 0.386695i −0.795991 0.605308i \(-0.793050\pi\)
0.126216 + 0.992003i \(0.459717\pi\)
\(384\) 26.3572 + 123.104i 0.0686386 + 0.320584i
\(385\) −32.5046 56.2997i −0.0844276 0.146233i
\(386\) −450.226 200.339i −1.16639 0.519014i
\(387\) 401.305i 1.03697i
\(388\) 512.420 109.145i 1.32067 0.281301i
\(389\) 352.122 609.894i 0.905199 1.56785i 0.0845496 0.996419i \(-0.473055\pi\)
0.820650 0.571432i \(-0.193612\pi\)
\(390\) −25.4509 + 57.1963i −0.0652588 + 0.146657i
\(391\) 205.927i 0.526669i
\(392\) −106.640 327.497i −0.272041 0.835452i
\(393\) 101.691 176.133i 0.258755 0.448177i
\(394\) −112.393 + 81.6943i −0.285260 + 0.207346i
\(395\) −326.933 188.755i −0.827679 0.477861i
\(396\) 185.339 167.022i 0.468028 0.421773i
\(397\) −159.646 276.514i −0.402130 0.696510i 0.591853 0.806046i \(-0.298397\pi\)
−0.993983 + 0.109536i \(0.965063\pi\)
\(398\) −274.948 + 28.9570i −0.690824 + 0.0727563i
\(399\) 45.0276 7.02849i 0.112851 0.0176153i
\(400\) −193.078 + 86.1596i −0.482694 + 0.215399i
\(401\) −142.641 247.061i −0.355712 0.616111i 0.631528 0.775353i \(-0.282428\pi\)
−0.987240 + 0.159242i \(0.949095\pi\)
\(402\) 27.3709 19.8950i 0.0680869 0.0494900i
\(403\) −82.3151 47.5246i −0.204256 0.117927i
\(404\) 233.764 + 259.401i 0.578624 + 0.642081i
\(405\) 95.8104 165.949i 0.236569 0.409749i
\(406\) −25.6440 + 2.70078i −0.0631626 + 0.00665217i
\(407\) 59.9420i 0.147278i
\(408\) 28.9411 136.584i 0.0709342 0.334764i
\(409\) 9.38811 16.2607i 0.0229538 0.0397572i −0.854320 0.519747i \(-0.826026\pi\)
0.877274 + 0.479990i \(0.159360\pi\)
\(410\) −36.2860 344.537i −0.0885025 0.840334i
\(411\) 139.336i 0.339016i
\(412\) 365.104 + 118.459i 0.886175 + 0.287521i
\(413\) −90.1054 156.067i −0.218173 0.377886i
\(414\) 75.7982 170.342i 0.183087 0.411455i
\(415\) −93.1955 + 53.8064i −0.224567 + 0.129654i
\(416\) 148.053 257.063i 0.355897 0.617941i
\(417\) 159.066 0.381454
\(418\) 285.169 75.7924i 0.682224 0.181322i
\(419\) 147.770i 0.352674i 0.984330 + 0.176337i \(0.0564248\pi\)
−0.984330 + 0.176337i \(0.943575\pi\)
\(420\) −22.0498 24.4679i −0.0524995 0.0582570i
\(421\) 172.053 + 298.005i 0.408678 + 0.707851i 0.994742 0.102414i \(-0.0326567\pi\)
−0.586064 + 0.810265i \(0.699323\pi\)
\(422\) −78.1155 + 175.550i −0.185108 + 0.415996i
\(423\) 602.309 347.743i 1.42390 0.822088i
\(424\) −271.829 57.5988i −0.641107 0.135846i
\(425\) 234.475 0.551705
\(426\) 11.4036 + 108.277i 0.0267689 + 0.254172i
\(427\) −170.827 98.6272i −0.400064 0.230977i
\(428\) −332.551 107.897i −0.776988 0.252095i
\(429\) 70.7996 0.165034
\(430\) 341.137 35.9279i 0.793341 0.0835533i
\(431\) 283.031 + 163.408i 0.656686 + 0.379138i 0.791013 0.611799i \(-0.209554\pi\)
−0.134327 + 0.990937i \(0.542887\pi\)
\(432\) 157.365 216.981i 0.364272 0.502271i
