Properties

Label 76.3.g.c.7.12
Level $76$
Weight $3$
Character 76.7
Analytic conductor $2.071$
Analytic rank $0$
Dimension $28$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 76 = 2^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 76.g (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.07085000914\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 7.12
Character \(\chi\) \(=\) 76.7
Dual form 76.3.g.c.11.12

$q$-expansion

\(f(q)\) \(=\) \(q+(1.19692 + 1.60230i) q^{2} +(3.65809 - 2.11200i) q^{3} +(-1.13475 + 3.83567i) q^{4} +(-1.06722 - 1.84849i) q^{5} +(7.76251 + 3.33347i) q^{6} +1.82388i q^{7} +(-7.50411 + 2.77279i) q^{8} +(4.42107 - 7.65753i) q^{9} +O(q^{10})\) \(q+(1.19692 + 1.60230i) q^{2} +(3.65809 - 2.11200i) q^{3} +(-1.13475 + 3.83567i) q^{4} +(-1.06722 - 1.84849i) q^{5} +(7.76251 + 3.33347i) q^{6} +1.82388i q^{7} +(-7.50411 + 2.77279i) q^{8} +(4.42107 - 7.65753i) q^{9} +(1.68445 - 3.92252i) q^{10} -13.8522i q^{11} +(3.94991 + 16.4278i) q^{12} +(-9.95291 + 17.2389i) q^{13} +(-2.92241 + 2.18305i) q^{14} +(-7.80801 - 4.50795i) q^{15} +(-13.4247 - 8.70504i) q^{16} +(3.83013 + 6.63399i) q^{17} +(17.5614 - 2.08157i) q^{18} +(-16.7080 - 9.04663i) q^{19} +(8.30122 - 1.99595i) q^{20} +(3.85204 + 6.67193i) q^{21} +(22.1955 - 16.5801i) q^{22} +(9.14824 + 5.28174i) q^{23} +(-21.5946 + 25.9918i) q^{24} +(10.2221 - 17.7051i) q^{25} +(-39.5349 + 4.68612i) q^{26} +0.666761i q^{27} +(-6.99581 - 2.06965i) q^{28} +(-0.0147659 + 0.0255754i) q^{29} +(-2.12248 - 17.9065i) q^{30} -42.2313i q^{31} +(-2.12022 - 31.9297i) q^{32} +(-29.2559 - 50.6727i) q^{33} +(-6.04528 + 14.0774i) q^{34} +(3.37143 - 1.94649i) q^{35} +(24.3549 + 25.6471i) q^{36} +19.5805 q^{37} +(-5.50280 - 37.5995i) q^{38} +84.0821i q^{39} +(13.1340 + 10.9121i) q^{40} +(15.7368 + 27.2570i) q^{41} +(-6.07985 + 14.1579i) q^{42} +(-51.3500 + 29.6469i) q^{43} +(53.1325 + 15.7188i) q^{44} -18.8731 q^{45} +(2.48680 + 20.9801i) q^{46} +(77.5317 + 44.7629i) q^{47} +(-67.4937 - 3.49087i) q^{48} +45.6735 q^{49} +(40.6040 - 4.81285i) q^{50} +(28.0219 + 16.1785i) q^{51} +(-54.8288 - 57.7379i) q^{52} +(-29.8268 + 51.6616i) q^{53} +(-1.06835 + 0.798062i) q^{54} +(-25.6057 + 14.7834i) q^{55} +(-5.05724 - 13.6866i) q^{56} +(-80.2259 + 2.19398i) q^{57} +(-0.0586532 + 0.00695224i) q^{58} +(63.9584 - 36.9264i) q^{59} +(26.1511 - 24.8335i) q^{60} +(-23.6620 + 40.9837i) q^{61} +(67.6674 - 50.5477i) q^{62} +(13.9664 + 8.06352i) q^{63} +(48.6233 - 41.6146i) q^{64} +42.4880 q^{65} +(46.1759 - 107.528i) q^{66} +(5.77732 + 3.33554i) q^{67} +(-29.7920 + 7.16321i) q^{68} +44.6201 q^{69} +(7.15421 + 3.07224i) q^{70} +(-24.1399 + 13.9372i) q^{71} +(-11.9435 + 69.7216i) q^{72} +(-46.2611 - 80.1266i) q^{73} +(23.4363 + 31.3738i) q^{74} -86.3559i q^{75} +(53.6593 - 53.8208i) q^{76} +25.2648 q^{77} +(-134.725 + 100.640i) q^{78} +(-110.683 + 63.9027i) q^{79} +(-1.76399 + 34.1056i) q^{80} +(41.1979 + 71.3568i) q^{81} +(-24.8382 + 57.8397i) q^{82} -88.9093i q^{83} +(-29.9624 + 7.20418i) q^{84} +(8.17523 - 14.1599i) q^{85} +(-108.965 - 46.7931i) q^{86} +0.124743i q^{87} +(38.4093 + 103.949i) q^{88} +(31.2173 - 54.0700i) q^{89} +(-22.5897 - 30.2405i) q^{90} +(-31.4418 - 18.1529i) q^{91} +(-30.6399 + 29.0962i) q^{92} +(-89.1925 - 154.486i) q^{93} +(21.0757 + 177.807i) q^{94} +(1.10865 + 40.5394i) q^{95} +(-75.1914 - 112.324i) q^{96} +(64.8024 + 112.241i) q^{97} +(54.6676 + 73.1827i) q^{98} +(-106.074 - 61.2417i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28q - 5q^{2} - 11q^{4} + 6q^{5} - 3q^{6} - 62q^{8} + 20q^{9} + O(q^{10}) \) \( 28q - 5q^{2} - 11q^{4} + 6q^{5} - 3q^{6} - 62q^{8} + 20q^{9} + 26q^{12} + 30q^{13} - 30q^{14} - 19q^{16} + 38q^{17} - 60q^{18} - 44q^{20} + 80q^{21} + 45q^{22} + 17q^{24} - 16q^{25} - 56q^{26} + 54q^{28} + 6q^{29} + 96q^{30} - 45q^{32} - 176q^{33} - 20q^{34} + 30q^{36} + 104q^{37} - 258q^{38} + 94q^{40} - 2q^{41} - 2q^{42} + 201q^{44} - 360q^{45} + 164q^{46} - 17q^{48} - 20q^{49} + 490q^{50} - 102q^{52} - 242q^{53} - 13q^{54} + 276q^{56} - 254q^{57} + 96q^{58} + 10q^{60} - 58q^{61} - 36q^{62} - 74q^{64} - 260q^{65} + 167q^{66} + 396q^{68} + 340q^{69} + 60q^{70} - 422q^{72} - 82q^{73} - 136q^{74} + 123q^{76} - 144q^{77} + 224q^{78} - 174q^{80} + 410q^{81} - 305q^{82} + 252q^{84} + 714q^{85} + 166q^{86} - 718q^{88} + 150q^{89} - 272q^{90} - 588q^{92} + 344q^{93} - 488q^{94} - 122q^{96} + 94q^{97} + 307q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/76\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(39\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.19692 + 1.60230i 0.598462 + 0.801151i
\(3\) 3.65809 2.11200i 1.21936 0.703999i 0.254581 0.967051i \(-0.418062\pi\)
0.964782 + 0.263052i \(0.0847291\pi\)
\(4\) −1.13475 + 3.83567i −0.283687 + 0.958917i
\(5\) −1.06722 1.84849i −0.213445 0.369698i 0.739345 0.673326i \(-0.235135\pi\)
−0.952790 + 0.303629i \(0.901802\pi\)
\(6\) 7.76251 + 3.33347i 1.29375 + 0.555578i
\(7\) 1.82388i 0.260555i 0.991478 + 0.130277i \(0.0415868\pi\)
−0.991478 + 0.130277i \(0.958413\pi\)
\(8\) −7.50411 + 2.77279i −0.938014 + 0.346599i
\(9\) 4.42107 7.65753i 0.491231 0.850836i
\(10\) 1.68445 3.92252i 0.168445 0.392252i
\(11\) 13.8522i 1.25929i −0.776882 0.629647i \(-0.783200\pi\)
0.776882 0.629647i \(-0.216800\pi\)
\(12\) 3.94991 + 16.4278i 0.329159 + 1.36898i
\(13\) −9.95291 + 17.2389i −0.765608 + 1.32607i 0.174316 + 0.984690i \(0.444229\pi\)
−0.939924 + 0.341383i \(0.889105\pi\)
\(14\) −2.92241 + 2.18305i −0.208744 + 0.155932i
\(15\) −7.80801 4.50795i −0.520534 0.300530i
\(16\) −13.4247 8.70504i −0.839043 0.544065i
\(17\) 3.83013 + 6.63399i 0.225302 + 0.390235i 0.956410 0.292027i \(-0.0943298\pi\)
−0.731108 + 0.682262i \(0.760996\pi\)
\(18\) 17.5614 2.08157i 0.975631 0.115643i
\(19\) −16.7080 9.04663i −0.879370 0.476138i
\(20\) 8.30122 1.99595i 0.415061 0.0997975i
\(21\) 3.85204 + 6.67193i 0.183430 + 0.317711i
\(22\) 22.1955 16.5801i 1.00888 0.753639i
\(23\) 9.14824 + 5.28174i 0.397749 + 0.229641i 0.685512 0.728061i \(-0.259578\pi\)
−0.287763 + 0.957702i \(0.592912\pi\)
\(24\) −21.5946 + 25.9918i −0.899774 + 1.08299i
