Properties

Label 76.3.g.c.11.6
Level $76$
Weight $3$
Character 76.11
Analytic conductor $2.071$
Analytic rank $0$
Dimension $28$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 76 = 2^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 76.g (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.07085000914\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 11.6
Character \(\chi\) \(=\) 76.11
Dual form 76.3.g.c.7.6

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.784875 + 1.83956i) q^{2} +(1.67542 + 0.967303i) q^{3} +(-2.76794 - 2.88764i) q^{4} +(-1.80536 + 3.12697i) q^{5} +(-3.09440 + 2.32282i) q^{6} +13.2414i q^{7} +(7.48448 - 2.82535i) q^{8} +(-2.62865 - 4.55296i) q^{9} +O(q^{10})\) \(q+(-0.784875 + 1.83956i) q^{2} +(1.67542 + 0.967303i) q^{3} +(-2.76794 - 2.88764i) q^{4} +(-1.80536 + 3.12697i) q^{5} +(-3.09440 + 2.32282i) q^{6} +13.2414i q^{7} +(7.48448 - 2.82535i) q^{8} +(-2.62865 - 4.55296i) q^{9} +(-4.33527 - 5.77535i) q^{10} +2.62998i q^{11} +(-1.84423 - 7.51545i) q^{12} +(-0.424512 - 0.735277i) q^{13} +(-24.3583 - 10.3928i) q^{14} +(-6.04946 + 3.49266i) q^{15} +(-0.676982 + 15.9857i) q^{16} +(6.24458 - 10.8159i) q^{17} +(10.4386 - 1.26205i) q^{18} +(18.2707 + 5.21350i) q^{19} +(14.0267 - 3.44205i) q^{20} +(-12.8084 + 22.1849i) q^{21} +(-4.83799 - 2.06420i) q^{22} +(26.9066 - 15.5345i) q^{23} +(15.2726 + 2.50611i) q^{24} +(5.98135 + 10.3600i) q^{25} +(1.68577 - 0.203814i) q^{26} -27.5823i q^{27} +(38.2365 - 36.6514i) q^{28} +(-9.98430 - 17.2933i) q^{29} +(-1.67688 - 13.8696i) q^{30} +28.0966i q^{31} +(-28.8752 - 13.7921i) q^{32} +(-2.54398 + 4.40631i) q^{33} +(14.9953 + 19.9764i) q^{34} +(-41.4055 - 23.9055i) q^{35} +(-5.87136 + 20.1929i) q^{36} +61.9366 q^{37} +(-23.9308 + 29.5181i) q^{38} -1.64253i q^{39} +(-4.67737 + 28.5045i) q^{40} +(10.4785 - 18.1493i) q^{41} +(-30.7573 - 40.9742i) q^{42} +(-23.9849 - 13.8477i) q^{43} +(7.59444 - 7.27963i) q^{44} +18.9826 q^{45} +(7.45836 + 61.6890i) q^{46} +(-44.2902 + 25.5710i) q^{47} +(-16.5972 + 26.1278i) q^{48} -126.335 q^{49} +(-23.7524 + 2.87173i) q^{50} +(20.9246 - 12.0808i) q^{51} +(-0.948192 + 3.26105i) q^{52} +(9.57631 + 16.5867i) q^{53} +(50.7391 + 21.6486i) q^{54} +(-8.22387 - 4.74805i) q^{55} +(37.4116 + 99.1049i) q^{56} +(25.5681 + 26.4081i) q^{57} +(39.6485 - 4.79360i) q^{58} +(-63.8560 - 36.8673i) q^{59} +(26.8301 + 7.80122i) q^{60} +(-32.5850 - 56.4388i) q^{61} +(-51.6852 - 22.0523i) q^{62} +(60.2875 - 34.8070i) q^{63} +(48.0348 - 42.2925i) q^{64} +3.06559 q^{65} +(-6.10895 - 8.13821i) q^{66} +(-21.6309 + 12.4886i) q^{67} +(-48.5172 + 11.9058i) q^{68} +60.1065 q^{69} +(76.4737 - 57.4050i) q^{70} +(32.3846 + 18.6972i) q^{71} +(-32.5378 - 26.6496i) q^{72} +(15.9102 - 27.5573i) q^{73} +(-48.6125 + 113.936i) q^{74} +23.1431i q^{75} +(-35.5176 - 67.1900i) q^{76} -34.8246 q^{77} +(3.02152 + 1.28918i) q^{78} +(82.1900 + 47.4524i) q^{79} +(-48.7646 - 30.9768i) q^{80} +(3.02255 - 5.23521i) q^{81} +(25.1624 + 33.5208i) q^{82} -22.6827i q^{83} +(99.5151 - 24.4202i) q^{84} +(22.5474 + 39.0533i) q^{85} +(44.2987 - 33.2529i) q^{86} -38.6314i q^{87} +(7.43061 + 19.6840i) q^{88} +(60.9279 + 105.530i) q^{89} +(-14.8990 + 34.9196i) q^{90} +(9.73609 - 5.62114i) q^{91} +(-119.334 - 34.6980i) q^{92} +(-27.1779 + 47.0735i) q^{93} +(-12.2770 - 101.544i) q^{94} +(-49.2877 + 47.7198i) q^{95} +(-35.0369 - 51.0386i) q^{96} +(-10.1782 + 17.6292i) q^{97} +(99.1569 - 232.400i) q^{98} +(11.9742 - 6.91329i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28q - 5q^{2} - 11q^{4} + 6q^{5} - 3q^{6} - 62q^{8} + 20q^{9} + O(q^{10}) \) \( 28q - 5q^{2} - 11q^{4} + 6q^{5} - 3q^{6} - 62q^{8} + 20q^{9} + 26q^{12} + 30q^{13} - 30q^{14} - 19q^{16} + 38q^{17} - 60q^{18} - 44q^{20} + 80q^{21} + 45q^{22} + 17q^{24} - 16q^{25} - 56q^{26} + 54q^{28} + 6q^{29} + 96q^{30} - 45q^{32} - 176q^{33} - 20q^{34} + 30q^{36} + 104q^{37} - 258q^{38} + 94q^{40} - 2q^{41} - 2q^{42} + 201q^{44} - 360q^{45} + 164q^{46} - 17q^{48} - 20q^{49} + 490q^{50} - 102q^{52} - 242q^{53} - 13q^{54} + 276q^{56} - 254q^{57} + 96q^{58} + 10q^{60} - 58q^{61} - 36q^{62} - 74q^{64} - 260q^{65} + 167q^{66} + 396q^{68} + 340q^{69} + 60q^{70} - 422q^{72} - 82q^{73} - 136q^{74} + 123q^{76} - 144q^{77} + 224q^{78} - 174q^{80} + 410q^{81} - 305q^{82} + 252q^{84} + 714q^{85} + 166q^{86} - 718q^{88} + 150q^{89} - 272q^{90} - 588q^{92} + 344q^{93} - 488q^{94} - 122q^{96} + 94q^{97} + 307q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/76\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(39\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.784875 + 1.83956i −0.392437 + 0.919779i
\(3\) 1.67542 + 0.967303i 0.558473 + 0.322434i 0.752532 0.658555i \(-0.228832\pi\)
−0.194060 + 0.980990i \(0.562166\pi\)
\(4\) −2.76794 2.88764i −0.691986 0.721911i
\(5\) −1.80536 + 3.12697i −0.361072 + 0.625395i −0.988138 0.153572i \(-0.950922\pi\)
0.627066 + 0.778966i \(0.284256\pi\)
\(6\) −3.09440 + 2.32282i −0.515734 + 0.387136i
\(7\) 13.2414i 1.89163i 0.324708 + 0.945814i \(0.394734\pi\)
−0.324708 + 0.945814i \(0.605266\pi\)
\(8\) 7.48448 2.82535i 0.935560 0.353169i
\(9\) −2.62865 4.55296i −0.292072 0.505884i
\(10\) −4.33527 5.77535i −0.433527 0.577535i
\(11\) 2.62998i 0.239089i 0.992829 + 0.119544i \(0.0381434\pi\)
−0.992829 + 0.119544i \(0.961857\pi\)
\(12\) −1.84423 7.51545i −0.153686 0.626288i
\(13\) −0.424512 0.735277i −0.0326548 0.0565598i 0.849236 0.528013i \(-0.177063\pi\)
−0.881891 + 0.471453i \(0.843730\pi\)
\(14\) −24.3583 10.3928i −1.73988 0.742346i
\(15\) −6.04946 + 3.49266i −0.403298 + 0.232844i
\(16\) −0.676982 + 15.9857i −0.0423114 + 0.999104i
\(17\) 6.24458 10.8159i 0.367328 0.636231i −0.621819 0.783161i \(-0.713606\pi\)
0.989147 + 0.146930i \(0.0469392\pi\)
