Properties

Label 76.3.g.c.7.10
Level $76$
Weight $3$
Character 76.7
Analytic conductor $2.071$
Analytic rank $0$
Dimension $28$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 76 = 2^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 76.g (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.07085000914\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 7.10
Character \(\chi\) \(=\) 76.7
Dual form 76.3.g.c.11.10

$q$-expansion

\(f(q)\) \(=\) \(q+(0.789173 + 1.83772i) q^{2} +(-3.65809 + 2.11200i) q^{3} +(-2.75441 + 2.90055i) q^{4} +(-1.06722 - 1.84849i) q^{5} +(-6.76812 - 5.05580i) q^{6} -1.82388i q^{7} +(-7.50411 - 2.77279i) q^{8} +(4.42107 - 7.65753i) q^{9} +O(q^{10})\) \(q+(0.789173 + 1.83772i) q^{2} +(-3.65809 + 2.11200i) q^{3} +(-2.75441 + 2.90055i) q^{4} +(-1.06722 - 1.84849i) q^{5} +(-6.76812 - 5.05580i) q^{6} -1.82388i q^{7} +(-7.50411 - 2.77279i) q^{8} +(4.42107 - 7.65753i) q^{9} +(2.55477 - 3.42003i) q^{10} +13.8522i q^{11} +(3.94991 - 16.4278i) q^{12} +(-9.95291 + 17.2389i) q^{13} +(3.35178 - 1.43936i) q^{14} +(7.80801 + 4.50795i) q^{15} +(-0.826437 - 15.9786i) q^{16} +(3.83013 + 6.63399i) q^{17} +(17.5614 + 2.08157i) q^{18} +(16.7080 + 9.04663i) q^{19} +(8.30122 + 1.99595i) q^{20} +(3.85204 + 6.67193i) q^{21} +(-25.4565 + 10.9318i) q^{22} +(-9.14824 - 5.28174i) q^{23} +(33.3068 - 5.70555i) q^{24} +(10.2221 - 17.7051i) q^{25} +(-39.5349 - 4.68612i) q^{26} -0.666761i q^{27} +(5.29027 + 5.02372i) q^{28} +(-0.0147659 + 0.0255754i) q^{29} +(-2.12248 + 17.9065i) q^{30} +42.2313i q^{31} +(28.7120 - 14.1287i) q^{32} +(-29.2559 - 50.6727i) q^{33} +(-9.16876 + 12.2741i) q^{34} +(-3.37143 + 1.94649i) q^{35} +(10.0336 + 33.9155i) q^{36} +19.5805 q^{37} +(-3.43961 + 37.8440i) q^{38} -84.0821i q^{39} +(2.88310 + 16.8304i) q^{40} +(15.7368 + 27.2570i) q^{41} +(-9.22119 + 12.3443i) q^{42} +(51.3500 - 29.6469i) q^{43} +(-40.1791 - 38.1547i) q^{44} -18.8731 q^{45} +(2.48680 - 20.9801i) q^{46} +(-77.5317 - 44.7629i) q^{47} +(36.7700 + 56.7059i) q^{48} +45.6735 q^{49} +(40.6040 + 4.81285i) q^{50} +(-28.0219 - 16.1785i) q^{51} +(-22.5881 - 76.3521i) q^{52} +(-29.8268 + 51.6616i) q^{53} +(1.22532 - 0.526190i) q^{54} +(25.6057 - 14.7834i) q^{55} +(-5.05724 + 13.6866i) q^{56} +(-80.2259 + 2.19398i) q^{57} +(-0.0586532 - 0.00695224i) q^{58} +(-63.9584 + 36.9264i) q^{59} +(-34.5820 + 10.2308i) q^{60} +(-23.6620 + 40.9837i) q^{61} +(-77.6093 + 33.3278i) q^{62} +(-13.9664 - 8.06352i) q^{63} +(48.6233 + 41.6146i) q^{64} +42.4880 q^{65} +(70.0341 - 93.7536i) q^{66} +(-5.77732 - 3.33554i) q^{67} +(-29.7920 - 7.16321i) q^{68} +44.6201 q^{69} +(-6.23774 - 4.65961i) q^{70} +(24.1399 - 13.9372i) q^{71} +(-54.4089 + 45.2042i) q^{72} +(-46.2611 - 80.1266i) q^{73} +(15.4524 + 35.9834i) q^{74} +86.3559i q^{75} +(-72.2610 + 23.5444i) q^{76} +25.2648 q^{77} +(154.519 - 66.3553i) q^{78} +(110.683 - 63.9027i) q^{79} +(-28.6543 + 18.5805i) q^{80} +(41.1979 + 71.3568i) q^{81} +(-37.6716 + 50.4304i) q^{82} +88.9093i q^{83} +(-29.9624 - 7.20418i) q^{84} +(8.17523 - 14.1599i) q^{85} +(95.0066 + 70.9702i) q^{86} -0.124743i q^{87} +(38.4093 - 103.949i) q^{88} +(31.2173 - 54.0700i) q^{89} +(-14.8942 - 34.6835i) q^{90} +(31.4418 + 18.1529i) q^{91} +(40.5180 - 11.9869i) q^{92} +(-89.1925 - 154.486i) q^{93} +(21.0757 - 177.807i) q^{94} +(-1.10865 - 40.5394i) q^{95} +(-75.1914 + 112.324i) q^{96} +(64.8024 + 112.241i) q^{97} +(36.0443 + 83.9349i) q^{98} +(106.074 + 61.2417i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28q - 5q^{2} - 11q^{4} + 6q^{5} - 3q^{6} - 62q^{8} + 20q^{9} + O(q^{10}) \) \( 28q - 5q^{2} - 11q^{4} + 6q^{5} - 3q^{6} - 62q^{8} + 20q^{9} + 26q^{12} + 30q^{13} - 30q^{14} - 19q^{16} + 38q^{17} - 60q^{18} - 44q^{20} + 80q^{21} + 45q^{22} + 17q^{24} - 16q^{25} - 56q^{26} + 54q^{28} + 6q^{29} + 96q^{30} - 45q^{32} - 176q^{33} - 20q^{34} + 30q^{36} + 104q^{37} - 258q^{38} + 94q^{40} - 2q^{41} - 2q^{42} + 201q^{44} - 360q^{45} + 164q^{46} - 17q^{48} - 20q^{49} + 490q^{50} - 102q^{52} - 242q^{53} - 13q^{54} + 276q^{56} - 254q^{57} + 96q^{58} + 10q^{60} - 58q^{61} - 36q^{62} - 74q^{64} - 260q^{65} + 167q^{66} + 396q^{68} + 340q^{69} + 60q^{70} - 422q^{72} - 82q^{73} - 136q^{74} + 123q^{76} - 144q^{77} + 224q^{78} - 174q^{80} + 410q^{81} - 305q^{82} + 252q^{84} + 714q^{85} + 166q^{86} - 718q^{88} + 150q^{89} - 272q^{90} - 588q^{92} + 344q^{93} - 488q^{94} - 122q^{96} + 94q^{97} + 307q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/76\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(39\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.789173 + 1.83772i 0.394587 + 0.918859i
\(3\) −3.65809 + 2.11200i −1.21936 + 0.703999i −0.964782 0.263052i \(-0.915271\pi\)
−0.254581 + 0.967051i \(0.581938\pi\)
\(4\) −2.75441 + 2.90055i −0.688603 + 0.725139i
\(5\) −1.06722 1.84849i −0.213445 0.369698i 0.739345 0.673326i \(-0.235135\pi\)
−0.952790 + 0.303629i \(0.901802\pi\)
\(6\) −6.76812 5.05580i −1.12802 0.842633i
\(7\) 1.82388i 0.260555i −0.991478 0.130277i \(-0.958413\pi\)
0.991478 0.130277i \(-0.0415868\pi\)
\(8\) −7.50411 2.77279i −0.938014 0.346599i
\(9\) 4.42107 7.65753i 0.491231 0.850836i
\(10\) 2.55477 3.42003i 0.255477 0.342003i
\(11\) 13.8522i 1.25929i 0.776882 + 0.629647i \(0.216800\pi\)
−0.776882 + 0.629647i \(0.783200\pi\)
\(12\) 3.94991 16.4278i 0.329159 1.36898i
\(13\) −9.95291 + 17.2389i −0.765608 + 1.32607i 0.174316 + 0.984690i \(0.444229\pi\)
−0.939924 + 0.341383i \(0.889105\pi\)
\(14\) 3.35178 1.43936i 0.239413 0.102811i
\(15\) 7.80801 + 4.50795i 0.520534 + 0.300530i
\(16\) −0.826437 15.9786i −0.0516523 0.998665i
\(17\) 3.83013 + 6.63399i 0.225302 + 0.390235i 0.956410 0.292027i \(-0.0943298\pi\)
−0.731108 + 0.682262i \(0.760996\pi\)
\(18\) 17.5614 + 2.08157i 0.975631 + 0.115643i
\(19\) 16.7080 + 9.04663i 0.879370 + 0.476138i
\(20\) 8.30122 + 1.99595i 0.415061 + 0.0997975i
\(21\) 3.85204 + 6.67193i 0.183430 + 0.317711i
\(22\) −25.4565 + 10.9318i −1.15711 + 0.496900i
\(23\) −9.14824 5.28174i −0.397749 0.229641i 0.287763 0.957702i \(-0.407088\pi\)
−0.685512 + 0.728061i \(0.740422\pi\)
\(24\) 33.3068 5.70555i 1.38778 0.237731i