\(25\) 10.2221 17.7051i 0.408882 0.708205i
\(26\) −39.5349 + 4.68612i −1.52057 + 0.180235i
\(27\) 0.666761i 0.0246949i
\(28\) −6.99581 2.06965i −0.249850 0.0739160i
\(29\) −0.0147659 + 0.0255754i −0.000509170 + 0.000881909i −0.866280 0.499559i \(-0.833495\pi\)
0.865771 + 0.500441i \(0.166829\pi\)
\(30\) −2.12248 17.9065i −0.0707492 0.596882i
\(31\) 42.2313i 1.36230i −0.732143 0.681150i \(-0.761480\pi\)
0.732143 0.681150i \(-0.238520\pi\)
\(32\) −2.12022 31.9297i −0.0662570 0.997803i
\(33\) −29.2559 50.6727i −0.886542 1.53554i
\(34\) −6.04528 + 14.0774i −0.177802 + 0.414042i
\(35\) 3.37143 1.94649i 0.0963264 0.0556141i
\(36\) 24.3549 + 25.6471i 0.676525 + 0.712421i
\(37\) 19.5805 0.529202 0.264601 0.964358i \(-0.414760\pi\)
0.264601 + 0.964358i \(0.414760\pi\)
\(38\) −5.50280 37.5995i −0.144811 0.989459i
\(39\) 84.0821i 2.15595i
\(40\) 13.1340 + 10.9121i 0.328351 + 0.272802i
\(41\) 15.7368 + 27.2570i 0.383825 + 0.664805i 0.991605 0.129300i \(-0.0412732\pi\)
−0.607780 + 0.794105i \(0.707940\pi\)
\(42\) −6.07985 + 14.1579i −0.144758 + 0.337093i
\(43\) −51.3500 + 29.6469i −1.19418 + 0.689463i −0.959253 0.282549i \(-0.908820\pi\)
−0.234932 + 0.972012i \(0.575487\pi\)
\(44\) 53.1325 + 15.7188i 1.20756 + 0.357245i
\(45\) −18.8731 −0.419403
\(46\) 2.48680 + 20.9801i 0.0540608 + 0.456089i
\(47\) 77.5317 + 44.7629i 1.64961 + 0.952403i 0.977226 + 0.212201i \(0.0680631\pi\)
0.672384 + 0.740202i \(0.265270\pi\)
\(48\) −67.4937 3.49087i −1.40612 0.0727264i
\(49\) 45.6735 0.932111
\(50\) 40.6040 4.81285i 0.812080 0.0962569i
\(51\) 28.0219 + 16.1785i 0.549450 + 0.317225i
\(52\) −54.8288 57.7379i −1.05440 1.11034i
\(53\) −29.8268 + 51.6616i −0.562770 + 0.974747i 0.434483 + 0.900680i \(0.356931\pi\)
−0.997253 + 0.0740668i \(0.976402\pi\)
\(54\) −1.06835 + 0.798062i −0.0197843 + 0.0147789i
\(55\) −25.6057 + 14.7834i −0.465558 + 0.268790i
\(56\) −5.05724 13.6866i −0.0903079 0.244404i
\(57\) −80.2259 + 2.19398i −1.40747 + 0.0384909i
\(58\) −0.0586532 + 0.00695224i −0.00101126 + 0.000119866i
\(59\) 63.9584 36.9264i 1.08404 0.625871i 0.152057 0.988372i \(-0.451410\pi\)
0.931984 + 0.362500i \(0.118077\pi\)
\(60\) 26.1511 24.8335i 0.435852 0.413892i
\(61\) −23.6620 + 40.9837i −0.387901 + 0.671864i −0.992167 0.124919i \(-0.960133\pi\)
0.604266 + 0.796783i \(0.293466\pi\)
\(62\) 67.6674 50.5477i 1.09141 0.815285i
\(63\) 13.9664 + 8.06352i 0.221689 + 0.127992i
\(64\) 48.6233 41.6146i 0.759739 0.650229i
\(65\) 42.4880 0.653661
\(66\) 46.1759 107.528i 0.699635 1.62921i
\(67\) 5.77732 + 3.33554i 0.0862287 + 0.0497842i 0.542494 0.840059i \(-0.317480\pi\)
−0.456266 + 0.889844i \(0.650813\pi\)
\(68\) −29.7920 + 7.16321i −0.438118 + 0.105341i
\(69\) 44.6201 0.646668
\(70\) 7.15421 + 3.07224i 0.102203 + 0.0438892i
\(71\) −24.1399 + 13.9372i −0.339999 + 0.196298i −0.660272 0.751027i \(-0.729559\pi\)
0.320273 + 0.947325i \(0.396225\pi\)
\(72\) −11.9435 + 69.7216i −0.165882 + 0.968356i
\(73\) −46.2611 80.1266i −0.633714 1.09762i −0.986786 0.162028i \(-0.948196\pi\)
0.353072 0.935596i \(-0.385137\pi\)
\(74\) 23.4363 + 31.3738i 0.316707 + 0.423971i
\(75\) 86.3559i 1.15141i
\(76\) 53.6593 53.8208i 0.706043 0.708169i
\(77\) 25.2648 0.328115
\(78\) −134.725 + 100.640i −1.72724 + 1.29025i
\(79\) −110.683 + 63.9027i −1.40105 + 0.808895i −0.994500 0.104735i \(-0.966601\pi\)
−0.406547 + 0.913630i \(0.633267\pi\)
\(80\) −1.76399 + 34.1056i −0.0220499 + 0.426320i
\(81\) 41.1979 + 71.3568i 0.508616 + 0.880948i
\(82\) −24.8382 + 57.8397i −0.302905 + 0.705362i
\(83\) 88.9093i 1.07120i −0.844473 0.535598i \(-0.820086\pi\)
0.844473 0.535598i \(-0.179914\pi\)
\(84\) −29.9624 + 7.20418i −0.356695 + 0.0857640i
\(85\) 8.17523 14.1599i 0.0961792 0.166587i
\(86\) −108.965 46.7931i −1.26704 0.544106i
\(87\) 0.124743i 0.00143382i
\(88\) 38.4093 + 103.949i 0.436469 + 1.18123i
\(89\) 31.2173 54.0700i 0.350756 0.607528i −0.635626 0.771997i \(-0.719258\pi\)
0.986382 + 0.164469i \(0.0525912\pi\)
\(90\) −22.5897 30.2405i −0.250996 0.336005i
\(91\) −31.4418 18.1529i −0.345514 0.199483i
\(92\) −30.6399 + 29.0962i −0.333043 + 0.316263i
\(93\) −89.1925 154.486i −0.959059 1.66114i
\(94\) 21.0757 + 177.807i 0.224210 + 1.89156i
\(95\) 1.10865 + 40.5394i 0.0116700 + 0.426730i
\(96\) −75.1914 112.324i −0.783244 1.17004i
\(97\) 64.8024 + 112.241i 0.668066 + 1.15712i 0.978444 + 0.206511i \(0.0662109\pi\)
−0.310378 + 0.950613i \(0.600456\pi\)
\(98\) 54.6676 + 73.1827i 0.557833 + 0.746762i
\(99\) −106.074 61.2417i −1.07145 0.618603i
\(100\) 56.3115 + 59.2993i 0.563115 + 0.592993i
\(101\) 45.6483 79.0651i 0.451963 0.782823i −0.546545 0.837430i \(-0.684057\pi\)
0.998508 + 0.0546069i \(0.0173906\pi\)
\(102\) 7.61730 + 64.2640i 0.0746794 + 0.630040i
\(103\) 67.8160i 0.658408i −0.944259 0.329204i \(-0.893220\pi\)
0.944259 0.329204i \(-0.106780\pi\)
\(104\) 26.8877 156.960i 0.258536 1.50923i
\(105\) 8.22198 14.2409i 0.0783046 0.135628i
\(106\) −118.478 + 14.0433i −1.11772 + 0.132484i
\(107\) 95.8811i 0.896085i −0.894012 0.448043i \(-0.852121\pi\)
0.894012 0.448043i \(-0.147879\pi\)
\(108\) −2.55747 0.756606i −0.0236803 0.00700561i
\(109\) −30.9046 53.5283i −0.283528 0.491085i 0.688723 0.725025i \(-0.258172\pi\)
−0.972251 + 0.233939i \(0.924838\pi\)
\(110\) −54.3356 23.3334i −0.493960 0.212122i
\(111\) 71.6271 41.3539i 0.645289 0.372558i
\(112\) 15.8770 24.4851i 0.141759 0.218617i
\(113\) −33.7438 −0.298618 −0.149309 0.988791i \(-0.547705\pi\)
−0.149309 + 0.988791i \(0.547705\pi\)
\(114\) −99.5397 125.920i −0.873156 1.10456i
\(115\) 22.5472i 0.196063i
\(116\) −0.0813430 0.0856589i −0.000701232 0.000738438i
\(117\) 88.0051 + 152.429i 0.752180 + 1.30281i
\(118\) 135.721 + 58.2827i 1.15017 + 0.493921i
\(119\) −12.0996 + 6.98572i −0.101677 + 0.0587035i
\(120\) 71.0917 + 12.1782i 0.592431 + 0.101485i
\(121\) −70.8842 −0.585820
\(122\) −93.9898 + 11.1407i −0.770409 + 0.0913176i
\(123\) 115.133 + 66.4724i 0.936045 + 0.540426i
\(124\) 161.985 + 47.9219i 1.30633 + 0.386467i
\(125\) −96.9982 −0.775986
\(126\) 3.79654 + 32.0299i 0.0301313 + 0.254205i
\(127\) 28.8460 + 16.6543i 0.227134 + 0.131136i 0.609249 0.792979i \(-0.291471\pi\)
