Properties

Label 76.3.g.c.7.11
Level $76$
Weight $3$
Character 76.7
Analytic conductor $2.071$
Analytic rank $0$
Dimension $28$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 76 = 2^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 76.g (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.07085000914\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 7.11
Character \(\chi\) \(=\) 76.7
Dual form 76.3.g.c.11.11

$q$-expansion

\(f(q)\) \(=\) \(q+(1.12526 - 1.65342i) q^{2} +(-3.58197 + 2.06805i) q^{3} +(-1.46759 - 3.72105i) q^{4} +(-3.72976 - 6.46014i) q^{5} +(-0.611284 + 8.24960i) q^{6} -3.06851i q^{7} +(-7.80387 - 1.76059i) q^{8} +(4.05369 - 7.02120i) q^{9} +O(q^{10})\) \(q+(1.12526 - 1.65342i) q^{2} +(-3.58197 + 2.06805i) q^{3} +(-1.46759 - 3.72105i) q^{4} +(-3.72976 - 6.46014i) q^{5} +(-0.611284 + 8.24960i) q^{6} -3.06851i q^{7} +(-7.80387 - 1.76059i) q^{8} +(4.05369 - 7.02120i) q^{9} +(-14.8783 - 1.10246i) q^{10} +6.31466i q^{11} +(12.9522 + 10.2936i) q^{12} +(8.74659 - 15.1495i) q^{13} +(-5.07354 - 3.45287i) q^{14} +(26.7198 + 15.4267i) q^{15} +(-11.6924 + 10.9219i) q^{16} +(10.6765 + 18.4922i) q^{17} +(-7.04754 - 14.6031i) q^{18} +(-6.62587 - 17.8072i) q^{19} +(-18.5647 + 23.3594i) q^{20} +(6.34585 + 10.9913i) q^{21} +(10.4408 + 7.10562i) q^{22} +(5.19772 + 3.00090i) q^{23} +(31.5942 - 9.83242i) q^{24} +(-15.3222 + 26.5389i) q^{25} +(-15.2064 - 31.5089i) q^{26} -3.69197i q^{27} +(-11.4181 + 4.50332i) q^{28} +(18.2919 - 31.6825i) q^{29} +(55.5735 - 26.8201i) q^{30} -53.3857i q^{31} +(4.90164 + 31.6224i) q^{32} +(-13.0591 - 22.6189i) q^{33} +(42.5893 + 3.15580i) q^{34} +(-19.8230 + 11.4448i) q^{35} +(-32.0753 - 4.77972i) q^{36} -39.2040 q^{37} +(-36.8986 - 9.08239i) q^{38} +72.3537i q^{39} +(17.7329 + 56.9806i) q^{40} +(18.2738 + 31.6512i) q^{41} +(25.3140 + 1.87573i) q^{42} +(-31.7551 + 18.3338i) q^{43} +(23.4971 - 9.26734i) q^{44} -60.4772 q^{45} +(10.8105 - 5.21722i) q^{46} +(-0.0577813 - 0.0333600i) q^{47} +(19.2945 - 63.3025i) q^{48} +39.5842 q^{49} +(26.6385 + 55.1972i) q^{50} +(-76.4859 - 44.1592i) q^{51} +(-69.2086 - 10.3131i) q^{52} +(-31.6606 + 54.8377i) q^{53} +(-6.10438 - 4.15442i) q^{54} +(40.7936 - 23.5522i) q^{55} +(-5.40240 + 23.9463i) q^{56} +(60.5600 + 50.0824i) q^{57} +(-31.8013 - 65.8951i) q^{58} +(41.8467 - 24.1602i) q^{59} +(18.1897 - 122.066i) q^{60} +(29.8565 - 51.7130i) q^{61} +(-88.2689 - 60.0726i) q^{62} +(-21.5446 - 12.4388i) q^{63} +(57.8006 + 27.4788i) q^{64} -130.491 q^{65} +(-52.0934 - 3.86005i) q^{66} +(58.4513 + 33.7469i) q^{67} +(53.1418 - 66.8668i) q^{68} -24.8241 q^{69} +(-3.38290 + 45.6541i) q^{70} +(-30.0423 + 17.3449i) q^{71} +(-43.9959 + 47.6556i) q^{72} +(-17.7736 - 30.7848i) q^{73} +(-44.1146 + 64.8207i) q^{74} -126.749i q^{75} +(-56.5375 + 50.7889i) q^{76} +19.3766 q^{77} +(119.631 + 81.4165i) q^{78} +(65.0141 - 37.5359i) q^{79} +(114.167 + 34.7980i) q^{80} +(44.1184 + 76.4153i) q^{81} +(72.8955 + 5.40146i) q^{82} +53.5823i q^{83} +(31.5861 - 39.7440i) q^{84} +(79.6416 - 137.943i) q^{85} +(-5.41919 + 73.1348i) q^{86} +151.314i q^{87} +(11.1175 - 49.2788i) q^{88} +(36.5343 - 63.2793i) q^{89} +(-68.0524 + 99.9941i) q^{90} +(-46.4866 - 26.8390i) q^{91} +(3.53838 - 23.7450i) q^{92} +(110.404 + 191.226i) q^{93} +(-0.120177 + 0.0579980i) q^{94} +(-90.3243 + 109.221i) q^{95} +(-82.9543 - 103.134i) q^{96} +(-59.7660 - 103.518i) q^{97} +(44.5425 - 65.4493i) q^{98} +(44.3365 + 25.5977i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28q - 5q^{2} - 11q^{4} + 6q^{5} - 3q^{6} - 62q^{8} + 20q^{9} + O(q^{10}) \) \( 28q - 5q^{2} - 11q^{4} + 6q^{5} - 3q^{6} - 62q^{8} + 20q^{9} + 26q^{12} + 30q^{13} - 30q^{14} - 19q^{16} + 38q^{17} - 60q^{18} - 44q^{20} + 80q^{21} + 45q^{22} + 17q^{24} - 16q^{25} - 56q^{26} + 54q^{28} + 6q^{29} + 96q^{30} - 45q^{32} - 176q^{33} - 20q^{34} + 30q^{36} + 104q^{37} - 258q^{38} + 94q^{40} - 2q^{41} - 2q^{42} + 201q^{44} - 360q^{45} + 164q^{46} - 17q^{48} - 20q^{49} + 490q^{50} - 102q^{52} - 242q^{53} - 13q^{54} + 276q^{56} - 254q^{57} + 96q^{58} + 10q^{60} - 58q^{61} - 36q^{62} - 74q^{64} - 260q^{65} + 167q^{66} + 396q^{68} + 340q^{69} + 60q^{70} - 422q^{72} - 82q^{73} - 136q^{74} + 123q^{76} - 144q^{77} + 224q^{78} - 174q^{80} + 410q^{81} - 305q^{82} + 252q^{84} + 714q^{85} + 166q^{86} - 718q^{88} + 150q^{89} - 272q^{90} - 588q^{92} + 344q^{93} - 488q^{94} - 122q^{96} + 94q^{97} + 307q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/76\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(39\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.12526 1.65342i 0.562629 0.826710i
\(3\) −3.58197 + 2.06805i −1.19399 + 0.689351i −0.959209 0.282697i \(-0.908771\pi\)
−0.234782 + 0.972048i \(0.575438\pi\)
\(4\) −1.46759 3.72105i −0.366898 0.930261i
\(5\) −3.72976 6.46014i −0.745952 1.29203i −0.949749 0.313014i \(-0.898661\pi\)
0.203796 0.979013i \(-0.434672\pi\)
\(6\) −0.611284 + 8.24960i −0.101881 + 1.37493i
\(7\) 3.06851i 0.438359i −0.975685 0.219179i \(-0.929662\pi\)
0.975685 0.219179i \(-0.0703380\pi\)
\(8\) −7.80387 1.76059i −0.975483 0.220074i
\(9\) 4.05369 7.02120i 0.450410 0.780133i
\(10\) −14.8783 1.10246i −1.48783 0.110246i
\(11\) 6.31466i 0.574060i 0.957922 + 0.287030i \(0.0926679\pi\)
−0.957922 + 0.287030i \(0.907332\pi\)
\(12\) 12.9522 + 10.2936i 1.07935 + 0.857802i
\(13\) 8.74659 15.1495i 0.672815 1.16535i −0.304288 0.952580i \(-0.598418\pi\)
0.977102 0.212769i \(-0.0682483\pi\)
\(14\) −5.07354 3.45287i −0.362395 0.246633i
\(15\) 26.7198 + 15.4267i 1.78132 + 1.02845i
\(16\) −11.6924 + 10.9219i −0.730772 + 0.682621i
\(17\) 10.6765 + 18.4922i 0.628030 + 1.08778i 0.987947 + 0.154795i \(0.0494717\pi\)
−0.359917 + 0.932984i \(0.617195\pi\)
\(18\) −7.04754 14.6031i −0.391530 0.811284i
\(19\) −6.62587 17.8072i −0.348730 0.937223i
\(20\) −18.5647 + 23.3594i −0.928235 + 1.16797i
\(21\) 6.34585 + 10.9913i 0.302183 + 0.523397i
\(22\) 10.4408 + 7.10562i 0.474581 + 0.322983i
\(23\) 5.19772 + 3.00090i 0.225988 + 0.130474i 0.608720 0.793385i \(-0.291683\pi\)
−0.382732 + 0.923859i \(0.625017\pi\)
\(24\) 31.5942 9.83242i 1.31643 0.409684i