\(25\) 10.2221 17.7051i 0.408882 0.708205i
\(26\) −39.5349 4.68612i −1.52057 0.180235i
\(27\) 0.666761i 0.0246949i
\(28\) 5.29027 + 5.02372i 0.188938 + 0.179419i
\(29\) −0.0147659 + 0.0255754i −0.000509170 + 0.000881909i −0.866280 0.499559i \(-0.833495\pi\)
0.865771 + 0.500441i \(0.166829\pi\)
\(30\) −2.12248 + 17.9065i −0.0707492 + 0.596882i
\(31\) 42.2313i 1.36230i 0.732143 + 0.681150i \(0.238520\pi\)
−0.732143 + 0.681150i \(0.761480\pi\)
\(32\) 28.7120 14.1287i 0.897251 0.441521i
\(33\) −29.2559 50.6727i −0.886542 1.53554i
\(34\) −9.16876 + 12.2741i −0.269669 + 0.361002i
\(35\) −3.37143 + 1.94649i −0.0963264 + 0.0556141i
\(36\) 10.0336 + 33.9155i 0.278712 + 0.942098i
\(37\) 19.5805 0.529202 0.264601 0.964358i \(-0.414760\pi\)
0.264601 + 0.964358i \(0.414760\pi\)
\(38\) −3.43961 + 37.8440i −0.0905161 + 0.995895i
\(39\) 84.0821i 2.15595i
\(40\) 2.88310 + 16.8304i 0.0720776 + 0.420761i
\(41\) 15.7368 + 27.2570i 0.383825 + 0.664805i 0.991605 0.129300i \(-0.0412732\pi\)
−0.607780 + 0.794105i \(0.707940\pi\)
\(42\) −9.22119 + 12.3443i −0.219552 + 0.293911i
\(43\) 51.3500 29.6469i 1.19418 0.689463i 0.234932 0.972012i \(-0.424513\pi\)
0.959253 + 0.282549i \(0.0911799\pi\)
\(44\) −40.1791 38.1547i −0.913162 0.867153i
\(45\) −18.8731 −0.419403
\(46\) 2.48680 20.9801i 0.0540608 0.456089i
\(47\) −77.5317 44.7629i −1.64961 0.952403i −0.977226 0.212201i \(-0.931937\pi\)
−0.672384 0.740202i \(-0.734730\pi\)
\(48\) 36.7700 + 56.7059i 0.766043 + 1.18137i
\(49\) 45.6735 0.932111
\(50\) 40.6040 + 4.81285i 0.812080 + 0.0962569i
\(51\) −28.0219 16.1785i −0.549450 0.317225i
\(52\) −22.5881 76.3521i −0.434387 1.46831i
\(53\) −29.8268 + 51.6616i −0.562770 + 0.974747i 0.434483 + 0.900680i \(0.356931\pi\)
−0.997253 + 0.0740668i \(0.976402\pi\)
\(54\) 1.22532 0.526190i 0.0226911 0.00974426i
\(55\) 25.6057 14.7834i 0.465558 0.268790i
\(56\) −5.05724 + 13.6866i −0.0903079 + 0.244404i
\(57\) −80.2259 + 2.19398i −1.40747 + 0.0384909i
\(58\) −0.0586532 0.00695224i −0.00101126 0.000119866i
\(59\) −63.9584 + 36.9264i −1.08404 + 0.625871i −0.931984 0.362500i \(-0.881923\pi\)
−0.152057 + 0.988372i \(0.548590\pi\)
\(60\) −34.5820 + 10.2308i −0.576367 + 0.170513i
\(61\) −23.6620 + 40.9837i −0.387901 + 0.671864i −0.992167 0.124919i \(-0.960133\pi\)
0.604266 + 0.796783i \(0.293466\pi\)
\(62\) −77.6093 + 33.3278i −1.25176 + 0.537546i
\(63\) −13.9664 8.06352i −0.221689 0.127992i
\(64\) 48.6233 + 41.6146i 0.759739 + 0.650229i
\(65\) 42.4880 0.653661
\(66\) 70.0341 93.7536i 1.06112 1.42051i
\(67\) −5.77732 3.33554i −0.0862287 0.0497842i 0.456266 0.889844i \(-0.349187\pi\)
−0.542494 + 0.840059i \(0.682520\pi\)
\(68\) −29.7920 7.16321i −0.438118 0.105341i
\(69\) 44.6201 0.646668
\(70\) −6.23774 4.65961i −0.0891106 0.0665658i
\(71\) 24.1399 13.9372i 0.339999 0.196298i −0.320273 0.947325i \(-0.603775\pi\)
0.660272 + 0.751027i \(0.270441\pi\)
\(72\) −54.4089 + 45.2042i −0.755680 + 0.627836i
\(73\) −46.2611 80.1266i −0.633714 1.09762i −0.986786 0.162028i \(-0.948196\pi\)
0.353072 0.935596i \(-0.385137\pi\)
\(74\) 15.4524 + 35.9834i 0.208816 + 0.486262i
\(75\) 86.3559i 1.15141i
\(76\) −72.2610 + 23.5444i −0.950803 + 0.309795i
\(77\) 25.2648 0.328115
\(78\) 154.519 66.3553i 1.98101 0.850710i
\(79\) 110.683 63.9027i 1.40105 0.808895i 0.406547 0.913630i \(-0.366733\pi\)
0.994500 + 0.104735i \(0.0333994\pi\)
\(80\) −28.6543 + 18.5805i −0.358179 + 0.232256i
\(81\) 41.1979 + 71.3568i 0.508616 + 0.880948i
\(82\) −37.6716 + 50.4304i −0.459409 + 0.615004i
\(83\) 88.9093i 1.07120i 0.844473 + 0.535598i \(0.179914\pi\)
−0.844473 + 0.535598i \(0.820086\pi\)
\(84\) −29.9624 7.20418i −0.356695 0.0857640i
\(85\) 8.17523 14.1599i 0.0961792 0.166587i
\(86\) 95.0066 + 70.9702i 1.10473 + 0.825234i
\(87\) 0.124743i 0.00143382i
\(88\) 38.4093 103.949i 0.436469 1.18123i
\(89\) 31.2173 54.0700i 0.350756 0.607528i −0.635626 0.771997i \(-0.719258\pi\)
0.986382 + 0.164469i \(0.0525912\pi\)
\(90\) −14.8942 34.6835i −0.165491 0.385372i
\(91\) 31.4418 + 18.1529i 0.345514 + 0.199483i
\(92\) 40.5180 11.9869i 0.440413 0.130292i
\(93\) −89.1925 154.486i −0.959059 1.66114i
\(94\) 21.0757 177.807i 0.224210 1.89156i
\(95\) −1.10865 40.5394i −0.0116700 0.426730i
\(96\) −75.1914 + 112.324i −0.783244 + 1.17004i
\(97\) 64.8024 + 112.241i 0.668066 + 1.15712i 0.978444 + 0.206511i \(0.0662109\pi\)
−0.310378 + 0.950613i \(0.600456\pi\)
\(98\) 36.0443 + 83.9349i 0.367799 + 0.856479i
\(99\) 106.074 + 61.2417i 1.07145 + 0.618603i
\(100\) 23.1989 + 78.4169i 0.231989 + 0.784169i
\(101\) 45.6483 79.0651i 0.451963 0.782823i −0.546545 0.837430i \(-0.684057\pi\)
0.998508 + 0.0546069i \(0.0173906\pi\)
\(102\) 7.61730 64.2640i 0.0746794 0.630040i
\(103\) 67.8160i 0.658408i 0.944259 + 0.329204i \(0.106780\pi\)
−0.944259 + 0.329204i \(0.893220\pi\)
\(104\) 122.488 101.766i 1.17777 0.978515i
\(105\) 8.22198 14.2409i 0.0783046 0.135628i
\(106\) −118.478 14.0433i −1.11772 0.132484i
\(107\) 95.8811i 0.896085i 0.894012 + 0.448043i \(0.147879\pi\)
−0.894012 + 0.448043i \(0.852121\pi\)
\(108\) 1.93398 + 1.83653i 0.0179072 + 0.0170049i
\(109\) −30.9046 53.5283i −0.283528 0.491085i 0.688723 0.725025i \(-0.258172\pi\)
−0.972251 + 0.233939i \(0.924838\pi\)
\(110\) 47.3751 + 35.3893i 0.430683 + 0.321721i
\(111\) −71.6271 + 41.3539i −0.645289 + 0.372558i
\(112\) −29.1432 + 1.50733i −0.260207 + 0.0134583i
\(113\) −33.7438 −0.298618 −0.149309 0.988791i \(-0.547705\pi\)
−0.149309 + 0.988791i \(0.547705\pi\)
\(114\) −67.3441 145.701i −0.590738 1.27808i
\(115\) 22.5472i 0.196063i
\(116\) −0.0335113 0.113274i −0.000288890 0.000976504i
\(117\) 88.0051 + 152.429i 0.752180 + 1.30281i
\(118\) −118.335 88.3962i −1.00284 0.749120i
\(119\) 12.0996 6.98572i 0.101677 0.0587035i
\(120\) −46.0925 55.4781i −0.384104 0.462318i
\(121\) −70.8842 −0.585820
\(122\) −93.9898 11.1407i −0.770409 0.0913176i
\(123\) −115.133 66.4724i −0.936045 0.540426i
\(124\) −122.494 116.322i −0.987857 0.938084i
\(125\) −96.9982 −0.775986
\(126\) 3.79654 32.0299i 0.0301313 0.254205i
\(127\) −28.8460 16.6543i −0.227134 0.131136i 0.382115 0.924115i \(-0.375196\pi\)
−0.609249 + 0.792979i \(0.708529\pi\)