\(18\) 10.4386 1.26205i 0.579921 0.0701140i
\(19\) 18.2707 + 5.21350i 0.961617 + 0.274395i
\(20\) 14.0267 3.44205i 0.701336 0.172103i
\(21\) −12.8084 + 22.1849i −0.609926 + 1.05642i
\(22\) −4.83799 2.06420i −0.219909 0.0938274i
\(23\) 26.9066 15.5345i 1.16985 0.675415i 0.216208 0.976347i \(-0.430631\pi\)
0.953645 + 0.300932i \(0.0972978\pi\)
\(24\) 15.2726 + 2.50611i 0.636358 + 0.104421i
\(25\) 5.98135 + 10.3600i 0.239254 + 0.414400i
\(26\) 1.68577 0.203814i 0.0648374 0.00783902i
\(27\) 27.5823i 1.02157i
\(28\) 38.2365 36.6514i 1.36559 1.30898i
\(29\) −9.98430 17.2933i −0.344286 0.596321i 0.640938 0.767593i \(-0.278546\pi\)
−0.985224 + 0.171272i \(0.945212\pi\)
\(30\) −1.67688 13.8696i −0.0558959 0.462321i
\(31\) 28.0966i 0.906341i 0.891424 + 0.453170i \(0.149707\pi\)
−0.891424 + 0.453170i \(0.850293\pi\)
\(32\) −28.8752 13.7921i −0.902350 0.431003i
\(33\) −2.54398 + 4.40631i −0.0770904 + 0.133525i
\(34\) 14.9953 + 19.9764i 0.441039 + 0.587542i
\(35\) −41.4055 23.9055i −1.18301 0.683014i
\(36\) −5.87136 + 20.1929i −0.163093 + 0.560915i
\(37\) 61.9366 1.67396 0.836982 0.547231i \(-0.184318\pi\)
0.836982 + 0.547231i \(0.184318\pi\)
\(38\) −23.9308 + 29.5181i −0.629757 + 0.776792i
\(39\) 1.64253i 0.0421161i
\(40\) −4.67737 + 28.5045i −0.116934 + 0.712614i
\(41\) 10.4785 18.1493i 0.255574 0.442667i −0.709477 0.704728i \(-0.751069\pi\)
0.965051 + 0.262061i \(0.0844023\pi\)
\(42\) −30.7573 40.9742i −0.732317 0.975577i
\(43\) −23.9849 13.8477i −0.557788 0.322039i 0.194469 0.980909i \(-0.437701\pi\)
−0.752257 + 0.658870i \(0.771035\pi\)
\(44\) 7.59444 7.27963i 0.172601 0.165446i
\(45\) 18.9826 0.421836
\(46\) 7.45836 + 61.6890i 0.162138 + 1.34106i
\(47\) −44.2902 + 25.5710i −0.942346 + 0.544064i −0.890695 0.454602i \(-0.849782\pi\)
−0.0516508 + 0.998665i \(0.516448\pi\)
\(48\) −16.5972 + 26.1278i −0.345775 + 0.544330i
\(49\) −126.335 −2.57826
\(50\) −23.7524 + 2.87173i −0.475049 + 0.0574347i
\(51\) 20.9246 12.0808i 0.410286 0.236879i
\(52\) −0.948192 + 3.26105i −0.0182345 + 0.0627124i
\(53\) 9.57631 + 16.5867i 0.180685 + 0.312956i 0.942114 0.335293i \(-0.108835\pi\)
−0.761429 + 0.648248i \(0.775502\pi\)
\(54\) 50.7391 + 21.6486i 0.939614 + 0.400900i
\(55\) −8.22387 4.74805i −0.149525 0.0863283i
\(56\) 37.4116 + 99.1049i 0.668064 + 1.76973i
\(57\) 25.5681 + 26.4081i 0.448563 + 0.463300i
\(58\) 39.6485 4.79360i 0.683594 0.0826483i
\(59\) −63.8560 36.8673i −1.08231 0.624869i −0.150788 0.988566i \(-0.548181\pi\)
−0.931517 + 0.363697i \(0.881514\pi\)
\(60\) 26.8301 + 7.80122i 0.447169 + 0.130020i
\(61\) −32.5850 56.4388i −0.534180 0.925227i −0.999203 0.0399281i \(-0.987287\pi\)
0.465023 0.885299i \(-0.346046\pi\)
\(62\) −51.6852 22.0523i −0.833633 0.355682i
\(63\) 60.2875 34.8070i 0.956944 0.552492i
\(64\) 48.0348 42.2925i 0.750544 0.660821i
\(65\) 3.06559 0.0471629
\(66\) −6.10895 8.13821i −0.0925599 0.123306i
\(67\) −21.6309 + 12.4886i −0.322849 + 0.186397i −0.652662 0.757649i \(-0.726348\pi\)
0.329813 + 0.944046i \(0.393014\pi\)
\(68\) −48.5172 + 11.9058i −0.713488 + 0.175085i
\(69\) 60.1065 0.871108
\(70\) 76.4737 57.4050i 1.09248 0.820072i
\(71\) 32.3846 + 18.6972i 0.456121 + 0.263342i 0.710412 0.703786i \(-0.248509\pi\)
−0.254291 + 0.967128i \(0.581842\pi\)
\(72\) −32.5378 26.6496i −0.451913 0.370134i
\(73\) 15.9102 27.5573i 0.217948 0.377498i −0.736232 0.676729i \(-0.763397\pi\)
0.954181 + 0.299231i \(0.0967302\pi\)
\(74\) −48.6125 + 113.936i −0.656926 + 1.53968i
\(75\) 23.1431i 0.308575i
\(76\) −35.5176 67.1900i −0.467337 0.884079i
\(77\) −34.8246 −0.452267
\(78\) 3.02152 + 1.28918i 0.0387375 + 0.0165279i
\(79\) 82.1900 + 47.4524i 1.04038 + 0.600663i 0.919941 0.392058i \(-0.128237\pi\)
0.120439 + 0.992721i \(0.461570\pi\)
\(80\) −48.7646 30.9768i −0.609557 0.387210i
\(81\) 3.02255 5.23521i 0.0373154 0.0646322i
\(82\) 25.1624 + 33.5208i 0.306859 + 0.408790i
\(83\) 22.6827i 0.273285i −0.990620 0.136643i \(-0.956369\pi\)
0.990620 0.136643i \(-0.0436312\pi\)
\(84\) 99.5151 24.4202i 1.18470 0.290717i
\(85\) 22.5474 + 39.0533i 0.265264 + 0.459450i
\(86\) 44.2987 33.2529i 0.515101 0.386661i
\(87\) 38.6314i 0.444039i
\(88\) 7.43061 + 19.6840i 0.0844387 + 0.223682i
\(89\) 60.9279 + 105.530i 0.684583 + 1.18573i 0.973568 + 0.228399i \(0.0733490\pi\)
−0.288985 + 0.957334i \(0.593318\pi\)
\(90\) −14.8990 + 34.9196i −0.165544 + 0.387996i
\(91\) 9.73609 5.62114i 0.106990 0.0617707i
\(92\) −119.334 34.6980i −1.29711 0.377152i
\(93\) −27.1779 + 47.0735i −0.292235 + 0.506167i
\(94\) −12.2770 101.544i −0.130606 1.08026i
\(95\) −49.2877 + 47.7198i −0.518818 + 0.502314i
\(96\) −35.0369 51.0386i −0.364968 0.531652i
\(97\) −10.1782 + 17.6292i −0.104930 + 0.181744i −0.913710 0.406368i \(-0.866795\pi\)
0.808779 + 0.588112i \(0.200129\pi\)
\(98\) 99.1569 232.400i 1.01180 2.37143i
\(99\) 11.9742 6.91329i 0.120951 0.0698312i
\(100\) 13.3600 45.9479i 0.133600 0.459479i
\(101\) −62.0321 107.443i −0.614179 1.06379i −0.990528 0.137312i \(-0.956154\pi\)
0.376349 0.926478i \(-0.377179\pi\)
\(102\) 5.80017 + 47.9739i 0.0568644 + 0.470332i
\(103\) 70.5949i 0.685388i 0.939447 + 0.342694i \(0.111339\pi\)
−0.939447 + 0.342694i \(0.888661\pi\)
\(104\) −5.25467 4.30377i −0.0505257 0.0413824i
\(105\) −46.2477 80.1034i −0.440454 0.762889i
\(106\) −38.0283 + 4.59773i −0.358758 + 0.0433748i
\(107\) 155.198i 1.45045i −0.688512 0.725225i \(-0.741736\pi\)
0.688512 0.725225i \(-0.258264\pi\)
\(108\) −79.6478 + 76.3461i −0.737479 + 0.706908i
\(109\) 0.983093 1.70277i 0.00901920 0.0156217i −0.861481 0.507791i \(-0.830462\pi\)
0.870500 + 0.492169i \(0.163796\pi\)
\(110\) 15.1890 11.4017i 0.138082 0.103651i
\(111\) 103.770 + 59.9115i 0.934863 + 0.539743i
\(112\) −211.673 8.96419i −1.88993 0.0800374i