\(25\) −15.3222 + 26.5389i −0.612889 + 1.06156i
\(26\) −15.2064 31.5089i −0.584861 1.21188i
\(27\) 3.69197i 0.136740i
\(28\) −11.4181 + 4.50332i −0.407788 + 0.160833i
\(29\) 18.2919 31.6825i 0.630755 1.09250i −0.356643 0.934241i \(-0.616079\pi\)
0.987398 0.158258i \(-0.0505879\pi\)
\(30\) 55.5735 26.8201i 1.85245 0.894002i
\(31\) 53.3857i 1.72212i −0.508505 0.861059i \(-0.669802\pi\)
0.508505 0.861059i \(-0.330198\pi\)
\(32\) 4.90164 + 31.6224i 0.153176 + 0.988199i
\(33\) −13.0591 22.6189i −0.395729 0.685423i
\(34\) 42.5893 + 3.15580i 1.25263 + 0.0928178i
\(35\) −19.8230 + 11.4448i −0.566372 + 0.326995i
\(36\) −32.0753 4.77972i −0.890982 0.132770i
\(37\) −39.2040 −1.05957 −0.529784 0.848133i \(-0.677727\pi\)
−0.529784 + 0.848133i \(0.677727\pi\)
\(38\) −36.8986 9.08239i −0.971017 0.239010i
\(39\) 72.3537i 1.85522i
\(40\) 17.7329 + 56.9806i 0.443322 + 1.42452i
\(41\) 18.2738 + 31.6512i 0.445704 + 0.771981i 0.998101 0.0615997i \(-0.0196202\pi\)
−0.552397 + 0.833581i \(0.686287\pi\)
\(42\) 25.3140 + 1.87573i 0.602714 + 0.0446603i
\(43\) −31.7551 + 18.3338i −0.738491 + 0.426368i −0.821521 0.570179i \(-0.806874\pi\)
0.0830292 + 0.996547i \(0.473541\pi\)
\(44\) 23.4971 9.26734i 0.534026 0.210621i
\(45\) −60.4772 −1.34394
\(46\) 10.8105 5.21722i 0.235011 0.113418i
\(47\) −0.0577813 0.0333600i −0.00122939 0.000709788i 0.499385 0.866380i \(-0.333559\pi\)
−0.500615 + 0.865670i \(0.666893\pi\)
\(48\) 19.2945 63.3025i 0.401970 1.31880i
\(49\) 39.5842 0.807842
\(50\) 26.6385 + 55.1972i 0.532769 + 1.10394i
\(51\) −76.4859 44.1592i −1.49972 0.865866i
\(52\) −69.2086 10.3131i −1.33093 0.198330i
\(53\) −31.6606 + 54.8377i −0.597369 + 1.03467i 0.395839 + 0.918320i \(0.370454\pi\)
−0.993208 + 0.116354i \(0.962879\pi\)
\(54\) −6.10438 4.15442i −0.113044 0.0769337i
\(55\) 40.7936 23.5522i 0.741701 0.428221i
\(56\) −5.40240 + 23.9463i −0.0964714 + 0.427612i
\(57\) 60.5600 + 50.0824i 1.06246 + 0.878639i
\(58\) −31.8013 65.8951i −0.548299 1.13612i
\(59\) 41.8467 24.1602i 0.709266 0.409495i −0.101524 0.994833i \(-0.532372\pi\)
0.810789 + 0.585339i \(0.199038\pi\)
\(60\) 18.1897 122.066i 0.303161 2.03443i
\(61\) 29.8565 51.7130i 0.489451 0.847754i −0.510475 0.859892i \(-0.670531\pi\)
0.999926 + 0.0121386i \(0.00386392\pi\)
\(62\) −88.2689 60.0726i −1.42369 0.968913i
\(63\) −21.5446 12.4388i −0.341978 0.197441i
\(64\) 57.8006 + 27.4788i 0.903135 + 0.429357i
\(65\) −130.491 −2.00755
\(66\) −52.0934 3.86005i −0.789294 0.0584856i
\(67\) 58.4513 + 33.7469i 0.872408 + 0.503685i 0.868148 0.496306i \(-0.165311\pi\)
0.00426017 + 0.999991i \(0.498644\pi\)
\(68\) 53.1418 66.8668i 0.781496 0.983335i
\(69\) −24.8241 −0.359770
\(70\) −3.38290 + 45.6541i −0.0483272 + 0.652201i
\(71\) −30.0423 + 17.3449i −0.423131 + 0.244295i −0.696416 0.717638i \(-0.745223\pi\)
0.273285 + 0.961933i \(0.411890\pi\)
\(72\) −43.9959 + 47.6556i −0.611054 + 0.661883i
\(73\) −17.7736 30.7848i −0.243474 0.421710i 0.718227 0.695809i \(-0.244954\pi\)
−0.961702 + 0.274099i \(0.911620\pi\)
\(74\) −44.1146 + 64.8207i −0.596144 + 0.875955i
\(75\) 126.749i 1.68998i
\(76\) −56.5375 + 50.7889i −0.743914 + 0.668275i
\(77\) 19.3766 0.251644
\(78\) 119.631 + 81.4165i 1.53373 + 1.04380i
\(79\) 65.0141 37.5359i 0.822963 0.475138i −0.0284739 0.999595i \(-0.509065\pi\)
0.851437 + 0.524456i \(0.175731\pi\)
\(80\) 114.167 + 34.7980i 1.42709 + 0.434975i
\(81\) 44.1184 + 76.4153i 0.544672 + 0.943399i
\(82\) 72.8955 + 5.40146i 0.888970 + 0.0658714i
\(83\) 53.5823i 0.645570i 0.946472 + 0.322785i \(0.104619\pi\)
−0.946472 + 0.322785i \(0.895381\pi\)
\(84\) 31.5861 39.7440i 0.376025 0.473142i
\(85\) 79.6416 137.943i 0.936960 1.62286i
\(86\) −5.41919 + 73.1348i −0.0630138 + 0.850405i
\(87\) 151.314i 1.73925i
\(88\) 11.1175 49.2788i 0.126336 0.559986i
\(89\) 36.5343 63.2793i 0.410498 0.711003i −0.584446 0.811432i \(-0.698688\pi\)
0.994944 + 0.100429i \(0.0320216\pi\)
\(90\) −68.0524 + 99.9941i −0.756138 + 1.11105i
\(91\) −46.4866 26.8390i −0.510841 0.294934i
\(92\) 3.53838 23.7450i 0.0384606 0.258098i
\(93\) 110.404 + 191.226i 1.18714 + 2.05619i
\(94\) −0.120177 + 0.0579980i −0.00127848 + 0.000617000i
\(95\) −90.3243 + 109.221i −0.950782 + 1.14969i
\(96\) −82.9543 103.134i −0.864107 1.07431i
\(97\) −59.7660 103.518i −0.616144 1.06719i −0.990183 0.139780i \(-0.955361\pi\)
0.374039 0.927413i \(-0.377973\pi\)
\(98\) 44.5425 65.4493i 0.454515 0.667850i
\(99\) 44.3365 + 25.5977i 0.447843 + 0.258562i
\(100\) 121.239 + 18.0665i 1.21239 + 0.180665i
\(101\) −13.0976 + 22.6857i −0.129679 + 0.224611i −0.923552 0.383473i \(-0.874728\pi\)
0.793873 + 0.608083i \(0.208061\pi\)
\(102\) −159.080 + 76.7729i −1.55961 + 0.752675i
\(103\) 130.318i 1.26522i 0.774469 + 0.632612i \(0.218017\pi\)
−0.774469 + 0.632612i \(0.781983\pi\)
\(104\) −94.9294 + 102.826i −0.912783 + 0.988710i
\(105\) 47.3370 81.9901i 0.450828 0.780858i
\(106\) 55.0434 + 114.055i 0.519278 + 1.07599i
\(107\) 154.669i 1.44550i −0.691109 0.722751i \(-0.742877\pi\)
0.691109 0.722751i \(-0.257123\pi\)
\(108\) −13.7380 + 5.41830i −0.127204 + 0.0501695i
\(109\) 44.6984 + 77.4198i 0.410077 + 0.710274i 0.994898 0.100889i \(-0.0321686\pi\)
−0.584821 + 0.811162i \(0.698835\pi\)
\(110\) 6.96165 93.9511i 0.0632877 0.854101i
\(111\) 140.428 81.0760i 1.26512 0.730415i
\(112\) 33.5141 + 35.8781i 0.299233 + 0.320340i
\(113\) −93.6713 −0.828949 −0.414475 0.910061i \(-0.636035\pi\)
−0.414475 + 0.910061i \(0.636035\pi\)
\(114\) 150.953 43.7755i 1.32415 0.383996i
\(115\) 44.7706i 0.389310i
\(116\) −144.737 21.5680i −1.24773 0.185931i
\(117\) −70.9120 122.823i −0.606085 1.04977i
\(118\) 7.14136 96.3765i 0.0605200 0.816750i
\(119\) 56.7437 32.7610i 0.476838 0.275302i
\(120\) −181.358 167.430i −1.51131 1.39525i
\(121\) 81.1251 0.670455
\(122\) −51.9070 107.556i −0.425467 0.881604i
\(123\) −130.913 75.5826i −1.06433 0.614493i
\(124\) −198.650 + 78.3483i −1.60202 + 0.631841i
\(125\) 42.1051 0.336841
\(126\) −44.8098 + 21.6255i −0.355633 + 0.171631i
\(127\) 136.963 + 79.0756i 1.07845 + 0.622643i 0.930477 0.366349i \(-0.119392\pi\)
0.147971 + 0.988992i \(0.452726\pi\)