\(128\) −38.1037 + 122.197i −0.297685 + 0.954664i
\(129\) −125.228 + 216.902i −0.970763 + 1.68141i
\(130\) 33.5304 + 78.0809i 0.257926 + 0.600622i
\(131\) −11.8573 + 6.84581i −0.0905136 + 0.0522581i −0.544574 0.838713i \(-0.683309\pi\)
0.454060 + 0.890971i \(0.349975\pi\)
\(132\) 227.562 + 54.7151i 1.72395 + 0.414508i
\(133\) 16.5000 30.4735i 0.124060 0.229124i
\(134\) 1.57047 13.2494i 0.0117199 0.0988762i
\(135\) −1.23250 + 0.711584i −0.00912963 + 0.00527099i
\(136\) −10.3471 60.4023i −0.0760816 0.444135i
\(137\) −66.7629 + 115.637i −0.487320 + 0.844063i −0.999894 0.0145800i \(-0.995359\pi\)
0.512574 + 0.858643i \(0.328692\pi\)
\(138\) 35.2130 + 81.9991i 0.255166 + 0.594196i
\(139\) 192.509 + 111.145i 1.38496 + 0.799606i 0.992741 0.120268i \(-0.0383753\pi\)
0.392216 + 0.919873i \(0.371709\pi\)
\(140\) 3.64038 15.1404i 0.0260027 0.108146i
\(141\) 378.157 2.68196
\(142\) 44.6632 + 33.3635i 0.314530 + 0.234954i
\(143\) −238.798 137.870i −1.66991 0.964125i
\(144\) −126.011 64.3143i −0.875074 0.446627i
\(145\) 0.0630343 0.000434719
\(146\) 110.742 148.249i 0.758507 1.01540i
\(147\) −167.078 + 96.4623i −1.13658 + 0.656206i
\(148\) −53.9327 + 56.7942i −0.364410 + 0.383745i
\(149\) −11.8549 20.5333i −0.0795632 0.137808i 0.823498 0.567319i \(-0.192019\pi\)
−0.903062 + 0.429511i \(0.858686\pi\)
\(150\) −158.698 + 68.1498i −1.05799 + 0.454332i
\(151\) 77.7402i 0.514836i −0.966300 0.257418i \(-0.917128\pi\)
0.966300 0.257418i \(-0.0828717\pi\)
\(152\) −100.295 114.215i −0.659832 0.751413i
\(153\) 67.7332 0.442701
\(154\) 19.9383 + 46.4296i 0.129470 + 0.301491i
\(155\) 78.0641 45.0703i 0.503639 0.290776i
\(156\) 243.885 + 231.597i 1.56336 + 1.48459i
\(157\) −126.399 218.929i −0.805087 1.39445i −0.916233 0.400647i \(-0.868785\pi\)
0.111146 0.993804i \(-0.464548\pi\)
\(158\) 204.783 + 152.973i 1.29609 + 0.968185i
\(159\) 251.977i 1.58476i
\(160\) −56.7589 37.9954i −0.354743 0.237471i
\(161\) −9.63327 + 16.6853i −0.0598340 + 0.103636i
\(162\) −98.6214 + 132.023i −0.608774 + 0.814956i
\(163\) 58.1739i 0.356895i −0.983949 0.178448i \(-0.942893\pi\)
0.983949 0.178448i \(-0.0571075\pi\)
\(164\) −122.406 29.4314i −0.746379 0.179460i
\(165\) −62.4452 + 108.158i −0.378456 + 0.655505i
\(166\) −163.390 + 70.1649i −0.984278 + 0.422680i
\(167\) 139.337 + 80.4465i 0.834356 + 0.481716i 0.855342 0.518064i \(-0.173347\pi\)
−0.0209856 + 0.999780i \(0.506680\pi\)
\(168\) −10.4063 60.7477i −0.0619421 0.361594i
\(169\) −113.621 196.797i −0.672312 1.16448i
\(170\) 32.4736 + 3.84914i 0.191021 + 0.0226420i
\(171\) 143.142 87.9464i 0.837089 0.514306i
\(172\) −55.4464 + 230.603i −0.322363 + 1.34072i
\(173\) −123.372 213.686i −0.713132 1.23518i −0.963676 0.267075i \(-0.913943\pi\)
0.250544 0.968105i \(-0.419391\pi\)
\(174\) 0.229242 0.0984435i 0.00131748 0.000565767i
\(175\) −32.2921 18.6438i −0.184526 0.106536i
\(176\) 221.340 11.4480i 1.25761 0.0650454i
\(177\) 155.977 270.160i 0.881226 1.52633i
\(178\) 124.001 + 14.6980i 0.696636 + 0.0825732i
\(179\) 129.378i 0.722780i −0.932415 0.361390i \(-0.882302\pi\)
0.932415 0.361390i \(-0.117698\pi\)
\(180\) 51.9843 54.7425i 0.288802 0.304125i
\(181\) −96.1456 + 166.529i −0.531191 + 0.920051i 0.468146 + 0.883651i \(0.344922\pi\)
−0.999337 + 0.0363994i \(0.988411\pi\)
\(182\) −8.54694 + 72.1070i −0.0469612 + 0.396192i
\(183\) 199.896i 1.09233i
\(184\) 54.0042 + 65.0009i 0.293501 + 0.353266i
\(185\) −20.8968 36.1943i −0.112955 0.195645i
\(186\) 213.513 285.827i 1.14792 1.53670i
\(187\) −91.8955 + 53.0559i −0.491420 + 0.283721i
\(188\) 343.392 101.589i 1.82655 0.540369i
\(189\) −1.21609 −0.00643436
\(190\) 73.6250 34.0300i 0.387500 0.179105i
\(191\) 1.29081i 0.00675816i −0.999994 0.00337908i \(-0.998924\pi\)
0.999994 0.00337908i \(-0.00107560\pi\)
\(192\) −265.758 49.5377i −1.38416 0.258009i
\(193\) 186.582 + 323.169i 0.966744 + 1.67445i 0.704855 + 0.709351i \(0.251012\pi\)
0.261889 + 0.965098i \(0.415655\pi\)
\(194\) −155.127 + 207.666i −0.799624 + 1.07044i
\(195\) −155.425 + 89.7345i −0.797050 + 0.460177i
\(196\) −125.803 + 132.478i −0.641854 + 0.675910i
\(197\) 191.769 0.973448 0.486724 0.873556i \(-0.338192\pi\)
0.486724 + 0.873556i \(0.338192\pi\)
\(198\) −28.8344 + 243.264i −0.145628 + 1.22861i
\(199\) 285.397 + 164.774i 1.43415 + 0.828009i 0.997434 0.0715885i \(-0.0228068\pi\)
0.436720 + 0.899598i \(0.356140\pi\)
\(200\) −125.800 + 104.518i −0.629000 + 0.522588i
\(201\) 28.1786 0.140192
\(202\) 181.324 + 21.4925i 0.897642 + 0.106399i
\(203\) 0.0466465 + 0.0269314i 0.000229786 + 0.000132667i
\(204\) 124.111 36.7170i 0.608385 0.179985i
\(205\) 33.5895 58.1787i 0.163851 0.283799i
\(206\) −124.627 + 53.5186i −0.604984 + 0.259799i
\(207\) −80.8901 + 46.7019i −0.390773 + 0.225613i
\(208\) 283.680 + 144.787i 1.36385 + 0.696092i
\(209\) −125.316 + 231.444i −0.599598 + 1.10739i
\(210\) 32.6593 + 3.87115i 0.155520 + 0.0184341i
\(211\) 48.2556 27.8604i 0.228700 0.132040i −0.381272 0.924463i \(-0.624514\pi\)
0.609972 + 0.792423i \(0.291181\pi\)
\(212\) −67.6919 228.812i −0.319301 1.07930i
\(213\) −58.8706 + 101.967i −0.276388 + 0.478718i
\(214\) −176.202 + 75.6668i −0.823376 + 0.353583i
\(215\) −109.604 63.2798i −0.509785 0.294325i
\(216\) −1.84879 + 5.00345i −0.00855920 + 0.0231641i
\(217\) 77.0250 0.354954
\(218\) 73.9808 99.0370i 0.339362 0.454298i
\(219\) 338.454 + 195.407i 1.54545 + 0.892268i
\(220\) −27.6484 + 114.990i −0.125674 + 0.522683i
\(221\) −152.484 −0.689973
\(222\) −132.523 98.9950i −0.596951 0.445923i
\(223\) 35.7192 20.6225i 0.160176 0.0924774i −0.417770 0.908553i \(-0.637188\pi\)
0.577945 + 0.816076i \(0.303855\pi\)
\(224\) −25.7691 52.3674i −0.115040 0.233783i
\(225\) −90.3850 156.551i −0.401711 0.695784i
\(226\) −26.6297 62.0116i −0.117831 0.274388i
\(227\) 277.068i 1.22057i −0.792184 0.610283i \(-0.791056\pi\)
0.792184 0.610283i \(-0.208944\pi\)
\(228\) 214.611 238.743i 0.941278 1.04712i
\(229\) 141.178 0.616496 0.308248 0.951306i \(-0.400257\pi\)
0.308248 + 0.951306i \(0.400257\pi\)
\(230\) −41.4354 + 17.7937i −0.180154 + 0.0773637i
\(231\) −92.4210 + 53.3593i −0.400091 + 0.230993i
\(232\) 0.181720 0.150977i 0.000783277 0.000650765i
