Properties

Label 76.3.g.c.7.1
Level $76$
Weight $3$
Character 76.7
Analytic conductor $2.071$
Analytic rank $0$
Dimension $28$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 76 = 2^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 76.g (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.07085000914\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 7.1
Character \(\chi\) \(=\) 76.7
Dual form 76.3.g.c.11.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.99453 + 0.147792i) q^{2} +(3.58197 - 2.06805i) q^{3} +(3.95632 - 0.589552i) q^{4} +(-3.72976 - 6.46014i) q^{5} +(-6.83872 + 4.65419i) q^{6} +3.06851i q^{7} +(-7.80387 + 1.76059i) q^{8} +(4.05369 - 7.02120i) q^{9} +O(q^{10})\) \(q+(-1.99453 + 0.147792i) q^{2} +(3.58197 - 2.06805i) q^{3} +(3.95632 - 0.589552i) q^{4} +(-3.72976 - 6.46014i) q^{5} +(-6.83872 + 4.65419i) q^{6} +3.06851i q^{7} +(-7.80387 + 1.76059i) q^{8} +(4.05369 - 7.02120i) q^{9} +(8.39388 + 12.3337i) q^{10} -6.31466i q^{11} +(12.9522 - 10.2936i) q^{12} +(8.74659 - 15.1495i) q^{13} +(-0.453501 - 6.12024i) q^{14} +(-26.7198 - 15.4267i) q^{15} +(15.3049 - 4.66490i) q^{16} +(10.6765 + 18.4922i) q^{17} +(-7.04754 + 14.6031i) q^{18} +(6.62587 + 17.8072i) q^{19} +(-18.5647 - 23.3594i) q^{20} +(6.34585 + 10.9913i) q^{21} +(0.933256 + 12.5948i) q^{22} +(-5.19772 - 3.00090i) q^{23} +(-24.3122 + 22.4452i) q^{24} +(-15.3222 + 26.5389i) q^{25} +(-15.2064 + 31.5089i) q^{26} +3.69197i q^{27} +(1.80905 + 12.1400i) q^{28} +(18.2919 - 31.6825i) q^{29} +(55.5735 + 26.8201i) q^{30} +53.3857i q^{31} +(-29.8366 + 11.5662i) q^{32} +(-13.0591 - 22.6189i) q^{33} +(-24.0276 - 35.3055i) q^{34} +(19.8230 - 11.4448i) q^{35} +(11.8983 - 30.1679i) q^{36} -39.2040 q^{37} +(-15.8473 - 34.5379i) q^{38} -72.3537i q^{39} +(40.4802 + 43.8474i) q^{40} +(18.2738 + 31.6512i) q^{41} +(-14.2814 - 20.9847i) q^{42} +(31.7551 - 18.3338i) q^{43} +(-3.72282 - 24.9828i) q^{44} -60.4772 q^{45} +(10.8105 + 5.21722i) q^{46} +(0.0577813 + 0.0333600i) q^{47} +(45.1743 - 48.3608i) q^{48} +39.5842 q^{49} +(26.6385 - 55.1972i) q^{50} +(76.4859 + 44.1592i) q^{51} +(25.6728 - 65.0929i) q^{52} +(-31.6606 + 54.8377i) q^{53} +(-0.545644 - 7.36376i) q^{54} +(-40.7936 + 23.5522i) q^{55} +(-5.40240 - 23.9463i) q^{56} +(60.5600 + 50.0824i) q^{57} +(-31.8013 + 65.8951i) q^{58} +(-41.8467 + 24.1602i) q^{59} +(-114.807 - 45.2801i) q^{60} +(29.8565 - 51.7130i) q^{61} +(-7.88997 - 106.479i) q^{62} +(21.5446 + 12.4388i) q^{63} +(57.8006 - 27.4788i) q^{64} -130.491 q^{65} +(29.3896 + 43.1842i) q^{66} +(-58.4513 - 33.7469i) q^{67} +(53.1418 + 66.8668i) q^{68} -24.8241 q^{69} +(-37.8462 + 25.7567i) q^{70} +(30.0423 - 17.3449i) q^{71} +(-19.2730 + 61.9294i) q^{72} +(-17.7736 - 30.7848i) q^{73} +(78.1937 - 5.79404i) q^{74} +126.749i q^{75} +(36.7123 + 66.5448i) q^{76} +19.3766 q^{77} +(10.6933 + 144.312i) q^{78} +(-65.0141 + 37.5359i) q^{79} +(-87.2194 - 81.4725i) q^{80} +(44.1184 + 76.4153i) q^{81} +(-41.1256 - 60.4287i) q^{82} -53.5823i q^{83} +(31.5861 + 39.7440i) q^{84} +(79.6416 - 137.943i) q^{85} +(-60.6270 + 41.2606i) q^{86} -151.314i q^{87} +(11.1175 + 49.2788i) q^{88} +(36.5343 - 63.2793i) q^{89} +(120.624 - 8.93804i) q^{90} +(46.4866 + 26.8390i) q^{91} +(-22.3330 - 8.80820i) q^{92} +(110.404 + 191.226i) q^{93} +(-0.120177 - 0.0579980i) q^{94} +(90.3243 - 109.221i) q^{95} +(-82.9543 + 103.134i) q^{96} +(-59.7660 - 103.518i) q^{97} +(-78.9520 + 5.85023i) q^{98} +(-44.3365 - 25.5977i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28q - 5q^{2} - 11q^{4} + 6q^{5} - 3q^{6} - 62q^{8} + 20q^{9} + O(q^{10}) \) \( 28q - 5q^{2} - 11q^{4} + 6q^{5} - 3q^{6} - 62q^{8} + 20q^{9} + 26q^{12} + 30q^{13} - 30q^{14} - 19q^{16} + 38q^{17} - 60q^{18} - 44q^{20} + 80q^{21} + 45q^{22} + 17q^{24} - 16q^{25} - 56q^{26} + 54q^{28} + 6q^{29} + 96q^{30} - 45q^{32} - 176q^{33} - 20q^{34} + 30q^{36} + 104q^{37} - 258q^{38} + 94q^{40} - 2q^{41} - 2q^{42} + 201q^{44} - 360q^{45} + 164q^{46} - 17q^{48} - 20q^{49} + 490q^{50} - 102q^{52} - 242q^{53} - 13q^{54} + 276q^{56} - 254q^{57} + 96q^{58} + 10q^{60} - 58q^{61} - 36q^{62} - 74q^{64} - 260q^{65} + 167q^{66} + 396q^{68} + 340q^{69} + 60q^{70} - 422q^{72} - 82q^{73} - 136q^{74} + 123q^{76} - 144q^{77} + 224q^{78} - 174q^{80} + 410q^{81} - 305q^{82} + 252q^{84} + 714q^{85} + 166q^{86} - 718q^{88} + 150q^{89} - 272q^{90} - 588q^{92} + 344q^{93} - 488q^{94} - 122q^{96} + 94q^{97} + 307q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/76\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(39\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.99453 + 0.147792i −0.997266 + 0.0738960i
\(3\) 3.58197 2.06805i 1.19399 0.689351i 0.234782 0.972048i \(-0.424562\pi\)
0.959209 + 0.282697i \(0.0912291\pi\)
\(4\) 3.95632 0.589552i 0.989079 0.147388i
\(5\) −3.72976 6.46014i −0.745952 1.29203i −0.949749 0.313014i \(-0.898661\pi\)
0.203796 0.979013i \(-0.434672\pi\)
\(6\) −6.83872 + 4.65419i −1.13979 + 0.775698i
\(7\) 3.06851i 0.438359i 0.975685 + 0.219179i \(0.0703380\pi\)
−0.975685 + 0.219179i \(0.929662\pi\)
\(8\) −7.80387 + 1.76059i −0.975483 + 0.220074i
\(9\) 4.05369 7.02120i 0.450410 0.780133i
\(10\) 8.39388 + 12.3337i 0.839388 + 1.23337i
\(11\) 6.31466i 0.574060i −0.957922 0.287030i \(-0.907332\pi\)
0.957922 0.287030i \(-0.0926679\pi\)
\(12\) 12.9522 10.2936i 1.07935 0.857802i
\(13\) 8.74659 15.1495i 0.672815 1.16535i −0.304288 0.952580i \(-0.598418\pi\)
0.977102 0.212769i \(-0.0682483\pi\)
\(14\) −0.453501 6.12024i −0.0323930 0.437160i
\(15\) −26.7198 15.4267i −1.78132 1.02845i
\(16\) 15.3049 4.66490i 0.956554 0.291557i
\(17\) 10.6765 + 18.4922i 0.628030 + 1.08778i 0.987947 + 0.154795i \(0.0494717\pi\)
−0.359917 + 0.932984i \(0.617195\pi\)
\(18\) −7.04754 + 14.6031i −0.391530 + 0.811284i
\(19\) 6.62587 + 17.8072i 0.348730 + 0.937223i
\(20\) −18.5647 23.3594i −0.928235 1.16797i
\(21\) 6.34585 + 10.9913i 0.302183 + 0.523397i
\(22\) 0.933256 + 12.5948i 0.0424207 + 0.572490i
\(23\) −5.19772 3.00090i −0.225988 0.130474i 0.382732 0.923859i \(-0.374983\pi\)
−0.608720 + 0.793385i \(0.708317\pi\)
\(24\) −24.3122 + 22.4452i −1.01301 + 0.935217i