\(128\) 110.475 64.6479i 0.863083 0.505062i
\(129\) 75.8307 131.343i 0.587835 1.01816i
\(130\) −146.836 + 215.756i −1.12951 + 1.65966i
\(131\) 9.89072 5.71041i 0.0755017 0.0435909i −0.461774 0.886998i \(-0.652787\pi\)
0.537276 + 0.843407i \(0.319454\pi\)
\(132\) −65.0008 + 81.7887i −0.492430 + 0.619611i
\(133\) −54.6417 + 20.3316i −0.410840 + 0.152869i
\(134\) 121.571 58.6706i 0.907243 0.437840i
\(135\) −23.8506 + 13.7702i −0.176671 + 0.102001i
\(136\) −50.7607 163.108i −0.373241 1.19932i
\(137\) −2.90159 + 5.02570i −0.0211795 + 0.0366839i −0.876421 0.481546i \(-0.840075\pi\)
0.855241 + 0.518230i \(0.173409\pi\)
\(138\) −27.9335 + 41.0447i −0.202417 + 0.297425i
\(139\) 62.5836 + 36.1327i 0.450242 + 0.259947i 0.707932 0.706280i \(-0.249628\pi\)
−0.257690 + 0.966228i \(0.582961\pi\)
\(140\) 71.6787 + 56.9660i 0.511991 + 0.406900i
\(141\) 0.275961 0.00195717
\(142\) −5.12688 + 69.1900i −0.0361048 + 0.487254i
\(143\) 95.6642 + 55.2318i 0.668981 + 0.386236i
\(144\) 29.2879 + 126.368i 0.203388 + 0.877559i
\(145\) −272.897 −1.88205
\(146\) −70.9001 5.25360i −0.485617 0.0359836i
\(147\) −141.790 + 81.8623i −0.964556 + 0.556886i
\(148\) 57.5355 + 145.880i 0.388753 + 0.985675i
\(149\) 42.7490 + 74.0435i 0.286906 + 0.496936i 0.973070 0.230511i \(-0.0740398\pi\)
−0.686163 + 0.727447i \(0.740706\pi\)
\(150\) −209.569 142.625i −1.39713 0.950834i
\(151\) 193.207i 1.27952i −0.768576 0.639759i \(-0.779034\pi\)
0.768576 0.639759i \(-0.220966\pi\)
\(152\) 20.3561 + 150.631i 0.133922 + 0.990992i
\(153\) 173.117 1.13148
\(154\) 21.8037 32.0377i 0.141582 0.208037i
\(155\) −344.879 + 199.116i −2.22502 + 1.28462i
\(156\) 269.231 106.186i 1.72584 0.680677i
\(157\) −39.5456 68.4951i −0.251883 0.436274i 0.712161 0.702016i \(-0.247717\pi\)
−0.964044 + 0.265742i \(0.914383\pi\)
\(158\) 11.0950 149.733i 0.0702216 0.947678i
\(159\) 261.903i 1.64719i
\(160\) 186.003 149.609i 1.16252 0.935057i
\(161\) 9.20831 15.9493i 0.0571945 0.0990637i
\(162\) 175.991 + 13.0407i 1.08637 + 0.0804981i
\(163\) 161.432i 0.990381i 0.868785 + 0.495190i \(0.164902\pi\)
−0.868785 + 0.495190i \(0.835098\pi\)
\(164\) 90.9571 114.449i 0.554617 0.697859i
\(165\) −97.4143 + 168.727i −0.590390 + 1.02258i
\(166\) 88.5941 + 60.2939i 0.533699 + 0.363216i
\(167\) 20.6601 + 11.9281i 0.123713 + 0.0714257i 0.560579 0.828101i \(-0.310578\pi\)
−0.436866 + 0.899526i \(0.643912\pi\)
\(168\) −30.1709 96.9473i −0.179589 0.577067i
\(169\) −68.5058 118.656i −0.405360 0.702104i
\(170\) −138.461 286.903i −0.814476 1.68766i
\(171\) −151.887 25.6635i −0.888230 0.150079i
\(172\) 114.825 + 91.2557i 0.667585 + 0.530556i
\(173\) 65.7413 + 113.867i 0.380008 + 0.658193i 0.991063 0.133395i \(-0.0425880\pi\)
−0.611055 + 0.791588i \(0.709255\pi\)
\(174\) 250.186 + 170.268i 1.43785 + 0.978550i
\(175\) 81.4349 + 47.0165i 0.465342 + 0.268666i
\(176\) −68.9684 73.8332i −0.391866 0.419507i
\(177\) −99.9291 + 173.082i −0.564571 + 0.977866i
\(178\) −63.5167 131.612i −0.356835 0.739393i
\(179\) 186.389i 1.04128i −0.853776 0.520641i \(-0.825693\pi\)
0.853776 0.520641i \(-0.174307\pi\)
\(180\) 88.7558 + 225.038i 0.493088 + 1.25021i
\(181\) −126.815 + 219.650i −0.700635 + 1.21354i 0.267609 + 0.963528i \(0.413766\pi\)
−0.968244 + 0.250008i \(0.919567\pi\)
\(182\) −96.6855 + 46.6610i −0.531239 + 0.256379i
\(183\) 246.979i 1.34961i
\(184\) −35.2789 32.5697i −0.191733 0.177009i
\(185\) 146.222 + 253.263i 0.790387 + 1.36899i
\(186\) 440.410 + 32.6338i 2.36780 + 0.175450i
\(187\) −116.772 + 67.4185i −0.624451 + 0.360527i
\(188\) −0.0393349 + 0.263966i −0.000209228 + 0.00140407i
\(189\) −11.3289 −0.0599411
\(190\) 78.9497 + 272.245i 0.415525 + 1.43287i
\(191\) 17.2555i 0.0903429i −0.998979 0.0451715i \(-0.985617\pi\)
0.998979 0.0451715i \(-0.0143834\pi\)
\(192\) −263.868 + 21.1063i −1.37431 + 0.109929i
\(193\) −52.3338 90.6447i −0.271159 0.469662i 0.698000 0.716098i \(-0.254074\pi\)
−0.969159 + 0.246436i \(0.920740\pi\)
\(194\) −238.410 17.6659i −1.22892 0.0910612i
\(195\) 467.415 269.862i 2.39700 1.38391i
\(196\) −58.0935 147.295i −0.296395 0.751504i
\(197\) 1.28215 0.00650837 0.00325418 0.999995i \(-0.498964\pi\)
0.00325418 + 0.999995i \(0.498964\pi\)
\(198\) 92.2136 44.5028i 0.465725 0.224762i
\(199\) −243.279 140.457i −1.22251 0.705814i −0.257054 0.966397i \(-0.582752\pi\)
−0.965451 + 0.260583i \(0.916085\pi\)
\(200\) 166.297 180.130i 0.831484 0.900649i
\(201\) −279.161 −1.38886
\(202\) 22.7708 + 47.1831i 0.112727 + 0.233580i
\(203\) −97.2180 56.1289i −0.478907 0.276497i
\(204\) −52.0682 + 349.415i −0.255236 + 1.71282i
\(205\) 136.314 236.103i 0.664947 1.15172i
\(206\) 215.471 + 146.641i 1.04597 + 0.711852i
\(207\) 42.1399 24.3295i 0.203574 0.117534i
\(208\) 63.1942 + 272.664i 0.303818 + 1.31088i
\(209\) 112.447 41.8401i 0.538022 0.200192i
\(210\) −82.2976 170.528i −0.391894 0.812037i
\(211\) 24.0326 13.8753i 0.113899 0.0657595i −0.441968 0.897031i \(-0.645720\pi\)
0.555867 + 0.831271i \(0.312386\pi\)
\(212\) 250.518 + 37.3311i 1.18169 + 0.176090i
\(213\) 71.7405 124.258i 0.336810 0.583372i
\(214\) −255.732 174.042i −1.19501 0.813281i
\(215\) 236.878 + 136.762i 1.10176 + 0.636101i
\(216\) −6.50005 + 28.8117i −0.0300928 + 0.133387i
\(217\) −163.815 −0.754906
\(218\) 178.305 + 13.2121i 0.817911 + 0.0606061i
\(219\) 127.329 + 73.5136i 0.581412 + 0.335679i
\(220\) −147.507 117.230i −0.670486 0.532862i
\(221\) 373.532 1.69019
\(222\) 23.9648 323.417i 0.107949 1.45684i
\(223\) 227.599 131.404i 1.02062 0.589257i 0.106339 0.994330i \(-0.466087\pi\)
0.914284 + 0.405073i \(0.132754\pi\)
\(224\) 97.0336 15.0407i 0.433186 0.0671462i
\(225\) 124.223 + 215.161i 0.552103 + 0.956271i
\(226\) −105.404 + 154.878i −0.466391 + 0.685300i
\(227\) 108.770i 0.479161i −0.970876 0.239581i \(-0.922990\pi\)
0.970876 0.239581i \(-0.0770100\pi\)
\(228\) 97.4816 298.847i 0.427551 1.31073i
\(229\) −242.070 −1.05707 −0.528536 0.848911i \(-0.677259\pi\)
−0.528536 + 0.848911i \(0.677259\pi\)
\(230\) −74.0246 50.3785i −0.321846 0.219037i
\(231\) −69.4065 + 40.0719i −0.300461 + 0.173471i
\(232\) −198.527 + 215.041i −0.855721 + 0.926902i