\(233\) 44.5846 + 77.2228i 0.191350 + 0.331428i 0.945698 0.325047i \(-0.105380\pi\)
−0.754348 + 0.656475i \(0.772047\pi\)
\(234\) −210.671 + 282.022i −0.900302 + 1.20522i
\(235\) 191.088i 0.813143i
\(236\) 69.0607 287.225i 0.292630 1.21706i
\(237\) −269.925 + 467.523i −1.13892 + 1.97267i
\(238\) 22.3865 + 16.7227i 0.0940608 + 0.0702636i
\(239\) 82.2938i 0.344325i 0.985069 + 0.172163i \(0.0550755\pi\)
−0.985069 + 0.172163i \(0.944925\pi\)
\(240\) 65.5782 128.487i 0.273242 0.535362i
\(241\) −22.2946 + 38.6154i −0.0925088 + 0.160230i −0.908566 0.417741i \(-0.862822\pi\)
0.816057 + 0.577971i \(0.196155\pi\)
\(242\) −55.9399 130.265i −0.231157 0.538286i
\(243\) −296.214 171.019i −1.21899 0.703783i
\(244\) −53.7007 181.519i −0.220085 0.743929i
\(245\) −48.7438 84.4268i −0.198954 0.344599i
\(246\) 31.2971 264.041i 0.127224 1.07334i
\(247\) −322.248 + 197.989i −1.30465 + 0.801573i
\(248\) 117.099 316.908i 0.472172 1.27786i
\(249\) −187.776 325.238i −0.754122 1.30618i
\(250\) −76.5484 178.255i −0.306194 0.713021i
\(251\) −94.8716 54.7741i −0.377974 0.218224i 0.298962 0.954265i \(-0.403360\pi\)
−0.676937 + 0.736041i \(0.736693\pi\)
\(252\) 61.8580 18.3001i 0.245468 0.0726196i
\(253\) 73.1638 126.723i 0.289185 0.500883i
\(254\) 7.84132 66.1540i 0.0308713 0.260449i
\(255\) 69.0643i 0.270840i
\(256\) −254.634 + 26.4107i −0.994664 + 0.103167i
\(257\) 224.002 387.982i 0.871602 1.50966i 0.0112627 0.999937i \(-0.496415\pi\)
0.860339 0.509722i \(-0.170252\pi\)
\(258\) −497.432 58.9612i −1.92803 0.228532i
\(259\) 35.7125i 0.137886i
\(260\) −117.029 + 123.239i −0.450113 + 0.473995i
\(261\) 0.130563 + 0.226141i 0.000500240 + 0.000866441i
\(262\) −21.9381 16.3878i −0.0837332 0.0625489i
\(263\) 272.533 157.347i 1.03625 0.598277i 0.117478 0.993075i \(-0.462519\pi\)
0.918768 + 0.394798i \(0.129186\pi\)
\(264\) 79.0346 + 461.374i 0.299374 + 1.74763i
\(265\) 127.328 0.480482
\(266\) 69.0231 + 6.27345i 0.259485 + 0.0235844i
\(267\) 263.724i 0.987730i
\(268\) 25.5880 7.57000i 0.0954778 0.0282463i
\(269\) 145.563 + 252.123i 0.541128 + 0.937261i 0.998840 + 0.0481601i \(0.0153358\pi\)
−0.457712 + 0.889101i \(0.651331\pi\)
\(270\) −2.28035 1.70342i −0.00844573 0.00630897i
\(271\) −111.647 + 64.4596i −0.411983 + 0.237858i −0.691641 0.722241i \(-0.743112\pi\)
0.279659 + 0.960100i \(0.409779\pi\)
\(272\) 102.837 66.6829i 0.378076 0.245158i
\(273\) −153.356 −0.561743
\(274\) −265.195 31.4339i −0.967865 0.114722i
\(275\) 245.255 + 141.598i 0.891838 + 0.514903i
\(276\) −122.902 + 129.423i −0.445297 + 0.468924i
\(277\) 23.1010 0.0833971 0.0416986 0.999130i \(-0.486723\pi\)
0.0416986 + 0.999130i \(0.486723\pi\)
\(278\) −52.3304 + 441.490i −0.188239 + 1.58809i
\(279\) 323.387 + 186.708i 1.15909 + 0.669204i
\(280\) 30.6968 5.25844i 0.109631 0.0187802i
\(281\) 33.2086 57.5190i 0.118180 0.204694i −0.800866 0.598843i \(-0.795627\pi\)
0.919046 + 0.394149i \(0.128961\pi\)
\(282\) 298.431 + 694.946i 1.05827 + 2.46435i
\(283\) −84.3920 + 48.7237i −0.298205 + 0.172169i −0.641636 0.767009i \(-0.721744\pi\)
0.343431 + 0.939178i \(0.388411\pi\)
\(284\) −26.0657 + 108.408i −0.0917806 + 0.381718i
\(285\) 89.6747 + 145.955i 0.314648 + 0.512123i
\(286\) 64.9132 547.646i 0.226969 1.91485i
\(287\) 49.7136 28.7022i 0.173218 0.100007i
\(288\) 18.7473 282.327i 0.0650949 0.980302i
\(289\) 115.160 199.463i 0.398478 0.690184i
\(290\) 0.0497450 + 0.115839i 0.000171534 + 0.000399446i
\(291\) −474.106 273.725i −1.62923 0.940636i
\(292\) 359.834 + 86.5187i 1.23231 + 0.296297i
\(293\) 263.379 0.898903 0.449451 0.893305i \(-0.351619\pi\)
0.449451 + 0.893305i \(0.351619\pi\)
\(294\) −309.123 230.916i −1.05144 0.785428i
\(295\) 136.516 + 78.8176i 0.462766 + 0.267178i
\(296\) −146.934 54.2925i −0.496399 0.183421i
\(297\) 9.23612 0.0310981
\(298\) 28.3789 37.9903i 0.0952311 0.127484i
\(299\) 182.103 105.137i 0.609041 0.351630i
\(300\) −250.480 237.860i −0.834934 0.792866i
\(301\) −54.0725 93.6563i −0.179643 0.311151i
\(302\) 142.865 61.3505i 0.473062 0.203147i
\(303\) 385.636i 1.27273i
\(304\) 130.745 274.448i 0.430081 0.902790i
\(305\) 101.010 0.331182
\(306\) 53.4533 + 124.475i 0.174684 + 0.406780i
\(307\) −245.559 + 141.774i −0.799866 + 0.461803i −0.843424 0.537248i \(-0.819464\pi\)
0.0435580 + 0.999051i \(0.486131\pi\)
\(308\) −69.5898 + 73.2821i −0.225941 + 0.237929i
\(309\) −143.227 248.077i −0.463519 0.802838i
\(310\) 144.433 + 107.891i 0.465912 + 0.348037i
\(311\) 254.508i 0.818352i 0.912455 + 0.409176i \(0.134184\pi\)
−0.912455 + 0.409176i \(0.865816\pi\)
\(312\) −233.142 + 630.961i −0.747250 + 2.02231i
\(313\) −167.705 + 290.473i −0.535798 + 0.928029i 0.463327 + 0.886188i \(0.346656\pi\)
−0.999124 + 0.0418410i \(0.986678\pi\)
\(314\) 302.579 405.058i 0.963627 1.28999i
\(315\) 34.4224i 0.109277i
\(316\) −119.512 + 497.056i −0.378204 + 1.57296i
\(317\) −132.064 + 228.741i −0.416605 + 0.721580i −0.995595 0.0937538i \(-0.970113\pi\)
0.578991 + 0.815334i \(0.303447\pi\)
\(318\) 463.062 198.853i 1.45617 0.625325i
\(319\) −0.354276 0.204541i −0.00111058 0.000641195i
\(320\) 25.0321 134.292i 0.0782255 0.419662i
\(321\) −202.501 350.742i −0.630844 1.09265i
\(322\) −38.2652 4.53563i −0.118836 0.0140858i
\(323\) 3.97881 + 145.491i 0.0123183 + 0.450436i
\(324\) −320.450 77.0493i −0.989044 0.237806i
\(325\) 203.479 + 352.435i 0.626088 + 1.08442i
\(326\) 106.907 45.9093i 0.327936 0.140826i
\(327\) 226.103 + 130.541i 0.691448 + 0.399208i
\(328\) −42.5130 248.174i −0.129613 0.756629i
\(329\) −81.6424 + 141.409i −0.248153 + 0.429814i
\(330\) −248.044 29.4010i −0.751650 0.0890940i
\(331\) 611.200i 1.84653i −0.384170 0.923263i \(-0.625512\pi\)
0.384170 0.923263i \(-0.374488\pi\)
\(332\) −257.886 244.893i −0.776766 0.737629i
\(333\) 86.5667 149.938i 0.259960 0.450264i
\(334\) −37.8766 + 319.549i −0.113403 + 0.956734i
\(335\) 14.2391i 0.0425047i
\(336\) 103.425 67.0643i 0.307812 0.199596i
\(337\) 34.4295 + 59.6337i 0.102165 + 0.176955i 0.912576 0.408906i \(-0.134090\pi\)
−0.810412 + 0.585861i \(0.800756\pi\)
\(338\) 271.991 364.110i 0.804706 1.07725i
\(339\) 123.438 71.2669i 0.364124 0.210227i