\(25\) −15.3222 + 26.5389i −0.612889 + 1.06156i
\(26\) −15.2064 + 31.5089i −0.584861 + 1.21188i
\(27\) 3.69197i 0.136740i
\(28\) 1.80905 + 12.1400i 0.0646088 + 0.433571i
\(29\) 18.2919 31.6825i 0.630755 1.09250i −0.356643 0.934241i \(-0.616079\pi\)
0.987398 0.158258i \(-0.0505879\pi\)
\(30\) 55.5735 + 26.8201i 1.85245 + 0.894002i
\(31\) 53.3857i 1.72212i 0.508505 + 0.861059i \(0.330198\pi\)
−0.508505 + 0.861059i \(0.669802\pi\)
\(32\) −29.8366 + 11.5662i −0.932393 + 0.361445i
\(33\) −13.0591 22.6189i −0.395729 0.685423i
\(34\) −24.0276 35.3055i −0.706695 1.03840i
\(35\) 19.8230 11.4448i 0.566372 0.326995i
\(36\) 11.8983 30.1679i 0.330509 0.837998i
\(37\) −39.2040 −1.05957 −0.529784 0.848133i \(-0.677727\pi\)
−0.529784 + 0.848133i \(0.677727\pi\)
\(38\) −15.8473 34.5379i −0.417034 0.908891i
\(39\) 72.3537i 1.85522i
\(40\) 40.4802 + 43.8474i 1.01201 + 1.09619i
\(41\) 18.2738 + 31.6512i 0.445704 + 0.771981i 0.998101 0.0615997i \(-0.0196202\pi\)
−0.552397 + 0.833581i \(0.686287\pi\)
\(42\) −14.2814 20.9847i −0.340034 0.499635i
\(43\) 31.7551 18.3338i 0.738491 0.426368i −0.0830292 0.996547i \(-0.526459\pi\)
0.821521 + 0.570179i \(0.193126\pi\)
\(44\) −3.72282 24.9828i −0.0846095 0.567791i
\(45\) −60.4772 −1.34394
\(46\) 10.8105 + 5.21722i 0.235011 + 0.113418i
\(47\) 0.0577813 + 0.0333600i 0.00122939 + 0.000709788i 0.500615 0.865670i \(-0.333107\pi\)
−0.499385 + 0.866380i \(0.666441\pi\)
\(48\) 45.1743 48.3608i 0.941132 1.00752i
\(49\) 39.5842 0.807842
\(50\) 26.6385 55.1972i 0.532769 1.10394i
\(51\) 76.4859 + 44.1592i 1.49972 + 0.865866i
\(52\) 25.6728 65.0929i 0.493708 1.25179i
\(53\) −31.6606 + 54.8377i −0.597369 + 1.03467i 0.395839 + 0.918320i \(0.370454\pi\)
−0.993208 + 0.116354i \(0.962879\pi\)
\(54\) −0.545644 7.36376i −0.0101045 0.136366i
\(55\) −40.7936 + 23.5522i −0.741701 + 0.428221i
\(56\) −5.40240 23.9463i −0.0964714 0.427612i
\(57\) 60.5600 + 50.0824i 1.06246 + 0.878639i
\(58\) −31.8013 + 65.8951i −0.548299 + 1.13612i
\(59\) −41.8467 + 24.1602i −0.709266 + 0.409495i −0.810789 0.585339i \(-0.800962\pi\)
0.101524 + 0.994833i \(0.467628\pi\)
\(60\) −114.807 45.2801i −1.91345 0.754669i
\(61\) 29.8565 51.7130i 0.489451 0.847754i −0.510475 0.859892i \(-0.670531\pi\)
0.999926 + 0.0121386i \(0.00386392\pi\)
\(62\) −7.88997 106.479i −0.127258 1.71741i
\(63\) 21.5446 + 12.4388i 0.341978 + 0.197441i
\(64\) 57.8006 27.4788i 0.903135 0.429357i
\(65\) −130.491 −2.00755
\(66\) 29.3896 + 43.1842i 0.445297 + 0.654306i
\(67\) −58.4513 33.7469i −0.872408 0.503685i −0.00426017 0.999991i \(-0.501356\pi\)
−0.868148 + 0.496306i \(0.834689\pi\)
\(68\) 53.1418 + 66.8668i 0.781496 + 0.983335i
\(69\) −24.8241 −0.359770
\(70\) −37.8462 + 25.7567i −0.540659 + 0.367953i
\(71\) 30.0423 17.3449i 0.423131 0.244295i −0.273285 0.961933i \(-0.588110\pi\)
0.696416 + 0.717638i \(0.254777\pi\)
\(72\) −19.2730 + 61.9294i −0.267680 + 0.860130i
\(73\) −17.7736 30.7848i −0.243474 0.421710i 0.718227 0.695809i \(-0.244954\pi\)
−0.961702 + 0.274099i \(0.911620\pi\)
\(74\) 78.1937 5.79404i 1.05667 0.0782979i
\(75\) 126.749i 1.68998i
\(76\) 36.7123 + 66.5448i 0.483057 + 0.875589i
\(77\) 19.3766 0.251644
\(78\) 10.6933 + 144.312i 0.137094 + 1.85015i
\(79\) −65.0141 + 37.5359i −0.822963 + 0.475138i −0.851437 0.524456i \(-0.824269\pi\)
0.0284739 + 0.999595i \(0.490935\pi\)
\(80\) −87.2194 81.4725i −1.09024 1.01841i
\(81\) 44.1184 + 76.4153i 0.544672 + 0.943399i
\(82\) −41.1256 60.4287i −0.501531 0.736935i
\(83\) 53.5823i 0.645570i −0.946472 0.322785i \(-0.895381\pi\)
0.946472 0.322785i \(-0.104619\pi\)
\(84\) 31.5861 + 39.7440i 0.376025 + 0.473142i
\(85\) 79.6416 137.943i 0.936960 1.62286i
\(86\) −60.6270 + 41.2606i −0.704965 + 0.479774i
\(87\) 151.314i 1.73925i
\(88\) 11.1175 + 49.2788i 0.126336 + 0.559986i
\(89\) 36.5343 63.2793i 0.410498 0.711003i −0.584446 0.811432i \(-0.698688\pi\)
0.994944 + 0.100429i \(0.0320216\pi\)
\(90\) 120.624 8.93804i 1.34026 0.0993116i
\(91\) 46.4866 + 26.8390i 0.510841 + 0.294934i
\(92\) −22.3330 8.80820i −0.242750 0.0957413i
\(93\) 110.404 + 191.226i 1.18714 + 2.05619i
\(94\) −0.120177 0.0579980i −0.00127848 0.000617000i
\(95\) 90.3243 109.221i 0.950782 1.14969i
\(96\) −82.9543 + 103.134i −0.864107 + 1.07431i
\(97\) −59.7660 103.518i −0.616144 1.06719i −0.990183 0.139780i \(-0.955361\pi\)
0.374039 0.927413i \(-0.377973\pi\)
\(98\) −78.9520 + 5.85023i −0.805633 + 0.0596963i
\(99\) −44.3365 25.5977i −0.447843 0.258562i
\(100\) −44.9735 + 114.029i −0.449735 + 1.14029i
\(101\) −13.0976 + 22.6857i −0.129679 + 0.224611i −0.923552 0.383473i \(-0.874728\pi\)
0.793873 + 0.608083i \(0.208061\pi\)
\(102\) −159.080 76.7729i −1.55961 0.752675i
\(103\) 130.318i 1.26522i −0.774469 0.632612i \(-0.781983\pi\)
0.774469 0.632612i \(-0.218017\pi\)
\(104\) −41.5851 + 133.624i −0.399857 + 1.28485i
\(105\) 47.3370 81.9901i 0.450828 0.780858i
\(106\) 55.0434 114.055i 0.519278 1.07599i
\(107\) 154.669i 1.44550i 0.691109 + 0.722751i \(0.257123\pi\)
−0.691109 + 0.722751i \(0.742877\pi\)
\(108\) 2.17661 + 14.6066i 0.0201538 + 0.135246i
\(109\) 44.6984 + 77.4198i 0.410077 + 0.710274i 0.994898 0.100889i \(-0.0321686\pi\)
−0.584821 + 0.811162i \(0.698835\pi\)
\(110\) 77.8832 53.0045i 0.708029 0.481859i
\(111\) −140.428 + 81.0760i −1.26512 + 0.730415i
\(112\) 14.3143 + 46.9631i 0.127806 + 0.419314i
\(113\) −93.6713 −0.828949 −0.414475 0.910061i \(-0.636035\pi\)
−0.414475 + 0.910061i \(0.636035\pi\)
\(114\) −128.191 90.9407i −1.12448 0.797725i
\(115\) 44.7706i 0.389310i
\(116\) 53.6900 136.130i 0.462845 1.17353i
\(117\) −70.9120 122.823i −0.606085 1.04977i
\(118\) 79.8938 54.3729i 0.677066 0.460787i
\(119\) −56.7437 + 32.7610i −0.476838 + 0.275302i
\(120\) 235.678 + 73.3451i 1.96398 + 0.611210i
\(121\) 81.1251 0.670455
\(122\) −51.9070 + 107.556i −0.425467 + 0.881604i
\(123\) 130.913 + 75.5826i 1.06433 + 0.614493i
\(124\) 31.4736 + 211.210i 0.253819 + 1.70331i
\(125\) 42.1051 0.336841
\(126\) −44.8098 21.6255i −0.355633 0.171631i
\(127\) −136.963 79.0756i −1.07845 0.622643i −0.147971 0.988992i \(-0.547274\pi\)
−0.930477 + 0.366349i \(0.880608\pi\)