\(113\) 121.855 1.07836 0.539179 0.842191i \(-0.318735\pi\)
0.539179 + 0.842191i \(0.318735\pi\)
\(114\) −68.6470 + 26.3069i −0.602167 + 0.230762i
\(115\) 112.182i 0.975494i
\(116\) −22.3010 + 76.6980i −0.192250 + 0.661190i
\(117\) −2.23179 + 3.86557i −0.0190751 + 0.0330391i
\(118\) 117.938 88.5306i 0.999478 0.750259i
\(119\) 143.218 + 82.6870i 1.20351 + 0.694849i
\(120\) −35.4091 + 43.2326i −0.295076 + 0.360272i
\(121\) 114.083 0.942837
\(122\) 129.398 15.6445i 1.06064 0.128234i
\(123\) 35.1118 20.2718i 0.285462 0.164811i
\(124\) 81.1329 77.7697i 0.654298 0.627175i
\(125\) −133.462 −1.06770
\(126\) 16.7113 + 138.221i 0.132630 + 1.09700i
\(127\) −200.043 + 115.495i −1.57514 + 0.909407i −0.579615 + 0.814890i \(0.696797\pi\)
−0.995523 + 0.0945162i \(0.969870\pi\)
\(128\) 40.0983 + 121.557i 0.313268 + 0.949665i
\(129\) −26.7898 46.4013i −0.207673 0.359700i
\(130\) −2.40610 + 5.63933i −0.0185085 + 0.0433794i
\(131\) 72.8384 + 42.0533i 0.556019 + 0.321018i 0.751546 0.659681i \(-0.229308\pi\)
−0.195527 + 0.980698i \(0.562642\pi\)
\(132\) 19.7655 4.85029i 0.149738 0.0367446i
\(133\) −69.0340 + 241.930i −0.519053 + 1.81902i
\(134\) −5.99596 49.5933i −0.0447460 0.370099i
\(135\) 86.2490 + 49.7959i 0.638882 + 0.368858i
\(136\) 16.1786 98.5947i 0.118960 0.724961i
\(137\) −93.3805 161.740i −0.681610 1.18058i −0.974489 0.224433i \(-0.927947\pi\)
0.292880 0.956149i \(-0.405386\pi\)
\(138\) −47.1760 + 110.569i −0.341855 + 0.801227i
\(139\) −98.0227 + 56.5934i −0.705199 + 0.407147i −0.809281 0.587422i \(-0.800143\pi\)
0.104082 + 0.994569i \(0.466810\pi\)
\(140\) 45.5776 + 185.733i 0.325554 + 1.32667i
\(141\) −98.9396 −0.701699
\(142\) −59.8125 + 44.8983i −0.421215 + 0.316185i
\(143\) 1.93376 1.11646i 0.0135228 0.00780740i
\(144\) 74.5616 38.9385i 0.517789 0.270406i
\(145\) 72.1010 0.497248
\(146\) 38.2058 + 50.8968i 0.261683 + 0.348609i
\(147\) −211.663 122.204i −1.43989 0.831319i
\(148\) −171.437 178.851i −1.15836 1.20845i
\(149\) −20.3310 + 35.2142i −0.136449 + 0.236337i −0.926150 0.377155i \(-0.876902\pi\)
0.789701 + 0.613492i \(0.210236\pi\)
\(150\) −42.5731 18.1645i −0.283821 0.121096i
\(151\) 55.7881i 0.369458i −0.982790 0.184729i \(-0.940859\pi\)
0.982790 0.184729i \(-0.0591407\pi\)
\(152\) 151.477 12.6009i 0.996558 0.0829005i
\(153\) −65.6593 −0.429146
\(154\) 27.3329 64.0618i 0.177487 0.415986i
\(155\) −87.8572 50.7244i −0.566821 0.327254i
\(156\) −4.74304 + 4.54642i −0.0304041 + 0.0291437i
\(157\) 108.233 187.465i 0.689384 1.19405i −0.282654 0.959222i \(-0.591215\pi\)
0.972038 0.234826i \(-0.0754519\pi\)
\(158\) −151.800 + 113.949i −0.960761 + 0.721196i
\(159\) 37.0528i 0.233036i
\(160\) 95.2577 65.3924i 0.595361 0.408702i
\(161\) 205.699 + 356.281i 1.27763 + 2.21293i
\(162\) 7.25815 + 9.66914i 0.0448034 + 0.0596860i
\(163\) 207.832i 1.27504i −0.770432 0.637522i \(-0.779959\pi\)
0.770432 0.637522i \(-0.220041\pi\)
\(164\) −81.4128 + 19.9781i −0.496419 + 0.121818i
\(165\) −9.18561 15.9099i −0.0556704 0.0964239i
\(166\) 41.7261 + 17.8030i 0.251362 + 0.107247i
\(167\) 121.114 69.9255i 0.725236 0.418715i −0.0914405 0.995811i \(-0.529147\pi\)
0.816677 + 0.577095i \(0.195814\pi\)
\(168\) −33.1844 + 202.231i −0.197526 + 1.20375i
\(169\) 84.1396 145.734i 0.497867 0.862332i
\(170\) −89.5377 + 10.8253i −0.526692 + 0.0636785i
\(171\) −24.2905 96.8903i −0.142050 0.566610i
\(172\) 26.4016 + 107.589i 0.153498 + 0.625519i
\(173\) 87.6690 151.847i 0.506757 0.877729i −0.493212 0.869909i \(-0.664177\pi\)
0.999969 0.00782030i \(-0.00248931\pi\)
\(174\) 71.0646 + 30.3208i 0.408417 + 0.174257i
\(175\) −137.181 + 79.2015i −0.783891 + 0.452580i
\(176\) −42.0419 1.78045i −0.238875 0.0101162i
\(177\) −71.3237 123.536i −0.402959 0.697945i
\(178\) −241.950 + 29.2524i −1.35927 + 0.164339i
\(179\) 75.1810i 0.420006i −0.977701 0.210003i \(-0.932653\pi\)
0.977701 0.210003i \(-0.0673473\pi\)
\(180\) −52.5428 54.8151i −0.291905 0.304528i
\(181\) −51.3996 89.0267i −0.283976 0.491860i 0.688385 0.725346i \(-0.258320\pi\)
−0.972360 + 0.233486i \(0.924987\pi\)
\(182\) 2.69879 + 22.3220i 0.0148285 + 0.122648i
\(183\) 126.078i 0.688952i
\(184\) 157.491 192.289i 0.855932 1.04505i
\(185\) −111.818 + 193.674i −0.604421 + 1.04689i
\(186\) −65.2631 86.9421i −0.350877 0.467431i
\(187\) 28.4457 + 16.4231i 0.152116 + 0.0878241i
\(188\) 196.433 + 57.1155i 1.04486 + 0.303806i
\(189\) 365.228 1.93242
\(190\) −49.0987 128.122i −0.258414 0.674325i
\(191\) 147.613i 0.772843i −0.922322 0.386421i \(-0.873711\pi\)
0.922322 0.386421i \(-0.126289\pi\)
\(192\) 121.388 24.3935i 0.632229 0.127049i
\(193\) −91.3318 + 158.191i −0.473222 + 0.819644i −0.999530 0.0306497i \(-0.990242\pi\)
0.526309 + 0.850294i \(0.323576\pi\)
\(194\) −24.4413 32.5602i −0.125986 0.167836i
\(195\) 5.13614 + 2.96535i 0.0263392 + 0.0152069i
\(196\) 349.687 + 364.809i 1.78412 + 1.86127i
\(197\) −71.2318 −0.361583 −0.180791 0.983521i \(-0.557866\pi\)
−0.180791 + 0.983521i \(0.557866\pi\)
\(198\) 3.31917 + 27.4532i 0.0167635 + 0.138653i
\(199\) −108.995 + 62.9282i −0.547713 + 0.316222i −0.748199 0.663474i \(-0.769081\pi\)
0.200486 + 0.979697i \(0.435748\pi\)
\(200\) 74.0380 + 60.6398i 0.370190 + 0.303199i
\(201\) −48.3211 −0.240403
\(202\) 246.335 29.7825i 1.21948 0.147438i
\(203\) 228.988 132.206i 1.12802 0.651261i
\(204\) −92.8031 26.9837i −0.454917 0.132273i
\(205\) 37.8350 + 65.5321i 0.184561 + 0.319669i
\(206\) −129.863 55.4082i −0.630405 0.268972i
\(207\) −141.456 81.6698i −0.683363 0.394540i
\(208\) 12.0413 6.28835i 0.0578908 0.0302324i
\(209\) −13.7114 + 48.0516i −0.0656047 + 0.229912i
\(210\) 183.653 22.2042i 0.874540 0.105734i
\(211\) −103.386 59.6899i −0.489981 0.282890i 0.234586 0.972095i \(-0.424627\pi\)
−0.724566 + 0.689205i \(0.757960\pi\)