\(340\) 18.5537 + 62.7149i 0.0545696 + 0.184456i
\(341\) −584.998 −1.71554
\(342\) 274.585 + 193.650i 0.802879 + 0.566228i
\(343\) 172.673i 0.503421i
\(344\) −467.540 + 80.0910i −1.35913 + 0.232823i
\(345\) −47.6197 82.4797i −0.138028 0.239072i
\(346\) 295.333 395.358i 0.853564 1.14265i
\(347\) 426.970 246.511i 1.23046 0.710407i 0.263336 0.964704i \(-0.415177\pi\)
0.967126 + 0.254297i \(0.0818440\pi\)
\(348\) 0.361823 + 0.343592i 0.00103972 + 0.000987335i
\(349\) −180.545 −0.517320 −0.258660 0.965968i \(-0.583281\pi\)
−0.258660 + 0.965968i \(0.583281\pi\)
\(350\) 8.77807 74.0570i 0.0250802 0.211591i
\(351\) 11.4943 + 6.63621i 0.0327472 + 0.0189066i
\(352\) 195.714 + 397.726i 0.556005 + 1.12990i
\(353\) 441.313 1.25018 0.625089 0.780553i \(-0.285063\pi\)
0.625089 + 0.780553i \(0.285063\pi\)
\(354\) 619.571 + 73.4386i 1.75020 + 0.207454i
\(355\) −51.5254 29.7482i −0.145142 0.0837978i
\(356\) 70.8476 + 239.479i 0.199010 + 0.672693i
\(357\) −29.5077 + 51.1088i −0.0826545 + 0.143162i
\(358\) 237.760 102.101i 0.664133 0.285199i
\(359\) −119.997 + 69.2800i −0.334252 + 0.192981i −0.657727 0.753256i \(-0.728482\pi\)
0.323475 + 0.946237i \(0.395149\pi\)
\(360\) 141.626 + 52.3312i 0.393405 + 0.145364i
\(361\) 197.317 + 302.303i 0.546585 + 0.837404i
\(362\) −381.909 45.2682i −1.05500 0.125050i
\(363\) 259.301 149.707i 0.714327 0.412417i
\(364\) −139.257 + 41.1981i −0.382575 + 0.113181i
\(365\) −98.7420 + 171.026i −0.270526 + 0.468565i
\(366\) 367.352 157.753i 1.00370 0.431018i
\(367\) −304.552 175.833i −0.829841 0.479109i 0.0239571 0.999713i \(-0.492373\pi\)
−0.853798 + 0.520604i \(0.825707\pi\)
\(368\) −76.8345 + 150.541i −0.208790 + 0.409080i
\(369\) 278.295 0.754187
\(370\) 50.0237 66.9659i 0.135199 0.180989i
\(371\) 94.2247 + 54.4006i 0.253975 + 0.146632i
\(372\) 693.768 + 166.810i 1.86497 + 0.448414i
\(373\) −196.793 −0.527594 −0.263797 0.964578i \(-0.584975\pi\)
−0.263797 + 0.964578i \(0.584975\pi\)
\(374\) −170.023 127.008i −0.454608 0.339593i
\(375\) 354.828 204.860i 0.946208 0.546293i
\(376\) 457.688 + 550.885i 1.21726 + 1.46512i
\(377\) −0.293928 0.509099i −0.000779650 0.00135039i
\(378\) −0.959709 2.23484i −0.00253891 0.00591227i
\(379\) 169.249i 0.446566i −0.974754 0.223283i \(-0.928323\pi\)
0.974754 0.223283i \(-0.0716774\pi\)
\(380\) 120.640 + 108.446i 0.317475 + 0.285385i
\(381\) 140.695 0.369279
\(382\) 2.37214 1.01867i 0.00620980 0.00266668i
\(383\) −343.442 + 198.286i −0.896715 + 0.517718i −0.876133 0.482070i \(-0.839885\pi\)
−0.0205817 + 0.999788i \(0.506552\pi\)
\(384\) −118.693 527.482i −0.309096 1.37365i
\(385\) −26.9633 46.7017i −0.0700345 0.121303i
\(386\) −446.648 + 597.920i −1.15712 + 1.54902i
\(387\) 524.285i 1.35474i
\(388\) −504.054 121.195i −1.29911 0.312358i
\(389\) 192.573 333.547i 0.495047 0.857447i −0.504936 0.863157i \(-0.668484\pi\)
0.999984 + 0.00570929i \(0.00181733\pi\)
\(390\) −287.564 214.811i −0.737343 0.550797i
\(391\) 80.9191i 0.206954i
\(392\) −342.739 126.643i −0.874333 0.323069i
\(393\) 28.9167 50.0851i 0.0735793 0.127443i
\(394\) 151.339 + 352.418i 0.384110 + 0.894462i
\(395\) −236.247 136.397i −0.598093 0.345309i
\(396\) −469.806 + 138.988i −1.18638 + 0.350980i
\(397\) −141.267 244.682i −0.355837 0.616328i 0.631424 0.775438i \(-0.282471\pi\)
−0.987261 + 0.159110i \(0.949138\pi\)
\(398\) −77.5804 + 654.513i −0.194926 + 1.64451i
\(399\) 4.00157 + 146.323i 0.0100290 + 0.366724i
\(400\) −291.352 148.702i −0.728380 0.371756i
\(401\) −4.00500 6.93686i −0.00998753 0.0172989i 0.860988 0.508625i \(-0.169846\pi\)
−0.870976 + 0.491326i \(0.836513\pi\)
\(402\) 22.2378 + 51.7843i 0.0553179 + 0.128817i
\(403\) −728.023 420.325i −1.80651 1.04299i
\(404\) 103.599 + 350.183i 0.256432 + 0.866790i
\(405\) 87.9348 152.308i 0.217123 0.376068i
\(406\) −0.0126801 + 0.106977i −3.12317e−5 + 0.000263489i
\(407\) 271.233i 0.666421i
\(408\) 165.420 + 199.104i 0.405442 + 0.488000i
\(409\) −77.6731 + 134.534i −0.189910 + 0.328933i −0.945220 0.326434i \(-0.894153\pi\)
0.755310 + 0.655367i \(0.227486\pi\)
\(410\) 133.424 + 15.8149i 0.325424 + 0.0385730i
\(411\) 564.012i 1.37229i
\(412\) −196.704 186.793i −0.477437 0.453382i
\(413\) 67.3495 + 116.653i 0.163074 + 0.282452i
\(414\) −149.661 111.797i −0.361501 0.270042i
\(415\) 164.348 94.8862i 0.396019 0.228642i
\(416\) −42.2048 + 635.586i −0.101454 + 1.52785i
\(417\) −938.954 −2.25169
\(418\) −524.224 47.6463i −1.25412 0.113986i
\(419\) 402.751i 0.961220i 0.876934 + 0.480610i \(0.159585\pi\)
−0.876934 + 0.480610i \(0.840415\pi\)
\(420\) 18.6598 + 63.0736i 0.0444280 + 0.150175i
\(421\) −227.604 394.222i −0.540628 0.936395i −0.998868 0.0475667i \(-0.984853\pi\)
0.458240 0.888828i \(-0.348480\pi\)
\(422\) 89.2816 + 66.6935i 0.211568 + 0.158041i
\(423\) −685.547 + 395.801i −1.62068 + 0.935699i
\(424\) 367.070 304.971i 0.865732 0.719270i
\(425\) 156.608 0.368488
\(426\) −233.846 27.7180i −0.548933 0.0650658i
\(427\) 74.7495 + 43.1566i 0.175057 + 0.101069i
\(428\) −278.108 264.096i −0.649786 0.617047i
\(429\) 1164.72 2.71498
\(430\) 29.7940 251.360i 0.0692884 0.584557i
\(431\) −427.854 247.021i −0.992700 0.573135i −0.0866195 0.996241i \(-0.527606\pi\)
−0.906080 + 0.423106i \(0.860940\pi\)
\(432\) −10.6539 + 0.551036i −0.0246619 + 0.00127555i
\(433\) −127.503 + 220.842i −0.294465 + 0.510029i −0.974860 0.222817i \(-0.928475\pi\)
0.680395 + 0.732845i \(0.261808\pi\)
\(434\) 60.7861 + 141.550i 0.140060 + 0.326153i
\(435\) −0.230585 + 0.133128i −0.000530081 + 0.000306042i
\(436\) 240.386 + 57.7985i 0.551343 + 0.132565i
\(437\) −105.067 171.008i −0.240428 0.391323i
\(438\) −92.0032 + 776.193i −0.210053 + 1.77213i
\(439\) 80.1980 46.3023i 0.182683 0.105472i −0.405869 0.913931i \(-0.633031\pi\)
0.588553 + 0.808459i \(0.299698\pi\)
\(440\) −233.139 + 39.9374i −0.529862 + 0.0907668i
\(441\) 201.926 349.746i 0.457881 0.793074i
\(442\) −120.336 280.222i −0.272254 0.633987i
\(443\) 319.754 + 184.610i 0.721792 + 0.416727i 0.815412 0.578881i \(-0.196511\pi\)
−0.0936200 + 0.995608i \(0.529844\pi\)
\(444\) 77.3412 321.664i 0.174192 0.724469i
\(445\) −133.264 −0.299469
\(446\) 66.0869 + 49.3670i 0.148177 + 0.110688i