−0.382115 + 0.924115i \(0.624804\pi\)
\(128\) 124.878 + 28.0997i 0.975606 + 0.219529i
\(129\) −125.228 + 216.902i −0.970763 + 1.68141i
\(130\) 50.8548 + 68.0786i 0.391191 + 0.523681i
\(131\) 11.8573 6.84581i 0.0905136 0.0522581i −0.454060 0.890971i \(-0.650025\pi\)
0.544574 + 0.838713i \(0.316691\pi\)
\(132\) 227.562 54.7151i 1.72395 0.414508i
\(133\) 16.5000 30.4735i 0.124060 0.229124i
\(134\) 1.57047 + 13.2494i 0.0117199 + 0.0988762i
\(135\) 1.23250 0.711584i 0.00912963 0.00527099i
\(136\) −47.1364 39.1620i −0.346591 0.287956i
\(137\) −66.7629 + 115.637i −0.487320 + 0.844063i −0.999894 0.0145800i \(-0.995359\pi\)
0.512574 + 0.858643i \(0.328692\pi\)
\(138\) 53.4068 + 71.4949i 0.387006 + 0.518079i
\(139\) −192.509 111.145i −1.38496 0.799606i −0.392216 0.919873i \(-0.628291\pi\)
−0.992741 + 0.120268i \(0.961625\pi\)
\(140\) 3.64038 + 15.1404i 0.0260027 + 0.108146i
\(141\) 378.157 2.68196
\(142\) −51.2252 21.9977i −0.360741 0.154913i
\(143\) 238.798 + 137.870i 1.66991 + 0.964125i
\(144\) −126.011 + 64.3143i −0.875074 + 0.446627i
\(145\) 0.0630343 0.000434719
\(146\) 73.0160 170.030i 0.500110 1.16459i
\(147\) 167.078 96.4623i 1.13658 0.656206i
\(148\) −22.2189 + 75.1042i −0.150128 + 0.507461i
\(149\) −11.8549 20.5333i −0.0795632 0.137808i 0.823498 0.567319i \(-0.192019\pi\)
−0.903062 + 0.429511i \(0.858686\pi\)
\(150\) 138.368 103.361i 0.922456 0.689076i
\(151\) 77.7402i 0.514836i 0.966300 + 0.257418i \(0.0828717\pi\)
−0.966300 + 0.257418i \(0.917128\pi\)
\(152\) 150.463 + 21.5590i 0.989890 + 0.141836i
\(153\) 67.7332 0.442701
\(154\) 30.2401 + 40.4819i 0.196364 + 0.262870i
\(155\) −78.0641 + 45.0703i −0.503639 + 0.290776i
\(156\) −322.511 95.4121i −2.06738 0.611616i
\(157\) −126.399 218.929i −0.805087 1.39445i −0.916233 0.400647i \(-0.868785\pi\)
0.111146 0.993804i \(-0.464548\pi\)
\(158\) −234.870 100.861i −1.48652 0.638358i
\(159\) 251.977i 1.58476i
\(160\) −56.7589 + 37.9954i −0.354743 + 0.237471i
\(161\) −9.63327 + 16.6853i −0.0598340 + 0.103636i
\(162\) −65.0245 + 151.420i −0.401386 + 0.934692i
\(163\) 58.1739i 0.356895i 0.983949 + 0.178448i \(0.0571075\pi\)
−0.983949 + 0.178448i \(0.942893\pi\)
\(164\) −122.406 + 29.4314i −0.746379 + 0.179460i
\(165\) −62.4452 + 108.158i −0.378456 + 0.655505i
\(166\) 142.460 106.418i 0.858191 0.641070i
\(167\) −139.337 80.4465i −0.834356 0.481716i 0.0209856 0.999780i \(-0.493320\pi\)
−0.855342 + 0.518064i \(0.826653\pi\)
\(168\) −47.4060 39.3860i −0.282178 0.234440i
\(169\) −113.621 196.797i −0.672312 1.16448i
\(170\) 32.4736 3.84914i 0.191021 0.0226420i
\(171\) −143.142 + 87.9464i −0.837089 + 0.514306i
\(172\) −55.4464 230.603i −0.322363 1.34072i
\(173\) −123.372 213.686i −0.713132 1.23518i −0.963676 0.267075i \(-0.913943\pi\)
0.250544 0.968105i \(-0.419391\pi\)
\(174\) −0.199875 + 0.149307i −0.00114871 + 0.000858088i
\(175\) 32.2921 + 18.6438i 0.184526 + 0.106536i
\(176\) −120.584 + 185.962i −0.685137 + 1.05660i
\(177\) 155.977 270.160i 0.881226 1.52633i
\(178\) 124.001 14.6980i 0.696636 0.0825732i
\(179\) 129.378i 0.722780i 0.932415 + 0.361390i \(0.117698\pi\)
−0.932415 + 0.361390i \(0.882302\pi\)
\(180\) 21.4162 72.3910i 0.118979 0.402172i
\(181\) −96.1456 + 166.529i −0.531191 + 0.920051i 0.468146 + 0.883651i \(0.344922\pi\)
−0.999337 + 0.0363994i \(0.988411\pi\)
\(182\) −8.54694 72.1070i −0.0469612 0.396192i
\(183\) 199.896i 1.09233i
\(184\) −83.2945 14.2686i −0.452688 0.0775467i
\(185\) −20.8968 36.1943i −0.112955 0.195645i
\(186\) 140.777 327.821i 0.756864 1.76248i
\(187\) 91.8955 53.0559i 0.491420 0.283721i
\(188\) −259.675 + 246.591i −1.38125 + 1.31165i
\(189\) −1.21609 −0.00643436
\(190\) −63.6294 + 50.2989i −0.334892 + 0.264731i
\(191\) 1.29081i 0.00675816i 0.999994 + 0.00337908i \(0.00107560\pi\)
−0.999994 + 0.00337908i \(0.998924\pi\)
\(192\) 89.9782 254.922i 0.468637 1.32772i
\(193\) 186.582 + 323.169i 0.966744 + 1.67445i 0.704855 + 0.709351i \(0.251012\pi\)
0.261889 + 0.965098i \(0.415655\pi\)
\(194\) −102.281 + 238.177i −0.527220 + 1.22772i
\(195\) 155.425 89.7345i 0.797050 0.460177i
\(196\) −51.8279 + 175.188i −0.264428 + 0.893817i
\(197\) 191.769 0.973448 0.486724 0.873556i \(-0.338192\pi\)
0.486724 + 0.873556i \(0.338192\pi\)
\(198\) −28.8344 243.264i −0.145628 1.22861i
\(199\) −285.397 164.774i −1.43415 0.828009i −0.436720 0.899598i \(-0.643860\pi\)
−0.997434 + 0.0715885i \(0.977193\pi\)
\(200\) −27.6149 + 161.205i −0.138074 + 0.806024i
\(201\) 28.1786 0.140192
\(202\) 181.324 21.4925i 0.897642 0.106399i
\(203\) −0.0466465 0.0269314i −0.000229786 0.000132667i
\(204\) −93.8531 + 89.1244i −0.460064 + 0.436884i
\(205\) 33.5895 58.1787i 0.163851 0.283799i
\(206\) 108.662 81.1706i 0.527485 0.394032i
\(207\) 80.8901 46.7019i 0.390773 0.225613i
\(208\) 283.680 144.787i 1.36385 0.696092i
\(209\) −125.316 + 231.444i −0.599598 + 1.10739i
\(210\) 32.6593 3.87115i 0.155520 0.0184341i
\(211\) −48.2556 + 27.8604i −0.228700 + 0.132040i −0.609972 0.792423i \(-0.708819\pi\)
0.381272 + 0.924463i \(0.375486\pi\)
\(212\) −164.311 173.029i −0.775050 0.816173i
\(213\) −58.8706 + 101.967i −0.276388 + 0.478718i
\(214\) 153.631 114.762i 0.717900 0.536273i
\(215\) 109.604 + 63.2798i 0.509785 + 0.294325i
\(216\) −1.84879 5.00345i −0.00855920 0.0231641i
\(217\) 77.0250 0.354954
\(218\) 48.7781 113.588i 0.223753 0.521045i
\(219\) −338.454 195.407i −1.54545 0.892268i
\(220\) −27.6484 114.990i −0.125674 0.522683i
\(221\) −152.484 −0.689973
\(222\) 151.994 + 65.2708i 0.684656 + 0.294013i
\(223\) −35.7192 + 20.6225i −0.160176 + 0.0924774i −0.577945 0.816076i \(-0.696145\pi\)
0.417770 + 0.908553i \(0.362812\pi\)
\(224\) 58.2360 3.86704i 0.259982 0.0172636i
\(225\) −90.3850 156.551i −0.401711 0.695784i
\(226\) −40.3888 54.0679i −0.178711 0.239238i
\(227\) 277.068i 1.22057i 0.792184 + 0.610283i \(0.208944\pi\)
−0.792184 + 0.610283i \(0.791056\pi\)
\(228\) 82.6209 310.210i 0.362372 1.36057i
\(229\) 141.178 0.616496 0.308248 0.951306i \(-0.400257\pi\)
0.308248 + 0.951306i \(0.400257\pi\)
\(230\) 36.1274 26.9873i 0.157076 0.117336i
\(231\) 92.4210 53.3593i 0.400091 0.230993i
\(232\) 0.0398901 0.232863i 0.000171940 0.00100372i