\(233\) 133.782 + 231.717i 0.574170 + 0.994492i 0.996131 + 0.0878782i \(0.0280086\pi\)
−0.421961 + 0.906614i \(0.638658\pi\)
\(234\) −282.872 20.9604i −1.20886 0.0895745i
\(235\) 0.497700i 0.00211787i
\(236\) −151.315 120.256i −0.641165 0.509560i
\(237\) −155.253 + 268.905i −0.655074 + 1.13462i
\(238\) 9.68362 130.686i 0.0406875 0.549099i
\(239\) 54.4854i 0.227972i −0.993482 0.113986i \(-0.963638\pi\)
0.993482 0.113986i \(-0.0363619\pi\)
\(240\) −480.907 + 111.458i −2.00378 + 0.464408i
\(241\) 109.544 189.736i 0.454541 0.787288i −0.544121 0.839007i \(-0.683137\pi\)
0.998662 + 0.0517191i \(0.0164701\pi\)
\(242\) 91.2866 134.134i 0.377217 0.554272i
\(243\) −287.286 165.865i −1.18225 0.682570i
\(244\) −236.243 35.2039i −0.968211 0.144278i
\(245\) −147.640 255.720i −0.602611 1.04375i
\(246\) −272.280 + 131.404i −1.10683 + 0.534163i
\(247\) −327.725 55.3738i −1.32682 0.224185i
\(248\) −93.9903 + 416.614i −0.378993 + 1.67990i
\(249\) −110.811 191.930i −0.445025 0.770805i
\(250\) 47.3791 69.6173i 0.189516 0.278469i
\(251\) 272.951 + 157.589i 1.08746 + 0.627843i 0.932898 0.360141i \(-0.117271\pi\)
0.154558 + 0.987984i \(0.450605\pi\)
\(252\) −14.6666 + 98.4236i −0.0582009 + 0.390570i
\(253\) −18.9497 + 32.8218i −0.0748999 + 0.129730i
\(254\) 284.864 137.477i 1.12151 0.541247i
\(255\) 658.813i 2.58358i
\(256\) 17.4223 255.406i 0.0680559 0.997682i
\(257\) 61.4006 106.349i 0.238913 0.413809i −0.721490 0.692425i \(-0.756542\pi\)
0.960403 + 0.278616i \(0.0898757\pi\)
\(258\) −131.835 273.174i −0.510990 1.05881i
\(259\) 120.298i 0.464471i
\(260\) 191.507 + 485.562i 0.736566 + 1.86755i
\(261\) −148.299 256.862i −0.568196 0.984145i
\(262\) 1.68791 22.7792i 0.00644239 0.0869435i
\(263\) 23.7444 13.7088i 0.0902828 0.0521248i −0.454179 0.890910i \(-0.650067\pi\)
0.544462 + 0.838786i \(0.316734\pi\)
\(264\) 62.0884 + 199.507i 0.235183 + 0.755708i
\(265\) 472.345 1.78244
\(266\) −27.8694 + 113.224i −0.104772 + 0.425654i
\(267\) 302.220i 1.13191i
\(268\) 39.7911 267.027i 0.148474 0.996368i
\(269\) −189.509 328.239i −0.704494 1.22022i −0.966874 0.255255i \(-0.917841\pi\)
0.262380 0.964965i \(-0.415493\pi\)
\(270\) −4.07024 + 54.9301i −0.0150750 + 0.203445i
\(271\) −228.515 + 131.933i −0.843229 + 0.486838i −0.858360 0.513047i \(-0.828517\pi\)
0.0151315 + 0.999886i \(0.495183\pi\)
\(272\) −326.805 99.6098i −1.20149 0.366212i
\(273\) 222.018 0.813253
\(274\) 5.04455 + 10.4528i 0.0184108 + 0.0381487i
\(275\) −167.584 96.7547i −0.609397 0.351835i
\(276\) 36.4316 + 92.3717i 0.131999 + 0.334680i
\(277\) 184.425 0.665796 0.332898 0.942963i \(-0.391974\pi\)
0.332898 + 0.942963i \(0.391974\pi\)
\(278\) 130.165 62.8184i 0.468220 0.225966i
\(279\) −374.831 216.409i −1.34348 0.775659i
\(280\) 174.846 54.4136i 0.624449 0.194334i
\(281\) 67.1367 116.284i 0.238921 0.413823i −0.721484 0.692431i \(-0.756540\pi\)
0.960405 + 0.278608i \(0.0898731\pi\)
\(282\) 0.310527 0.456280i 0.00110116 0.00161801i
\(283\) 202.571 116.955i 0.715800 0.413267i −0.0974050 0.995245i \(-0.531054\pi\)
0.813205 + 0.581978i \(0.197721\pi\)
\(284\) 108.631 + 86.3335i 0.382504 + 0.303991i
\(285\) 97.6648 578.021i 0.342683 2.02815i
\(286\) 198.968 96.0231i 0.695693 0.335745i
\(287\) 97.1222 56.0735i 0.338405 0.195378i
\(288\) 241.897 + 93.7719i 0.839919 + 0.325597i
\(289\) −83.4755 + 144.584i −0.288843 + 0.500290i
\(290\) −307.080 + 451.214i −1.05890 + 1.55591i
\(291\) 428.160 + 247.198i 1.47134 + 0.849479i
\(292\) −88.4673 + 111.316i −0.302970 + 0.381219i
\(293\) 107.004 0.365202 0.182601 0.983187i \(-0.441548\pi\)
0.182601 + 0.983187i \(0.441548\pi\)
\(294\) −24.1972 + 326.554i −0.0823034 + 1.11073i
\(295\) −312.156 180.223i −1.05816 0.610927i
\(296\) 305.943 + 69.0223i 1.03359 + 0.233183i
\(297\) 23.3135 0.0784968
\(298\) 170.529 + 12.6359i 0.572244 + 0.0424025i
\(299\) 90.9246 52.4954i 0.304096 0.175570i
\(300\) −471.638 + 186.015i −1.57213 + 0.620051i
\(301\) 56.2576 + 97.4410i 0.186902 + 0.323724i
\(302\) −319.453 217.408i −1.05779 0.719894i
\(303\) 108.346i 0.357578i
\(304\) 271.962 + 135.841i 0.894611 + 0.446846i
\(305\) −445.430 −1.46043
\(306\) 194.801 286.235i 0.636605 0.935408i
\(307\) 369.984 213.610i 1.20516 0.695799i 0.243461 0.969911i \(-0.421717\pi\)
0.961698 + 0.274112i \(0.0883839\pi\)
\(308\) −28.4369 72.1012i −0.0923277 0.234095i
\(309\) −269.505 466.796i −0.872184 1.51067i
\(310\) −58.8554 + 794.285i −0.189856 + 2.56221i
\(311\) 33.0155i 0.106159i 0.998590 + 0.0530796i \(0.0169037\pi\)
−0.998590 + 0.0530796i \(0.983096\pi\)
\(312\) 127.385 564.638i 0.408286 1.80974i
\(313\) −135.658 + 234.967i −0.433412 + 0.750692i −0.997165 0.0752519i \(-0.976024\pi\)
0.563752 + 0.825944i \(0.309357\pi\)
\(314\) −157.750 11.6891i −0.502389 0.0372263i
\(315\) 185.575i 0.589127i
\(316\) −235.087 186.833i −0.743946 0.591244i
\(317\) −85.3897 + 147.899i −0.269368 + 0.466559i −0.968699 0.248239i \(-0.920148\pi\)
0.699331 + 0.714798i \(0.253482\pi\)
\(318\) −433.035 294.708i −1.36175 0.926756i
\(319\) 200.064 + 115.507i 0.627160 + 0.362091i
\(320\) −38.0655 475.889i −0.118955 1.48715i
\(321\) 319.863 + 554.019i 0.996458 + 1.72592i
\(322\) −16.0091 33.1722i −0.0497177 0.103019i
\(323\) 258.555 312.646i 0.800479 0.967945i
\(324\) 219.597 276.313i 0.677769 0.852818i
\(325\) 268.035 + 464.250i 0.824722 + 1.42846i
\(326\) 266.915 + 181.653i 0.818757 + 0.557217i
\(327\) −320.217 184.877i −0.979256 0.565374i
\(328\) −86.8818 279.175i −0.264883 0.851143i
\(329\) −0.102366 + 0.177302i −0.000311142 + 0.000538913i
\(330\) 169.360 + 350.927i 0.513211 + 1.06342i
\(331\) 536.931i 1.62215i 0.584944 + 0.811074i \(0.301117\pi\)
−0.584944 + 0.811074i \(0.698883\pi\)
\(332\) 199.382 78.6369i 0.600549 0.236858i
\(333\) −158.921 + 275.259i −0.477240 + 0.826604i
\(334\) 42.9700 20.7376i 0.128653 0.0620885i
\(335\) 503.471i 1.50290i
\(336\) −194.245 59.2055i −0.578109 0.176207i
\(337\) −14.1730 24.5483i −0.0420563 0.0728436i 0.844231 0.535979i \(-0.180058\pi\)
−0.886287 + 0.463136i \(0.846724\pi\)
\(338\) −273.274 20.2492i −0.808503 0.0599089i
\(339\) 335.528 193.717i 0.989758 0.571437i