\(447\) 86.7327 + 50.0751i 0.194033 + 0.112025i
\(448\) 75.9002 88.6832i 0.169420 0.197954i
\(449\) −457.229 −1.01833 −0.509163 0.860670i \(-0.670045\pi\)
−0.509163 + 0.860670i \(0.670045\pi\)
\(450\) 216.368 289.648i 0.480817 0.643663i
\(451\) −377.570 + 217.990i −0.837184 + 0.483349i
\(452\) 92.9444 97.8759i 0.205629 0.216540i
\(453\) 164.187 + 284.381i 0.362444 + 0.627772i
\(454\) 509.174 218.655i 1.12153 0.481619i
\(455\) 77.4931i 0.170314i
\(456\) 608.108 + 205.986i 1.33357 + 0.451723i
\(457\) 83.5243 0.182767 0.0913833 0.995816i \(-0.470871\pi\)
0.0913833 + 0.995816i \(0.470871\pi\)
\(458\) 111.414 + 259.445i 0.243261 + 0.566473i
\(459\) 4.42328 2.55378i 0.00963679 0.00556380i
\(460\) −65.3994 62.1043i −0.142173 0.135009i
\(461\) −120.895 209.396i −0.262245 0.454221i 0.704593 0.709611i \(-0.251129\pi\)
−0.966838 + 0.255390i \(0.917796\pi\)
\(462\) −170.996 127.734i −0.370120 0.276481i
\(463\) 159.241i 0.343934i −0.985103 0.171967i \(-0.944988\pi\)
0.985103 0.171967i \(-0.0550123\pi\)
\(464\) 0.420863 + 0.214803i 0.000907032 + 0.000462938i
\(465\) −190.377 + 329.742i −0.409413 + 0.709124i
\(466\) −106.729 + 142.876i −0.229032 + 0.306601i
\(467\) 17.6334i 0.0377588i −0.999822 0.0188794i \(-0.993990\pi\)
0.999822 0.0188794i \(-0.00600986\pi\)
\(468\) −684.532 164.589i −1.46267 0.351687i
\(469\) −6.08363 + 10.5372i −0.0129715 + 0.0224673i
\(470\) −351.167 + 150.802i −0.747163 + 0.320855i
\(471\) 924.755 + 533.907i 1.96339 + 1.13356i
\(472\) 582.340 99.7565i 1.23377 0.211349i
\(473\) 410.676 + 711.311i 0.868236 + 1.50383i
\(474\) −1072.19 127.089i −2.26201 0.268119i
\(475\) 330.962 203.343i 0.696763 0.428090i
\(476\) −13.0649 + 54.3371i −0.0274472 + 0.114154i
\(477\) 263.733 + 456.799i 0.552900 + 0.957651i
\(478\) −151.233 + 64.9440i −0.316386 + 0.135866i
\(479\) 164.704 + 95.0917i 0.343849 + 0.198521i 0.661973 0.749528i \(-0.269719\pi\)
−0.318124 + 0.948049i \(0.603053\pi\)
\(480\) 287.875 + 19.1157i 0.599740 + 0.0398244i
\(481\) −194.883 + 337.547i −0.405161 + 0.701760i
\(482\) −88.5585 10.4970i −0.183731 0.0217779i
\(483\) 81.3818i 0.168492i
\(484\) 195.244 205.603i 0.403397 0.424801i
\(485\) 138.317 239.573i 0.285191 0.493965i
\(486\) 80.5209 679.322i 0.165681 1.39778i
\(487\) 421.853i 0.866228i 0.901339 + 0.433114i \(0.142585\pi\)
−0.901339 + 0.433114i \(0.857415\pi\)
\(488\) 291.201 241.937i 0.596723 0.495772i
\(489\) 122.863 + 212.805i 0.251254 + 0.435185i
\(490\) 116.685 156.205i 0.238133 0.318785i
\(491\) −707.298 + 408.359i −1.44053 + 0.831688i −0.997885 0.0650112i \(-0.979292\pi\)
−0.442641 + 0.896699i \(0.645958\pi\)
\(492\) 509.932 150.859i 1.03645 0.306624i
\(493\) −0.226222 −0.000458869
\(494\) −618.157 435.953i −1.25133 0.882496i
\(495\) 261.435i 0.528151i
\(496\) 674.799 34.9015i 1.36048 0.0703660i
\(497\) −25.4198 44.0284i −0.0511465 0.0885883i
\(498\) 449.508 601.749i 0.902626 1.20833i
\(499\) 446.851 257.989i 0.895492 0.517013i 0.0197574 0.999805i \(-0.493711\pi\)
0.875735 + 0.482792i \(0.160377\pi\)
\(500\) 267.173 281.349i 0.534346 0.562697i
\(501\) −679.612 −1.35651
\(502\) 25.7893 217.573i 0.0513730 0.433413i
\(503\) 328.542 + 189.684i 0.653165 + 0.377105i 0.789668 0.613535i \(-0.210253\pi\)
−0.136503 + 0.990640i \(0.543586\pi\)
\(504\) 82.4472 + 99.2355i 0.163586 + 0.196896i
\(505\) −194.868 −0.385877
\(506\) 290.621 + 34.4477i 0.574350 + 0.0680784i
\(507\) 831.270 + 479.934i 1.63959 + 0.946615i
\(508\) 127.760 37.7968i 0.251497 0.0744032i
\(509\) 56.0386 97.0617i 0.110096 0.190691i −0.805713 0.592306i \(-0.798218\pi\)
0.915809 + 0.401615i \(0.131551\pi\)
\(510\) −126.921 + 54.5037i −0.248864 + 0.106870i
\(511\) −146.141 + 84.3748i −0.285991 + 0.165117i
\(512\) −249.486 447.103i −0.487277 0.873248i
\(513\) 6.03194 11.1403i 0.0117582 0.0217159i
\(514\) 889.778 + 105.467i 1.73109 + 0.205188i
\(515\) 125.357 72.3749i 0.243412 0.140534i
\(516\) −284.206 960.669i −0.550786 1.86176i
\(517\) 620.066 1073.99i 1.19935 2.07734i
\(518\) 65.6295 28.1833i 0.126698 0.0544080i
\(519\) 902.610 + 521.122i 1.73913 + 1.00409i
\(520\) −318.834 117.810i −0.613143 0.226558i
\(521\) −269.639 −0.517542 −0.258771 0.965939i \(-0.583317\pi\)
−0.258771 + 0.965939i \(0.583317\pi\)
\(522\) −0.312547 + 0.418402i −0.000598749 + 0.000801536i
\(523\) −416.867 240.678i −0.797068 0.460188i 0.0453767 0.998970i \(-0.485551\pi\)
−0.842445 + 0.538782i \(0.818885\pi\)
\(524\) 12.8032 53.2489i 0.0244336 0.101620i
\(525\) 157.503 0.300006
\(526\) 504.235 + 376.664i 0.958621 + 0.716092i
\(527\) −280.162 + 161.752i −0.531617 + 0.306929i
\(528\) −785.502 + 509.347i −1.48769 + 0.964672i
\(529\) −208.706 361.490i −0.394530 0.683346i
\(530\) 100.484 + 233.992i 0.189592 + 0.441495i
\(531\) 653.018i 1.22979i
\(532\) 42.9423 + 131.796i 0.0807186 + 0.247736i
\(533\) −626.509 −1.17544
\(534\) −484.650 + 208.124i −0.907584 + 0.389745i
\(535\) 177.235 102.327i 0.331281 0.191265i
\(536\) 34.1049 + 41.0496i 0.0636286 + 0.0765850i
\(537\) 273.245 + 473.275i 0.508837 + 0.881331i
\(538\) −348.456 + 466.473i −0.647688 + 0.867050i
\(539\) 632.679i 1.17380i
\(540\) 1.33082 5.53493i 0.00246449 0.0102499i
\(541\) 52.7461 91.3589i 0.0974974 0.168870i −0.813151 0.582053i \(-0.802250\pi\)
0.910648 + 0.413183i \(0.135583\pi\)
\(542\) −206.568 154.306i −0.381121 0.284698i
\(543\) 812.238i 1.49583i
\(544\) 203.700 + 136.361i 0.374449 + 0.250663i
\(545\) −65.9643 + 114.253i −0.121035 + 0.209639i
\(546\) −121.024 281.825i −0.221656 0.516163i
\(547\) −547.959 316.364i −1.00175 0.578363i −0.0929871 0.995667i \(-0.529642\pi\)
−0.908767 + 0.417304i \(0.862975\pi\)
\(548\) −151.518 512.160i −0.276493 0.934599i
\(549\) 209.223 + 362.384i 0.381097 + 0.660080i
\(550\) −66.6687 + 562.456i −0.121216 + 1.02265i
\(551\) −0.478081 + 0.293732i −0.000867660 + 0.000533089i
\(552\) −334.834 123.722i −0.606583 0.224134i
\(553\) −116.551 201.872i −0.210761 0.365049i
\(554\) 18.2307 + 42.4531i 0.0329074 + 0.0766302i
\(555\) 152.884 + 88.2679i 0.275467 + 0.159041i
\(556\) −852.632 + 252.244i −1.53351 + 0.453676i
\(557\) 526.047 911.140i 0.944429 1.63580i 0.187538 0.982257i \(-0.439949\pi\)