\(433\) −258.077 + 447.003i −0.596022 + 1.03234i 0.397380 + 0.917654i \(0.369920\pi\)
−0.993402 + 0.114686i \(0.963414\pi\)
\(434\) 40.4513 29.4027i 0.0932058 0.0677481i
\(435\) 15.4595 8.92557i 0.0355392 0.0205185i
\(436\) 732.174 155.952i 1.67930 0.357689i
\(437\) 171.674 138.384i 0.392847 0.316669i
\(438\) 109.343 11.5158i 0.249642 0.0262919i
\(439\) 741.197 427.930i 1.68838 0.974784i 0.732612 0.680646i \(-0.238301\pi\)
0.955763 0.294137i \(-0.0950323\pi\)
\(440\) −158.573 142.598i −0.360393 0.324085i
\(441\) −172.914 + 299.495i −0.392094 + 0.679127i
\(442\) −266.113 + 193.428i −0.602065 + 0.437621i
\(443\) −276.161 159.442i −0.623389 0.359914i 0.154798 0.987946i \(-0.450527\pi\)
−0.778187 + 0.628032i \(0.783861\pi\)
\(444\) 6.32686 + 29.7037i 0.0142497 + 0.0669003i
\(445\) −36.3545 −0.0816956
\(446\) 110.805 249.015i 0.248442 0.558329i
\(447\) −6.72441 3.88234i −0.0150434 0.00868533i
\(448\) 91.8997 + 126.152i 0.205133 + 0.281589i
\(449\) 671.176 1.49482 0.747412 0.664361i \(-0.231296\pi\)
0.747412 + 0.664361i \(0.231296\pi\)
\(450\) 193.957 + 86.3059i 0.431015 + 0.191791i
\(451\) −339.309 + 195.900i −0.752349 + 0.434369i
\(452\) −223.897 + 690.078i −0.495347 + 1.52672i
\(453\) −105.404 182.566i −0.232681 0.403015i
\(454\) −279.845 385.003i −0.616400 0.848024i
\(455\) 77.6120i 0.170576i
\(456\) 133.313 67.6578i 0.292354 0.148372i
\(457\) −557.508 −1.21993 −0.609965 0.792429i \(-0.708816\pi\)
−0.609965 + 0.792429i \(0.708816\pi\)
\(458\) 263.283 191.371i 0.574854 0.417842i
\(459\) −257.429 + 148.627i −0.560848 + 0.323806i
\(460\) −151.589 49.1832i −0.329541 0.106920i
\(461\) 289.697 + 501.770i 0.628410 + 1.08844i 0.987871 + 0.155278i \(0.0496274\pi\)
−0.359460 + 0.933160i \(0.617039\pi\)
\(462\) −15.1437 + 34.0326i −0.0327785 + 0.0736636i
\(463\) 338.056i 0.730142i 0.930980 + 0.365071i \(0.118955\pi\)
−0.930980 + 0.365071i \(0.881045\pi\)
\(464\) −77.2467 + 34.4708i −0.166480 + 0.0742906i
\(465\) −17.3100 + 29.9817i −0.0372257 + 0.0644769i
\(466\) −9.16608 4.07868i −0.0196697 0.00875253i
\(467\) 297.175i 0.636349i −0.948032 0.318175i \(-0.896930\pi\)
0.948032 0.318175i \(-0.103070\pi\)
\(468\) −291.325 + 62.0519i −0.622489 + 0.132590i
\(469\) 20.9750 36.3297i 0.0447227 0.0774620i
\(470\) −349.528 480.870i −0.743677 1.02313i
\(471\) −10.1119 5.83810i −0.0214690 0.0123951i
\(472\) −439.577 395.292i −0.931307 0.837482i
\(473\) −193.967 335.961i −0.410078 0.710277i
\(474\) 22.6561 + 215.120i 0.0477976 + 0.453840i
\(475\) 157.568 + 195.473i 0.331723 + 0.411522i
\(476\) −36.0588 169.291i −0.0757537 0.355653i
\(477\) 139.499 + 241.620i 0.292451 + 0.506540i
\(478\) 381.171 + 524.404i 0.797430 + 1.09708i
\(479\) −271.879 156.970i −0.567597 0.327703i 0.188592 0.982056i \(-0.439608\pi\)