\(128\) −111.224 + 63.3499i −0.868938 + 0.494921i
\(129\) 75.8307 131.343i 0.587835 1.01816i
\(130\) 260.268 19.2855i 2.00206 0.148350i
\(131\) −9.89072 + 5.71041i −0.0755017 + 0.0435909i −0.537276 0.843407i \(-0.680546\pi\)
0.461774 + 0.886998i \(0.347213\pi\)
\(132\) −65.0008 81.7887i −0.492430 0.619611i
\(133\) −54.6417 + 20.3316i −0.410840 + 0.152869i
\(134\) 121.571 + 58.6706i 0.907243 + 0.437840i
\(135\) 23.8506 13.7702i 0.176671 0.102001i
\(136\) −115.875 125.514i −0.852024 0.922897i
\(137\) −2.90159 + 5.02570i −0.0211795 + 0.0366839i −0.876421 0.481546i \(-0.840075\pi\)
0.855241 + 0.518230i \(0.173409\pi\)
\(138\) 49.5125 3.66881i 0.358786 0.0265855i
\(139\) −62.5836 36.1327i −0.450242 0.259947i 0.257690 0.966228i \(-0.417039\pi\)
−0.707932 + 0.706280i \(0.750372\pi\)
\(140\) 71.6787 56.9660i 0.511991 0.406900i
\(141\) 0.275961 0.00195717
\(142\) −57.3569 + 39.0350i −0.403922 + 0.274895i
\(143\) −95.6642 55.2318i −0.668981 0.386236i
\(144\) 29.2879 126.368i 0.203388 0.877559i
\(145\) −272.897 −1.88205
\(146\) 39.9998 + 58.7745i 0.273971 + 0.402565i
\(147\) 141.790 81.8623i 0.964556 0.556886i
\(148\) −155.103 + 23.1128i −1.04800 + 0.156168i
\(149\) 42.7490 + 74.0435i 0.286906 + 0.496936i 0.973070 0.230511i \(-0.0740398\pi\)
−0.686163 + 0.727447i \(0.740706\pi\)
\(150\) −18.7325 252.805i −0.124883 1.68536i
\(151\) 193.207i 1.27952i 0.768576 + 0.639759i \(0.220966\pi\)
−0.768576 + 0.639759i \(0.779034\pi\)
\(152\) −83.0587 127.300i −0.546439 0.837499i
\(153\) 173.117 1.13148
\(154\) −38.6473 + 2.86371i −0.250956 + 0.0185955i
\(155\) 344.879 199.116i 2.22502 1.28462i
\(156\) −42.6562 286.254i −0.273437 1.83496i
\(157\) −39.5456 68.4951i −0.251883 0.436274i 0.712161 0.702016i \(-0.247717\pi\)
−0.964044 + 0.265742i \(0.914383\pi\)
\(158\) 124.125 84.4751i 0.785603 0.534653i
\(159\) 261.903i 1.64719i
\(160\) 186.003 + 149.609i 1.16252 + 0.935057i
\(161\) 9.20831 15.9493i 0.0571945 0.0990637i
\(162\) −99.2891 145.892i −0.612896 0.900571i
\(163\) 161.432i 0.990381i −0.868785 0.495190i \(-0.835098\pi\)
0.868785 0.495190i \(-0.164902\pi\)
\(164\) 90.9571 + 114.449i 0.554617 + 0.697859i
\(165\) −97.4143 + 168.727i −0.590390 + 1.02258i
\(166\) 7.91904 + 106.872i 0.0477051 + 0.643805i
\(167\) −20.6601 11.9281i −0.123713 0.0714257i 0.436866 0.899526i \(-0.356088\pi\)
−0.560579 + 0.828101i \(0.689422\pi\)
\(168\) −68.8734 74.6024i −0.409961 0.444062i
\(169\) −68.5058 118.656i −0.405360 0.702104i
\(170\) −138.461 + 286.903i −0.814476 + 1.68766i
\(171\) 151.887 + 25.6635i 0.888230 + 0.150079i
\(172\) 114.825 91.2557i 0.667585 0.530556i
\(173\) 65.7413 + 113.867i 0.380008 + 0.658193i 0.991063 0.133395i \(-0.0425880\pi\)
−0.611055 + 0.791588i \(0.709255\pi\)
\(174\) 22.3631 + 301.801i 0.128523 + 1.73449i
\(175\) −81.4349 47.0165i −0.465342 0.268666i
\(176\) −29.4573 96.6450i −0.167371 0.549119i
\(177\) −99.9291 + 173.082i −0.564571 + 0.977866i
\(178\) −63.5167 + 131.612i −0.356835 + 0.739393i
\(179\) 186.389i 1.04128i 0.853776 + 0.520641i \(0.174307\pi\)
−0.853776 + 0.520641i \(0.825693\pi\)
\(180\) −239.267 + 35.6544i −1.32926 + 0.198080i
\(181\) −126.815 + 219.650i −0.700635 + 1.21354i 0.267609 + 0.963528i \(0.413766\pi\)
−0.968244 + 0.250008i \(0.919567\pi\)
\(182\) −96.6855 46.6610i −0.531239 0.256379i
\(183\) 246.979i 1.34961i
\(184\) 45.8457 + 14.2676i 0.249161 + 0.0775413i
\(185\) 146.222 + 253.263i 0.790387 + 1.36899i
\(186\) −248.467 365.089i −1.33584 1.96285i
\(187\) 116.772 67.4185i 0.624451 0.360527i
\(188\) 0.248268 + 0.0979177i 0.00132058 + 0.000520839i
\(189\) −11.3289 −0.0599411
\(190\) −164.013 + 231.194i −0.863225 + 1.21681i
\(191\) 17.2555i 0.0903429i 0.998979 + 0.0451715i \(0.0143834\pi\)
−0.998979 + 0.0451715i \(0.985617\pi\)
\(192\) 150.213 217.963i 0.782358 1.13523i
\(193\) −52.3338 90.6447i −0.271159 0.469662i 0.698000 0.716098i \(-0.254074\pi\)
−0.969159 + 0.246436i \(0.920740\pi\)
\(194\) 134.504 + 197.636i 0.693321 + 1.01874i
\(195\) −467.415 + 269.862i −2.39700 + 1.38391i
\(196\) 156.608 23.3370i 0.799019 0.119066i
\(197\) 1.28215 0.00650837 0.00325418 0.999995i \(-0.498964\pi\)
0.00325418 + 0.999995i \(0.498964\pi\)
\(198\) 92.2136 + 44.5028i 0.465725 + 0.224762i
\(199\) 243.279 + 140.457i 1.22251 + 0.705814i 0.965451 0.260583i \(-0.0839148\pi\)
0.257054 + 0.966397i \(0.417248\pi\)
\(200\) 72.8485 234.082i 0.364243 1.17041i
\(201\) −279.161 −1.38886
\(202\) 22.7708 47.1831i 0.112727 0.233580i
\(203\) 97.2180 + 56.1289i 0.478907 + 0.276497i
\(204\) 328.636 + 129.615i 1.61096 + 0.635368i
\(205\) 136.314 236.103i 0.664947 1.15172i
\(206\) 19.2600 + 259.924i 0.0934950 + 1.26177i
\(207\) −42.1399 + 24.3295i −0.203574 + 0.117534i
\(208\) 63.1942 272.664i 0.303818 1.31088i
\(209\) 112.447 41.8401i 0.538022 0.200192i
\(210\) −82.2976 + 170.528i −0.391894 + 0.812037i
\(211\) −24.0326 + 13.8753i −0.113899 + 0.0657595i −0.555867 0.831271i \(-0.687614\pi\)
0.441968 + 0.897031i \(0.354280\pi\)
\(212\) −92.9295 + 235.621i −0.438347 + 1.11142i
\(213\) 71.7405 124.258i 0.336810 0.583372i
\(214\) −22.8588 308.492i −0.106817 1.44155i
\(215\) −236.878 136.762i −1.10176 0.636101i
\(216\) −6.50005 28.8117i −0.0300928 0.133387i
\(217\) −163.815 −0.754906
\(218\) −100.594 147.810i −0.461442 0.678029i
\(219\) −127.329 73.5136i −0.581412 0.335679i
\(220\) −147.507 + 117.230i −0.670486 + 0.532862i
\(221\) 373.532 1.69019
\(222\) 268.105 182.463i 1.20768 0.821905i
\(223\) −227.599 + 131.404i −1.02062 + 0.589257i −0.914284 0.405073i \(-0.867246\pi\)
−0.106339 + 0.994330i \(0.533913\pi\)
\(224\) −35.4911 91.5539i −0.158443 0.408723i
\(225\) 124.223 + 215.161i 0.552103 + 0.956271i
\(226\) 186.830 13.8439i 0.826683 0.0612560i
\(227\) 108.770i 0.479161i 0.970876 + 0.239581i \(0.0770100\pi\)
−0.970876 + 0.239581i \(0.922990\pi\)
\(228\) 269.121 + 162.439i 1.18035 + 0.712450i
\(229\) −242.070 −1.05707 −0.528536 0.848911i \(-0.677259\pi\)
−0.528536 + 0.848911i \(0.677259\pi\)
\(230\) −6.61674 89.2964i −0.0287684 0.388245i
\(231\) 69.4065 40.0719i 0.300461 0.173471i
\(232\) −86.9675 + 279.450i −0.374860 + 1.20453i