\(233\) 44.5846 + 77.2228i 0.191350 + 0.331428i 0.945698 0.325047i \(-0.105380\pi\)
−0.754348 + 0.656475i \(0.772047\pi\)
\(234\) −138.903 + 323.457i −0.593601 + 1.38230i
\(235\) 191.088i 0.813143i
\(236\) 69.0607 + 287.225i 0.292630 + 1.21706i
\(237\) −269.925 + 467.523i −1.13892 + 1.97267i
\(238\) −25.6756 11.0259i −0.107880 0.0463272i
\(239\) 82.2938i 0.344325i −0.985069 0.172163i \(-0.944925\pi\)
0.985069 0.172163i \(-0.0550755\pi\)
\(240\) 65.5782 + 128.487i 0.273242 + 0.535362i
\(241\) −22.2946 + 38.6154i −0.0925088 + 0.160230i −0.908566 0.417741i \(-0.862822\pi\)
0.816057 + 0.577971i \(0.196155\pi\)
\(242\) −84.8429 113.578i −0.350591 0.469330i
\(243\) 296.214 + 171.019i 1.21899 + 0.703783i
\(244\) −130.349 137.266i −0.534219 0.562564i
\(245\) −48.7438 84.4268i −0.198954 0.344599i
\(246\) 31.2971 + 264.041i 0.127224 + 1.07334i
\(247\) 322.248 197.989i 1.30465 0.801573i
\(248\) 117.099 + 316.908i 0.472172 + 1.27786i
\(249\) −187.776 325.238i −0.754122 1.30618i
\(250\) −116.099 155.420i −0.464398 0.621682i
\(251\) 94.8716 + 54.7741i 0.377974 + 0.218224i 0.676937 0.736041i \(-0.263307\pi\)
−0.298962 + 0.954265i \(0.596640\pi\)
\(252\) −46.7774 + 44.4205i −0.185625 + 0.176272i
\(253\) 73.1638 126.723i 0.289185 0.500883i
\(254\) 7.84132 + 66.1540i 0.0308713 + 0.260449i
\(255\) 69.0643i 0.270840i
\(256\) 104.445 + 233.725i 0.407987 + 0.912988i
\(257\) 224.002 387.982i 0.871602 1.50966i 0.0112627 0.999937i \(-0.496415\pi\)
0.860339 0.509722i \(-0.170252\pi\)
\(258\) −497.432 + 58.9612i −1.92803 + 0.228532i
\(259\) 35.7125i 0.137886i
\(260\) −48.2132 + 162.970i −0.185435 + 0.626807i
\(261\) 0.130563 + 0.226141i 0.000500240 + 0.000866441i
\(262\) 25.1613 + 10.8051i 0.0960355 + 0.0412407i
\(263\) −272.533 + 157.347i −1.03625 + 0.598277i −0.918768 0.394798i \(-0.870814\pi\)
−0.117478 + 0.993075i \(0.537481\pi\)
\(264\) 360.044 + 299.133i 1.36380 + 1.13308i
\(265\) 127.328 0.480482
\(266\) 68.5770 10.0365i 0.257808 0.0377311i
\(267\) 263.724i 0.987730i
\(268\) −19.3498 + 18.3749i −0.0722009 + 0.0685630i
\(269\) 145.563 + 252.123i 0.541128 + 0.937261i 0.998840 + 0.0481601i \(0.0153358\pi\)
−0.457712 + 0.889101i \(0.651331\pi\)
\(270\) 2.61538 + 1.12313i 0.00968659 + 0.00415973i
\(271\) 111.647 64.4596i 0.411983 0.237858i −0.279659 0.960100i \(-0.590221\pi\)
0.691641 + 0.722241i \(0.256888\pi\)
\(272\) 6.33073 122.401i 0.0232748 0.450003i
\(273\) −153.356 −0.561743
\(274\) −265.195 + 31.4339i −0.967865 + 0.114722i
\(275\) −245.255 141.598i −0.891838 0.514903i
\(276\) −50.6326 + 171.148i −0.183451 + 0.620101i
\(277\) 23.1010 0.0833971 0.0416986 0.999130i \(-0.486723\pi\)
0.0416986 + 0.999130i \(0.486723\pi\)
\(278\) −52.3304 441.490i −0.188239 1.58809i
\(279\) −323.387 186.708i −1.15909 0.669204i
\(280\) −19.9023 + 23.9549i −0.0710797 + 0.0855534i
\(281\) 33.2086 57.5190i 0.118180 0.204694i −0.800866 0.598843i \(-0.795627\pi\)
0.919046 + 0.394149i \(0.128961\pi\)
\(282\) 452.625 + 605.922i 1.60505 + 2.14866i
\(283\) 84.3920 48.7237i 0.298205 0.172169i −0.343431 0.939178i \(-0.611589\pi\)
0.641636 + 0.767009i \(0.278256\pi\)
\(284\) −26.0657 108.408i −0.0917806 0.381718i
\(285\) 89.6747 + 145.955i 0.314648 + 0.512123i
\(286\) 64.9132 + 547.646i 0.226969 + 1.91485i
\(287\) −49.7136 + 28.7022i −0.173218 + 0.100007i
\(288\) −253.876 124.928i −0.881514 0.433777i
\(289\) 115.160 199.463i 0.398478 0.690184i
\(290\) 0.0754473 + 0.101000i 0.000260163 + 0.000348276i
\(291\) 474.106 + 273.725i 1.62923 + 0.940636i
\(292\) 359.834 86.5187i 1.23231 0.296297i
\(293\) 263.379 0.898903 0.449451 0.893305i \(-0.351619\pi\)
0.449451 + 0.893305i \(0.351619\pi\)
\(294\) 354.541 + 152.251i 1.20592 + 0.517860i
\(295\) −136.516 78.8176i −0.462766 0.267178i
\(296\) −146.934 + 54.2925i −0.496399 + 0.183421i
\(297\) 9.23612 0.0310981
\(298\) 18.7112 43.5720i 0.0627892 0.146215i
\(299\) −182.103 + 105.137i −0.609041 + 0.351630i
\(300\) 331.233 + 97.9923i 1.10411 + 0.326641i
\(301\) −54.0725 93.6563i −0.179643 0.311151i
\(302\) −124.563 + 93.0491i −0.412462 + 0.308110i
\(303\) 385.636i 1.27273i
\(304\) 145.549 + 266.892i 0.478780 + 0.877935i
\(305\) 101.010 0.331182
\(306\) 81.0715 + 108.529i 0.264940 + 0.354670i
\(307\) 245.559 141.774i 0.799866 0.461803i −0.0435580 0.999051i \(-0.513869\pi\)
0.843424 + 0.537248i \(0.180536\pi\)
\(308\) −28.6692 + 96.9075i −0.0930820 + 0.314635i
\(309\) −143.227 248.077i −0.463519 0.802838i
\(310\) −165.653 71.1366i −0.534365 0.229473i
\(311\) 254.508i 0.818352i −0.912455 0.409176i \(-0.865816\pi\)
0.912455 0.409176i \(-0.134184\pi\)
\(312\) −233.142 630.961i −0.747250 2.02231i
\(313\) −167.705 + 290.473i −0.535798 + 0.928029i 0.463327 + 0.886188i \(0.346656\pi\)
−0.999124 + 0.0418410i \(0.986678\pi\)
\(314\) 199.501 464.570i 0.635353 1.47952i
\(315\) 34.4224i 0.109277i
\(316\) −119.512 497.056i −0.378204 1.57296i
\(317\) −132.064 + 228.741i −0.416605 + 0.721580i −0.995595 0.0937538i \(-0.970113\pi\)
0.578991 + 0.815334i \(0.303447\pi\)
\(318\) −403.743 + 301.597i −1.26963 + 0.948418i
\(319\) 0.354276 + 0.204541i 0.00111058 + 0.000641195i
\(320\) −128.816 45.4674i −0.402550 0.142086i
\(321\) −202.501 350.742i −0.630844 1.09265i
\(322\) −38.2652 + 4.53563i −0.118836 + 0.0140858i
\(323\) −3.97881 145.491i −0.0123183 0.450436i
\(324\) −320.450 + 77.0493i −0.989044 + 0.237806i
\(325\) 203.479 + 352.435i 0.626088 + 1.08442i
\(326\) −93.2122 + 69.6297i −0.285927 + 0.213588i
\(327\) −226.103 130.541i −0.691448 0.399208i
\(328\) −193.669 160.905i −0.590454 0.490563i
\(329\) −81.6424 + 141.409i −0.248153 + 0.429814i
\(330\) −248.044 + 29.4010i −0.751650 + 0.0890940i
\(331\) 611.200i 1.84653i 0.384170 + 0.923263i \(0.374488\pi\)
−0.384170 + 0.923263i \(0.625512\pi\)
\(332\) 341.027 + 100.890i 1.02719 + 0.303885i
\(333\) 86.5667 149.938i 0.259960 0.450264i
\(334\) −37.8766 319.549i −0.113403 0.956734i
\(335\) 14.2391i 0.0425047i
\(336\) 6.36694 123.101i 0.0189492 0.366371i
\(337\) 34.4295 + 59.6337i 0.102165 + 0.176955i 0.912576 0.408906i \(-0.134090\pi\)
−0.810412 + 0.585861i \(0.800756\pi\)
\(338\) 179.333 417.606i 0.530571 1.23552i