−0.756189 + 0.654353i \(0.772941\pi\)
\(480\) −93.6306 53.9256i −0.195064 0.112345i
\(481\) 35.7812 61.9749i 0.0743892 0.128846i
\(482\) 48.5283 + 460.778i 0.100681 + 0.955971i
\(483\) 27.8366i 0.0576328i
\(484\) 74.9377 230.967i 0.154830 0.477205i
\(485\) −224.826 + 389.411i −0.463560 + 0.802909i
\(486\) −409.078 + 43.0833i −0.841724 + 0.0886489i
\(487\) 94.5905i 0.194231i 0.995273 + 0.0971155i \(0.0309616\pi\)
−0.995273 + 0.0971155i \(0.969038\pi\)
\(488\) −633.027 134.134i −1.29719 0.274865i
\(489\) 152.220 + 263.653i 0.311288 + 0.539167i
\(490\) 270.072 + 120.175i 0.551167 + 0.245255i
\(491\) 292.034 168.606i 0.594774 0.343393i −0.172209 0.985060i \(-0.555090\pi\)
0.766983 + 0.641668i \(0.221757\pi\)
\(492\) −147.465 + 132.891i −0.299725 + 0.270103i
\(493\) 93.8089 0.190282
\(494\) −340.083 91.8635i −0.688428 0.185958i
\(495\) 214.129i 0.432584i
\(496\) 96.3134 132.800i 0.194180 0.267742i
\(497\) 67.4892 + 116.895i 0.135793 + 0.235201i
\(498\) 56.3357 + 25.0680i 0.113124 + 0.0503373i
\(499\) −617.010 + 356.231i −1.23649 + 0.713890i −0.968376 0.249496i \(-0.919735\pi\)
−0.268118 + 0.963386i \(0.586402\pi\)
\(500\) 161.949 499.148i 0.323899 0.998296i
\(501\) −152.056 −0.303505
\(502\) −66.7904 + 7.03425i −0.133049 + 0.0140124i
\(503\) −165.562 95.5870i −0.329148 0.190034i 0.326315 0.945261i \(-0.394193\pi\)
−0.655463 + 0.755227i \(0.727526\pi\)
\(504\) 32.4852 153.309i 0.0644548 0.304185i
\(505\) −299.695 −0.593456
\(506\) 18.8774 + 179.242i 0.0373072 + 0.354233i
\(507\) 70.7497 + 40.8473i 0.139546 + 0.0805668i
\(508\) −486.186 + 438.137i −0.957060 + 0.862474i
\(509\) −300.486 + 520.456i −0.590345 + 1.02251i 0.403841 + 0.914829i \(0.367675\pi\)
−0.994186 + 0.107678i \(0.965658\pi\)
\(510\) 70.4527 + 96.9267i 0.138143 + 0.190052i
\(511\) 118.046 68.1538i 0.231010 0.133373i
\(512\) 414.789 + 300.157i 0.810135 + 0.586244i
\(513\) −296.899 114.731i −0.578750 0.223648i
\(514\) 28.8529 + 273.959i 0.0561340 + 0.532994i
\(515\) −285.298 + 164.717i −0.553976 + 0.319838i
\(516\) −131.579 146.009i −0.254998 0.282964i
\(517\) −336.156 + 582.240i −0.650206 + 1.12619i
\(518\) 22.1372 + 30.4557i 0.0427360 + 0.0587948i
\(519\) −204.984 118.348i −0.394960 0.228031i
\(520\) 78.8299 + 242.091i 0.151596 + 0.465559i
\(521\) 65.8959 0.126480 0.0632398 0.997998i \(-0.479857\pi\)
0.0632398 + 0.997998i \(0.479857\pi\)
\(522\) 77.5984 + 34.5294i 0.148656 + 0.0661482i
\(523\) −210.412 121.482i −0.402318 0.232278i 0.285166 0.958478i \(-0.407951\pi\)
−0.687484 + 0.726200i \(0.741285\pi\)
\(524\) −172.313 808.986i −0.328842 1.54387i
\(525\) −31.6956 −0.0603725
\(526\) 293.048 658.571i 0.557125 1.25204i
\(527\) −157.556 + 90.9651i −0.298968 + 0.172609i