\(233\) 133.782 + 231.717i 0.574170 + 0.994492i 0.996131 + 0.0878782i \(0.0280086\pi\)
−0.421961 + 0.906614i \(0.638658\pi\)
\(234\) 159.588 + 234.494i 0.682002 + 1.00211i
\(235\) 0.497700i 0.00211787i
\(236\) −151.315 + 120.256i −0.641165 + 0.509560i
\(237\) −155.253 + 268.905i −0.655074 + 1.13462i
\(238\) 108.335 73.7291i 0.455190 0.309786i
\(239\) 54.4854i 0.227972i 0.993482 + 0.113986i \(0.0363619\pi\)
−0.993482 + 0.113986i \(0.963638\pi\)
\(240\) −480.907 111.458i −2.00378 0.464408i
\(241\) 109.544 189.736i 0.454541 0.787288i −0.544121 0.839007i \(-0.683137\pi\)
0.998662 + 0.0517191i \(0.0164701\pi\)
\(242\) −161.807 + 11.9896i −0.668622 + 0.0495440i
\(243\) 287.286 + 165.865i 1.18225 + 0.682570i
\(244\) 87.6343 222.195i 0.359157 0.910634i
\(245\) −147.640 255.720i −0.602611 1.04375i
\(246\) −272.280 131.404i −1.10683 0.534163i
\(247\) 327.725 + 55.3738i 1.32682 + 0.224185i
\(248\) −93.9903 416.614i −0.378993 1.67990i
\(249\) −110.811 191.930i −0.445025 0.770805i
\(250\) −83.9799 + 6.22279i −0.335920 + 0.0248912i
\(251\) −272.951 157.589i −1.08746 0.627843i −0.154558 0.987984i \(-0.549395\pi\)
−0.932898 + 0.360141i \(0.882729\pi\)
\(252\) 92.5706 + 36.5101i 0.367344 + 0.144881i
\(253\) −18.9497 + 32.8218i −0.0748999 + 0.129730i
\(254\) 284.864 + 137.477i 1.12151 + 0.541247i
\(255\) 658.813i 2.58358i
\(256\) 212.477 142.791i 0.829990 0.557779i
\(257\) 61.4006 106.349i 0.238913 0.413809i −0.721490 0.692425i \(-0.756542\pi\)
0.960403 + 0.278616i \(0.0898757\pi\)
\(258\) −131.835 + 273.174i −0.510990 + 1.05881i
\(259\) 120.298i 0.464471i
\(260\) −516.263 + 76.9311i −1.98563 + 0.295889i
\(261\) −148.299 256.862i −0.568196 0.984145i
\(262\) 18.8834 12.8514i 0.0720741 0.0490510i
\(263\) −23.7444 + 13.7088i −0.0902828 + 0.0521248i −0.544462 0.838786i \(-0.683266\pi\)
0.454179 + 0.890910i \(0.349933\pi\)
\(264\) 141.734 + 153.524i 0.536871 + 0.581529i
\(265\) 472.345 1.78244
\(266\) 105.980 48.6276i 0.398420 0.182810i
\(267\) 302.220i 1.13191i
\(268\) −251.147 99.0532i −0.937117 0.369602i
\(269\) −189.509 328.239i −0.704494 1.22022i −0.966874 0.255255i \(-0.917841\pi\)
0.262380 0.964965i \(-0.415493\pi\)
\(270\) −45.5357 + 30.9900i −0.168651 + 0.114778i
\(271\) 228.515 131.933i 0.843229 0.486838i −0.0151315 0.999886i \(-0.504817\pi\)
0.858360 + 0.513047i \(0.171483\pi\)
\(272\) 249.667 + 233.216i 0.917893 + 0.857413i
\(273\) 222.018 0.813253
\(274\) 5.04455 10.4528i 0.0184108 0.0381487i
\(275\) 167.584 + 96.7547i 0.609397 + 0.351835i
\(276\) −98.2120 + 14.6351i −0.355841 + 0.0530257i
\(277\) 184.425 0.665796 0.332898 0.942963i \(-0.391974\pi\)
0.332898 + 0.942963i \(0.391974\pi\)
\(278\) 130.165 + 62.8184i 0.468220 + 0.225966i
\(279\) 374.831 + 216.409i 1.34348 + 0.775659i
\(280\) −134.546 + 124.214i −0.480523 + 0.443621i
\(281\) 67.1367 116.284i 0.238921 0.413823i −0.721484 0.692431i \(-0.756540\pi\)
0.960405 + 0.278608i \(0.0898731\pi\)
\(282\) −0.550414 + 0.0407849i −0.00195182 + 0.000144627i
\(283\) −202.571 + 116.955i −0.715800 + 0.413267i −0.813205 0.581978i \(-0.802279\pi\)
0.0974050 + 0.995245i \(0.468946\pi\)
\(284\) 108.631 86.3335i 0.382504 0.303991i
\(285\) 97.6648 578.021i 0.342683 2.02815i
\(286\) 198.968 + 96.0231i 0.695693 + 0.335745i
\(287\) −97.1222 + 56.0735i −0.338405 + 0.195378i
\(288\) −39.7395 + 256.375i −0.137984 + 0.890189i
\(289\) −83.4755 + 144.584i −0.288843 + 0.500290i
\(290\) 544.303 40.3321i 1.87691 0.139076i
\(291\) −428.160 247.198i −1.47134 0.849479i
\(292\) −88.4673 111.316i −0.302970 0.381219i
\(293\) 107.004 0.365202 0.182601 0.983187i \(-0.441548\pi\)
0.182601 + 0.983187i \(0.441548\pi\)
\(294\) −270.705 + 184.232i −0.920767 + 0.626641i
\(295\) 312.156 + 180.223i 1.05816 + 0.610927i
\(296\) 305.943 69.0223i 1.03359 0.233183i
\(297\) 23.3135 0.0784968
\(298\) −96.2074 141.364i −0.322844 0.474376i
\(299\) −90.9246 + 52.4954i −0.304096 + 0.175570i
\(300\) 74.7250 + 501.458i 0.249083 + 1.67153i
\(301\) 56.2576 + 97.4410i 0.186902 + 0.323724i
\(302\) −28.5545 385.358i −0.0945513 1.27602i
\(303\) 108.346i 0.357578i
\(304\) 184.477 + 241.628i 0.606833 + 0.794830i
\(305\) −445.430 −1.46043
\(306\) −345.287 + 25.5853i −1.12839 + 0.0836121i
\(307\) −369.984 + 213.610i −1.20516 + 0.695799i −0.961698 0.274112i \(-0.911616\pi\)
−0.243461 + 0.969911i \(0.578283\pi\)
\(308\) 76.6600 11.4235i 0.248896 0.0370893i
\(309\) −269.505 466.796i −0.872184 1.51067i
\(310\) −658.444 + 448.113i −2.12401 + 1.44553i
\(311\) 33.0155i 0.106159i −0.998590 0.0530796i \(-0.983096\pi\)
0.998590 0.0530796i \(-0.0169037\pi\)
\(312\) 127.385 + 564.638i 0.408286 + 1.80974i
\(313\) −135.658 + 234.967i −0.433412 + 0.750692i −0.997165 0.0752519i \(-0.976024\pi\)
0.563752 + 0.825944i \(0.309357\pi\)
\(314\) 88.9981 + 130.771i 0.283433 + 0.416468i
\(315\) 185.575i 0.589127i
\(316\) −235.087 + 186.833i −0.743946 + 0.591244i
\(317\) −85.3897 + 147.899i −0.269368 + 0.466559i −0.968699 0.248239i \(-0.920148\pi\)
0.699331 + 0.714798i \(0.253482\pi\)
\(318\) −38.7072 522.374i −0.121721 1.64269i
\(319\) −200.064 115.507i −0.627160 0.362091i
\(320\) −393.100 270.910i −1.22844 0.846595i
\(321\) 319.863 + 554.019i 0.996458 + 1.72592i
\(322\) −16.0091 + 33.1722i −0.0497177 + 0.103019i
\(323\) −258.555 + 312.646i −0.800479 + 0.967945i
\(324\) 219.597 + 276.313i 0.677769 + 0.852818i
\(325\) 268.035 + 464.250i 0.824722 + 1.42846i
\(326\) 23.8584 + 321.981i 0.0731852 + 0.987673i
\(327\) 320.217 + 184.877i 0.979256 + 0.565374i
\(328\) −198.332 214.829i −0.604669 0.654967i
\(329\) −0.102366 + 0.177302i −0.000311142 + 0.000538913i
\(330\) 169.360 350.927i 0.513211 1.06342i
\(331\) 536.931i 1.62215i −0.584944 0.811074i \(-0.698883\pi\)
0.584944 0.811074i \(-0.301117\pi\)
\(332\) −31.5896 211.989i −0.0951493 0.638520i
\(333\) −158.921 + 275.259i −0.477240 + 0.826604i
\(334\) 42.9700 + 20.7376i 0.128653 + 0.0620885i
\(335\) 503.471i 1.50290i
\(336\) 148.396 + 138.618i 0.441654 + 0.412553i
\(337\) −14.1730 24.5483i −0.0420563 0.0728436i 0.844231 0.535979i \(-0.180058\pi\)
−0.886287 + 0.463136i \(0.846724\pi\)
\(338\) 154.173 + 226.538i 0.456134 + 0.670230i