\(212\) 21.3897 73.5639i 0.100895 0.347000i
\(213\) 36.1718 + 62.6514i 0.169821 + 0.294138i
\(214\) 285.496 + 121.811i 1.33409 + 0.569210i
\(215\) 86.6026 50.0000i 0.402803 0.232558i
\(216\) −77.9296 206.439i −0.360785 0.955735i
\(217\) −372.038 −1.71446
\(218\) 2.36073 + 3.14491i 0.0108290 + 0.0144262i
\(219\) 53.3126 30.7800i 0.243436 0.140548i
\(220\) 9.05251 + 36.8900i 0.0411478 + 0.167682i
\(221\) −10.6036 −0.0479801
\(222\) −191.657 + 143.867i −0.863319 + 0.648051i
\(223\) 288.078 + 166.322i 1.29183 + 0.745838i 0.978978 0.203964i \(-0.0653826\pi\)
0.312851 + 0.949802i \(0.398716\pi\)
\(224\) 182.627 382.348i 0.815298 1.70691i
\(225\) 31.4458 54.4657i 0.139759 0.242070i
\(226\) −95.6405 + 224.158i −0.423188 + 0.991851i
\(227\) 269.515i 1.18729i 0.804726 + 0.593646i \(0.202312\pi\)
−0.804726 + 0.593646i \(0.797688\pi\)
\(228\) 5.48631 146.928i 0.0240628 0.644420i
\(229\) −125.987 −0.550163 −0.275081 0.961421i \(-0.588705\pi\)
−0.275081 + 0.961421i \(0.588705\pi\)
\(230\) −206.365 88.0486i −0.897238 0.382820i
\(231\) −58.3457 33.6859i −0.252579 0.145826i
\(232\) −123.587 101.222i −0.532702 0.436303i
\(233\) 122.359 211.933i 0.525148 0.909583i −0.474423 0.880297i \(-0.657343\pi\)
0.999571 0.0292861i \(-0.00932338\pi\)
\(234\) −5.35927 7.13949i −0.0229028 0.0305107i
\(235\) 184.659i 0.785784i
\(236\) 70.2902 + 286.440i 0.297840 + 1.21373i
\(237\) 91.8017 + 159.005i 0.387349 + 0.670908i
\(238\) −264.516 + 198.559i −1.11141 + 0.834281i
\(239\) 304.299i 1.27322i 0.771187 + 0.636609i \(0.219663\pi\)
−0.771187 + 0.636609i \(0.780337\pi\)
\(240\) −51.7371 99.0692i −0.215571 0.412788i
\(241\) −79.0630 136.941i −0.328062 0.568220i 0.654065 0.756438i \(-0.273062\pi\)
−0.982127 + 0.188218i \(0.939729\pi\)
\(242\) −89.5410 + 209.863i −0.370004 + 0.867201i
\(243\) −204.854 + 118.273i −0.843022 + 0.486719i
\(244\) −72.7819 + 250.313i −0.298287 + 1.02587i
\(245\) 228.079 395.045i 0.930936 1.61243i
\(246\) 9.73279 + 80.5010i 0.0395642 + 0.327240i
\(247\) −3.92278 15.6472i −0.0158817 0.0633491i
\(248\) 79.3827 + 210.288i 0.320091 + 0.847936i
\(249\) 21.9410 38.0029i 0.0881165 0.152622i
\(250\) 104.751 245.511i 0.419004 0.982044i
\(251\) 237.858 137.327i 0.947640 0.547120i 0.0552931 0.998470i \(-0.482391\pi\)
0.892347 + 0.451350i \(0.149057\pi\)
\(252\) −267.383 77.7451i −1.06104 0.308512i
\(253\) 40.8555 + 70.7638i 0.161484 + 0.279699i
\(254\) −55.4506 458.639i −0.218310 1.80566i
\(255\) 87.2408i 0.342121i
\(256\) −255.083 21.6440i −0.996419 0.0845470i
\(257\) 42.0095 + 72.7626i 0.163461 + 0.283123i 0.936108 0.351713i \(-0.114401\pi\)
−0.772647 + 0.634836i \(0.781067\pi\)
\(258\) 106.384 12.8622i 0.412343 0.0498533i
\(259\) 820.128i 3.16652i
\(260\) −8.48538 8.85233i −0.0326361 0.0340474i
\(261\) −52.4904 + 90.9161i −0.201113 + 0.348338i
\(262\) −134.529 + 100.984i −0.513468 + 0.385435i
\(263\) −323.995 187.059i −1.23192 0.711250i −0.264491 0.964388i \(-0.585204\pi\)
−0.967430 + 0.253138i \(0.918537\pi\)
\(264\) −6.59102 + 40.1666i −0.0249660 + 0.152146i
\(265\) −69.1547 −0.260961
\(266\) −390.861 316.877i −1.46940 1.19127i
\(267\) 235.743i 0.882932i
\(268\) 95.9358 + 27.8946i 0.357969 + 0.104084i
\(269\) −191.744 + 332.110i −0.712801 + 1.23461i 0.251000 + 0.967987i \(0.419240\pi\)
−0.963801 + 0.266621i \(0.914093\pi\)
\(270\) −159.297 + 119.576i −0.589989 + 0.442876i
\(271\) −231.039 133.390i −0.852541 0.492215i 0.00896635 0.999960i \(-0.497146\pi\)
−0.861507 + 0.507745i \(0.830479\pi\)
\(272\) 168.672 + 107.146i 0.620119 + 0.393919i
\(273\) 21.7494 0.0796680
\(274\) 370.822 44.8333i 1.35336 0.163625i
\(275\) −27.2466 + 15.7308i −0.0990785 + 0.0572030i
\(276\) −166.371 173.566i −0.602794 0.628863i
\(277\) −2.45823 −0.00887446 −0.00443723 0.999990i \(-0.501412\pi\)
−0.00443723 + 0.999990i \(0.501412\pi\)
\(278\) −27.1713 224.737i −0.0977385 0.808407i
\(279\) 127.922 73.8560i 0.458503 0.264717i
\(280\) −377.440 61.9349i −1.34800 0.221196i
\(281\) 24.3228 + 42.1283i 0.0865580 + 0.149923i 0.906054 0.423162i \(-0.139080\pi\)
−0.819496 + 0.573085i \(0.805747\pi\)
\(282\) 77.6552 182.005i 0.275373 0.645408i
\(283\) 336.365 + 194.201i 1.18857 + 0.686221i 0.957981 0.286830i \(-0.0926016\pi\)
0.230588 + 0.973051i \(0.425935\pi\)
\(284\) −35.6477 145.268i −0.125520 0.511507i
\(285\) −128.737 + 32.2745i −0.451709 + 0.113244i
\(286\) 0.536027 + 4.43354i 0.00187422 + 0.0155019i
\(287\) 240.323 + 138.750i 0.837361 + 0.483450i
\(288\) 13.1080 + 167.722i 0.0455140 + 0.582369i
\(289\) 66.5104 + 115.199i 0.230140 + 0.398614i
\(290\) −56.5902 + 132.634i −0.195139 + 0.457358i
\(291\) −34.1056 + 19.6909i −0.117201 + 0.0676662i
\(292\) −123.614 + 30.3340i −0.423337 + 0.103884i
\(293\) −303.235 −1.03493 −0.517465 0.855704i \(-0.673124\pi\)
−0.517465 + 0.855704i \(0.673124\pi\)
\(294\) 390.930 293.452i 1.32969 0.998136i
\(295\) 230.566 133.117i 0.781580 0.451245i
\(296\) 463.563 174.993i 1.56609 0.591192i
\(297\) 72.5407 0.244245
\(298\) −48.8214 65.0387i −0.163830 0.218251i
\(299\) −22.8444 13.1892i −0.0764026 0.0441111i
\(300\) 66.8291 64.0589i 0.222764 0.213530i
\(301\) 183.363 317.593i 0.609178 1.05513i
\(302\) 102.625 + 43.7867i 0.339819 + 0.144989i
\(303\) 240.015i 0.792130i
\(304\) −95.7103 + 288.540i −0.314836 + 0.949146i
\(305\) 235.310 0.771510
\(306\) 51.5343 120.784i 0.168413 0.394719i
\(307\) −57.7439 33.3385i −0.188091 0.108594i 0.402998 0.915201i \(-0.367968\pi\)
−0.591089 + 0.806607i \(0.701302\pi\)
\(308\) 96.3924 + 100.561i 0.312962 + 0.326497i
\(309\) −68.2867 + 118.276i −0.220992 + 0.382770i
\(310\) 162.267 121.806i 0.523443 0.392923i
\(311\) 336.974i 1.08352i 0.840534 + 0.541759i \(0.182241\pi\)
−0.840534 + 0.541759i \(0.817759\pi\)
\(312\) −4.64072 12.2935i −0.0148741 0.0394021i