\(528\) −12.6701 + 121.537i −0.0239964 + 0.230184i
\(529\) −197.156 341.485i −0.372696 0.645528i
\(530\) 192.904 140.215i 0.363970 0.264557i
\(531\) 593.583i 1.11786i
\(532\) 116.900 143.825i 0.219736 0.270348i
\(533\) 467.755 0.877590
\(534\) 12.2476 + 16.8499i 0.0229356 + 0.0315542i
\(535\) 259.860 150.030i 0.485720 0.280430i
\(536\) 28.5262 134.625i 0.0532204 0.251166i
\(537\) 128.631 + 222.796i 0.239537 + 0.414890i
\(538\) 672.296 + 299.155i 1.24962 + 0.556050i
\(539\) 334.304i 0.620231i
\(540\) 47.9244 + 224.998i 0.0887489 + 0.416663i
\(541\) 176.484 305.680i 0.326219 0.565028i −0.655539 0.755161i \(-0.727559\pi\)
0.981758 + 0.190133i \(0.0608920\pi\)
\(542\) −17.2849 + 38.8445i −0.0318909 + 0.0716689i
\(543\) 113.630i 0.209264i
\(544\) −284.423 491.434i −0.522837 0.903372i
\(545\) −321.245 + 556.412i −0.589440 + 1.02094i
\(546\) 35.9723 26.1470i 0.0658833 0.0478883i
\(547\) 795.788 + 459.449i 1.45482 + 0.839943i 0.998749 0.0499992i \(-0.0159219\pi\)
0.456074 + 0.889942i \(0.349255\pi\)
\(548\) −379.352 420.954i −0.692247 0.768165i
\(549\) 324.861 + 562.675i 0.591732 + 1.02491i
\(550\) −204.090 + 21.4944i −0.371072 + 0.0390807i
\(551\) 63.0401 + 78.2050i 0.114410 + 0.141933i
\(552\) 28.2735 + 86.8292i 0.0512200 + 0.157299i
\(553\) 134.085 + 232.241i 0.242468 + 0.419966i
\(554\) −357.865 + 260.120i −0.645966 + 0.469531i
\(555\) −22.5732 13.0326i −0.0406724 0.0234822i
\(556\) 480.564 433.070i 0.864324 0.778903i
\(557\) 271.529 470.301i 0.487484 0.844347i −0.512413 0.858739i \(-0.671248\pi\)
0.999896 + 0.0143926i \(0.00458146\pi\)
\(558\) −163.812 + 17.2524i −0.293571 + 0.0309183i
\(559\) 463.139i 0.828514i
\(560\) −133.232 13.8892i −0.237914 0.0248021i
\(561\) 67.7574 117.359i 0.120780 0.209196i
\(562\) 23.7234 + 225.255i 0.0422125 + 0.400809i
\(563\) 60.6683i 0.107759i 0.998547 + 0.0538795i \(0.0171587\pi\)
−0.998547 + 0.0538795i \(0.982841\pi\)
\(564\) −105.124 + 324.005i −0.186390 + 0.574477i
\(565\) −311.328 539.237i −0.551024 0.954401i
\(566\) 127.980 287.611i 0.226113 0.508147i
\(567\) −117.884 + 68.0602i −0.207908 + 0.120036i
\(568\) 329.244 + 296.075i 0.579656 + 0.521258i
\(569\) 527.240 0.926609 0.463304 0.886199i \(-0.346664\pi\)
0.463304 + 0.886199i \(0.346664\pi\)
\(570\) −33.4596 + 123.869i −0.0587010 + 0.217314i
\(571\) 470.688i 0.824322i −0.911111 0.412161i \(-0.864774\pi\)
0.911111 0.412161i \(-0.135226\pi\)
\(572\) 213.896 192.757i 0.373945 0.336988i
\(573\) 176.904 + 306.406i 0.308732 + 0.534740i
\(574\) −100.050 + 224.845i −0.174304 + 0.391716i
\(575\) −132.813 + 76.6796i −0.230979 + 0.133356i
\(576\) −54.3859 511.204i −0.0944201 0.887507i
\(577\) 302.670 0.524558 0.262279 0.964992i \(-0.415526\pi\)
0.262279 + 0.964992i \(0.415526\pi\)