\(339\) −335.528 + 193.717i −0.989758 + 0.571437i
\(340\) 233.763 592.700i 0.687537 1.74324i
\(341\) 337.112 0.988599
\(342\) −306.737 28.7389i −0.896892 0.0840319i
\(343\) 271.822i 0.792483i
\(344\) −215.534 + 198.983i −0.626553 + 0.578438i
\(345\) 92.5880 + 160.367i 0.268371 + 0.464832i
\(346\) −147.952 217.396i −0.427606 0.628312i
\(347\) 281.728 162.656i 0.811897 0.468749i −0.0357172 0.999362i \(-0.511372\pi\)
0.847614 + 0.530613i \(0.178038\pi\)
\(348\) −89.2076 598.647i −0.256344 1.72025i
\(349\) 208.896 0.598556 0.299278 0.954166i \(-0.403254\pi\)
0.299278 + 0.954166i \(0.403254\pi\)
\(350\) 169.373 + 81.7404i 0.483923 + 0.233544i
\(351\) 55.9317 + 32.2922i 0.159350 + 0.0920005i
\(352\) 73.0368 + 188.408i 0.207491 + 0.535250i
\(353\) −174.981 −0.495696 −0.247848 0.968799i \(-0.579723\pi\)
−0.247848 + 0.968799i \(0.579723\pi\)
\(354\) 173.732 359.987i 0.490767 1.01691i
\(355\) −224.101 129.385i −0.631271 0.364465i
\(356\) 107.235 271.892i 0.301221 0.763740i
\(357\) −135.503 + 234.698i −0.379560 + 0.657417i
\(358\) −27.5469 371.760i −0.0769466 1.03843i
\(359\) −351.682 + 203.043i −0.979614 + 0.565581i −0.902154 0.431415i \(-0.858015\pi\)
−0.0774606 + 0.996995i \(0.524681\pi\)
\(360\) 471.956 106.476i 1.31099 0.295766i
\(361\) −273.196 + 235.977i −0.756775 + 0.653676i
\(362\) 220.474 456.841i 0.609044 1.26199i
\(363\) 290.588 167.771i 0.800518 0.462179i
\(364\) 199.738 + 78.7774i 0.548732 + 0.216421i
\(365\) −132.583 + 229.640i −0.363240 + 0.629151i
\(366\) 36.5016 + 492.608i 0.0997311 + 1.34592i
\(367\) −61.6040 35.5671i −0.167858 0.0969131i 0.413717 0.910405i \(-0.364230\pi\)
−0.581576 + 0.813492i \(0.697564\pi\)
\(368\) −93.5492 21.6815i −0.254210 0.0589172i
\(369\) 296.306 0.802997
\(370\) −329.074 483.531i −0.889389 1.30684i
\(371\) −168.270 97.1508i −0.453558 0.261862i
\(372\) 549.532 + 691.461i 1.47724 + 1.85877i
\(373\) 388.010 1.04024 0.520121 0.854092i \(-0.325887\pi\)
0.520121 + 0.854092i \(0.325887\pi\)
\(374\) −222.942 + 151.726i −0.596102 + 0.405685i
\(375\) 150.819 87.0755i 0.402185 0.232201i
\(376\) −0.509651 0.158608i −0.00135545 0.000421830i
\(377\) −319.983 554.227i −0.848762 1.47010i
\(378\) 22.5958 1.67431i 0.0597772 0.00442940i
\(379\) 259.526i 0.684764i −0.939561 0.342382i \(-0.888766\pi\)
0.939561 0.342382i \(-0.111234\pi\)
\(380\) 292.960 485.363i 0.770947 1.27727i
\(381\) −654.130 −1.71688
\(382\) −2.55023 34.4166i −0.00667598 0.0900959i
\(383\) 560.066 323.354i 1.46231 0.844267i 0.463195 0.886256i \(-0.346703\pi\)
0.999118 + 0.0419895i \(0.0133696\pi\)
\(384\) −267.391 + 456.935i −0.696330 + 1.18993i
\(385\) −72.2701 125.176i −0.187715 0.325131i
\(386\) 117.778 + 173.059i 0.305124 + 0.448340i
\(387\) 297.279i 0.768162i
\(388\) −297.482 374.314i −0.766706 0.964726i
\(389\) −126.672 + 219.402i −0.325635 + 0.564016i −0.981641 0.190740i \(-0.938911\pi\)
0.656006 + 0.754756i \(0.272245\pi\)
\(390\) 892.390 607.328i 2.28818 1.55725i
\(391\) 128.157i 0.327766i
\(392\) −308.910 + 69.6917i −0.788036 + 0.177785i
\(393\) −23.6189 + 40.9091i −0.0600989 + 0.104094i
\(394\) −2.55729 + 0.189491i −0.00649057 + 0.000480942i
\(395\) 484.974 + 280.000i 1.22778 + 0.708861i
\(396\) −190.500 75.1338i −0.481061 0.189732i
\(397\) 25.8490 + 44.7718i 0.0651109 + 0.112775i 0.896743 0.442551i \(-0.145927\pi\)
−0.831632 + 0.555327i \(0.812593\pi\)
\(398\) −505.985 244.191i −1.27132 0.613546i
\(399\) −153.678 + 185.829i −0.385159 + 0.465737i
\(400\) −110.703 + 477.651i −0.276758 + 1.19413i
\(401\) −68.4096 118.489i −0.170598 0.295484i 0.768031 0.640412i \(-0.221236\pi\)
−0.938629 + 0.344929i \(0.887903\pi\)
\(402\) 556.796 41.2578i 1.38507 0.102631i
\(403\) 808.768 + 466.943i 2.00687 + 1.15867i
\(404\) −38.4438 + 97.4735i −0.0951580 + 0.241271i
\(405\) 329.102 570.022i 0.812598 1.40746i
\(406\) −202.200 97.5828i −0.498029 0.240352i
\(407\) 247.560i 0.608256i
\(408\) −674.632 209.952i −1.65351 0.514588i
\(409\) 85.8621 148.718i 0.209932 0.363613i −0.741761 0.670664i \(-0.766009\pi\)
0.951693 + 0.307052i \(0.0993425\pi\)
\(410\) −236.989 + 491.061i −0.578022 + 1.19771i
\(411\) 24.0026i 0.0584004i
\(412\) −76.8293 515.580i −0.186479 1.25141i
\(413\) −74.1358 128.407i −0.179506 0.310913i
\(414\) 80.4536 54.7538i 0.194332 0.132256i
\(415\) −346.149 + 199.849i −0.834094 + 0.481565i
\(416\) −85.7453 + 553.176i −0.206119 + 1.32975i
\(417\) −298.897 −0.716780
\(418\) −218.095 + 100.070i −0.521758 + 0.239402i
\(419\) 594.571i 1.41902i −0.704693 0.709512i \(-0.748915\pi\)
0.704693 0.709512i \(-0.251085\pi\)
\(420\) 138.943 352.286i 0.330816 0.838776i
\(421\) 47.4370 + 82.1633i 0.112677 + 0.195162i 0.916849 0.399235i \(-0.130724\pi\)
−0.804172 + 0.594397i \(0.797391\pi\)
\(422\) 45.8832 31.2265i 0.108728 0.0739964i
\(423\) 0.468455 0.270462i 0.00110746 0.000639391i
\(424\) 150.528 483.687i 0.355019 1.14077i
\(425\) −654.352 −1.53965
\(426\) −124.724 + 258.440i −0.292780 + 0.606666i
\(427\) 158.682 + 91.6150i 0.371620 + 0.214555i
\(428\) 91.1852 + 611.918i 0.213050 + 1.42972i
\(429\) −456.889 −1.06501
\(430\) 492.673 + 237.767i 1.14575 + 0.552946i
\(431\) 444.572 + 256.674i 1.03149 + 0.595531i 0.917411 0.397940i \(-0.130275\pi\)
0.114079 + 0.993472i \(0.463608\pi\)
\(432\) 17.2227 + 56.5051i 0.0398674 + 0.130799i
\(433\) −342.746 + 593.654i −0.791562 + 1.37103i 0.133438 + 0.991057i \(0.457398\pi\)
−0.925000 + 0.379968i \(0.875935\pi\)
\(434\) 326.733 24.2105i 0.752842 0.0557845i
\(435\) −977.511 + 564.366i −2.24715 + 1.29739i
\(436\) 222.484 + 279.945i 0.510284 + 0.642076i
\(437\) 18.9984 112.441i 0.0434746 0.257301i
\(438\) 264.827 + 127.807i 0.604628 + 0.291797i
\(439\) 450.012 259.814i 1.02508 0.591832i 0.109511 0.993986i \(-0.465071\pi\)
0.915572 + 0.402153i \(0.131738\pi\)
\(440\) 276.882 255.619i 0.629277 0.580952i
\(441\) 160.462 277.929i 0.363860 0.630224i
\(442\) −745.022 + 55.2051i −1.68557 + 0.124898i
\(443\) 12.1016 + 6.98684i 0.0273173 + 0.0157716i 0.513596 0.858032i \(-0.328313\pi\)
−0.486279 + 0.873804i \(0.661646\pi\)
\(444\) −507.778 + 403.552i −1.14364 + 0.908900i
\(445\) −545.057 −1.22485