\(340\) −630.175 93.9057i −1.85346 0.276193i
\(341\) 337.112 0.988599
\(342\) −213.345 + 222.255i −0.623816 + 0.649870i
\(343\) 271.822i 0.792483i
\(344\) 280.091 87.1669i 0.814218 0.253392i
\(345\) 92.5880 + 160.367i 0.268371 + 0.464832i
\(346\) 262.246 + 19.4321i 0.757937 + 0.0561621i
\(347\) −281.728 + 162.656i −0.811897 + 0.468749i −0.847614 0.530613i \(-0.821962\pi\)
0.0357172 + 0.999362i \(0.488628\pi\)
\(348\) 563.048 222.068i 1.61795 0.638125i
\(349\) 208.896 0.598556 0.299278 0.954166i \(-0.403254\pi\)
0.299278 + 0.954166i \(0.403254\pi\)
\(350\) 169.373 81.7404i 0.483923 0.233544i
\(351\) −55.9317 32.2922i −0.159350 0.0920005i
\(352\) −199.684 + 30.9522i −0.567285 + 0.0879324i
\(353\) −174.981 −0.495696 −0.247848 0.968799i \(-0.579723\pi\)
−0.247848 + 0.968799i \(0.579723\pi\)
\(354\) 173.732 + 359.987i 0.490767 + 1.01691i
\(355\) 224.101 + 129.385i 0.631271 + 0.364465i
\(356\) −289.082 43.0777i −0.812029 0.121005i
\(357\) −135.503 + 234.698i −0.379560 + 0.657417i
\(358\) −308.180 209.736i −0.860838 0.585855i
\(359\) 351.682 203.043i 0.979614 0.565581i 0.0774606 0.996995i \(-0.475319\pi\)
0.902154 + 0.431415i \(0.141985\pi\)
\(360\) 471.956 + 106.476i 1.31099 + 0.295766i
\(361\) −273.196 + 235.977i −0.756775 + 0.653676i
\(362\) 220.474 + 456.841i 0.609044 + 1.26199i
\(363\) −290.588 + 167.771i −0.800518 + 0.462179i
\(364\) −31.6460 + 212.367i −0.0869395 + 0.583427i
\(365\) −132.583 + 229.640i −0.363240 + 0.629151i
\(366\) 408.360 + 277.915i 1.11574 + 0.759332i
\(367\) 61.6040 + 35.5671i 0.167858 + 0.0969131i 0.581576 0.813492i \(-0.302436\pi\)
−0.413717 + 0.910405i \(0.635770\pi\)
\(368\) −93.5492 + 21.6815i −0.254210 + 0.0589172i
\(369\) 296.306 0.802997
\(370\) 583.287 + 43.2208i 1.57645 + 0.116813i
\(371\) 168.270 + 97.1508i 0.453558 + 0.261862i
\(372\) 549.532 691.461i 1.47724 1.85877i
\(373\) 388.010 1.04024 0.520121 0.854092i \(-0.325887\pi\)
0.520121 + 0.854092i \(0.325887\pi\)
\(374\) −19.9278 + 268.937i −0.0532830 + 0.719082i
\(375\) −150.819 + 87.0755i −0.402185 + 0.232201i
\(376\) 0.392184 + 0.362066i 0.00104304 + 0.000962942i
\(377\) −319.983 554.227i −0.848762 1.47010i
\(378\) −12.7479 + 18.7314i −0.0337246 + 0.0495539i
\(379\) 259.526i 0.684764i 0.939561 + 0.342382i \(0.111234\pi\)
−0.939561 + 0.342382i \(0.888766\pi\)
\(380\) 538.975 + 175.809i 1.41835 + 0.462656i
\(381\) −654.130 −1.71688
\(382\) −28.5306 19.4169i −0.0746874 0.0508295i
\(383\) −560.066 + 323.354i −1.46231 + 0.844267i −0.999118 0.0419895i \(-0.986630\pi\)
−0.463195 + 0.886256i \(0.653297\pi\)
\(384\) −262.022 + 460.035i −0.682349 + 1.19801i
\(385\) −72.2701 125.176i −0.187715 0.325131i
\(386\) −208.763 15.4690i −0.540836 0.0400752i
\(387\) 297.279i 0.768162i
\(388\) −297.482 + 374.314i −0.766706 + 0.964726i
\(389\) −126.672 + 219.402i −0.325635 + 0.564016i −0.981641 0.190740i \(-0.938911\pi\)
0.656006 + 0.754756i \(0.272245\pi\)
\(390\) 79.7669 1076.50i 0.204530 2.76025i
\(391\) 128.157i 0.327766i
\(392\) −308.910 69.6917i −0.788036 0.177785i
\(393\) −23.6189 + 40.9091i −0.0600989 + 0.104094i
\(394\) 1.44275 2.11993i 0.00366179 0.00538053i
\(395\) −484.974 280.000i −1.22778 0.708861i
\(396\) 30.1823 202.545i 0.0762179 0.511477i
\(397\) 25.8490 + 44.7718i 0.0651109 + 0.112775i 0.896743 0.442551i \(-0.145927\pi\)
−0.831632 + 0.555327i \(0.812593\pi\)
\(398\) −505.985 + 244.191i −1.27132 + 0.613546i
\(399\) 153.678 185.829i 0.385159 0.465737i
\(400\) −110.703 477.651i −0.276758 1.19413i
\(401\) −68.4096 118.489i −0.170598 0.295484i 0.768031 0.640412i \(-0.221236\pi\)
−0.938629 + 0.344929i \(0.887903\pi\)
\(402\) −314.129 + 461.571i −0.781414 + 1.14819i
\(403\) −808.768 466.943i −2.00687 1.15867i
\(404\) 103.636 + 15.4434i 0.256526 + 0.0382263i
\(405\) 329.102 570.022i 0.812598 1.40746i
\(406\) −202.200 + 97.5828i −0.498029 + 0.240352i
\(407\) 247.560i 0.608256i
\(408\) 519.140 + 479.273i 1.27240 + 1.17469i
\(409\) 85.8621 148.718i 0.209932 0.363613i −0.741761 0.670664i \(-0.766009\pi\)
0.951693 + 0.307052i \(0.0993425\pi\)
\(410\) −236.989 491.061i −0.578022 1.19771i
\(411\) 24.0026i 0.0584004i
\(412\) 484.920 191.254i 1.17699 0.464208i
\(413\) −74.1358 128.407i −0.179506 0.310913i
\(414\) 7.19140 97.0518i 0.0173705 0.234425i
\(415\) 346.149 199.849i 0.834094 0.481565i
\(416\) 521.937 + 202.330i 1.25466 + 0.486371i
\(417\) −298.897 −0.716780
\(418\) 57.3522 233.002i 0.137206 0.557422i
\(419\) 594.571i 1.41902i 0.704693 + 0.709512i \(0.251085\pi\)
−0.704693 + 0.709512i \(0.748915\pi\)
\(420\) −374.560 55.8152i −0.891810 0.132893i
\(421\) 47.4370 + 82.1633i 0.112677 + 0.195162i 0.916849 0.399235i \(-0.130724\pi\)
−0.804172 + 0.594397i \(0.797391\pi\)
\(422\) 4.10130 55.3493i 0.00971873 0.131159i
\(423\) −0.468455 + 0.270462i −0.00110746 + 0.000639391i
\(424\) 343.622 372.205i 0.810428 0.877842i
\(425\) −654.352 −1.53965
\(426\) −124.724 258.440i −0.292780 0.606666i
\(427\) −158.682 91.6150i −0.371620 0.214555i
\(428\) −575.529 + 226.990i −1.34469 + 0.530351i
\(429\) −456.889 −1.06501
\(430\) 492.673 237.767i 1.14575 0.552946i
\(431\) −444.572 256.674i −1.03149 0.595531i −0.114079 0.993472i \(-0.536392\pi\)
−0.917411 + 0.397940i \(0.869725\pi\)
\(432\) 40.3235 + 43.1678i 0.0933415 + 0.0999256i
\(433\) −342.746 + 593.654i −0.791562 + 1.37103i 0.133438 + 0.991057i \(0.457398\pi\)
−0.925000 + 0.379968i \(0.875935\pi\)
\(434\) −184.334 + 270.854i −0.424732 + 0.624088i
\(435\) 977.511 564.366i 2.24715 1.29739i
\(436\) 222.484 279.945i 0.510284 0.642076i
\(437\) 18.9984 112.441i 0.0434746 0.257301i
\(438\) 264.827 127.807i 0.604628 0.291797i
\(439\) −450.012 + 259.814i −1.02508 + 0.591832i −0.915572 0.402153i \(-0.868262\pi\)
−0.109511 + 0.993986i \(0.534929\pi\)
\(440\) −359.813 + 111.977i −0.817757 + 0.254494i
\(441\) 160.462 277.929i 0.363860 0.630224i
\(442\) 420.320 617.605i 0.950950 1.39730i
\(443\) −12.1016 6.98684i −0.0273173 0.0157716i 0.486279 0.873804i \(-0.338354\pi\)
−0.513596 + 0.858032i \(0.671687\pi\)
\(444\) −507.778 403.552i −1.14364 0.908900i
\(445\) −545.057 −1.22485
\(446\) 38.8410 524.180i 0.0870875 1.17529i