\(578\) 5.41457 + 51.4116i 0.00936777 + 0.0889474i
\(579\) −209.872 121.170i −0.362474 0.209274i
\(580\) 22.4051 69.0552i 0.0386295 0.119061i
\(581\) 76.4443 0.131574
\(582\) 256.230 26.9857i 0.440258 0.0463672i
\(583\) −233.569 134.851i −0.400633 0.231305i
\(584\) 298.990 332.487i 0.511970 0.569326i
\(585\) 127.820 221.391i 0.218496 0.378446i
\(586\) −333.857 + 242.669i −0.569721 + 0.414111i
\(587\) 329.898 190.467i 0.562008 0.324475i −0.191943 0.981406i \(-0.561479\pi\)
0.753951 + 0.656931i \(0.228146\pi\)
\(588\) −35.2857 165.662i −0.0600097 0.281737i
\(589\) −181.713 70.2197i −0.308511 0.119218i
\(590\) 504.585 53.1420i 0.855229 0.0900712i
\(591\) −59.1756 + 34.1650i −0.100128 + 0.0578088i
\(592\) 99.9850 + 72.5141i 0.168894 + 0.122490i
\(593\) 182.978 316.927i 0.308563 0.534446i −0.669486 0.742825i \(-0.733485\pi\)
0.978048 + 0.208379i \(0.0668187\pi\)
\(594\) 210.445 152.965i 0.354285 0.257517i
\(595\) 128.652 + 74.2771i 0.216221 + 0.124835i
\(596\) −30.8854 + 6.57856i −0.0518212 + 0.0110379i
\(597\) −135.960 −0.227739
\(598\) 87.4773 196.589i 0.146283 0.328744i
\(599\) −114.625 66.1790i −0.191361 0.110483i 0.401258 0.915965i \(-0.368573\pi\)
−0.592620 + 0.805482i \(0.701906\pi\)
\(600\) −98.8662 + 32.1930i −0.164777 + 0.0536549i
\(601\) 30.0876 0.0500626 0.0250313 0.999687i \(-0.492031\pi\)
0.0250313 + 0.999687i \(0.492031\pi\)
\(602\) −222.626 99.0630i −0.369810 0.164556i
\(603\) −119.664 + 69.0878i −0.198447 + 0.114573i
\(604\) −815.492 264.588i −1.35015 0.438059i
\(605\) 104.201 + 180.481i 0.172233 + 0.298316i
\(606\) 100.966 + 138.905i 0.166610 + 0.229217i
\(607\) 25.4139i 0.0418681i −0.999781 0.0209340i \(-0.993336\pi\)
0.999781 0.0209340i \(-0.00666400\pi\)
\(608\) 218.556 567.360i 0.359468 0.933157i
\(609\) −12.6808 −0.0208223
\(610\) 449.228 326.529i 0.736439 0.535293i
\(611\) 695.113 401.324i 1.13766 0.656831i
\(612\) −175.948 + 542.294i −0.287497 + 0.886101i
\(613\) −536.454 929.165i −0.875128 1.51577i −0.856626 0.515938i \(-0.827443\pi\)
−0.0185025 0.999829i \(-0.505890\pi\)
\(614\) −446.459 + 1003.33i −0.727131 + 1.63409i
\(615\) 170.371i 0.277027i
\(616\) 46.9049 + 144.047i 0.0761444 + 0.233843i
\(617\) −304.579 + 527.546i −0.493645 + 0.855018i −0.999973 0.00732287i \(-0.997669\pi\)
0.506328 + 0.862341i \(0.331002\pi\)
\(618\) 172.459 + 76.7402i 0.279061 + 0.124175i
\(619\) 546.890i 0.883505i −0.897137 0.441753i \(-0.854357\pi\)
0.897137 0.441753i \(-0.145643\pi\)
\(620\) 29.3315 + 137.707i 0.0473088 + 0.222108i
\(621\) 97.2100 168.373i 0.156538 0.271132i
\(622\) −222.488 306.092i −0.357698 0.492110i
\(623\) 22.3651 + 12.9125i 0.0358990 + 0.0207263i
\(624\) 85.6489 118.096i 0.137258 0.189256i
\(625\) 60.0112 + 103.942i 0.0960179 + 0.166308i