0.756891 0.653541i \(-0.226717\pi\)
\(558\) −87.9075 + 741.640i −0.157540 + 1.32910i
\(559\) 1180.29i 2.11143i
\(560\) 33.8886 + 52.2621i 0.0605153 + 0.0933253i
\(561\) 224.108 388.166i 0.399479 0.691919i
\(562\) 131.911 + 15.6356i 0.234717 + 0.0278213i
\(563\) 619.106i 1.09966i 0.835278 + 0.549828i \(0.185307\pi\)
−0.835278 + 0.549828i \(0.814693\pi\)
\(564\) −1041.60 + 1096.87i −1.84681 + 1.94480i
\(565\) 36.0123 + 62.3751i 0.0637385 + 0.110398i
\(566\) −156.140 116.637i −0.275866 0.206073i
\(567\) 130.146 75.1401i 0.229535 0.132522i
\(568\) −219.793 + 37.6513i −0.386960 + 0.0662874i
\(569\) 246.403 0.433046 0.216523 0.976277i \(-0.430528\pi\)
0.216523 + 0.976277i \(0.430528\pi\)
\(570\) −197.456 + 279.981i −0.346413 + 0.491194i
\(571\) 88.9193i 0.155726i 0.996964 + 0.0778628i \(0.0248096\pi\)
−0.996964 + 0.0778628i \(0.975190\pi\)
\(572\) 1057.65 312.895i 1.84903 0.547020i
\(573\) 2.72619 + 4.72189i 0.00475774 + 0.00824065i
\(574\) 91.9791 + 68.7086i 0.160242 + 0.119701i
\(575\) −187.028 + 107.981i −0.325266 + 0.187792i
\(576\) 533.632 188.353i 0.926445 0.327001i
\(577\) 659.532 1.14304 0.571518 0.820589i \(-0.306355\pi\)
0.571518 + 0.820589i \(0.306355\pi\)
\(578\) 457.438 + 54.2208i 0.791416 + 0.0938076i
\(579\) −1365.06 788.120i −2.35762 1.36117i
\(580\) −0.173622 + 0.182835i −0.000299349 + 0.000315232i
\(581\) 162.160 0.279105
\(582\) 128.878 1087.29i 0.221440 1.86819i
\(583\) −715.628 413.168i −1.22749 0.708693i
\(584\) 124.974 + 729.551i 0.213997 + 1.24923i
\(585\) 187.842 325.353i 0.321098 0.556158i
\(586\) 207.851 + 484.015i 0.354695 + 0.825965i
\(587\) 847.759 489.454i 1.44422 0.833822i 0.446095 0.894986i \(-0.352814\pi\)
0.998128 + 0.0611631i \(0.0194810\pi\)
\(588\) 180.406 750.314i 0.306813 1.27604i
\(589\) −382.051 + 705.603i −0.648644 + 1.19797i
\(590\) −37.1096 + 313.079i −0.0628977 + 0.530642i
\(591\) −701.509 + 405.017i −1.18699 + 0.685307i
\(592\) −16.1820 312.869i −0.0273345 0.528496i
\(593\) −102.396 + 177.355i −0.172675 + 0.299081i −0.939354 0.342949i \(-0.888574\pi\)
0.766679 + 0.642030i \(0.221908\pi\)
\(594\) 7.28890 + 16.9734i 0.0122709 + 0.0285747i
\(595\) −25.8260 14.9107i −0.0434051 0.0250599i
\(596\) 92.2114 + 22.1714i 0.154717 + 0.0372003i
\(597\) −1392.01 −2.33167
\(598\) 336.924 + 251.683i 0.563417 + 0.420874i
\(599\) −844.006 487.287i −1.40903 0.813501i −0.413731 0.910399i \(-0.635775\pi\)
−0.995294 + 0.0968983i \(0.969108\pi\)
\(600\) 239.447 648.024i 0.399078 1.08004i
\(601\) 371.313 0.617825 0.308913 0.951090i \(-0.400035\pi\)
0.308913 + 0.951090i \(0.400035\pi\)
\(602\) 129.441 173.281i 0.215019 0.287842i
\(603\) −51.0840 + 29.4933i −0.0847164 + 0.0489110i
\(604\) 225.490 + 214.129i 0.373328 + 0.354518i
\(605\) 75.6494 + 131.029i 0.125040 + 0.216576i
\(606\) −708.690 + 304.334i −1.16946 + 0.502201i
\(607\) 692.679i 1.14115i −0.821245 0.570576i \(-0.806720\pi\)
0.821245 0.570576i \(-0.193280\pi\)
\(608\) 607.539 + 23.6846i 0.999241 + 0.0389550i
\(609\) −0.227516 −0.000373589
\(610\) 79.7148 + 185.629i 0.130680 + 0.304309i
\(611\) 1543.33 891.043i 2.52591 1.45834i
\(612\) −186.565 + 196.464i −0.304845 + 0.321020i
\(613\) 257.281 + 445.624i 0.419708 + 0.726955i 0.995910 0.0903521i \(-0.0287992\pi\)
−0.576202 + 0.817307i \(0.695466\pi\)
\(614\) −454.328 339.384i −0.739948 0.552743i
\(615\) 283.764i 0.461404i
\(616\) −189.590 70.0541i −0.307776 0.113724i
\(617\) 10.0069 17.3324i 0.0162186 0.0280915i −0.857802 0.513980i \(-0.828171\pi\)
0.874021 + 0.485888i \(0.161504\pi\)
\(618\) 342.864 458.987i 0.554797 0.742698i
\(619\) 266.861i 0.431117i 0.976491 + 0.215558i \(0.0691572\pi\)
−0.976491 + 0.215558i \(0.930843\pi\)
\(620\) −84.2917 + 350.571i −0.135954 + 0.565438i
\(621\) −3.52166 + 6.09969i −0.00567094 + 0.00982236i
\(622\) −467.713 + 200.851i −0.751950 + 0.322911i
\(623\) −98.6174 56.9368i −0.158294 0.0913913i
\(624\) −1343.52 + 69.4886i −2.15307 + 0.111360i
\(625\) −152.033 263.328i −0.243252 0.421325i
\(626\) −666.155 78.9603i −1.06415 0.126135i
\(627\) −30.3915 1111.31i −0.0484713 1.77242i
\(628\) 983.169 + 236.394i 1.56556 + 0.376423i
\(629\) 74.9959 + 129.897i 0.119230 + 0.206513i
\(630\) −63.2586 + 27.1652i −0.100410 + 0.0431194i
\(631\) 707.959 + 408.740i 1.12196 + 0.647766i 0.941901 0.335890i \(-0.109037\pi\)
0.180062 + 0.983655i \(0.442370\pi\)
\(632\) −1007.76 + 172.633i −1.59456 + 0.273153i
\(633\) −117.682 + 203.832i −0.185912 + 0.322009i
\(634\) −524.582 62.1794i −0.827417 0.0980748i
\(635\) 71.0954i 0.111961i
\(636\) 730.873 + 694.048i 1.14917 + 1.09127i
\(637\) −454.584 + 787.362i −0.713632 + 1.23605i
\(638\) 0.0963040 0.812477i 0.000150947 0.00127348i
\(639\) 246.469i 0.385711i
\(640\) 266.545 59.9774i 0.416476 0.0937147i
\(641\) 118.269 + 204.847i 0.184506 + 0.319574i 0.943410 0.331628i \(-0.107598\pi\)
−0.758904 + 0.651203i \(0.774265\pi\)
\(642\) 484.756 648.935i 0.755071 1.01080i
\(643\) −364.648 + 210.529i −0.567103 + 0.327417i −0.755992 0.654581i \(-0.772845\pi\)
0.188888 + 0.981999i \(0.439512\pi\)
\(644\) −21.8627 73.9001i −0.0339483 0.114752i
\(645\) 534.588 0.828818
\(646\) −264.231 + 122.129i −0.409026 + 0.189055i
\(647\) 633.110i 0.978532i −0.872135 0.489266i \(-0.837265\pi\)
0.872135 0.489266i \(-0.162735\pi\)
\(648\) −111.296 649.702i −0.171753 1.00263i
\(649\) −511.513 885.967i −0.788156 1.36513i
\(650\) −487.096 + 652.068i −0.749379 + 1.00318i
\(651\) −281.764 + 162.677i −0.432818 + 0.249887i
\(652\) 168.737 + 160.235i 0.258798 + 0.245759i
\(653\) −763.077 −1.16857 −0.584286 0.811548i \(-0.698625\pi\)
−0.584286 + 0.811548i \(0.698625\pi\)
\(654\) −61.4625 + 518.534i −0.0939793 + 0.792865i
\(655\) 25.3088 + 14.6120i 0.0386393 + 0.0223084i
\(656\) 422.524 273.979i 0.644092 0.417652i
\(657\) −818.095 −1.24520
\(658\) −324.299 38.4396i −0.492856 0.0584189i
\(659\) −308.832 178.304i −0.468637 0.270568i 0.247032 0.969007i \(-0.420545\pi\)
−0.715669 + 0.698440i \(0.753878\pi\)
\(660\) −141.719 479.038i −0.214726 0.725815i
\(661\) 131.256 227.342i 0.198572 0.343937i −0.749494 0.662011i \(-0.769703\pi\)
0.948066 + 0.318075i \(0.103036\pi\)
\(662\) 1123.21 482.343i 1.69670 0.728614i