\(447\) −306.252 176.815i −0.685127 0.395558i
\(448\) 84.3191 177.362i 0.188212 0.395897i
\(449\) 685.603 1.52695 0.763477 0.645835i \(-0.223490\pi\)
0.763477 + 0.645835i \(0.223490\pi\)
\(450\) 495.534 + 36.7184i 1.10119 + 0.0815964i
\(451\) −199.867 + 115.393i −0.443164 + 0.255861i
\(452\) 137.471 + 348.555i 0.304140 + 0.771139i
\(453\) 399.563 + 692.063i 0.882037 + 1.52773i
\(454\) −179.842 122.394i −0.396127 0.269590i
\(455\) 400.413i 0.880028i
\(456\) −384.428 497.458i −0.843043 1.09092i
\(457\) 729.031 1.59525 0.797627 0.603151i \(-0.206089\pi\)
0.797627 + 0.603151i \(0.206089\pi\)
\(458\) −272.391 + 400.242i −0.594739 + 0.873892i
\(459\) 68.2729 39.4174i 0.148743 0.0858766i
\(460\) −166.593 + 65.7049i −0.362160 + 0.142837i
\(461\) 168.346 + 291.583i 0.365175 + 0.632501i 0.988804 0.149219i \(-0.0476759\pi\)
−0.623629 + 0.781720i \(0.714343\pi\)
\(462\) −11.8446 + 159.849i −0.0256377 + 0.345994i
\(463\) 430.676i 0.930186i −0.885262 0.465093i \(-0.846021\pi\)
0.885262 0.465093i \(-0.153979\pi\)
\(464\) 132.159 + 570.226i 0.284825 + 1.22893i
\(465\) 823.564 1426.45i 1.77111 3.06764i
\(466\) 533.664 + 39.5437i 1.14520 + 0.0848578i
\(467\) 457.514i 0.979687i 0.871810 + 0.489844i \(0.162946\pi\)
−0.871810 + 0.489844i \(0.837054\pi\)
\(468\) −352.961 + 444.121i −0.754189 + 0.948976i
\(469\) 103.553 179.359i 0.220795 0.382428i
\(470\) 0.822906 + 0.560040i 0.00175086 + 0.00119158i
\(471\) 283.303 + 163.565i 0.601492 + 0.347272i
\(472\) −369.102 + 114.868i −0.781996 + 0.243364i
\(473\) −115.772 200.523i −0.244761 0.423938i
\(474\) 269.914 + 559.285i 0.569439 + 1.17993i
\(475\) 574.108 + 97.0035i 1.20865 + 0.204218i
\(476\) −205.182 163.066i −0.431054 0.342576i
\(477\) 256.684 + 444.590i 0.538122 + 0.932055i
\(478\) −90.0871 61.3101i −0.188467 0.128264i
\(479\) 781.003 + 450.912i 1.63049 + 0.941361i 0.983943 + 0.178484i \(0.0571193\pi\)
0.646543 + 0.762877i \(0.276214\pi\)
\(480\) −356.858 + 920.560i −0.743453 + 1.91783i
\(481\) −342.902 + 593.923i −0.712893 + 1.23477i
\(482\) −190.448 394.625i −0.395121 0.818724i
\(483\) 76.1731i 0.157708i
\(484\) −119.058 301.870i −0.245988 0.623698i
\(485\) −445.826 + 772.193i −0.919228 + 1.59215i
\(486\) −597.514 + 288.364i −1.22945 + 0.593341i
\(487\) 114.636i 0.235393i −0.993050 0.117697i \(-0.962449\pi\)
0.993050 0.117697i \(-0.0375510\pi\)
\(488\) −324.042 + 350.996i −0.664020 + 0.719254i
\(489\) −333.850 578.245i −0.682720 1.18251i
\(490\) −588.944 43.6399i −1.20193 0.0890611i
\(491\) −720.122 + 415.763i −1.46664 + 0.846768i −0.999304 0.0373098i \(-0.988121\pi\)
−0.467341 + 0.884077i \(0.654788\pi\)
\(492\) −89.1197 + 598.057i −0.181138 + 1.21556i
\(493\) 781.173 1.58453
\(494\) −460.332 + 479.558i −0.931845 + 0.970765i
\(495\) 381.893i 0.771501i
\(496\) 583.075 + 624.204i 1.17555 + 1.25848i
\(497\) 53.2231 + 92.1852i 0.107089 + 0.185483i
\(498\) −442.033 32.7540i −0.887616 0.0657711i
\(499\) 231.504 133.659i 0.463935 0.267853i −0.249762 0.968307i \(-0.580352\pi\)
0.713698 + 0.700454i \(0.247019\pi\)
\(500\) −61.7930 156.675i −0.123586 0.313350i
\(501\) −98.6718 −0.196950
\(502\) 567.701 273.975i 1.13088 0.545768i
\(503\) 638.949 + 368.897i 1.27028 + 0.733394i 0.975040 0.222030i \(-0.0712684\pi\)
0.295236 + 0.955424i \(0.404602\pi\)
\(504\) 146.232 + 135.002i 0.290142 + 0.267861i
\(505\) 195.404 0.386938
\(506\) 32.9449 + 68.2648i 0.0651086 + 0.134911i
\(507\) 490.772 + 283.347i 0.967992 + 0.558870i
\(508\) 93.2383 625.696i 0.183540 1.23169i
\(509\) 364.128 630.688i 0.715379 1.23907i −0.247434 0.968905i \(-0.579587\pi\)
0.962813 0.270169i \(-0.0870794\pi\)
\(510\) 1089.29 + 741.334i 2.13587 + 1.45360i
\(511\) −94.4636 + 54.5386i −0.184860 + 0.106729i
\(512\) −402.689 316.204i −0.786503 0.617587i
\(513\) −65.7438 + 24.4625i −0.128156 + 0.0476852i
\(514\) −106.748 221.191i −0.207681 0.430332i
\(515\) 841.873 486.056i 1.63470 0.943797i
\(516\) −600.020 89.4122i −1.16283 0.173279i
\(517\) 0.210657 0.364869i 0.000407461 0.000705743i
\(518\) 198.903 + 135.366i 0.383983 + 0.261325i
\(519\) −470.967 271.913i −0.907452 0.523917i
\(520\) 1018.33 + 229.741i 1.95833 + 0.441810i
\(521\) −527.221 −1.01194 −0.505970 0.862551i \(-0.668865\pi\)
−0.505970 + 0.862551i \(0.668865\pi\)
\(522\) −591.575 43.8349i −1.13329 0.0839749i
\(523\) 412.028 + 237.885i 0.787817 + 0.454846i 0.839194 0.543833i \(-0.183027\pi\)
−0.0513764 + 0.998679i \(0.516361\pi\)
\(524\) −35.7642 28.4233i −0.0682524 0.0542429i
\(525\) −388.930 −0.740819
\(526\) 4.05211 54.6853i 0.00770362 0.103965i
\(527\) 987.221 569.972i 1.87328 1.08154i
\(528\) 399.734 + 121.838i 0.757072 + 0.230755i
\(529\) −246.489 426.932i −0.465953 0.807054i
\(530\) 531.510 780.985i 1.00285 1.47356i
\(531\) 391.752i 0.737762i
\(532\) 155.846 + 173.486i 0.292944 + 0.326101i
\(533\) 639.336 1.19950
\(534\) 499.696 + 340.075i 0.935760 + 0.636844i
\(535\) −999.181 + 576.877i −1.86763 + 1.07828i
\(536\) −396.732 366.265i −0.740171 0.683330i
\(537\) 385.463 + 667.642i 0.717809 + 1.24328i
\(538\) −755.963 56.0158i −1.40514 0.104119i
\(539\) 249.961i 0.463749i
\(540\) 86.2424 + 68.5403i 0.159708 + 0.126927i
\(541\) 26.5528 45.9909i 0.0490810 0.0850109i −0.840441 0.541903i \(-0.817704\pi\)
0.889522 + 0.456892i \(0.151037\pi\)
\(542\) −38.9973 + 526.290i −0.0719508 + 0.971015i
\(543\) 1049.04i 1.93193i
\(544\) −532.436 + 428.259i −0.978743 + 0.787240i
\(545\) 333.428 577.515i 0.611795 1.05966i
\(546\) 249.828 367.089i 0.457560 0.672324i
\(547\) 34.0324 + 19.6486i 0.0622165 + 0.0359207i 0.530786 0.847506i \(-0.321897\pi\)
−0.468569 + 0.883427i \(0.655230\pi\)
\(548\) 22.9592 + 3.42127i 0.0418964 + 0.00624320i
\(549\) −242.058 419.257i −0.440907 0.763674i
\(550\) −348.551 + 168.213i −0.633730 + 0.305841i
\(551\) −685.377 115.804i −1.24388 0.210171i
\(552\) 193.724 + 43.7051i 0.350949 + 0.0791759i
\(553\) −115.179 199.497i −0.208281 0.360753i
\(554\) 207.526 304.933i 0.374596 0.550420i
\(555\) −1047.52 604.788i −1.88743 1.08971i
\(556\) 42.6042 285.905i 0.0766262 0.514217i
\(557\) 288.247 499.259i 0.517500 0.896336i −0.482294 0.876010i \(-0.660196\pi\)