\(339\) −123.438 + 71.2669i −0.364124 + 0.210227i
\(340\) 45.0359 + 47.4254i 0.132458 + 0.139486i
\(341\) −584.998 −1.71554
\(342\) −312.247 124.092i −0.913003 0.362843i
\(343\) 172.673i 0.503421i
\(344\) 303.131 364.856i 0.881195 1.06063i
\(345\) −47.6197 82.4797i −0.138028 0.239072i
\(346\) 194.723 453.445i 0.562785 1.31053i
\(347\) −426.970 + 246.511i −1.23046 + 0.710407i −0.967126 0.254297i \(-0.918156\pi\)
−0.263336 + 0.964704i \(0.584823\pi\)
\(348\) −0.478471 0.141551i −0.00137492 0.000406757i
\(349\) −180.545 −0.517320 −0.258660 0.965968i \(-0.583281\pi\)
−0.258660 + 0.965968i \(0.583281\pi\)
\(350\) 8.77807 + 74.0570i 0.0250802 + 0.211591i
\(351\) −11.4943 6.63621i −0.0327472 0.0189066i
\(352\) −442.297 + 29.3698i −1.25653 + 0.0834369i
\(353\) 441.313 1.25018 0.625089 0.780553i \(-0.285063\pi\)
0.625089 + 0.780553i \(0.285063\pi\)
\(354\) 619.571 73.4386i 1.75020 0.207454i
\(355\) 51.5254 + 29.7482i 0.145142 + 0.0837978i
\(356\) 171.971 + 181.095i 0.483064 + 0.508694i
\(357\) −29.5077 + 51.1088i −0.0826545 + 0.143162i
\(358\) −207.302 + 154.855i −0.579056 + 0.432556i
\(359\) 119.997 69.2800i 0.334252 0.192981i −0.323475 0.946237i \(-0.604851\pi\)
0.657727 + 0.753256i \(0.271518\pi\)
\(360\) 141.626 52.3312i 0.393405 0.145364i
\(361\) 197.317 + 302.303i 0.546585 + 0.837404i
\(362\) −381.909 + 45.2682i −1.05500 + 0.125050i
\(363\) −259.301 + 149.707i −0.714327 + 0.412417i
\(364\) 105.307 100.001i 0.289306 0.274729i
\(365\) −98.7420 + 171.026i −0.270526 + 0.468565i
\(366\) −320.294 + 239.260i −0.875120 + 0.653716i
\(367\) 304.552 + 175.833i 0.829841 + 0.479109i 0.853798 0.520604i \(-0.174293\pi\)
−0.0239571 + 0.999713i \(0.507627\pi\)
\(368\) −76.8345 150.541i −0.208790 0.409080i
\(369\) 278.295 0.754187
\(370\) 32.9823 76.8047i 0.0891415 0.207580i
\(371\) −94.2247 54.4006i −0.253975 0.146632i
\(372\) 693.768 166.810i 1.86497 0.448414i
\(373\) −196.793 −0.527594 −0.263797 0.964578i \(-0.584975\pi\)
−0.263797 + 0.964578i \(0.584975\pi\)
\(374\) 195.003 + 83.7406i 0.521400 + 0.223905i
\(375\) −354.828 + 204.860i −0.946208 + 0.546293i
\(376\) −705.924 120.927i −1.87746 0.321614i
\(377\) −0.293928 0.509099i −0.000779650 0.00135039i
\(378\) −1.45557 1.94855i −0.00385072 0.00515490i
\(379\) 169.249i 0.446566i 0.974754 + 0.223283i \(0.0716774\pi\)
−0.974754 + 0.223283i \(0.928323\pi\)
\(380\) −156.754 41.7496i −0.412510 0.109867i
\(381\) 140.695 0.369279
\(382\) −2.06827 + 1.54500i −0.00541431 + 0.00404450i
\(383\) 343.442 198.286i 0.896715 0.517718i 0.0205817 0.999788i \(-0.493448\pi\)
0.876133 + 0.482070i \(0.160115\pi\)
\(384\) 516.160 160.950i 1.34417 0.419141i
\(385\) −26.9633 46.7017i −0.0700345 0.121303i
\(386\) −294.490 + 685.768i −0.762928 + 1.77660i
\(387\) 524.285i 1.35474i
\(388\) −504.054 + 121.195i −1.29911 + 0.312358i
\(389\) 192.573 333.547i 0.495047 0.857447i −0.504936 0.863157i \(-0.668484\pi\)
0.999984 + 0.00570929i \(0.00181733\pi\)
\(390\) 329.813 + 141.632i 0.845675 + 0.363159i
\(391\) 80.9191i 0.206954i
\(392\) −342.739 + 126.643i −0.874333 + 0.323069i
\(393\) 28.9167 50.0851i 0.0735793 0.127443i
\(394\) 229.533 + 307.273i 0.582572 + 0.779880i
\(395\) 236.247 + 136.397i 0.598093 + 0.345309i
\(396\) 355.270 337.370i 0.897146 0.851944i
\(397\) −141.267 244.682i −0.355837 0.616328i 0.631424 0.775438i \(-0.282471\pi\)
−0.987261 + 0.159110i \(0.949138\pi\)
\(398\) −77.5804 654.513i −0.194926 1.64451i
\(399\) −4.00157 146.323i −0.0100290 0.366724i
\(400\) −291.352 + 148.702i −0.728380 + 0.371756i
\(401\) −4.00500 6.93686i −0.00998753 0.0172989i 0.860988 0.508625i \(-0.169846\pi\)
−0.870976 + 0.491326i \(0.836513\pi\)
\(402\) 33.7276 + 45.1507i 0.0838996 + 0.112315i
\(403\) 728.023 + 420.325i 1.80651 + 1.04299i
\(404\) 251.468 + 264.811i 0.622446 + 0.655472i
\(405\) 87.9348 152.308i 0.217123 0.376068i
\(406\) −0.0126801 0.106977i −3.12317e−5 0.000263489i
\(407\) 271.233i 0.666421i
\(408\) −255.139 43.7061i −0.625341 0.107123i
\(409\) −77.6731 + 134.534i −0.189910 + 0.328933i −0.945220 0.326434i \(-0.894153\pi\)
0.755310 + 0.655367i \(0.227486\pi\)
\(410\) 133.424 15.8149i 0.325424 0.0385730i
\(411\) 564.012i 1.37229i
\(412\) 260.120 + 76.9541i 0.631359 + 0.186782i
\(413\) 67.3495 + 116.653i 0.163074 + 0.282452i
\(414\) 171.650 + 73.7118i 0.414613 + 0.178048i
\(415\) −164.348 + 94.8862i −0.396019 + 0.228642i
\(416\) 571.536 + 281.243i 1.37389 + 0.676064i
\(417\) −938.954 −2.25169
\(418\) −520.836 + 76.2261i −1.24602 + 0.182359i
\(419\) 402.751i 0.961220i −0.876934 0.480610i \(-0.840415\pi\)
0.876934 0.480610i \(-0.159585\pi\)
\(420\) 45.2934 + 47.6966i 0.107842 + 0.113563i
\(421\) −227.604 394.222i −0.540628 0.936395i −0.998868 0.0475667i \(-0.984853\pi\)
0.458240 0.888828i \(-0.348480\pi\)
\(422\) −102.399 43.9734i −0.242652 0.104202i
\(423\) 685.547 395.801i 1.62068 0.935699i
\(424\) 80.5770 470.378i 0.190040 1.10938i
\(425\) 156.608 0.368488
\(426\) −233.846 + 27.7180i −0.548933 + 0.0650658i
\(427\) −74.7495 43.1566i −0.175057 0.101069i
\(428\) 367.768 + 108.801i 0.859271 + 0.254208i
\(429\) 1164.72 2.71498
\(430\) 29.7940 + 251.360i 0.0692884 + 0.584557i
\(431\) 427.854 + 247.021i 0.992700 + 0.573135i 0.906080 0.423106i \(-0.139060\pi\)
0.0866195 + 0.996241i \(0.472394\pi\)
\(432\) 5.80418 8.95106i 0.0134356 0.0207200i
\(433\) −127.503 + 220.842i −0.294465 + 0.510029i −0.974860 0.222817i \(-0.928475\pi\)
0.680395 + 0.732845i \(0.261808\pi\)
\(434\) 92.1930 + 123.417i 0.212426 + 0.284372i
\(435\) 0.230585 0.133128i 0.000530081 0.000306042i
\(436\) 240.386 57.7985i 0.551343 0.132565i
\(437\) −105.067 171.008i −0.240428 0.391323i
\(438\) −92.0032 776.193i −0.210053 1.77213i
\(439\) −80.1980 + 46.3023i −0.182683 + 0.105472i −0.588553 0.808459i \(-0.700302\pi\)
0.405869 + 0.913931i \(0.366969\pi\)
\(440\) 151.156 181.936i 0.343537 0.413490i
\(441\) 201.926 349.746i 0.457881 0.793074i
\(442\) −182.512 244.325i −0.412922 0.552772i
\(443\) −319.754 184.610i −0.721792 0.416727i 0.0936200 0.995608i \(-0.470156\pi\)
−0.815412 + 0.578881i \(0.803489\pi\)
\(444\) 77.3412 + 321.664i 0.174192 + 0.724469i
\(445\) −133.264 −0.299469