\(313\) 102.792 + 178.041i 0.328409 + 0.568821i 0.982196 0.187857i \(-0.0601542\pi\)
−0.653787 + 0.756678i \(0.726821\pi\)
\(314\) 259.904 + 346.238i 0.827720 + 1.10267i
\(315\) 251.357i 0.797957i
\(316\) −90.4715 368.681i −0.286302 1.16671i
\(317\) 283.961 + 491.835i 0.895777 + 1.55153i 0.832841 + 0.553513i \(0.186713\pi\)
0.0629359 + 0.998018i \(0.479954\pi\)
\(318\) −68.1607 29.0818i −0.214342 0.0914522i
\(319\) 45.4810 26.2585i 0.142574 0.0823149i
\(320\) 45.5277 + 226.557i 0.142274 + 0.707990i
\(321\) 150.124 260.022i 0.467675 0.810036i
\(322\) −816.848 + 98.7591i −2.53680 + 0.306705i
\(323\) 170.482 165.059i 0.527808 0.511018i
\(324\) −23.4837 + 5.76271i −0.0724805 + 0.0177862i
\(325\) 5.07832 8.79590i 0.0156256 0.0270643i
\(326\) 382.319 + 163.122i 1.17276 + 0.500375i
\(327\) 3.29418 1.90190i 0.0100740 0.00581620i
\(328\) 27.1480 165.444i 0.0827684 0.504402i
\(329\) −338.596 586.465i −1.02917 1.78257i
\(330\) 36.4768 4.41015i 0.110536 0.0133641i
\(331\) 507.216i 1.53237i −0.642618 0.766187i \(-0.722152\pi\)
0.642618 0.766187i \(-0.277848\pi\)
\(332\) −65.4995 + 62.7843i −0.197288 + 0.189109i
\(333\) −162.810 281.995i −0.488918 0.846831i
\(334\) 33.5722 + 277.680i 0.100516 + 0.831377i
\(335\) 90.1857i 0.269211i
\(336\) −345.969 219.770i −1.02967 0.654078i
\(337\) 92.2021 159.699i 0.273597 0.473883i −0.696183 0.717864i \(-0.745120\pi\)
0.969780 + 0.243981i \(0.0784533\pi\)
\(338\) 202.047 + 269.163i 0.597772 + 0.796339i
\(339\) 204.157 + 117.870i 0.602234 + 0.347700i
\(340\) 50.3620 173.206i 0.148124 0.509430i
\(341\) −73.8933 −0.216696
\(342\) 197.300 + 31.3629i 0.576901 + 0.0917045i
\(343\) 1024.02i 2.98548i
\(344\) −218.639 35.8769i −0.635578 0.104293i
\(345\) −108.514 + 187.951i −0.314533 + 0.544786i
\(346\) 210.522 + 280.453i 0.608446 + 0.810558i
\(347\) −150.609 86.9544i −0.434033 0.250589i 0.267030 0.963688i \(-0.413958\pi\)
−0.701063 + 0.713099i \(0.747291\pi\)
\(348\) −111.554 + 106.929i −0.320556 + 0.307268i
\(349\) −148.499 −0.425500 −0.212750 0.977107i \(-0.568242\pi\)
−0.212750 + 0.977107i \(0.568242\pi\)
\(350\) −38.0258 314.516i −0.108645 0.898616i
\(351\) −20.2806 + 11.7090i −0.0577795 + 0.0333590i
\(352\) 36.2729 75.9411i 0.103048 0.215742i
\(353\) −348.424 −0.987037 −0.493519 0.869735i \(-0.664289\pi\)
−0.493519 + 0.869735i \(0.664289\pi\)
\(354\) 283.232 34.2435i 0.800091 0.0967331i
\(355\) −116.932 + 67.5105i −0.329385 + 0.190170i
\(356\) 136.089 468.040i 0.382272 1.31472i
\(357\) 159.967 + 277.071i 0.448086 + 0.776108i
\(358\) 138.300 + 59.0077i 0.386312 + 0.164826i
\(359\) −444.774 256.791i −1.23893 0.715294i −0.270051 0.962846i \(-0.587041\pi\)
−0.968875 + 0.247552i \(0.920374\pi\)
\(360\) 142.075 53.6326i 0.394653 0.148979i
\(361\) 306.639 + 190.509i 0.849415 + 0.527725i
\(362\) 204.112 24.6777i 0.563845 0.0681704i
\(363\) 191.137 + 110.353i 0.526548 + 0.304003i
\(364\) −43.1808 12.5554i −0.118629 0.0344928i
\(365\) 57.4474 + 99.5018i 0.157390 + 0.272608i
\(366\) 231.928 + 98.9556i 0.633683 + 0.270370i
\(367\) −169.780 + 98.0228i −0.462617 + 0.267092i −0.713144 0.701018i \(-0.752729\pi\)
0.250527 + 0.968110i \(0.419396\pi\)
\(368\) 230.115 + 440.637i 0.625312 + 1.19738i
\(369\) −110.177 −0.298584
\(370\) −268.512 357.705i −0.725708 0.966772i
\(371\) −219.631 + 126.804i −0.591996 + 0.341789i
\(372\) 211.158 51.8166i 0.567630 0.139292i
\(373\) 425.298 1.14021 0.570105 0.821572i \(-0.306903\pi\)
0.570105 + 0.821572i \(0.306903\pi\)
\(374\) −52.5375 + 39.4373i −0.140475 + 0.105447i
\(375\) −223.605 129.098i −0.596279 0.344262i
\(376\) −259.242 + 316.521i −0.689474 + 0.841811i
\(377\) −8.47691 + 14.6824i −0.0224852 + 0.0389455i
\(378\) −286.658 + 671.857i −0.758354 + 1.77740i
\(379\) 23.4489i 0.0618705i 0.999521 + 0.0309353i \(0.00984857\pi\)
−0.999521 + 0.0309353i \(0.990151\pi\)
\(380\) 274.224 + 10.2396i 0.721641 + 0.0269462i
\(381\) −446.873 −1.17290
\(382\) 271.543 + 115.858i 0.710844 + 0.303292i
\(383\) −62.2303 35.9287i −0.162481 0.0938085i 0.416555 0.909111i \(-0.363237\pi\)
−0.579036 + 0.815302i \(0.696571\pi\)
\(384\) −50.4012 + 242.446i −0.131253 + 0.631370i
\(385\) 62.8709 108.896i 0.163301 0.282846i
\(386\) −219.318 292.170i −0.568181 0.756918i
\(387\) 145.603i 0.376234i
\(388\) 79.0797 19.4055i 0.203814 0.0500143i
\(389\) −119.182 206.429i −0.306380 0.530666i 0.671188 0.741288i \(-0.265785\pi\)
−0.977568 + 0.210622i \(0.932451\pi\)
\(390\) −9.48617 + 7.12080i −0.0243235 + 0.0182585i
\(391\) 388.027i 0.992396i
\(392\) −945.549 + 356.940i −2.41211 + 0.910560i
\(393\) 81.3566 + 140.914i 0.207014 + 0.358559i
\(394\) 55.9080 131.035i 0.141899 0.332576i
\(395\) −296.765 + 171.337i −0.751303 + 0.433765i
\(396\) −53.1069 15.4415i −0.134108 0.0389938i
\(397\) 49.3584 85.4912i 0.124328 0.215343i −0.797142 0.603792i \(-0.793656\pi\)
0.921470 + 0.388449i \(0.126989\pi\)
\(398\) −30.2127 249.893i −0.0759114 0.627872i
\(399\) −349.680 + 338.557i −0.876392 + 0.848514i
\(400\) −169.661 + 88.6024i −0.424152 + 0.221506i
\(401\) −43.0056 + 74.4879i −0.107246 + 0.185755i −0.914654 0.404239i \(-0.867537\pi\)
0.807408 + 0.589994i \(0.200870\pi\)
\(402\) 37.9260 88.8894i 0.0943433 0.221118i
\(403\) 20.6588 11.9273i 0.0512624 0.0295964i
\(404\) −138.555 + 476.522i −0.342958 + 1.17951i
\(405\) 10.9136 + 18.9029i 0.0269471 + 0.0466738i
\(406\) 63.4740 + 525.001i 0.156340 + 1.29311i
\(407\) 162.892i 0.400226i
\(408\) 122.477 149.538i 0.300189 0.366514i
\(409\) 179.889 + 311.578i 0.439827 + 0.761803i 0.997676 0.0681394i \(-0.0217063\pi\)
−0.557848 + 0.829943i \(0.688373\pi\)
\(410\) −150.246 + 18.1651i −0.366453 + 0.0443052i
\(411\) 361.309i 0.879097i
\(412\) 203.853 195.403i 0.494789 0.474278i
\(413\) 488.174 845.543i 1.18202 2.04732i