\(626\) −18.6267 176.861i −0.0297551 0.282526i
\(627\) 143.371 22.3792i 0.228662 0.0356926i
\(628\) −46.4442 + 9.89257i −0.0739558 + 0.0157525i
\(629\) −68.4874 118.624i −0.108883 0.188591i
\(630\) 79.0802 + 108.796i 0.125524 + 0.172692i
\(631\) −340.675 196.689i −0.539897 0.311710i 0.205140 0.978733i \(-0.434235\pi\)
−0.745037 + 0.667023i \(0.767568\pi\)
\(632\) 654.128 + 588.228i 1.03501 + 0.930741i
\(633\) −47.2461 + 81.8326i −0.0746384 + 0.129277i
\(634\) −73.5821 698.665i −0.116060 1.10199i
\(635\) 561.710i 0.884582i
\(636\) −129.976 42.1711i −0.204365 0.0663068i
\(637\) −199.556 + 345.642i −0.313275 + 0.542609i
\(638\) −81.6525 + 8.59949i −0.127982 + 0.0134788i
\(639\) 444.595i 0.695767i
\(640\) −429.689 + 91.9986i −0.671389 + 0.143748i
\(641\) −348.127 602.973i −0.543100 0.940676i −0.998724 0.0505039i \(-0.983917\pi\)
0.455624 0.890172i \(-0.349416\pi\)
\(642\) −157.083 69.8979i −0.244677 0.108875i
\(643\) 187.039 107.987i 0.290886 0.167943i −0.347456 0.937696i \(-0.612954\pi\)
0.638341 + 0.769754i \(0.279621\pi\)
\(644\) 75.7873 + 84.0987i 0.117682 + 0.130588i
\(645\) 168.690 0.261535
\(646\) −477.745 + 475.815i −0.739544 + 0.736555i
\(647\) 664.315i 1.02676i 0.858161 + 0.513381i \(0.171607\pi\)
−0.858161 + 0.513381i \(0.828393\pi\)
\(648\) −298.580 + 332.030i −0.460771 + 0.512392i
\(649\) −286.902 496.929i −0.442068 0.765685i
\(650\) 223.842 + 99.6041i 0.344372 + 0.153237i
\(651\) 21.2979 12.2964i 0.0327157 0.0188884i
\(652\) 1177.69 + 382.105i 1.80628 + 0.586051i
\(653\) −709.962 −1.08723 −0.543616 0.839334i \(-0.682945\pi\)
−0.543616 + 0.839334i \(0.682945\pi\)
\(654\) 366.116 38.5587i 0.559811 0.0589583i
\(655\) 614.785 + 354.946i 0.938603 + 0.541903i
\(656\) −83.7081 + 802.966i −0.127604 + 1.22403i
\(657\) −448.973 −0.683369
\(658\) 44.2309 + 419.974i 0.0672203 + 0.638259i
\(659\) 27.1231 + 15.6595i 0.0411580 + 0.0237626i 0.520438 0.853900i \(-0.325769\pi\)
−0.479280 + 0.877662i \(0.659102\pi\)
\(660\) −70.2082 77.9078i −0.106376 0.118042i
\(661\) 308.493 534.326i 0.466707 0.808360i −0.532570 0.846386i \(-0.678774\pi\)
0.999277 + 0.0380258i \(0.0121069\pi\)
\(662\) 503.877 + 693.218i 0.761143 + 1.04716i
\(663\) −140.111 + 80.8929i −0.211328 + 0.122010i
\(664\) 238.448 77.6439i 0.359109 0.116934i
\(665\) 24.5326 + 157.167i 0.0368911 + 0.236341i
\(666\) −12.9893 123.334i −0.0195035 0.185186i
\(667\) −53.1359 + 30.6780i −0.0796640 + 0.0459941i
\(668\) −459.384 + 413.983i −0.687700 + 0.619735i
\(669\) 67.0176 116.078i 0.100176 0.173510i
\(670\) 69.4425 + 95.5369i 0.103646 + 0.142592i
\(671\) −543.927 314.037i −0.810622 0.468013i
\(672\) 38.4475 + 66.4306i 0.0572135 + 0.0988550i
\(673\) 545.130 0.810000 0.405000 0.914317i \(-0.367271\pi\)
0.405000 + 0.914317i \(0.367271\pi\)