\(446\) −75.7965 32.5494i −0.169947 0.0729807i
\(447\) −86.7327 50.0751i −0.194033 0.112025i
\(448\) 75.9002 + 88.6832i 0.169420 + 0.197954i
\(449\) −457.229 −1.01833 −0.509163 0.860670i \(-0.670045\pi\)
−0.509163 + 0.860670i \(0.670045\pi\)
\(450\) 142.659 332.204i 0.317020 0.738232i
\(451\) 377.570 217.990i 0.837184 0.483349i
\(452\) 38.2908 129.430i 0.0847141 0.286350i
\(453\) 164.187 + 284.381i 0.362444 + 0.627772i
\(454\) −443.948 + 331.630i −0.977858 + 0.730462i
\(455\) 77.4931i 0.170314i
\(456\) 595.941 238.914i 1.30689 0.523933i
\(457\) 83.5243 0.182767 0.0913833 0.995816i \(-0.470871\pi\)
0.0913833 + 0.995816i \(0.470871\pi\)
\(458\) 168.979 + 226.209i 0.368949 + 0.493907i
\(459\) −4.42328 + 2.55378i −0.00963679 + 0.00556380i
\(460\) 86.4836 + 25.5854i 0.188008 + 0.0556205i
\(461\) −120.895 209.396i −0.262245 0.454221i 0.704593 0.709611i \(-0.251129\pi\)
−0.966838 + 0.255390i \(0.917796\pi\)
\(462\) 196.119 + 84.2195i 0.424499 + 0.182293i
\(463\) 159.241i 0.343934i 0.985103 + 0.171967i \(0.0550123\pi\)
−0.985103 + 0.171967i \(0.944988\pi\)
\(464\) 0.420863 0.214803i 0.000907032 0.000462938i
\(465\) −190.377 + 329.742i −0.409413 + 0.709124i
\(466\) −70.3700 + 163.868i −0.151009 + 0.351648i
\(467\) 17.6334i 0.0377588i 0.999822 + 0.0188794i \(0.00600986\pi\)
−0.999822 + 0.0188794i \(0.993990\pi\)
\(468\) −684.532 + 164.589i −1.46267 + 0.351687i
\(469\) −6.08363 + 10.5372i −0.0129715 + 0.0224673i
\(470\) 306.182 228.718i 0.651450 0.486635i
\(471\) −924.755 533.907i −1.96339 1.13356i
\(472\) −377.562 + 454.443i −0.799919 + 0.962803i
\(473\) 410.676 + 711.311i 0.868236 + 1.50383i
\(474\) −1072.19 + 127.089i −2.26201 + 0.268119i
\(475\) −330.962 + 203.343i −0.696763 + 0.428090i
\(476\) −13.0649 54.3371i −0.0274472 0.114154i
\(477\) 263.733 + 456.799i 0.552900 + 0.957651i
\(478\) 131.860 98.4993i 0.275857 0.206066i
\(479\) −164.704 95.0917i −0.343849 0.198521i 0.318124 0.948049i \(-0.396947\pi\)
−0.661973 + 0.749528i \(0.730281\pi\)
\(480\) −127.383 + 258.865i −0.265381 + 0.539302i
\(481\) −194.883 + 337.547i −0.405161 + 0.701760i
\(482\) −88.5585 + 10.4970i −0.183731 + 0.0217779i
\(483\) 81.3818i 0.168492i
\(484\) 80.4357 271.888i 0.166190 0.561752i
\(485\) 138.317 239.573i 0.285191 0.493965i
\(486\) 80.5209 + 679.322i 0.165681 + 1.39778i
\(487\) 421.853i 0.866228i −0.901339 0.433114i \(-0.857415\pi\)
0.901339 0.433114i \(-0.142585\pi\)
\(488\) 63.9227 373.156i 0.130989 0.764663i
\(489\) 122.863 + 212.805i 0.251254 + 0.435185i
\(490\) 76.9347 179.155i 0.157010 0.365622i
\(491\) 707.298 408.359i 1.44053 0.831688i 0.442641 0.896699i \(-0.354042\pi\)
0.997885 + 0.0650112i \(0.0207083\pi\)
\(492\) −385.613 + 366.184i −0.783767 + 0.744277i
\(493\) −0.226222 −0.000458869
\(494\) 702.944 + 279.361i 1.42296 + 0.565509i
\(495\) 261.435i 0.528151i
\(496\) −367.625 + 566.943i −0.741180 + 1.14303i
\(497\) −25.4198 44.0284i −0.0511465 0.0885883i
\(498\) 296.376 690.160i 0.595133 1.38586i
\(499\) −446.851 + 257.989i −0.895492 + 0.517013i −0.875735 0.482792i \(-0.839623\pi\)
−0.0197574 + 0.999805i \(0.506289\pi\)
\(500\) 110.069 372.053i 0.220137 0.744106i
\(501\) −679.612 −1.35651
\(502\) 25.7893 + 217.573i 0.0513730 + 0.433413i
\(503\) −328.542 189.684i −0.653165 0.377105i 0.136503 0.990640i \(-0.456414\pi\)
−0.789668 + 0.613535i \(0.789747\pi\)
\(504\) −127.164 21.7836i −0.252310 0.0432214i
\(505\) −194.868 −0.385877
\(506\) 290.621 34.4477i 0.574350 0.0680784i
\(507\) −831.270 479.934i −1.63959 0.946615i
\(508\) −96.6132 + 91.7454i −0.190184 + 0.180601i
\(509\) 56.0386 97.0617i 0.110096 0.190691i −0.805713 0.592306i \(-0.798218\pi\)
0.915809 + 0.401615i \(0.131551\pi\)
\(510\) 110.662 82.6647i 0.216984 0.162088i
\(511\) 146.141 84.3748i 0.285991 0.165117i
\(512\) −249.486 + 447.103i −0.487277 + 0.873248i
\(513\) 6.03194 11.1403i 0.0117582 0.0217159i
\(514\) 889.778 105.467i 1.73109 0.205188i
\(515\) −125.357 + 72.3749i −0.243412 + 0.140534i
\(516\) −689.861 726.464i −1.33694 1.40788i
\(517\) 620.066 1073.99i 1.19935 2.07734i
\(518\) −57.2222 + 42.7451i −0.110468 + 0.0825195i
\(519\) −902.610 521.122i −1.73913 1.00409i
\(520\) −318.834 + 117.810i −0.613143 + 0.226558i
\(521\) −269.639 −0.517542 −0.258771 0.965939i \(-0.583317\pi\)
−0.258771 + 0.965939i \(0.583317\pi\)
\(522\) −0.206073 + 0.479875i −0.000394776 + 0.000919300i
\(523\) 416.867 + 240.678i 0.797068 + 0.460188i 0.842445 0.538782i \(-0.181115\pi\)
−0.0453767 + 0.998970i \(0.514449\pi\)
\(524\) 12.8032 + 53.2489i 0.0244336 + 0.101620i
\(525\) 157.503 0.300006
\(526\) −578.318 248.348i −1.09946 0.472144i
\(527\) 280.162 161.752i 0.531617 0.306929i
\(528\) −48.3563 + 934.938i −0.0915839 + 1.77072i
\(529\) −208.706 361.490i −0.394530 0.683346i
\(530\) 152.402 + 204.018i 0.287550 + 0.384939i
\(531\) 653.018i 1.22979i
\(532\) 98.1629 + 97.8683i 0.184517 + 0.183963i
\(533\) −626.509 −1.17544
\(534\) 422.565 315.657i 0.791321 0.591118i
\(535\) −177.235 + 102.327i −0.331281 + 0.191265i
\(536\) −52.6024 9.01095i −0.0981388 0.0168115i
\(537\) 273.245 + 473.275i 0.508837 + 0.881331i
\(538\) −229.749 + 535.009i −0.427043 + 0.994440i
\(539\) 632.679i 1.17380i
\(540\) 1.33082 + 5.53493i 0.00246449 + 0.0102499i
\(541\) 52.7461 91.3589i 0.0974974 0.168870i −0.813151 0.582053i \(-0.802250\pi\)
0.910648 + 0.413183i \(0.135583\pi\)
\(542\) 236.917 + 101.740i 0.437116 + 0.187711i
\(543\) 812.238i 1.49583i
\(544\) 203.700 136.361i 0.374449 0.250663i
\(545\) −65.9643 + 114.253i −0.121035 + 0.209639i
\(546\) −183.555 245.723i −0.336182 0.450041i
\(547\) 547.959 + 316.364i 1.00175 + 0.578363i 0.908767 0.417304i \(-0.137025\pi\)
0.0929871 + 0.995667i \(0.470358\pi\)
\(548\) −367.785 387.299i −0.671140 0.706749i
\(549\) 209.223 + 362.384i 0.381097 + 0.660080i
\(550\) −66.6687 562.456i −0.121216 1.02265i
\(551\) 0.478081 0.293732i 0.000867660 0.000533089i
\(552\) −334.834 + 123.722i −0.606583 + 0.224134i
\(553\) −116.551 201.872i −0.210761 0.365049i
\(554\) 27.6501 + 37.0148i 0.0499100 + 0.0668137i
\(555\) −152.884 88.2679i −0.275467 0.159041i
\(556\) 644.765 612.279i 1.15965 1.10122i