\(414\) 261.262 196.116i 0.631067 0.473711i
\(415\) 70.9281 + 40.9504i 0.170911 + 0.0986756i
\(416\) 2.11687 + 27.0862i 0.00508864 + 0.0651110i
\(417\) −218.972 −0.525113
\(418\) −77.6319 62.9374i −0.185722 0.150568i
\(419\) 636.788i 1.51978i 0.650052 + 0.759890i \(0.274747\pi\)
−0.650052 + 0.759890i \(0.725253\pi\)
\(420\) −103.299 + 355.268i −0.245950 + 0.845877i
\(421\) −54.5448 + 94.4743i −0.129560 + 0.224405i −0.923506 0.383584i \(-0.874690\pi\)
0.793946 + 0.607988i \(0.208023\pi\)
\(422\) 190.948 143.335i 0.452483 0.339657i
\(423\) 232.847 + 134.434i 0.550466 + 0.317812i
\(424\) 118.537 + 97.0860i 0.279568 + 0.228976i
\(425\) 149.404 0.351539
\(426\) −143.641 + 17.3666i −0.337186 + 0.0407667i
\(427\) 747.329 431.471i 1.75019 1.01047i
\(428\) −448.157 + 429.579i −1.04710 + 1.00369i
\(429\) 4.31981 0.0100695
\(430\) 24.0057 + 198.554i 0.0558273 + 0.461754i
\(431\) −299.091 + 172.680i −0.693947 + 0.400650i −0.805089 0.593154i \(-0.797882\pi\)
0.111142 + 0.993805i \(0.464549\pi\)
\(432\) 440.921 + 18.6727i 1.02065 + 0.0432238i
\(433\) 48.9951 + 84.8620i 0.113153 + 0.195986i 0.917040 0.398796i \(-0.130572\pi\)
−0.803887 + 0.594782i \(0.797238\pi\)
\(434\) 292.003 684.385i 0.672818 1.57692i
\(435\) 120.799 + 69.7435i 0.277699 + 0.160330i
\(436\) −7.63813 + 1.87434i −0.0175186 + 0.00429894i
\(437\) 572.593 143.550i 1.31028 0.328489i
\(438\) 14.7779 + 122.230i 0.0337396 + 0.279064i
\(439\) −214.684 123.948i −0.489030 0.282342i 0.235142 0.971961i \(-0.424445\pi\)
−0.724172 + 0.689619i \(0.757778\pi\)
\(440\) −74.9663 12.3014i −0.170378 0.0279577i
\(441\) 332.090 + 575.196i 0.753037 + 1.30430i
\(442\) 8.32250 19.5059i 0.0188292 0.0441311i
\(443\) 269.414 155.546i 0.608157 0.351120i −0.164087 0.986446i \(-0.552468\pi\)
0.772244 + 0.635326i \(0.219134\pi\)
\(444\) −114.226 465.482i −0.257265 1.04838i
\(445\) −439.987 −0.988735
\(446\) −532.064 + 399.394i −1.19297 + 0.895502i
\(447\) −68.1257 + 39.3324i −0.152406 + 0.0879919i
\(448\) 560.012 + 636.048i 1.25003 + 1.41975i
\(449\) −689.669 −1.53601 −0.768005 0.640444i \(-0.778751\pi\)
−0.768005 + 0.640444i \(0.778751\pi\)
\(450\) 75.5117 + 100.595i 0.167804 + 0.223545i
\(451\) 47.7323 + 27.5583i 0.105837 + 0.0611048i
\(452\) −337.286 351.873i −0.746209 0.778479i
\(453\) 53.9640 93.4684i 0.119126 0.206332i
\(454\) −495.789 211.536i −1.09205 0.465938i
\(455\) 40.5927i 0.0892147i
\(456\) 265.976 + 125.412i 0.583280 + 0.275027i
\(457\) −303.667 −0.664480 −0.332240 0.943195i \(-0.607804\pi\)
−0.332240 + 0.943195i \(0.607804\pi\)
\(458\) 98.8842 231.761i 0.215904 0.506028i
\(459\) −298.328 172.240i −0.649952 0.375250i
\(460\) 323.941 310.513i 0.704220 0.675028i
\(461\) −355.189 + 615.206i −0.770475 + 1.33450i 0.166828 + 0.985986i \(0.446648\pi\)
−0.937303 + 0.348516i \(0.886686\pi\)
\(462\) 107.761 80.8911i 0.233249 0.175089i
\(463\) 423.953i 0.915664i −0.889039 0.457832i \(-0.848626\pi\)
0.889039 0.457832i \(-0.151374\pi\)
\(464\) 283.204 147.898i 0.610354 0.318747i
\(465\) −98.1317 169.969i −0.211036 0.365525i
\(466\) 293.826 + 391.428i 0.630527 + 0.839974i
\(467\) 58.2823i 0.124802i −0.998051 0.0624008i \(-0.980124\pi\)
0.998051 0.0624008i \(-0.0198757\pi\)
\(468\) 17.3399 4.25507i 0.0370510 0.00909203i
\(469\) −165.367 286.423i −0.352594 0.610711i
\(470\) 339.691 + 144.934i 0.722748 + 0.308371i
\(471\) 362.672 209.389i 0.770004 0.444562i
\(472\) −582.092 95.5167i −1.23325 0.202366i
\(473\) 36.4191 63.0796i 0.0769959 0.133361i
\(474\) −364.552 + 44.0753i −0.769097 + 0.0929859i
\(475\) 55.2718 + 220.469i 0.116362 + 0.464145i
\(476\) −157.649 642.436i −0.331195 1.34965i
\(477\) 50.3455 87.2010i 0.105546 0.182811i
\(478\) −559.775 238.837i −1.17108 0.499658i
\(479\) −734.439 + 424.029i −1.53328 + 0.885238i −0.534069 + 0.845441i \(0.679338\pi\)
−0.999208 + 0.0397964i \(0.987329\pi\)
\(480\) 222.851 17.4165i 0.464272 0.0362844i
\(481\) −26.2929 45.5406i −0.0546629 0.0946789i
\(482\) 313.966 37.9593i 0.651381 0.0787537i
\(483\) 795.893i 1.64781i
\(484\) −315.776 329.432i −0.652429 0.680644i
\(485\) −36.7507 63.6541i −0.0757747 0.131246i
\(486\) −56.7844 469.671i −0.116840 0.966400i
\(487\) 351.483i 0.721732i −0.932618 0.360866i \(-0.882481\pi\)
0.932618 0.360866i \(-0.117519\pi\)
\(488\) −403.341 330.351i −0.826519 0.676949i
\(489\) 201.037 348.206i 0.411118 0.712077i
\(490\) 547.694 + 729.626i 1.11774 + 1.48903i
\(491\) 553.288 + 319.441i 1.12686 + 0.650592i 0.943143 0.332387i \(-0.107854\pi\)
0.183716 + 0.982979i \(0.441187\pi\)
\(492\) −155.725 45.2792i −0.316515 0.0920309i
\(493\) −249.391 −0.505864
\(494\) 31.8629 + 5.06494i 0.0644998 + 0.0102529i
\(495\) 49.9239i 0.100856i
\(496\) −449.142 19.0209i −0.905529 0.0383485i
\(497\) −247.578 + 428.817i −0.498144 + 0.862811i
\(498\) 52.6876 + 70.1893i 0.105798 + 0.140942i
\(499\) 85.6129 + 49.4286i 0.171569 + 0.0990553i 0.583325 0.812239i \(-0.301751\pi\)
−0.411757 + 0.911294i \(0.635085\pi\)
\(500\) 369.415 + 385.391i 0.738830 + 0.770781i
\(501\) 270.556 0.540033
\(502\) 65.9328 + 545.338i 0.131340 + 1.08633i
\(503\) −148.888 + 85.9607i −0.296001 + 0.170896i −0.640645 0.767837i \(-0.721333\pi\)
0.344644 + 0.938733i \(0.388000\pi\)
\(504\) 352.878 430.846i 0.700155 0.854852i
\(505\) 447.961 0.887051
\(506\) −162.241 + 19.6153i −0.320633 + 0.0387654i
\(507\) 281.938 162.777i 0.556091 0.321059i
\(508\) 887.214 + 257.969i 1.74648 + 0.507814i
\(509\) 292.811 + 507.164i 0.575268 + 0.996393i 0.996012 + 0.0892141i \(0.0284355\pi\)
−0.420745 + 0.907179i \(0.638231\pi\)
\(510\) −160.484 68.4731i −0.314675 0.134261i
\(511\) 364.898 + 210.674i 0.714085 + 0.412277i
\(512\) 240.024 452.253i 0.468797 0.883306i
\(513\) 143.800 503.948i 0.280312 0.982354i