\(674\) −532.701 237.039i −0.790358 0.351690i
\(675\) 191.714 + 110.686i 0.284021 + 0.163979i
\(676\) 324.955 69.2152i 0.480703 0.102389i
\(677\) 242.431 0.358096 0.179048 0.983840i \(-0.442698\pi\)
0.179048 + 0.983840i \(0.442698\pi\)
\(678\) −145.045 + 325.963i −0.213931 + 0.480771i
\(679\) 276.623 159.709i 0.407398 0.235211i
\(680\) 476.738 + 101.018i 0.701086 + 0.148555i
\(681\) −117.033 202.707i −0.171855 0.297661i
\(682\) 128.800 93.6204i 0.188856 0.137273i
\(683\) 408.747i 0.598459i 0.954181 + 0.299229i \(0.0967296\pi\)
−0.954181 + 0.299229i \(0.903270\pi\)
\(684\) −570.328 + 217.743i −0.833813 + 0.318337i
\(685\) 486.344 0.709992
\(686\) −263.979 363.174i −0.384809 0.529409i
\(687\) 138.621 80.0327i 0.201777 0.116496i
\(688\) −795.042 82.8820i −1.15558 0.120468i
\(689\) 160.993 + 278.849i 0.233662 + 0.404715i
\(690\) −71.6040 31.8620i −0.103774 0.0461768i
\(691\) 236.274i 0.341931i 0.985277 + 0.170965i \(0.0546886\pi\)
−0.985277 + 0.170965i \(0.945311\pi\)
\(692\) −941.500 + 200.538i −1.36055 + 0.289796i
\(693\) 76.0548 131.731i 0.109747 0.190088i
\(694\) 228.580 513.693i 0.329367 0.740191i
\(695\) 555.214i 0.798869i
\(696\) −39.5545 + 12.8798i −0.0568311 + 0.0185054i
\(697\) 447.656 775.364i 0.642262 1.11243i
\(698\) −29.2694 + 21.2749i −0.0419332 + 0.0304798i
\(699\) −4.27276 2.46688i −0.00611267 0.00352915i
\(700\) −95.7572 + 86.2935i −0.136796 + 0.123276i
\(701\) −469.659 813.474i −0.669985 1.16045i −0.977908 0.209037i \(-0.932967\pi\)
0.307923 0.951411i \(-0.400366\pi\)
\(702\) −308.892 + 32.5319i −0.440017 + 0.0463418i
\(703\) 52.8683 136.811i 0.0752038 0.194611i
\(704\) 292.616 + 401.677i 0.415647 + 0.570565i
\(705\) −146.175 253.182i −0.207340 0.359124i
\(706\) −417.449 + 303.430i −0.591288 + 0.429787i
\(707\) 184.371 + 106.446i 0.260779 + 0.150561i
\(708\) −194.623 215.966i −0.274891 0.305037i
\(709\) −149.306 + 258.606i −0.210587 + 0.364747i −0.951898 0.306414i \(-0.900871\pi\)
0.741312 + 0.671161i \(0.234204\pi\)
\(710\) −377.936 + 39.8035i −0.532304 + 0.0560613i
\(711\) 883.303i 1.24234i
\(712\) 82.8771 + 17.5611i 0.116400 + 0.0246645i
\(713\) 59.4960 103.050i 0.0834447 0.144530i
\(714\) −8.91541 84.6521i −0.0124866 0.118560i
\(715\) 247.122i 0.345626i
\(716\) 995.193 + 322.892i 1.38993 + 0.450967i
\(717\) 159.408 + 276.103i 0.222327 + 0.385081i
\(718\) 223.034 501.228i 0.310632 0.698089i
\(719\) −1030.58 + 595.008i −1.43336 + 0.827549i −0.997375 0.0724069i \(-0.976932\pi\)
−0.435981 + 0.899956i \(0.643599\pi\)
\(720\) 357.174 + 259.040i 0.496074 + 0.359778i
\(721\) 234.017 0.324573
\(722\) −717.717 78.5285i −0.994067 0.108765i
\(723\) 227.852i 0.315147i
\(724\) −309.366 343.294i −0.427302 0.474163i
\(725\) −34.9309 60.5020i −0.0481805 0.0834511i