\(663\) 557.800 322.046i 0.841327 0.485740i
\(664\) 246.527 667.185i 0.371275 1.00480i
\(665\) −73.9391 + 2.02205i −0.111187 + 0.00304068i
\(666\) 343.860 + 40.7582i 0.516306 + 0.0611984i
\(667\) 0.270165 0.155980i 0.000405045 0.000233853i
\(668\) −617.132 + 182.573i −0.923851 + 0.273313i
\(669\) −87.1092 + 150.878i −0.130208 + 0.225527i
\(670\) −26.1674 + 11.2371i −0.0390558 + 0.0167718i
\(671\) −567.716 327.771i −0.846074 0.488481i
\(672\) 204.865 + 137.140i 0.304859 + 0.204078i
\(673\) 776.136 1.15325 0.576624 0.817010i \(-0.304370\pi\)
0.576624 + 0.817010i \(0.304370\pi\)
\(674\) −82.4190 + 110.333i −0.122283 + 0.163699i
\(675\) −11.8051 6.81567i −0.0174890 0.0100973i
\(676\) 883.779 + 212.496i 1.30737 + 0.314344i
\(677\) 114.432 0.169029 0.0845144 0.996422i \(-0.473066\pi\)
0.0845144 + 0.996422i \(0.473066\pi\)
\(678\) 228.382 + 170.602i 0.336847 + 0.251626i
\(679\) 204.715 118.192i 0.301494 0.174068i
\(680\) −100.610 + 83.5893i −0.147956 + 0.122925i
\(681\) 585.168 + 1013.54i 0.859278 + 1.48831i
\(682\) −461.665 1075.06i −0.676928 1.57634i
\(683\) 614.331i 0.899460i 0.893164 + 0.449730i \(0.148480\pi\)
−0.893164 + 0.449730i \(0.851520\pi\)
\(684\) −139.179 + 657.433i −0.203478 + 0.961159i
\(685\) 285.004 0.416064
\(686\) 317.325 136.269i 0.462573 0.198643i
\(687\) −516.440 + 298.167i −0.751733 + 0.434013i
\(688\) −516.155 796.001i −0.750225 1.15698i
\(689\) −593.727 1028.37i −0.861723 1.49255i
\(690\) 113.994 152.602i 0.165209 0.221163i
\(691\) 388.024i 0.561540i 0.959775 + 0.280770i \(0.0905898\pi\)
−0.959775 + 0.280770i \(0.909410\pi\)
\(692\) 959.625 + 230.733i 1.38674 + 0.333429i
\(693\) 111.698 193.466i 0.161180 0.279172i
\(694\) 789.972 + 590.111i 1.13829 + 0.850303i
\(695\) 474.468i 0.682687i
\(696\) −0.345885 + 0.936082i −0.000496961 + 0.00134495i
\(697\) −120.548 + 208.796i −0.172953 + 0.299564i
\(698\) −142.481 331.790i −0.204128 0.475344i
\(699\) −326.189 188.325i −0.466651 0.269421i
\(700\) 143.023 42.3122i 0.204319 0.0604459i
\(701\) 630.359 + 1091.81i 0.899229 + 1.55751i 0.828482 + 0.560015i \(0.189205\pi\)
0.0707461 + 0.997494i \(0.477462\pi\)
\(702\) −3.12452 + 26.3603i −0.00445089 + 0.0375503i
\(703\) 327.151 + 177.137i 0.465365 + 0.251973i
\(704\) −576.455 + 673.541i −0.818828 + 0.956734i
\(705\) −403.579 699.019i −0.572452 0.991516i
\(706\) 348.272 + 811.009i 0.493304 + 1.14874i
\(707\) −144.206 83.2571i −0.203968 0.117761i
\(708\) 353.989 + 1196.55i 0.499985 + 1.69005i
\(709\) −644.880 + 1116.97i −0.909563 + 1.57541i −0.0948904 + 0.995488i \(0.530250\pi\)
−0.814672 + 0.579921i \(0.803083\pi\)
\(710\) 14.0063 118.166i 0.0197272 0.166431i
\(711\) 1130.07i 1.58942i
\(712\) −384.183 + 319.188i −0.539583 + 0.448298i
\(713\) 223.055 386.342i 0.312840 0.541854i
\(714\) −117.210 13.8931i −0.164160 0.0194581i
\(715\) 588.553i 0.823151i
\(716\) 375.267 + 356.359i 0.524116 + 0.497708i
\(717\) −173.804 301.038i −0.242405 0.419858i
\(718\) −222.015 165.846i −0.309213 0.230983i
\(719\) 826.687 477.288i 1.14977 0.663822i 0.200942 0.979603i \(-0.435600\pi\)
0.948832 + 0.315781i \(0.102266\pi\)
\(720\) 15.5975 + 301.567i 0.0216631 + 0.418843i
\(721\) 123.689 0.171551
\(722\) −399.830 + 601.182i −0.553781 + 0.832662i
\(723\) 188.345i 0.260504i
\(724\) −218.202 737.565i −0.301384 1.01874i
\(725\) 0.301877 + 0.522866i 0.000416382 + 0.000721194i
\(726\) 479.753 + 358.376i 0.660816 + 0.493631i
\(727\) 882.411 509.460i 1.21377 0.700771i 0.250192 0.968196i \(-0.419506\pi\)
0.963578 + 0.267426i \(0.0861730\pi\)
\(728\) −185.609 223.403i −0.254957 0.306873i
\(729\) 703.208 0.964620
\(730\) −392.222 46.4906i −0.537291 0.0636858i
\(731\) 393.354 + 227.103i 0.538105 + 0.310675i
\(732\) 579.809 + 550.596i 0.792089 + 0.752180i
\(733\) −442.473 −0.603647 −0.301823 0.953364i \(-0.597595\pi\)
−0.301823 + 0.953364i \(0.597595\pi\)
\(734\) 82.7874 698.443i 0.112789 0.951557i
\(735\) 356.619 + 205.894i 0.485195 + 0.280128i
\(736\) −337.288 22.3969i −0.458272 0.0304306i
\(737\) 46.2046 80.0288i 0.0626929 0.108587i
\(738\) 219.623 + 511.427i 0.297592 + 0.692991i
\(739\) −396.012 + 228.638i −0.535876 + 0.309388i −0.743406 0.668841i \(-0.766791\pi\)
0.207530 + 0.978229i \(0.433458\pi\)
\(740\) 162.542 + 39.0817i 0.219651 + 0.0528131i
\(741\) 760.660 1404.85i 1.02653 1.89588i
\(742\) −25.6134 + 216.090i −0.0345194 + 0.291226i
\(743\) −1040.55 + 600.759i −1.40046 + 0.808559i −0.994440 0.105303i \(-0.966419\pi\)
−0.406025 + 0.913862i \(0.633085\pi\)
\(744\) 240.953 + 1406.59i 0.323862 + 1.89058i
\(745\) −25.3037 + 43.8273i −0.0339647 + 0.0588287i
\(746\) −155.304 361.649i −0.208182 0.484785i
\(747\) 680.825 + 393.075i 0.911413 + 0.526204i
\(748\) 99.2265 412.686i 0.132656 0.551719i
\(749\) 174.876 0.233479
\(750\) 656.496 + 490.404i 0.875327 + 0.653871i
\(751\) −257.509 148.673i −0.342888 0.197967i 0.318660 0.947869i \(-0.396767\pi\)
−0.661548 + 0.749902i \(0.730100\pi\)
\(752\) −651.176 + 1275.84i −0.865925 + 1.69660i
\(753\) 462.731 0.614517
\(754\) 0.703619 0.941924i 0.000933182 0.00124924i
\(755\) −143.702 + 82.9663i −0.190334 + 0.109889i
\(756\) 3.34962 3.52735i 0.00443072 0.00466580i
\(757\) −153.556 265.967i −0.202848 0.351344i 0.746597 0.665277i \(-0.231687\pi\)
−0.949445 + 0.313933i \(0.898353\pi\)
\(758\) 311.031 133.566i 0.410331 0.176209i
\(759\) 618.088i 0.814345i
\(760\) −104.088 + 307.286i −0.136958 + 0.404324i
\(761\) −198.836 −0.261283 −0.130641 0.991430i \(-0.541704\pi\)
−0.130641 + 0.991430i \(0.541704\pi\)
\(762\) 111.033 + 258.558i 0.145712 + 0.339315i
\(763\) −97.6294 + 56.3664i −0.127955 + 0.0738746i
\(764\) 3.74406 + 3.55542i 0.00490060 + 0.00465369i
\(765\) −72.2866 125.204i −0.0944923 0.163665i
\(766\) −635.429 474.667i −0.829542 0.619669i
\(767\) 1470.10i 1.91669i
\(768\) 875.694 634.399i 1.14023 0.826041i
\(769\) 360.826 624.969i 0.469214 0.812703i −0.530166 0.847894i \(-0.677870\pi\)
0.999381 + 0.0351906i \(0.0112038\pi\)
\(770\) 64.5459 86.4066i 0.0838259 0.112216i
\(771\) 1892.36i 2.45443i
\(772\) −1451.29 348.950i −1.87991 0.452007i
\(773\) 593.625 1028.19i 0.767950 1.33013i −0.170723 0.985319i \(-0.554610\pi\)