\(514\) −166.823 + 20.1694i −0.324559 + 0.0392400i
\(515\) −220.749 127.449i −0.428638 0.247474i
\(516\) −59.8378 + 205.795i −0.115965 + 0.398828i
\(517\) −67.2511 116.482i −0.130080 0.225304i
\(518\) −1508.67 643.697i −2.91249 1.24266i
\(519\) 293.764 169.605i 0.566020 0.326792i
\(520\) 22.9443 8.66137i 0.0441237 0.0166565i
\(521\) 429.700 0.824760 0.412380 0.911012i \(-0.364698\pi\)
0.412380 + 0.911012i \(0.364698\pi\)
\(522\) −126.047 167.917i −0.241469 0.321680i
\(523\) −101.561 + 58.6364i −0.194190 + 0.112116i −0.593942 0.804508i \(-0.702429\pi\)
0.399753 + 0.916623i \(0.369096\pi\)
\(524\) −80.1777 326.733i −0.153011 0.623536i
\(525\) −306.447 −0.583709
\(526\) 598.401 449.190i 1.13764 0.853974i
\(527\) 303.891 + 175.451i 0.576642 + 0.332925i
\(528\) −68.7156 43.6503i −0.130143 0.0826710i
\(529\) 218.144 377.837i 0.412371 0.714248i
\(530\) 54.2778 127.214i 0.102411 0.240027i
\(531\) 387.645i 0.730028i
\(532\) 889.690 470.303i 1.67235 0.884027i
\(533\) −17.7930 −0.0333828
\(534\) −433.663 185.029i −0.812102 0.346496i
\(535\) 485.300 + 280.188i 0.907103 + 0.523716i
\(536\) −126.611 + 154.586i −0.236215 + 0.288406i
\(537\) 72.7228 125.960i 0.135424 0.234562i
\(538\) −460.440 613.388i −0.855836 1.14013i
\(539\) 332.257i 0.616433i
\(540\) −94.9395 386.889i −0.175814 0.716461i
\(541\) −314.473 544.683i −0.581281 1.00681i −0.995328 0.0965527i \(-0.969218\pi\)
0.414047 0.910256i \(-0.364115\pi\)
\(542\) 426.715 320.314i 0.787298 0.590986i
\(543\) 198.876i 0.366254i
\(544\) −329.488 + 226.186i −0.605677 + 0.415784i
\(545\) 3.54967 + 6.14821i 0.00651316 + 0.0112811i
\(546\) −17.0705 + 40.0092i −0.0312647 + 0.0732769i
\(547\) 518.367 299.279i 0.947654 0.547128i 0.0553026 0.998470i \(-0.482388\pi\)
0.892351 + 0.451341i \(0.149054\pi\)
\(548\) −208.575 + 717.336i −0.380611 + 1.30901i
\(549\) −171.309 + 296.716i −0.312038 + 0.540466i
\(550\) −7.55259 62.4684i −0.0137320 0.113579i
\(551\) −92.2617 368.014i −0.167444 0.667903i
\(552\) 449.865 169.822i 0.814973 0.307648i
\(553\) −628.336 + 1088.31i −1.13623 + 1.96801i
\(554\) 1.92940 4.52205i 0.00348267 0.00816254i
\(555\) −374.683 + 216.324i −0.675105 + 0.389772i
\(556\) 434.743 + 126.407i 0.781912 + 0.227351i
\(557\) 80.6000 + 139.603i 0.144704 + 0.250634i 0.929262 0.369420i \(-0.120444\pi\)
−0.784559 + 0.620055i \(0.787110\pi\)
\(558\) 35.4593 + 293.288i 0.0635472 + 0.525606i
\(559\) 23.5140i 0.0420644i
\(560\) 410.176 645.711i 0.732457 1.15306i
\(561\) 31.7722 + 55.0311i 0.0566350 + 0.0980947i
\(562\) −96.5878 + 11.6777i −0.171864 + 0.0207789i
\(563\) 339.756i 0.603475i −0.953391 0.301738i \(-0.902433\pi\)
0.953391 0.301738i \(-0.0975666\pi\)
\(564\) 273.859 + 285.702i 0.485566 + 0.506564i
\(565\) −219.991 + 381.036i −0.389365 + 0.674400i
\(566\) −621.248 + 466.340i −1.09761 + 0.823922i
\(567\) 69.3215 + 40.0228i 0.122260 + 0.0705869i
\(568\) 295.208 + 48.4413i 0.519732 + 0.0852840i
\(569\) 142.791 0.250950 0.125475 0.992097i \(-0.459955\pi\)
0.125475 + 0.992097i \(0.459955\pi\)
\(570\) 41.6716 262.151i 0.0731081 0.459913i
\(571\) 478.509i 0.838020i 0.907982 + 0.419010i \(0.137623\pi\)
−0.907982 + 0.419010i \(0.862377\pi\)
\(572\) −8.57647 2.49372i −0.0149938 0.00435966i
\(573\) 142.786 247.313i 0.249191 0.431612i
\(574\) −443.862 + 333.185i −0.773279 + 0.580463i
\(575\) 321.876 + 185.835i 0.559785 + 0.323192i
\(576\) −318.823 107.528i −0.553512 0.186680i
\(577\) 465.870 0.807400 0.403700 0.914891i \(-0.367724\pi\)
0.403700 + 0.914891i \(0.367724\pi\)
\(578\) −264.118 + 31.9326i −0.456952 + 0.0552467i
\(579\) −306.038 + 176.691i −0.528563 + 0.305166i
\(580\) −199.571 208.202i −0.344089 0.358969i
\(581\) 300.350 0.516954
\(582\) −9.45387 78.1941i −0.0162438 0.134354i
\(583\) −43.6225 + 25.1855i −0.0748242 + 0.0431998i
\(584\) 41.2206 251.204i 0.0705833 0.430144i
\(585\) −8.05836 13.9575i −0.0137750 0.0238590i
\(586\) 238.001 557.817i 0.406145 0.951907i
\(587\) 73.8865 + 42.6584i 0.125871 + 0.0726719i 0.561614 0.827400i \(-0.310181\pi\)
−0.435742 + 0.900072i \(0.643514\pi\)
\(588\) 232.991 + 949.462i 0.396243 + 1.61473i
\(589\) −146.481 + 513.345i −0.248695 + 0.871553i
\(590\) 63.9116 + 528.620i 0.108325 + 0.895966i
\(591\) −119.343 68.9027i −0.201934 0.116587i
\(592\) −41.9300 + 990.099i −0.0708277 + 1.67246i
\(593\) −183.086 317.114i −0.308745 0.534762i 0.669343 0.742953i \(-0.266576\pi\)
−0.978088 + 0.208192i \(0.933242\pi\)
\(594\) −56.9354 + 133.443i −0.0958508 + 0.224651i
\(595\) −517.120 + 298.559i −0.869110 + 0.501781i
\(596\) 157.961 38.7625i 0.265035 0.0650377i
\(597\) −243.482 −0.407843
\(598\) 42.1923 31.6717i 0.0705557 0.0529627i
\(599\) 72.7772 42.0179i 0.121498 0.0701468i −0.438019 0.898966i \(-0.644320\pi\)
0.559517 + 0.828819i \(0.310987\pi\)
\(600\) 65.3875 + 173.214i 0.108979 + 0.288690i
\(601\) 414.461 0.689620 0.344810 0.938673i \(-0.387943\pi\)
0.344810 + 0.938673i \(0.387943\pi\)
\(602\) 440.314 + 586.577i 0.731419 + 0.974380i
\(603\) 113.720 + 65.6564i 0.188591 + 0.108883i
\(604\) −161.096 + 154.418i −0.266716 + 0.255660i
\(605\) −205.961 + 356.735i −0.340432 + 0.589645i
\(606\) 441.522 + 188.382i 0.728584 + 0.310861i
\(607\) 449.401i 0.740365i −0.928959 0.370182i \(-0.879295\pi\)
0.928959 0.370182i \(-0.120705\pi\)
\(608\) −455.666 402.533i −0.749451 0.662060i
\(609\) 511.533 0.839956
\(610\) −184.689 + 432.867i −0.302769 + 0.709618i
\(611\) 37.6035 + 21.7104i 0.0615442 + 0.0355326i
\(612\) 181.741 + 189.601i 0.296963 + 0.309805i
\(613\) −57.7740 + 100.068i −0.0942480 + 0.163242i −0.909294 0.416153i \(-0.863378\pi\)
0.815047 + 0.579396i \(0.196711\pi\)
\(614\) 106.650 80.0567i 0.173697 0.130386i
\(615\) 146.392i 0.238035i
\(616\) −260.644 + 98.3916i −0.423123 + 0.159727i