\(726\) 48.5463 109.099i 0.0668682 0.150274i
\(727\) −702.834 + 405.781i −0.966759 + 0.558159i −0.898247 0.439491i \(-0.855159\pi\)
−0.0685127 + 0.997650i \(0.521825\pi\)
\(728\) 37.4906 176.931i 0.0514980 0.243038i
\(729\) 300.066 0.411613
\(730\) 40.1955 + 381.658i 0.0550623 + 0.522819i
\(731\) 767.712 + 443.239i 1.05022 + 0.606345i
\(732\) −302.685 98.2066i −0.413504 0.134162i
\(733\) 452.401 0.617191 0.308596 0.951193i \(-0.400141\pi\)
0.308596 + 0.951193i \(0.400141\pi\)
\(734\) 1202.31 126.625i 1.63802 0.172514i
\(735\) 125.894 + 72.6847i 0.171284 + 0.0988908i
\(736\) 321.817 + 185.348i 0.437252 + 0.251831i
\(737\) 66.7858 115.676i 0.0906185 0.156956i
\(738\) 655.697 476.604i 0.888478 0.645805i
\(739\) −1168.02 + 674.356i −1.58054 + 0.912525i −0.585760 + 0.810485i \(0.699204\pi\)
−0.994780 + 0.102041i \(0.967463\pi\)
\(740\) −103.679 + 22.0836i −0.140107 + 0.0298427i
\(741\) −161.592 62.4445i −0.218073 0.0842706i
\(742\) −168.475 + 17.7435i −0.227055 + 0.0239131i
\(743\) −321.223 + 185.458i −0.432332 + 0.249607i −0.700340 0.713810i \(-0.746968\pi\)
0.268008 + 0.963417i \(0.413635\pi\)
\(744\) 53.9441 59.9875i 0.0725055 0.0806284i
\(745\) 13.5511 23.4712i 0.0181894 0.0315050i
\(746\) −448.238 + 325.809i −0.600856 + 0.436742i
\(747\) −218.060 125.897i −0.291914 0.168537i
\(748\) −114.814 539.035i −0.153494 0.720634i
\(749\) −213.152 −0.284582
\(750\) 104.914 235.776i 0.139886 0.314368i
\(751\) −257.836 148.862i −0.343324 0.198218i 0.318417 0.947951i \(-0.396849\pi\)
−0.661741 + 0.749733i \(0.730182\pi\)
\(752\) 564.532 + 1265.08i 0.750707 + 1.68228i
\(753\) −33.0274 −0.0438611
\(754\) 89.5549 + 39.8497i 0.118773 + 0.0528510i
\(755\) 637.237 367.909i 0.844023 0.487297i
\(756\) 50.4326 155.439i 0.0667097 0.205607i
\(757\) 365.069 + 632.318i 0.482257 + 0.835294i 0.999793 0.0203675i \(-0.00648363\pi\)
−0.517535 + 0.855662i \(0.673150\pi\)
\(758\) −394.827 543.191i −0.520880 0.716610i
\(759\) 88.6339i 0.116777i
\(760\) 236.156 + 465.323i 0.310732 + 0.612268i
\(761\) −629.518 −0.827225 −0.413612 0.910453i \(-0.635733\pi\)
−0.413612 + 0.910453i \(0.635733\pi\)
\(762\) −260.346 + 189.237i −0.341662 + 0.248342i
\(763\) 395.255 228.201i 0.518027 0.299083i
\(764\) 1368.67 + 444.066i 1.79145 + 0.581238i
\(765\) −244.656 423.756i −0.319811 0.553929i
\(766\) −240.843 + 541.250i −0.314416 + 0.706593i
\(767\) 685.043i 0.893146i
\(768\) 187.400 + 168.162i 0.244010 + 0.218961i
\(769\) −431.124 + 746.729i −0.560630 + 0.971039i 0.436812 + 0.899553i \(0.356108\pi\)
−0.997442 + 0.0714863i \(0.977226\pi\)
\(770\) −118.789 52.8582i −0.154271 0.0686470i
\(771\) 135.471i 0.175708i
\(772\) −963.950 + 205.320i −1.24864 + 0.265959i
\(773\) −596.731 + 1033.57i −0.771967 + 1.33709i