0.999793 0.0203261i \(-0.00647046\pi\)
\(558\) −779.596 + 376.237i −1.39713 + 0.674261i
\(559\) 641.434i 1.14747i
\(560\) 106.778 350.323i 0.190675 0.625576i
\(561\) 278.850 482.983i 0.497059 0.860931i
\(562\) −116.720 241.855i −0.207688 0.430346i
\(563\) 971.322i 1.72526i 0.505834 + 0.862631i \(0.331185\pi\)
−0.505834 + 0.862631i \(0.668815\pi\)
\(564\) −0.404998 1.02686i −0.000718082 0.00182068i
\(565\) 349.371 + 605.129i 0.618356 + 1.07102i
\(566\) 34.5699 466.539i 0.0610776 0.824275i
\(567\) 234.481 135.378i 0.413547 0.238762i
\(568\) 264.983 82.4653i 0.466520 0.145185i
\(569\) −904.483 −1.58960 −0.794800 0.606871i \(-0.792424\pi\)
−0.794800 + 0.606871i \(0.792424\pi\)
\(570\) −845.814 811.904i −1.48388 1.42439i
\(571\) 143.659i 0.251591i 0.992056 + 0.125796i \(0.0401483\pi\)
−0.992056 + 0.125796i \(0.959852\pi\)
\(572\) 65.1240 437.028i 0.113853 0.764036i
\(573\) 35.6853 + 61.8088i 0.0622780 + 0.107869i
\(574\) 16.5744 223.681i 0.0288753 0.389688i
\(575\) −159.281 + 91.9611i −0.277011 + 0.159932i
\(576\) 427.240 294.439i 0.741736 0.511179i
\(577\) 403.285 0.698934 0.349467 0.936949i \(-0.386363\pi\)
0.349467 + 0.936949i \(0.386363\pi\)
\(578\) 145.126 + 300.714i 0.251083 + 0.520267i
\(579\) 374.916 + 216.458i 0.647524 + 0.373848i
\(580\) 400.502 + 1015.46i 0.690520 + 1.75080i
\(581\) 164.418 0.282991
\(582\) 890.513 429.767i 1.53009 0.738431i
\(583\) −346.282 199.926i −0.593965 0.342926i
\(584\) 84.5035 + 271.533i 0.144698 + 0.464953i
\(585\) −528.969 + 916.202i −0.904221 + 1.56616i
\(586\) 120.407 176.923i 0.205473 0.301916i
\(587\) −782.409 + 451.724i −1.33289 + 0.769547i −0.985742 0.168262i \(-0.946185\pi\)
−0.347152 + 0.937809i \(0.612851\pi\)
\(588\) 512.703 + 407.465i 0.871943 + 0.692968i
\(589\) −950.651 + 353.726i −1.61401 + 0.600554i
\(590\) −649.241 + 313.327i −1.10041 + 0.531063i
\(591\) −4.59262 + 2.65155i −0.00777093 + 0.00448655i
\(592\) 458.387 428.184i 0.774303 0.723284i
\(593\) −181.794 + 314.876i −0.306567 + 0.530989i −0.977609 0.210430i \(-0.932514\pi\)
0.671042 + 0.741419i \(0.265847\pi\)
\(594\) 26.2337 38.5471i 0.0441646 0.0648941i
\(595\) −423.281 244.381i −0.711396 0.410725i
\(596\) 212.781 267.737i 0.357015 0.449223i
\(597\) 1161.89 1.94621
\(598\) 15.5168 209.407i 0.0259478 0.350180i
\(599\) −67.8348 39.1645i −0.113247 0.0653831i 0.442307 0.896864i \(-0.354160\pi\)
−0.555554 + 0.831481i \(0.687494\pi\)
\(600\) −223.153 + 989.131i −0.371921 + 1.64855i
\(601\) −663.826 −1.10454 −0.552268 0.833666i \(-0.686238\pi\)
−0.552268 + 0.833666i \(0.686238\pi\)
\(602\) 224.415 + 16.6288i 0.372782 + 0.0276227i
\(603\) 473.887 273.599i 0.785882 0.453729i
\(604\) −718.933 + 283.549i −1.19029 + 0.469452i
\(605\) −302.577 524.079i −0.500128 0.866246i
\(606\) −179.142 121.917i −0.295613 0.201184i
\(607\) 336.087i 0.553686i 0.960915 + 0.276843i \(0.0892882\pi\)
−0.960915 + 0.276843i \(0.910712\pi\)
\(608\) 530.629 296.810i 0.872746 0.488175i
\(609\) 464.310 0.762414
\(610\) −501.224 + 736.483i −0.821679 + 1.20735i
\(611\) −1.01078 + 0.583573i −0.00165430 + 0.000955112i
\(612\) −254.065 644.176i −0.415139 1.05258i
\(613\) −20.7526 35.9445i −0.0338541 0.0586371i 0.848602 0.529032i \(-0.177445\pi\)
−0.882456 + 0.470395i \(0.844111\pi\)
\(614\) 63.1398 852.105i 0.102833 1.38779i
\(615\) 1127.62i 1.83353i
\(616\) −151.212 34.1143i −0.245475 0.0553803i
\(617\) 93.9887 162.793i 0.152332 0.263846i −0.779753 0.626088i \(-0.784655\pi\)
0.932084 + 0.362242i \(0.117988\pi\)
\(618\) −1075.07 79.6613i −1.73960 0.128902i
\(619\) 727.258i 1.17489i −0.809263 0.587446i \(-0.800133\pi\)
0.809263 0.587446i \(-0.199867\pi\)
\(620\) 1247.06 + 991.088i 2.01139 + 1.59853i
\(621\) 11.0793 19.1898i 0.0178410 0.0309015i
\(622\) 54.5884 + 37.1509i 0.0877628 + 0.0597282i
\(623\) −194.173 112.106i −0.311674 0.179945i
\(624\) −790.243 845.985i −1.26641 1.35575i
\(625\) 226.014 + 391.468i 0.361622 + 0.626348i
\(626\) 235.848 + 488.698i 0.376754 + 0.780667i
\(627\) −316.253 + 382.416i −0.504391 + 0.609914i
\(628\) −196.836 + 247.674i −0.313434 + 0.394385i
\(629\) −418.562 724.971i −0.665440 1.15258i
\(630\) 306.833 + 208.820i 0.487037 + 0.331460i
\(631\) 482.381 + 278.503i 0.764471 + 0.441368i 0.830899 0.556424i \(-0.187827\pi\)
−0.0664276 + 0.997791i \(0.521160\pi\)
\(632\) −573.447 + 178.462i −0.907353 + 0.282376i
\(633\) −57.3895 + 99.4016i −0.0906628 + 0.157033i
\(634\) 148.454 + 307.610i 0.234155 + 0.485189i
\(635\) 1179.73i 1.85785i
\(636\) −974.553 + 384.366i −1.53232 + 0.604350i
\(637\) 346.227 599.683i 0.543528 0.941418i
\(638\) 416.105 200.815i 0.652202 0.314756i
\(639\) 281.244i 0.440131i
\(640\) −829.678 472.560i −1.29637 0.738375i
\(641\) 18.5837 + 32.1880i 0.0289918 + 0.0502153i 0.880157 0.474682i \(-0.157437\pi\)
−0.851165 + 0.524897i \(0.824104\pi\)
\(642\) 1275.95 + 94.5464i 1.98747 + 0.147269i
\(643\) 500.281 288.837i 0.778042 0.449203i −0.0576938 0.998334i \(-0.518375\pi\)
0.835736 + 0.549131i \(0.185041\pi\)
\(644\) −72.8619 10.8575i −0.113140 0.0168595i
\(645\) −1131.32 −1.75399
\(646\) −225.995 779.307i −0.349837 1.20636i
\(647\) 870.052i 1.34475i −0.740212 0.672374i \(-0.765275\pi\)
0.740212 0.672374i \(-0.234725\pi\)
\(648\) −209.758 674.009i −0.323701 1.04014i
\(649\) 152.563 + 264.247i 0.235074 + 0.407161i
\(650\) 1069.21 + 79.2268i 1.64493 + 0.121887i
\(651\) 586.779 338.777i 0.901351 0.520395i
\(652\) 600.696 236.916i 0.921313 0.363368i
\(653\) −519.791 −0.796004 −0.398002 0.917384i \(-0.630296\pi\)
−0.398002 + 0.917384i \(0.630296\pi\)
\(654\) −666.006 + 321.418i −1.01836 + 0.491465i
\(655\) −73.7801 42.5969i −0.112641 0.0650335i
\(656\) −559.357 170.492i −0.852679 0.259896i
\(657\) −288.195 −0.438653
\(658\) 0.177968 + 0.368764i 0.000270468 + 0.000560432i
\(659\) 481.474 + 277.979i 0.730613 + 0.421820i 0.818647 0.574298i \(-0.194725\pi\)
−0.0880331 + 0.996118i \(0.528058\pi\)
\(660\) 770.803 + 114.862i 1.16788 + 0.174033i
\(661\) 145.588 252.166i 0.220254 0.381492i −0.734631 0.678467i \(-0.762645\pi\)
0.954885 + 0.296975i \(0.0959779\pi\)
\(662\) 887.772 + 604.186i 1.34105 + 0.912667i