\(446\) 434.533 295.727i 0.974289 0.663066i
\(447\) 306.252 + 176.815i 0.685127 + 0.395558i
\(448\) 84.3191 + 177.362i 0.188212 + 0.395897i
\(449\) 685.603 1.52695 0.763477 0.645835i \(-0.223490\pi\)
0.763477 + 0.645835i \(0.223490\pi\)
\(450\) −279.566 410.786i −0.621258 0.912858i
\(451\) 199.867 115.393i 0.443164 0.255861i
\(452\) −370.593 + 55.2241i −0.819896 + 0.122177i
\(453\) 399.563 + 692.063i 0.882037 + 1.52773i
\(454\) −16.0753 216.944i −0.0354081 0.477851i
\(455\) 400.413i 0.880028i
\(456\) −560.777 284.215i −1.22977 0.623278i
\(457\) 729.031 1.59525 0.797627 0.603151i \(-0.206089\pi\)
0.797627 + 0.603151i \(0.206089\pi\)
\(458\) 482.815 35.7759i 1.05418 0.0781134i
\(459\) −68.2729 + 39.4174i −0.148743 + 0.0858766i
\(460\) 26.3946 + 177.127i 0.0573795 + 0.385058i
\(461\) 168.346 + 291.583i 0.365175 + 0.632501i 0.988804 0.149219i \(-0.0476759\pi\)
−0.623629 + 0.781720i \(0.714343\pi\)
\(462\) −132.511 + 90.1823i −0.286821 + 0.195200i
\(463\) 430.676i 0.930186i 0.885262 + 0.465093i \(0.153979\pi\)
−0.885262 + 0.465093i \(0.846021\pi\)
\(464\) 132.159 570.226i 0.284825 1.22893i
\(465\) 823.564 1426.45i 1.77111 3.06764i
\(466\) −301.078 442.394i −0.646090 0.949344i
\(467\) 457.514i 0.979687i −0.871810 0.489844i \(-0.837054\pi\)
0.871810 0.489844i \(-0.162946\pi\)
\(468\) −352.961 444.121i −0.754189 0.948976i
\(469\) 103.553 179.359i 0.220795 0.382428i
\(470\) 0.0735560 + 0.992678i 0.000156502 + 0.00211208i
\(471\) −283.303 163.565i −0.601492 0.347272i
\(472\) 284.030 262.218i 0.601757 0.555546i
\(473\) −115.772 200.523i −0.244761 0.423938i
\(474\) 269.914 559.285i 0.569439 1.17993i
\(475\) −574.108 97.0035i −1.20865 0.204218i
\(476\) −205.182 + 163.066i −0.431054 + 0.342576i
\(477\) 256.684 + 444.590i 0.538122 + 0.932055i
\(478\) −8.05250 108.673i −0.0168462 0.227349i
\(479\) −781.003 450.912i −1.63049 0.941361i −0.983943 0.178484i \(-0.942881\pi\)
−0.646543 0.762877i \(-0.723786\pi\)
\(480\) 975.657 + 151.232i 2.03262 + 0.315067i
\(481\) −342.902 + 593.923i −0.712893 + 1.23477i
\(482\) −190.448 + 394.625i −0.395121 + 0.818724i
\(483\) 76.1731i 0.157708i
\(484\) 320.956 47.8274i 0.663133 0.0988170i
\(485\) −445.826 + 772.193i −0.919228 + 1.59215i
\(486\) −597.514 288.364i −1.22945 0.593341i
\(487\) 114.636i 0.235393i 0.993050 + 0.117697i \(0.0375510\pi\)
−0.993050 + 0.117697i \(0.962449\pi\)
\(488\) −141.951 + 456.126i −0.290883 + 0.934685i
\(489\) −333.850 578.245i −0.682720 1.18251i
\(490\) 332.265 + 488.221i 0.678093 + 0.996369i
\(491\) 720.122 415.763i 1.46664 0.846768i 0.467341 0.884077i \(-0.345212\pi\)
0.999304 + 0.0373098i \(0.0118788\pi\)
\(492\) 562.492 + 221.849i 1.14328 + 0.450912i
\(493\) 781.173 1.58453
\(494\) −661.843 62.0096i −1.33976 0.125525i
\(495\) 381.893i 0.771501i
\(496\) 249.039 + 817.060i 0.502095 + 1.64730i
\(497\) 53.2231 + 92.1852i 0.107089 + 0.185483i
\(498\) 249.382 + 366.434i 0.500767 + 0.735812i
\(499\) −231.504 + 133.659i −0.463935 + 0.267853i −0.713698 0.700454i \(-0.752981\pi\)
0.249762 + 0.968307i \(0.419648\pi\)
\(500\) 166.581 24.8231i 0.333162 0.0496462i
\(501\) −98.6718 −0.196950
\(502\) 567.701 + 273.975i 1.13088 + 0.545768i
\(503\) −638.949 368.897i −1.27028 0.733394i −0.295236 0.955424i \(-0.595398\pi\)
−0.975040 + 0.222030i \(0.928732\pi\)
\(504\) −190.031 59.1394i −0.377046 0.117340i
\(505\) 195.404 0.386938
\(506\) 32.9449 68.2648i 0.0651086 0.134911i
\(507\) −490.772 283.347i −0.967992 0.558870i
\(508\) −588.488 232.101i −1.15844 0.456892i
\(509\) 364.128 630.688i 0.715379 1.23907i −0.247434 0.968905i \(-0.579587\pi\)
0.962813 0.270169i \(-0.0870794\pi\)
\(510\) 97.3672 + 1314.02i 0.190916 + 2.57651i
\(511\) 94.4636 54.5386i 0.184860 0.106729i
\(512\) −402.689 + 316.204i −0.786503 + 0.617587i
\(513\) −65.7438 + 24.4625i −0.128156 + 0.0476852i
\(514\) −106.748 + 221.191i −0.207681 + 0.430332i
\(515\) −841.873 + 486.056i −1.63470 + 0.943797i
\(516\) 222.577 564.339i 0.431350 1.09368i
\(517\) 0.210657 0.364869i 0.000407461 0.000705743i
\(518\) 17.7791 + 239.938i 0.0343226 + 0.463201i
\(519\) 470.967 + 271.913i 0.907452 + 0.523917i
\(520\) 1018.33 229.741i 1.95833 0.441810i
\(521\) −527.221 −1.01194 −0.505970 0.862551i \(-0.668865\pi\)
−0.505970 + 0.862551i \(0.668865\pi\)
\(522\) 333.750 + 490.402i 0.639367 + 0.939467i
\(523\) −412.028 237.885i −0.787817 0.454846i 0.0513764 0.998679i \(-0.483639\pi\)
−0.839194 + 0.543833i \(0.816973\pi\)
\(524\) −35.7642 + 28.4233i −0.0682524 + 0.0542429i
\(525\) −388.930 −0.740819
\(526\) 45.3328 30.8519i 0.0861841 0.0586538i
\(527\) −987.221 + 569.972i −1.87328 + 1.08154i
\(528\) −305.382 285.260i −0.578375 0.540266i
\(529\) −246.489 426.932i −0.465953 0.807054i
\(530\) −942.108 + 69.8089i −1.77756 + 0.131715i
\(531\) 391.752i 0.737762i
\(532\) −204.193 + 112.652i −0.383822 + 0.211752i
\(533\) 639.336 1.19950
\(534\) 44.6656 + 602.787i 0.0836435 + 1.12881i
\(535\) 999.181 576.877i 1.86763 1.07828i
\(536\) 515.561 + 160.447i 0.961867 + 0.299342i
\(537\) 385.463 + 667.642i 0.717809 + 1.24328i
\(538\) 426.493 + 626.675i 0.792737 + 1.16482i
\(539\) 249.961i 0.463749i
\(540\) 86.2424 68.5403i 0.159708 0.126927i
\(541\) 26.5528 45.9909i 0.0490810 0.0850109i −0.840441 0.541903i \(-0.817704\pi\)
0.889522 + 0.456892i \(0.151037\pi\)
\(542\) −436.282 + 296.918i −0.804948 + 0.547819i
\(543\) 1049.04i 1.93193i
\(544\) −532.436 428.259i −0.978743 0.787240i
\(545\) 333.428 577.515i 0.611795 1.05966i
\(546\) −442.822 + 32.8125i −0.811030 + 0.0600962i
\(547\) −34.0324 19.6486i −0.0622165 0.0359207i 0.468569 0.883427i \(-0.344770\pi\)
−0.530786 + 0.847506i \(0.678103\pi\)
\(548\) −8.51669 + 21.5939i −0.0155414 + 0.0394049i
\(549\) −242.058 419.257i −0.440907 0.763674i
\(550\) −348.551 168.213i −0.633730 0.305841i
\(551\) 685.377 + 115.804i 1.24388 + 0.210171i
\(552\) 193.724 43.7051i 0.350949 0.0791759i
\(553\) −115.179 199.497i −0.208281 0.360753i
\(554\) −367.843 + 27.2566i −0.663976 + 0.0491997i
\(555\) 1047.52 + 604.788i 1.88743 + 1.08971i
\(556\) −268.903 106.056i −0.483638 0.190748i
\(557\) 288.247 499.259i 0.517500 0.896336i −0.482294 0.876010i \(-0.660196\pi\)