\(557\) 526.047 911.140i 0.944429 1.63580i 0.187538 0.982257i \(-0.439949\pi\)
0.756891 0.653541i \(-0.226717\pi\)
\(558\) −87.9075 741.640i −0.157540 1.32910i
\(559\) 1180.29i 2.11143i
\(560\) −62.2046 3.21731i −0.111080 0.00574520i
\(561\) 224.108 388.166i 0.399479 0.691919i
\(562\) 131.911 15.6356i 0.234717 0.0278213i
\(563\) 619.106i 1.09966i −0.835278 0.549828i \(-0.814693\pi\)
0.835278 0.549828i \(-0.185307\pi\)
\(564\) −429.113 + 1450.48i −0.760839 + 2.57178i
\(565\) 36.0123 + 62.3751i 0.0637385 + 0.110398i
\(566\) 179.081 + 76.9029i 0.316397 + 0.135871i
\(567\) −130.146 + 75.1401i −0.229535 + 0.132522i
\(568\) 142.504 171.521i 0.250887 0.301974i
\(569\) 246.403 0.433046 0.216523 0.976277i \(-0.430528\pi\)
0.216523 + 0.976277i \(0.430528\pi\)
\(570\) −126.531 + 318.383i −0.221984 + 0.558567i
\(571\) 88.9193i 0.155726i −0.996964 0.0778628i \(-0.975190\pi\)
0.996964 0.0778628i \(-0.0248096\pi\)
\(572\) −799.799 + 759.501i −1.39825 + 1.32780i
\(573\) 2.72619 + 4.72189i 0.00475774 + 0.00824065i
\(574\) −105.493 45.3019i −0.183786 0.0789232i
\(575\) 187.028 107.981i 0.325266 0.187792i
\(576\) −103.698 556.315i −0.180031 0.965825i
\(577\) 659.532 1.14304 0.571518 0.820589i \(-0.306355\pi\)
0.571518 + 0.820589i \(0.306355\pi\)
\(578\) 457.438 54.2208i 0.791416 0.0938076i
\(579\) 1365.06 + 788.120i 2.35762 + 1.36117i
\(580\) −0.0715281 + 0.241779i −0.000123324 + 0.000416860i
\(581\) 162.160 0.279105
\(582\) 128.878 + 1087.29i 0.221440 + 1.86819i
\(583\) 715.628 + 413.168i 1.22749 + 0.708693i
\(584\) 569.322 + 473.006i 0.974867 + 0.809942i
\(585\) 187.842 325.353i 0.321098 0.556158i
\(586\) 315.244 + 422.012i 0.537959 + 0.720157i
\(587\) −847.759 + 489.454i −1.44422 + 0.833822i −0.998128 0.0611631i \(-0.980519\pi\)
−0.446095 + 0.894986i \(0.647186\pi\)
\(588\) 180.406 + 750.314i 0.306813 + 1.27604i
\(589\) −382.051 + 705.603i −0.648644 + 1.19797i
\(590\) −37.1096 313.079i −0.0628977 0.530642i
\(591\) 701.509 405.017i 1.18699 0.685307i
\(592\) −262.862 170.449i −0.444023 0.287920i
\(593\) −102.396 + 177.355i −0.172675 + 0.299081i −0.939354 0.342949i \(-0.888574\pi\)
0.766679 + 0.642030i \(0.221908\pi\)
\(594\) 11.0549 + 14.7991i 0.0186110 + 0.0249143i
\(595\) 25.8260 + 14.9107i 0.0434051 + 0.0250599i
\(596\) 92.2114 22.1714i 0.154717 0.0372003i
\(597\) −1392.01 −2.33167
\(598\) −386.425 165.943i −0.646196 0.277497i
\(599\) 844.006 + 487.287i 1.40903 + 0.813501i 0.995294 0.0968983i \(-0.0308922\pi\)
0.413731 + 0.910399i \(0.364225\pi\)
\(600\) 239.447 + 648.024i 0.399078 + 1.08004i
\(601\) 371.313 0.617825 0.308913 0.951090i \(-0.400035\pi\)
0.308913 + 0.951090i \(0.400035\pi\)
\(602\) 85.3451 198.740i 0.141769 0.330133i
\(603\) 51.0840 29.4933i 0.0847164 0.0489110i
\(604\) −298.186 88.2156i −0.493685 0.146052i
\(605\) 75.6494 + 131.029i 0.125040 + 0.216576i
\(606\) 617.906 461.577i 1.01965 0.761678i
\(607\) 692.679i 1.14115i 0.821245 + 0.570576i \(0.193280\pi\)
−0.821245 + 0.570576i \(0.806720\pi\)
\(608\) −253.431 + 552.663i −0.416828 + 0.908986i
\(609\) −0.227516 −0.000373589
\(610\) 120.902 + 161.849i 0.198200 + 0.265327i
\(611\) −1543.33 + 891.043i −2.52591 + 1.45834i
\(612\) −76.8602 + 259.802i −0.125589 + 0.424513i
\(613\) 257.281 + 445.624i 0.419708 + 0.726955i 0.995910 0.0903521i \(-0.0287992\pi\)
−0.576202 + 0.817307i \(0.695466\pi\)
\(614\) 521.079 + 223.768i 0.848664 + 0.364443i
\(615\) 283.764i 0.461404i
\(616\) −189.590 + 70.0541i −0.307776 + 0.113724i
\(617\) 10.0069 17.3324i 0.0162186 0.0280915i −0.857802 0.513980i \(-0.828171\pi\)
0.874021 + 0.485888i \(0.161504\pi\)
\(618\) 226.062 526.423i 0.365797 0.851817i
\(619\) 266.861i 0.431117i −0.976491 0.215558i \(-0.930843\pi\)
0.976491 0.215558i \(-0.0691572\pi\)
\(620\) −84.2917 350.571i −0.135954 0.565438i
\(621\) −3.52166 + 6.09969i −0.00567094 + 0.00982236i
\(622\) 407.798 304.626i 0.655624 0.489753i
\(623\) 98.6174 + 56.9368i 0.158294 + 0.0913913i
\(624\) 731.938 1128.78i 1.17298 1.80894i
\(625\) −152.033 263.328i −0.243252 0.421325i
\(626\) −666.155 + 78.9603i −1.06415 + 0.126135i
\(627\) 30.3915 + 1111.31i 0.0484713 + 1.77242i
\(628\) 983.169 236.394i 1.56556 0.376423i
\(629\) 74.9959 + 129.897i 0.119230 + 0.206513i
\(630\) 55.1551 41.2009i 0.0875477 0.0653983i
\(631\) −707.959 408.740i −1.12196 0.647766i −0.180062 0.983655i \(-0.557630\pi\)
−0.941901 + 0.335890i \(0.890963\pi\)
\(632\) 653.386 786.433i 1.03384 1.24436i
\(633\) −117.682 + 203.832i −0.185912 + 0.322009i
\(634\) −524.582 + 62.1794i −0.827417 + 0.0980748i
\(635\) 71.0954i 0.111961i
\(636\) −966.499 285.930i −1.51965 0.449576i
\(637\) −454.584 + 787.362i −0.713632 + 1.23605i
\(638\) 0.0963040 + 0.812477i 0.000150947 + 0.00127348i
\(639\) 246.469i 0.385711i
\(640\) −81.3305 260.823i −0.127079 0.407536i
\(641\) 118.269 + 204.847i 0.184506 + 0.319574i 0.943410 0.331628i \(-0.107598\pi\)
−0.758904 + 0.651203i \(0.774265\pi\)
\(642\) 319.616 744.279i 0.497845 1.15931i
\(643\) 364.648 210.529i 0.567103 0.327417i −0.188888 0.981999i \(-0.560488\pi\)
0.755992 + 0.654581i \(0.227155\pi\)
\(644\) −53.0680 55.8837i −0.0824037 0.0867759i
\(645\) 534.588 0.828818
\(646\) 228.358 180.517i 0.353495 0.279437i
\(647\) 633.110i 0.978532i 0.872135 + 0.489266i \(0.162735\pi\)
−0.872135 + 0.489266i \(0.837265\pi\)
\(648\) −507.011 421.236i −0.782424 0.650056i
\(649\) −511.513 885.967i −0.788156 1.36513i
\(650\) −321.160 + 747.872i −0.494092 + 1.15057i
\(651\) 281.764 162.677i 0.432818 0.249887i
\(652\) −223.136 66.0127i −0.342233 0.101247i
\(653\) −763.077 −1.16857 −0.584286 0.811548i \(-0.698625\pi\)
−0.584286 + 0.811548i \(0.698625\pi\)
\(654\) −61.4625 518.534i −0.0939793 0.792865i
\(655\) −25.3088 14.6120i −0.0386393 0.0223084i
\(656\) 26.0110 502.907i 0.0396509 0.766626i
\(657\) −818.095 −1.24520
\(658\) −324.299 + 38.4396i −0.492856 + 0.0584189i
\(659\) 308.832 + 178.304i 0.468637 + 0.270568i 0.715669 0.698440i \(-0.246122\pi\)
−0.247032 + 0.969007i \(0.579455\pi\)
\(660\) −344.000 362.251i −0.521211 0.548866i
\(661\) 131.256 227.342i 0.198572 0.343937i −0.749494 0.662011i \(-0.769703\pi\)
0.948066 + 0.318075i \(0.103036\pi\)