\(663\) −1337.98 + 772.484i −2.01807 + 1.16513i
\(664\) 94.3366 418.149i 0.142073 0.629743i
\(665\) 335.145 + 277.161i 0.503978 + 0.416784i
\(666\) 276.292 + 572.500i 0.414853 + 0.859610i
\(667\) 190.152 109.784i 0.285086 0.164594i
\(668\) 14.0645 94.3826i 0.0210546 0.141291i
\(669\) −543.502 + 941.373i −0.812410 + 1.40714i
\(670\) −832.449 566.535i −1.24246 0.845574i
\(671\) 326.550 + 188.534i 0.486661 + 0.280974i
\(672\) −316.467 + 254.546i −0.470933 + 0.378789i
\(673\) 130.170 0.193418 0.0967089 0.995313i \(-0.469168\pi\)
0.0967089 + 0.995313i \(0.469168\pi\)
\(674\) −56.5368 4.18930i −0.0838826 0.00621558i
\(675\) 97.9809 + 56.5693i 0.145157 + 0.0838063i
\(676\) −340.984 + 429.051i −0.504414 + 0.634691i
\(677\) −910.964 −1.34559 −0.672795 0.739829i \(-0.734906\pi\)
−0.672795 + 0.739829i \(0.734906\pi\)
\(678\) 57.2597 772.750i 0.0844538 1.13975i
\(679\) −317.645 + 183.393i −0.467813 + 0.270092i
\(680\) −864.374 + 936.275i −1.27114 + 1.37687i
\(681\) 224.941 + 389.610i 0.330310 + 0.572114i
\(682\) 379.338 557.388i 0.556214 0.817284i
\(683\) 764.129i 1.11878i 0.828904 + 0.559391i \(0.188965\pi\)
−0.828904 + 0.559391i \(0.811035\pi\)
\(684\) 127.413 + 602.843i 0.186277 + 0.881350i
\(685\) 43.2889 0.0631955
\(686\) −449.435 305.870i −0.655154 0.445874i
\(687\) 867.087 500.613i 1.26213 0.728694i
\(688\) 171.051 561.193i 0.248621 0.815688i
\(689\) 553.844 + 959.286i 0.803838 + 1.39229i
\(690\) 369.340 + 27.3675i 0.535275 + 0.0396631i
\(691\) 1342.83i 1.94331i −0.236405 0.971655i \(-0.575969\pi\)
0.236405 0.971655i \(-0.424031\pi\)
\(692\) 327.224 411.737i 0.472867 0.594996i
\(693\) 78.5468 136.047i 0.113343 0.196316i
\(694\) −48.0785 + 648.845i −0.0692774 + 0.934935i
\(695\) 539.065i 0.775633i
\(696\) 266.403 1180.84i 0.382763 1.69660i
\(697\) −390.202 + 675.849i −0.559830 + 0.969654i
\(698\) 235.062 345.393i 0.336765 0.494832i
\(699\) −958.405 553.335i −1.37111 0.791610i
\(700\) 55.4373 372.024i 0.0791961 0.531463i
\(701\) 229.346 + 397.239i 0.327170 + 0.566675i 0.981949 0.189145i \(-0.0605717\pi\)
−0.654779 + 0.755820i \(0.727238\pi\)
\(702\) −116.330 + 56.1415i −0.165712 + 0.0799737i
\(703\) 259.761 + 698.116i 0.369503 + 0.993052i
\(704\) −173.520 + 364.991i −0.246477 + 0.518454i
\(705\) −1.02927 1.78275i −0.00145996 0.00252872i
\(706\) −196.898 + 289.316i −0.278893 + 0.409797i
\(707\) 69.6113 + 40.1901i 0.0984602 + 0.0568460i
\(708\) 790.702 + 117.827i 1.11681 + 0.166422i
\(709\) −162.265 + 281.052i −0.228865 + 0.396406i −0.957472 0.288526i \(-0.906835\pi\)
0.728607 + 0.684932i \(0.240168\pi\)
\(710\) 466.099 224.942i 0.656478 0.316820i
\(711\) 608.636i 0.856028i
\(712\) −396.518 + 429.501i −0.556907 + 0.603232i
\(713\) 160.205 277.484i 0.224692 0.389177i
\(714\) 235.578 + 488.139i 0.329942 + 0.683668i
\(715\) 824.005i 1.15245i
\(716\) −693.564 + 273.543i −0.968664 + 0.382044i
\(717\) 112.679 + 195.165i 0.157153 + 0.272197i
\(718\) 60.0164 809.953i 0.0835883 1.12807i
\(719\) 227.681 131.451i 0.316663 0.182825i −0.333241 0.942842i \(-0.608142\pi\)
0.649904 + 0.760016i \(0.274809\pi\)
\(720\) 707.121 660.528i 0.982112 0.917400i
\(721\) 399.883 0.554622
\(722\) 82.7533 + 717.242i 0.114617 + 0.993410i
\(723\) 906.174i 1.25335i
\(724\) 1003.44 + 149.528i 1.38597 + 0.206530i
\(725\) 560.545 + 970.893i 0.773166 + 1.33916i
\(726\) −49.5904 + 669.249i −0.0683064 + 0.921831i
\(727\) −1005.65 + 580.614i −1.38329 + 0.798643i −0.992548 0.121856i \(-0.961115\pi\)
−0.390743 + 0.920500i \(0.627782\pi\)
\(728\) 315.522 + 291.292i 0.433410 + 0.400126i
\(729\) 577.936 0.792779
\(730\) 230.502 + 477.619i 0.315756 + 0.654273i
\(731\) −678.068 391.482i −0.927589 0.535544i
\(732\) 919.021 362.465i 1.25549 0.495170i
\(733\) −180.481 −0.246223 −0.123111 0.992393i \(-0.539287\pi\)
−0.123111 + 0.992393i \(0.539287\pi\)
\(734\) 128.128 61.8351i 0.174561 0.0842441i
\(735\) 1057.68 + 610.654i 1.43902 + 0.830821i
\(736\) −69.4183 + 179.073i −0.0943184 + 0.243306i
\(737\) −213.100 + 369.100i −0.289145 + 0.500814i
\(738\) 333.421 489.918i 0.451789 0.663846i
\(739\) −983.067 + 567.574i −1.33027 + 0.768030i −0.985340 0.170600i \(-0.945429\pi\)
−0.344926 + 0.938630i \(0.612096\pi\)
\(740\) 727.811 915.784i 0.983528 1.23755i
\(741\) 1288.42 479.406i 1.73876 0.646972i
\(742\) 349.978 168.901i 0.471669 0.227630i
\(743\) 562.354 324.675i 0.756869 0.436979i −0.0713013 0.997455i \(-0.522715\pi\)
0.828171 + 0.560476i \(0.189382\pi\)
\(744\) −524.910 1686.68i −0.705524 2.26704i
\(745\) 318.887 552.329i 0.428037 0.741382i
\(746\) 436.612 641.544i 0.585270 0.859979i
\(747\) 376.212 + 217.206i 0.503631 + 0.290771i
\(748\) 422.241 + 335.572i 0.564494 + 0.448626i
\(749\) −474.603 −0.633648
\(750\) −25.7381 + 347.350i −0.0343175 + 0.463133i
\(751\) 183.343 + 105.853i 0.244131 + 0.140949i 0.617074 0.786905i \(-0.288318\pi\)
−0.372943 + 0.927854i \(0.621651\pi\)
\(752\) 1.03996 0.241026i 0.00138292 0.000320514i
\(753\) −1303.61 −1.73122
\(754\) −1276.43 94.5819i −1.69288 0.125440i
\(755\) −1248.14 + 720.617i −1.65317 + 0.954459i
\(756\) 16.6261 + 42.1552i 0.0219922 + 0.0557608i
\(757\) −490.214 849.076i −0.647575 1.12163i −0.983700 0.179815i \(-0.942450\pi\)
0.336126 0.941817i \(-0.390883\pi\)
\(758\) 429.105 + 292.033i 0.566101 + 0.385268i
\(759\) 156.756i 0.206529i
\(760\) 897.172 693.320i 1.18049 0.912263i
\(761\) 350.204 0.460189 0.230094 0.973168i \(-0.426096\pi\)
0.230094 + 0.973168i \(0.426096\pi\)
\(762\) −736.065 + 1081.55i −0.965965 + 1.41936i
\(763\) 237.564 137.157i 0.311355 0.179761i
\(764\) −64.2085 + 25.3240i −0.0840425 + 0.0331466i
\(765\) −645.685 1118.36i −0.844033 1.46191i
\(766\) −95.5783 + 1289.88i −0.124776 + 1.68392i
\(767\) 845.277i 1.10206i
\(768\) 465.788 + 950.890i 0.606495 + 1.23814i
\(769\) 4.11629 7.12963i 0.00535279 0.00927130i −0.863337 0.504628i \(-0.831629\pi\)
0.868689 + 0.495357i \(0.164963\pi\)
\(770\) −288.290 21.3619i −0.374403 0.0277427i
\(771\) 507.919i 0.658779i
\(772\) −260.489 + 327.766i −0.337420 + 0.424567i
\(773\) −55.0972 + 95.4312i −0.0712772 + 0.123456i −0.899461 0.437000i \(-0.856041\pi\)