0.999793 0.0203261i \(-0.00647046\pi\)
\(558\) −779.596 376.237i −1.39713 0.674261i
\(559\) 641.434i 1.14747i
\(560\) 249.999 267.634i 0.446427 0.477917i
\(561\) 278.850 482.983i 0.497059 0.860931i
\(562\) −116.720 + 241.855i −0.207688 + 0.430346i
\(563\) 971.322i 1.72526i −0.505834 0.862631i \(-0.668815\pi\)
0.505834 0.862631i \(-0.331185\pi\)
\(564\) 1.09179 0.162693i 0.00193580 0.000288464i
\(565\) 349.371 + 605.129i 0.618356 + 1.07102i
\(566\) 386.750 263.208i 0.683304 0.465032i
\(567\) −234.481 + 135.378i −0.413547 + 0.238762i
\(568\) −203.909 + 188.250i −0.358994 + 0.331426i
\(569\) −904.483 −1.58960 −0.794800 0.606871i \(-0.792424\pi\)
−0.794800 + 0.606871i \(0.792424\pi\)
\(570\) −109.369 + 1167.32i −0.191875 + 2.04792i
\(571\) 143.659i 0.251591i −0.992056 0.125796i \(-0.959852\pi\)
0.992056 0.125796i \(-0.0401483\pi\)
\(572\) −411.040 162.115i −0.718601 0.283418i
\(573\) 35.6853 + 61.8088i 0.0622780 + 0.107869i
\(574\) 185.426 126.194i 0.323042 0.219851i
\(575\) 159.281 91.9611i 0.277011 0.159932i
\(576\) 41.3715 517.220i 0.0718256 0.897952i
\(577\) 403.285 0.698934 0.349467 0.936949i \(-0.386363\pi\)
0.349467 + 0.936949i \(0.386363\pi\)
\(578\) 145.126 300.714i 0.251083 0.520267i
\(579\) −374.916 216.458i −0.647524 0.373848i
\(580\) −1079.67 + 160.887i −1.86150 + 0.277392i
\(581\) 164.418 0.282991
\(582\) 890.513 + 429.767i 1.53009 + 0.738431i
\(583\) 346.282 + 199.926i 0.593965 + 0.342926i
\(584\) 192.902 + 208.948i 0.330312 + 0.357788i
\(585\) −528.969 + 916.202i −0.904221 + 1.56616i
\(586\) −213.424 + 15.8144i −0.364204 + 0.0269870i
\(587\) 782.409 451.724i 1.33289 0.769547i 0.347152 0.937809i \(-0.387149\pi\)
0.985742 + 0.168262i \(0.0538154\pi\)
\(588\) 512.703 407.465i 0.871943 0.692968i
\(589\) −950.651 + 353.726i −1.61401 + 0.600554i
\(590\) −649.241 313.327i −1.10041 0.531063i
\(591\) 4.59262 2.65155i 0.00777093 0.00448655i
\(592\) −600.012 + 182.883i −1.01353 + 0.308924i
\(593\) −181.794 + 314.876i −0.306567 + 0.530989i −0.977609 0.210430i \(-0.932514\pi\)
0.671042 + 0.741419i \(0.265847\pi\)
\(594\) −46.4996 + 3.44556i −0.0782822 + 0.00580060i
\(595\) 423.281 + 244.381i 0.711396 + 0.410725i
\(596\) 212.781 + 267.737i 0.357015 + 0.449223i
\(597\) 1161.89 1.94621
\(598\) 173.594 118.142i 0.290290 0.197561i
\(599\) 67.8348 + 39.1645i 0.113247 + 0.0653831i 0.555554 0.831481i \(-0.312506\pi\)
−0.442307 + 0.896864i \(0.645840\pi\)
\(600\) −223.153 989.131i −0.371921 1.64855i
\(601\) −663.826 −1.10454 −0.552268 0.833666i \(-0.686238\pi\)
−0.552268 + 0.833666i \(0.686238\pi\)
\(602\) −126.609 186.035i −0.210313 0.309028i
\(603\) −473.887 + 273.599i −0.785882 + 0.453729i
\(604\) 113.906 + 764.389i 0.188586 + 1.26554i
\(605\) −302.577 524.079i −0.500128 0.866246i
\(606\) −16.0127 216.100i −0.0264236 0.356600i
\(607\) 336.087i 0.553686i −0.960915 0.276843i \(-0.910712\pi\)
0.960915 0.276843i \(-0.0892882\pi\)
\(608\) −403.656 454.671i −0.663908 0.747814i
\(609\) 464.310 0.762414
\(610\) 888.425 65.8311i 1.45643 0.107920i
\(611\) 1.01078 0.583573i 0.00165430 0.000955112i
\(612\) 684.905 102.061i 1.11913 0.166767i
\(613\) −20.7526 35.9445i −0.0338541 0.0586371i 0.848602 0.529032i \(-0.177445\pi\)
−0.882456 + 0.470395i \(0.844111\pi\)
\(614\) 706.374 480.733i 1.15045 0.782953i
\(615\) 1127.62i 1.83353i
\(616\) −151.212 + 34.1143i −0.245475 + 0.0553803i
\(617\) 93.9887 162.793i 0.152332 0.263846i −0.779753 0.626088i \(-0.784655\pi\)
0.932084 + 0.362242i \(0.117988\pi\)
\(618\) 606.525 + 891.209i 0.981432 + 1.44209i
\(619\) 727.258i 1.17489i 0.809263 + 0.587446i \(0.199867\pi\)
−0.809263 + 0.587446i \(0.800133\pi\)
\(620\) 1247.06 991.088i 2.01139 1.59853i
\(621\) 11.0793 19.1898i 0.0178410 0.0309015i
\(622\) 4.87942 + 65.8504i 0.00784473 + 0.105869i
\(623\) 194.173 + 112.106i 0.311674 + 0.179945i
\(624\) −337.523 1107.36i −0.540902 1.77462i
\(625\) 226.014 + 391.468i 0.361622 + 0.626348i
\(626\) 235.848 488.698i 0.376754 0.780667i
\(627\) 316.253 382.416i 0.504391 0.609914i
\(628\) −196.836 247.674i −0.313434 0.394385i
\(629\) −418.562 724.971i −0.665440 1.15258i
\(630\) 27.4265 + 370.135i 0.0435341 + 0.587516i
\(631\) −482.381 278.503i −0.764471 0.441368i 0.0664276 0.997791i \(-0.478840\pi\)
−0.830899 + 0.556424i \(0.812173\pi\)
\(632\) 441.276 407.389i 0.698221 0.644602i
\(633\) −57.3895 + 99.4016i −0.0906628 + 0.157033i
\(634\) 148.454 307.610i 0.234155 0.485189i
\(635\) 1179.73i 1.85785i
\(636\) 154.405 + 1036.17i 0.242776 + 1.62920i
\(637\) 346.227 599.683i 0.543528 0.941418i
\(638\) 416.105 + 200.815i 0.652202 + 0.314756i
\(639\) 281.244i 0.440131i
\(640\) 824.088 + 482.243i 1.28764 + 0.753504i
\(641\) 18.5837 + 32.1880i 0.0289918 + 0.0502153i 0.880157 0.474682i \(-0.157437\pi\)
−0.851165 + 0.524897i \(0.824104\pi\)
\(642\) −719.857 1057.74i −1.12127 1.64756i
\(643\) −500.281 + 288.837i −0.778042 + 0.449203i −0.835736 0.549131i \(-0.814959\pi\)
0.0576938 + 0.998334i \(0.481625\pi\)
\(644\) 27.0281 68.5291i 0.0419690 0.106412i
\(645\) −1131.32 −1.75399
\(646\) 469.489 661.795i 0.726763 1.02445i
\(647\) 870.052i 1.34475i 0.740212 + 0.672374i \(0.234725\pi\)
−0.740212 + 0.672374i \(0.765275\pi\)
\(648\) −478.830 518.660i −0.738936 0.800402i
\(649\) 152.563 + 264.247i 0.235074 + 0.407161i
\(650\) −603.216 886.348i −0.928025 1.36361i
\(651\) −586.779 + 338.777i −0.901351 + 0.520395i
\(652\) −95.1725 638.676i −0.145970 0.979564i
\(653\) −519.791 −0.796004 −0.398002 0.917384i \(-0.630296\pi\)
−0.398002 + 0.917384i \(0.630296\pi\)
\(654\) −666.006 321.418i −1.01836 0.491465i
\(655\) 73.7801 + 42.5969i 0.112641 + 0.0650335i
\(656\) 427.329 + 399.172i 0.651416 + 0.608494i
\(657\) −288.195 −0.438653
\(658\) 0.177968 0.368764i 0.000270468 0.000560432i
\(659\) −481.474 277.979i −0.730613 0.421820i 0.0880331 0.996118i \(-0.471942\pi\)
−0.818647 + 0.574298i \(0.805275\pi\)
\(660\) −285.929 + 724.966i −0.433225 + 1.09843i
\(661\) 145.588 252.166i 0.220254 0.381492i −0.734631 0.678467i \(-0.762645\pi\)
0.954885 + 0.296975i \(0.0959779\pi\)
\(662\) 79.3541 + 1070.93i 0.119870 + 1.61771i