\(662\) −979.327 + 731.559i −1.47935 + 1.10507i
\(663\) −557.800 + 322.046i −0.841327 + 0.485740i
\(664\) 246.527 + 667.185i 0.371275 + 1.00480i
\(665\) −73.9391 + 2.02205i −0.111187 + 0.00304068i
\(666\) 343.860 40.7582i 0.516306 0.0611984i
\(667\) −0.270165 + 0.155980i −0.000405045 + 0.000233853i
\(668\) 466.679 443.166i 0.698622 0.663422i
\(669\) −87.1092 + 150.878i −0.130208 + 0.225527i
\(670\) 22.8153 17.0431i 0.0340527 0.0254374i
\(671\) 567.716 + 327.771i 0.846074 + 0.488481i
\(672\) 204.865 137.140i 0.304859 0.204078i
\(673\) 776.136 1.15325 0.576624 0.817010i \(-0.304370\pi\)
0.576624 + 0.817010i \(0.304370\pi\)
\(674\) −54.3417 + 126.544i −0.0806257 + 0.187750i
\(675\) 11.8051 + 6.81567i 0.0174890 + 0.0100973i
\(676\) 883.779 212.496i 1.30737 0.314344i
\(677\) 114.432 0.169029 0.0845144 0.996422i \(-0.473066\pi\)
0.0845144 + 0.996422i \(0.473066\pi\)
\(678\) −261.937 112.484i −0.386338 0.165905i
\(679\) −204.715 + 118.192i −0.301494 + 0.174068i
\(680\) −22.0853 + 128.926i −0.0324785 + 0.189597i
\(681\) 585.168 + 1013.54i 0.859278 + 1.48831i
\(682\) −700.198 937.344i −1.02668 1.37440i
\(683\) 614.331i 0.899460i −0.893164 0.449730i \(-0.851520\pi\)
0.893164 0.449730i \(-0.148480\pi\)
\(684\) −174.903 648.843i −0.255706 0.948601i
\(685\) 285.004 0.416064
\(686\) −276.675 + 206.677i −0.403316 + 0.301278i
\(687\) 516.440 298.167i 0.751733 0.434013i
\(688\) 947.435 + 49.0026i 1.37709 + 0.0712247i
\(689\) −593.727 1028.37i −0.861723 1.49255i
\(690\) 75.1603 175.023i 0.108928 0.253656i
\(691\) 388.024i 0.561540i −0.959775 0.280770i \(-0.909410\pi\)
0.959775 0.280770i \(-0.0905898\pi\)
\(692\) 959.625 230.733i 1.38674 0.333429i
\(693\) 111.698 193.466i 0.161180 0.279172i
\(694\) −906.037 389.080i −1.30553 0.560635i
\(695\) 474.468i 0.682687i
\(696\) −0.345885 0.936082i −0.000496961 0.00134495i
\(697\) −120.548 + 208.796i −0.172953 + 0.299564i
\(698\) −216.098 289.287i −0.309596 0.414452i
\(699\) 326.189 + 188.325i 0.466651 + 0.269421i
\(700\) −108.155 + 102.706i −0.154507 + 0.146722i
\(701\) 630.359 + 1091.81i 0.899229 + 1.55751i 0.828482 + 0.560015i \(0.189205\pi\)
0.0707461 + 0.997494i \(0.477462\pi\)
\(702\) −3.12452 26.3603i −0.00445089 0.0375503i
\(703\) −327.151 177.137i −0.465365 0.251973i
\(704\) −576.455 673.541i −0.818828 0.956734i
\(705\) −403.579 699.019i −0.572452 0.991516i
\(706\) 528.218 + 707.117i 0.748184 + 1.00158i
\(707\) 144.206 + 83.2571i 0.203968 + 0.117761i
\(708\) 859.250 + 904.840i 1.21363 + 1.27802i
\(709\) −644.880 + 1116.97i −0.909563 + 1.57541i −0.0948904 + 0.995488i \(0.530250\pi\)
−0.814672 + 0.579921i \(0.803083\pi\)
\(710\) 14.0063 + 118.166i 0.0197272 + 0.166431i
\(711\) 1130.07i 1.58942i
\(712\) −84.3335 + 492.306i −0.118446 + 0.691441i
\(713\) 223.055 386.342i 0.312840 0.541854i
\(714\) −117.210 + 13.8931i −0.164160 + 0.0194581i
\(715\) 588.553i 0.823151i
\(716\) −496.250 146.811i −0.693086 0.205043i
\(717\) −173.804 301.038i −0.242405 0.419858i
\(718\) 254.634 + 109.348i 0.354644 + 0.152295i
\(719\) −826.687 + 477.288i −1.14977 + 0.663822i −0.948832 0.315781i \(-0.897734\pi\)
−0.200942 + 0.979603i \(0.564400\pi\)
\(720\) 253.366 + 164.291i 0.351897 + 0.228182i
\(721\) 123.689 0.171551
\(722\) −248.207 + 677.995i −0.343777 + 0.939051i
\(723\) 188.345i 0.260504i
\(724\) −529.649 557.751i −0.731560 0.770375i
\(725\) 0.301877 + 0.522866i 0.000416382 + 0.000721194i
\(726\) −550.239 236.290i −0.757905 0.325468i
\(727\) −882.411 + 509.460i −1.21377 + 0.700771i −0.963578 0.267426i \(-0.913827\pi\)
−0.250192 + 0.968196i \(0.580494\pi\)
\(728\) 286.277 + 49.0401i 0.393238 + 0.0673628i
\(729\) 703.208 0.964620
\(730\) −392.222 + 46.4906i −0.537291 + 0.0636858i
\(731\) −393.354 227.103i −0.538105 0.310675i
\(732\) −766.735 226.832i −1.04745 0.309879i
\(733\) −442.473 −0.603647 −0.301823 0.953364i \(-0.597595\pi\)
−0.301823 + 0.953364i \(0.597595\pi\)
\(734\) 82.7874 + 698.443i 0.112789 + 0.951557i
\(735\) −356.619 205.894i −0.485195 0.280128i
\(736\) 149.248 303.299i 0.202782 0.412091i
\(737\) 46.2046 80.0288i 0.0626929 0.108587i
\(738\) 333.098 + 445.913i 0.451352 + 0.604218i
\(739\) 396.012 228.638i 0.535876 0.309388i −0.207530 0.978229i \(-0.566542\pi\)
0.743406 + 0.668841i \(0.233209\pi\)
\(740\) 162.542 39.0817i 0.219651 0.0528131i
\(741\) 760.660 1404.85i 1.02653 1.89588i
\(742\) −25.6134 216.090i −0.0345194 0.291226i
\(743\) 1040.55 600.759i 1.40046 0.808559i 0.406025 0.913862i \(-0.366915\pi\)
0.994440 + 0.105303i \(0.0335813\pi\)
\(744\) 1097.67 + 911.967i 1.47536 + 1.22576i
\(745\) −25.3037 + 43.8273i −0.0339647 + 0.0588287i
\(746\) −235.546 315.321i −0.315745 0.422683i
\(747\) −680.825 393.075i −0.911413 0.526204i
\(748\) 99.2265 + 412.686i 0.132656 + 0.551719i
\(749\) 174.876 0.233479
\(750\) −752.950 323.340i −1.00393 0.431120i
\(751\) 257.509 + 148.673i 0.342888 + 0.197967i 0.661548 0.749902i \(-0.269900\pi\)
−0.318660 + 0.947869i \(0.603233\pi\)
\(752\) −651.176 1275.84i −0.865925 1.69660i
\(753\) 462.731 0.614517
\(754\) 0.463920 1.08031i 0.000615279 0.00143278i
\(755\) 143.702 82.9663i 0.190334 0.109889i
\(756\) 1.37996 4.66453i 0.00182535 0.00617002i
\(757\) −153.556 265.967i −0.202848 0.351344i 0.746597 0.665277i \(-0.231687\pi\)
−0.949445 + 0.313933i \(0.898353\pi\)
\(758\) −271.187 + 202.578i −0.357767 + 0.267253i
\(759\) 618.088i 0.814345i
\(760\) −120.727 301.138i −0.158851 0.396234i
\(761\) −198.836 −0.261283 −0.130641 0.991430i \(-0.541704\pi\)
−0.130641 + 0.991430i \(0.541704\pi\)
\(762\) 168.401 + 225.436i 0.220999 + 0.295848i
\(763\) 97.6294 56.3664i 0.127955 0.0738746i
\(764\) −4.95111 1.46474i −0.00648052 0.00191720i
\(765\) −72.2866 125.204i −0.0944923 0.163665i
\(766\) 728.788 + 312.964i 0.951420 + 0.408569i
\(767\) 1470.10i 1.91669i
\(768\) 875.694 + 634.399i 1.14023 + 0.826041i
\(769\) 360.826 624.969i 0.469214 0.812703i −0.530166 0.847894i \(-0.677870\pi\)
0.999381 + 0.0351906i \(0.0112038\pi\)
\(770\) 42.5574 99.1017i 0.0552693 0.128704i
\(771\) 1892.36i 2.45443i
\(772\) −1451.29 + 348.950i −1.87991 + 0.452007i
\(773\) 593.625 1028.19i 0.767950 1.33013i −0.170723