\(663\) 1337.98 772.484i 2.01807 1.16513i
\(664\) 94.3366 + 418.149i 0.142073 + 0.629743i
\(665\) 335.145 + 277.161i 0.503978 + 0.416784i
\(666\) 276.292 572.500i 0.414853 0.859610i
\(667\) −190.152 + 109.784i −0.285086 + 0.164594i
\(668\) −88.7700 35.0111i −0.132889 0.0524119i
\(669\) −543.502 + 941.373i −0.812410 + 1.40714i
\(670\) −74.4090 1004.19i −0.111058 1.49879i
\(671\) −326.550 188.534i −0.486661 0.280974i
\(672\) −316.467 254.546i −0.470933 0.378789i
\(673\) 130.170 0.193418 0.0967089 0.995313i \(-0.469168\pi\)
0.0967089 + 0.995313i \(0.469168\pi\)
\(674\) 31.8965 + 46.8677i 0.0473241 + 0.0695366i
\(675\) −97.9809 56.5693i −0.145157 0.0838063i
\(676\) −340.984 429.051i −0.504414 0.634691i
\(677\) −910.964 −1.34559 −0.672795 0.739829i \(-0.734906\pi\)
−0.672795 + 0.739829i \(0.734906\pi\)
\(678\) 640.591 435.963i 0.944825 0.643014i
\(679\) 317.645 183.393i 0.467813 0.270092i
\(680\) −378.651 + 1216.71i −0.556839 + 1.78928i
\(681\) 224.941 + 389.610i 0.330310 + 0.572114i
\(682\) −672.381 + 49.8225i −0.985896 + 0.0730535i
\(683\) 764.129i 1.11878i −0.828904 0.559391i \(-0.811035\pi\)
0.828904 0.559391i \(-0.188965\pi\)
\(684\) 616.044 + 11.9874i 0.900649 + 0.0175254i
\(685\) 43.2889 0.0631955
\(686\) −40.1731 542.157i −0.0585613 0.790317i
\(687\) −867.087 + 500.613i −1.26213 + 0.728694i
\(688\) 400.482 428.731i 0.582096 0.623156i
\(689\) 553.844 + 959.286i 0.803838 + 1.39229i
\(690\) −208.371 306.174i −0.301987 0.443730i
\(691\) 1342.83i 1.94331i 0.236405 + 0.971655i \(0.424031\pi\)
−0.236405 + 0.971655i \(0.575969\pi\)
\(692\) 327.224 + 411.737i 0.472867 + 0.594996i
\(693\) 78.5468 136.047i 0.113343 0.196316i
\(694\) −537.877 + 366.060i −0.775039 + 0.527463i
\(695\) 539.065i 0.775633i
\(696\) 266.403 + 1180.84i 0.382763 + 1.69660i
\(697\) −390.202 + 675.849i −0.559830 + 0.969654i
\(698\) −416.650 + 30.8732i −0.596919 + 0.0442309i
\(699\) 958.405 + 553.335i 1.37111 + 0.791610i
\(700\) −349.901 138.002i −0.499858 0.197146i
\(701\) 229.346 + 397.239i 0.327170 + 0.566675i 0.981949 0.189145i \(-0.0605717\pi\)
−0.654779 + 0.755820i \(0.727238\pi\)
\(702\) −116.330 56.1415i −0.165712 0.0799737i
\(703\) −259.761 698.116i −0.369503 0.993052i
\(704\) −173.520 364.991i −0.246477 0.518454i
\(705\) −1.02927 1.78275i −0.00145996 0.00252872i
\(706\) 349.005 25.8607i 0.494341 0.0366300i
\(707\) −69.6113 40.1901i −0.0984602 0.0568460i
\(708\) −293.310 + 743.681i −0.414280 + 1.05040i
\(709\) −162.265 + 281.052i −0.228865 + 0.396406i −0.957472 0.288526i \(-0.906835\pi\)
0.728607 + 0.684932i \(0.240168\pi\)
\(710\) 466.099 + 224.942i 0.656478 + 0.316820i
\(711\) 608.636i 0.856028i
\(712\) −173.700 + 558.145i −0.243960 + 0.783911i
\(713\) 160.205 277.484i 0.224692 0.389177i
\(714\) 235.578 488.139i 0.329942 0.683668i
\(715\) 824.005i 1.15245i
\(716\) 109.886 + 737.415i 0.153472 + 1.02991i
\(717\) 112.679 + 195.165i 0.157153 + 0.272197i
\(718\) 671.432 456.952i 0.935142 0.636424i
\(719\) −227.681 + 131.451i −0.316663 + 0.182825i −0.649904 0.760016i \(-0.725191\pi\)
0.333241 + 0.942842i \(0.391858\pi\)
\(720\) −925.595 + 282.120i −1.28555 + 0.391834i
\(721\) 399.883 0.554622
\(722\) 510.022 511.040i 0.706402 0.707811i
\(723\) 906.174i 1.25335i
\(724\) −372.225 + 943.768i −0.514123 + 1.30355i
\(725\) 560.545 + 970.893i 0.773166 + 1.33916i
\(726\) −554.792 + 377.571i −0.764176 + 0.520070i
\(727\) 1005.65 580.614i 1.38329 0.798643i 0.390743 0.920500i \(-0.372218\pi\)
0.992548 + 0.121856i \(0.0388847\pi\)
\(728\) −410.027 127.604i −0.563224 0.175281i
\(729\) 577.936 0.792779
\(730\) 230.502 477.619i 0.315756 0.654273i
\(731\) 678.068 + 391.482i 0.927589 + 0.535544i
\(732\) −145.607 977.128i −0.198917 1.33487i
\(733\) −180.481 −0.246223 −0.123111 0.992393i \(-0.539287\pi\)
−0.123111 + 0.992393i \(0.539287\pi\)
\(734\) 128.128 + 61.8351i 0.174561 + 0.0842441i
\(735\) −1057.68 610.654i −1.43902 0.830821i
\(736\) 189.791 + 29.4187i 0.257869 + 0.0399711i
\(737\) −213.100 + 369.100i −0.289145 + 0.500814i
\(738\) −590.992 + 43.7917i −0.800802 + 0.0593383i
\(739\) 983.067 567.574i 1.33027 0.768030i 0.344926 0.938630i \(-0.387904\pi\)
0.985340 + 0.170600i \(0.0545706\pi\)
\(740\) 727.811 + 915.784i 0.983528 + 1.23755i
\(741\) 1288.42 479.406i 1.73876 0.646972i
\(742\) 349.978 + 168.901i 0.471669 + 0.227630i
\(743\) −562.354 + 324.675i −0.756869 + 0.436979i −0.828171 0.560476i \(-0.810618\pi\)
0.0713013 + 0.997455i \(0.477285\pi\)
\(744\) −1198.25 1297.92i −1.61055 1.74452i
\(745\) 318.887 552.329i 0.428037 0.741382i
\(746\) −773.899 + 57.3448i −1.03740 + 0.0768698i
\(747\) −376.212 217.206i −0.503631 0.290771i
\(748\) 422.241 335.572i 0.564494 0.448626i
\(749\) −474.603 −0.633648
\(750\) −287.945 + 195.965i −0.383926 + 0.261286i
\(751\) −183.343 105.853i −0.244131 0.140949i 0.372943 0.927854i \(-0.378349\pi\)
−0.617074 + 0.786905i \(0.711682\pi\)
\(752\) 1.03996 + 0.241026i 0.00138292 + 0.000320514i
\(753\) −1303.61 −1.73122
\(754\) 720.127 + 1058.13i 0.955076 + 1.40336i
\(755\) 1248.14 720.617i 1.65317 0.954459i
\(756\) −44.8205 + 6.67895i −0.0592864 + 0.00883459i
\(757\) −490.214 849.076i −0.647575 1.12163i −0.983700 0.179815i \(-0.942450\pi\)
0.336126 0.941817i \(-0.390883\pi\)
\(758\) 38.3558 + 517.632i 0.0506013 + 0.682892i
\(759\) 156.756i 0.206529i
\(760\) −512.585 + 1011.37i −0.674454 + 1.33075i
\(761\) 350.204 0.460189 0.230094 0.973168i \(-0.426096\pi\)
0.230094 + 0.973168i \(0.426096\pi\)
\(762\) 1304.68 96.6752i 1.71218 0.126870i
\(763\) −237.564 + 137.157i −0.311355 + 0.179761i
\(764\) 10.1730 + 68.2682i 0.0133155 + 0.0893563i
\(765\) −645.685 1118.36i −0.844033 1.46191i
\(766\) −1069.28 + 727.714i −1.39593 + 0.950018i
\(767\) 845.277i 1.10206i
\(768\) 465.788 950.890i 0.606495 1.23814i
\(769\) 4.11629 7.12963i 0.00535279 0.00927130i −0.863337 0.504628i \(-0.831629\pi\)
0.868689 + 0.495357i \(0.164963\pi\)
\(770\) 162.645 + 238.986i 0.211227 + 0.310371i
\(771\) 507.919i 0.658779i
\(772\) −260.489 327.766i −0.337420 0.424567i
\(773\) −55.0972 + 95.4312i −0.0712772 + 0.123456i −0.899461 0.437000i \(-0.856041\pi\)