\(617\) −232.155 402.104i −0.376264 0.651708i 0.614251 0.789110i \(-0.289458\pi\)
−0.990515 + 0.137402i \(0.956125\pi\)
\(618\) −163.979 218.449i −0.265338 0.353478i
\(619\) 425.346i 0.687150i 0.939125 + 0.343575i \(0.111638\pi\)
−0.939125 + 0.343575i \(0.888362\pi\)
\(620\) 96.7098 + 394.103i 0.155984 + 0.635650i
\(621\) −428.478 742.145i −0.689980 1.19508i
\(622\) −619.883 264.482i −0.996596 0.425213i
\(623\) −1397.37 + 806.771i −2.24297 + 1.29498i
\(624\) 26.2569 + 1.11196i 0.0420784 + 0.00178199i
\(625\) 91.4130 158.332i 0.146261 0.253331i
\(626\) −408.196 + 49.3520i −0.652070 + 0.0788370i
\(627\) −69.4527 + 67.2434i −0.110770 + 0.107246i
\(628\) −840.917 + 206.355i −1.33904 + 0.328590i
\(629\) 386.768 669.902i 0.614894 1.06503i
\(630\) −462.385 197.283i −0.733944 0.313148i
\(631\) 713.017 411.661i 1.12998 0.652394i 0.186050 0.982540i \(-0.440431\pi\)
0.943930 + 0.330147i \(0.107098\pi\)
\(632\) 749.219 + 122.941i 1.18547 + 0.194527i
\(633\) −115.476 200.011i −0.182427 0.315973i
\(634\) −1127.63 + 136.334i −1.77860 + 0.215038i
\(635\) 834.037i 1.31344i
\(636\) 106.995 102.560i 0.168232 0.161258i
\(637\) 53.6306 + 92.8909i 0.0841925 + 0.145826i
\(638\) 12.6071 + 104.275i 0.0197603 + 0.163440i
\(639\) 196.594i 0.307659i
\(640\) −452.498 94.0680i −0.707028 0.146981i
\(641\) −121.499 + 210.442i −0.189545 + 0.328302i −0.945099 0.326785i \(-0.894035\pi\)
0.755553 + 0.655087i \(0.227368\pi\)
\(642\) 360.496 + 480.245i 0.561521 + 0.748046i
\(643\) −759.987 438.779i −1.18194 0.682393i −0.225477 0.974248i \(-0.572394\pi\)
−0.956462 + 0.291855i \(0.905727\pi\)
\(644\) 459.450 1580.15i 0.713432 2.45365i
\(645\) 193.461 0.299939
\(646\) 169.828 + 443.162i 0.262892 + 0.686009i
\(647\) 242.955i 0.375510i 0.982216 + 0.187755i \(0.0601210\pi\)
−0.982216 + 0.187755i \(0.939879\pi\)
\(648\) 7.83090 47.7226i 0.0120847 0.0736459i
\(649\) 96.9601 167.940i 0.149399 0.258767i
\(650\) 12.1947 + 16.2455i 0.0187611 + 0.0249931i
\(651\) −623.319 359.873i −0.957479 0.552801i
\(652\) −600.146 + 575.268i −0.920469 + 0.882313i
\(653\) −350.922 −0.537400 −0.268700 0.963224i \(-0.586594\pi\)
−0.268700 + 0.963224i \(0.586594\pi\)
\(654\) 0.913128 + 7.55259i 0.00139622 + 0.0115483i
\(655\) −262.999 + 151.843i −0.401525 + 0.231821i
\(656\) 283.035 + 179.793i 0.431457 + 0.274075i
\(657\) −167.290 −0.254627
\(658\) 1344.59 162.565i 2.04345 0.247059i
\(659\) −421.170 + 243.163i −0.639105 + 0.368987i −0.784270 0.620420i \(-0.786962\pi\)
0.145165 + 0.989408i \(0.453629\pi\)
\(660\) −20.5170 + 70.5626i −0.0310864 + 0.106913i
\(661\) 25.5338 + 44.2258i 0.0386290 + 0.0669074i 0.884694 0.466173i \(-0.154368\pi\)
−0.846065 + 0.533081i \(0.821034\pi\)
\(662\) 933.053 + 398.101i 1.40944 + 0.601361i
\(663\) −17.7655 10.2569i −0.0267956 0.0154704i
\(664\) −64.0865 169.768i −0.0965158 0.255674i
\(665\) −631.877 652.638i −0.950192 0.981411i
\(666\) 646.531 78.1673i 0.970767 0.117368i
\(667\) −537.287 310.203i −0.805528 0.465072i
\(668\) −537.158 156.186i −0.804129 0.233811i
\(669\) 321.767 + 557.317i 0.480968 + 0.833060i
\(670\) 165.902 + 70.7845i 0.247615 + 0.105649i
\(671\) 148.433 85.6977i 0.221211 0.127716i
\(672\) 675.823 463.938i 1.00569 0.690384i
\(673\) 71.8554 0.106769 0.0533844 0.998574i \(-0.482999\pi\)
0.0533844 + 0.998574i \(0.482999\pi\)
\(674\) 221.408 + 294.954i 0.328498 + 0.437618i
\(675\) 285.752 164.979i 0.423337 0.244414i
\(676\) −653.722 + 160.418i −0.967044 + 0.237305i
\(677\) −692.124 −1.02234 −0.511170 0.859480i \(-0.670788\pi\)
−0.511170 + 0.859480i \(0.670788\pi\)
\(678\) −377.067 + 283.046i −0.556146 + 0.417471i
\(679\) −233.435 134.774i −0.343793 0.198489i
\(680\) 279.095 + 228.589i 0.410434 + 0.336160i
\(681\) −260.703 + 451.551i −0.382824 + 0.663070i
\(682\) 57.9970 135.931i 0.0850396 0.199312i
\(683\) 916.976i 1.34257i −0.741199 0.671286i \(-0.765742\pi\)
0.741199 0.671286i \(-0.234258\pi\)
\(684\) −212.550 + 338.329i −0.310745 + 0.494633i
\(685\) 674.342 0.984440
\(686\) 1883.74 + 803.726i 2.74598 + 1.17161i
\(687\) −211.081 121.868i −0.307251 0.177391i
\(688\) 237.602 374.040i 0.345351 0.543662i
\(689\) 8.13052 14.0825i 0.0118005 0.0204390i
\(690\) −260.578 347.136i −0.377649 0.503095i
\(691\) 693.870i 1.00415i 0.864823 + 0.502077i \(0.167431\pi\)
−0.864823 + 0.502077i \(0.832569\pi\)
\(692\) −681.144 + 167.147i −0.984311 + 0.241543i
\(693\) 91.5416 + 158.555i 0.132095 + 0.228795i
\(694\) 278.167 208.806i 0.400817 0.300874i
\(695\) 408.686i 0.588037i
\(696\) −109.147 289.135i −0.156821 0.415425i
\(697\) −130.868 226.670i −0.187759 0.325208i
\(698\) 116.553 273.173i 0.166982 0.391366i
\(699\) 410.007 236.717i 0.586562 0.338651i
\(700\) 608.415 + 176.905i 0.869164 + 0.252721i
\(701\) −65.7537 + 113.889i −0.0937999 + 0.162466i −0.909107 0.416562i \(-0.863235\pi\)
0.815307 + 0.579029i \(0.196568\pi\)
\(702\) −5.62166 46.4974i −0.00800807 0.0662357i
\(703\) 1131.63 + 322.907i 1.60971 + 0.459327i
\(704\) 111.228 + 126.330i 0.157995 + 0.179447i
\(705\) 178.621 309.381i 0.253364 0.438839i
\(706\) 273.469 640.946i 0.387350 0.907856i
\(707\) 1422.69 821.392i 2.01229 1.16180i
\(708\) −159.309 + 547.899i −0.225012 + 0.773868i
\(709\) 215.886 + 373.925i 0.304493 + 0.527398i 0.977148 0.212558i \(-0.0681796\pi\)
−0.672655 + 0.739956i \(0.734846\pi\)
\(710\) −32.4128 268.090i −0.0456518 0.377591i
\(711\) 498.943i 0.701748i
\(712\) 754.173 + 617.696i 1.05923 + 0.867550i
\(713\) 436.467 + 755.984i 0.612156 + 1.06029i
\(714\) −635.241 + 76.8023i −0.889693 + 0.107566i
\(715\) 8.06243i 0.0112761i
\(716\) −217.096 + 208.097i −0.303207 + 0.290638i
\(717\) −294.349 + 509.828i −0.410529 + 0.711057i
\(718\) 821.473 616.639i 1.14411 0.858829i
\(719\) −404.948 233.797i −0.563211 0.325170i 0.191223 0.981547i \(-0.438755\pi\)
−0.754433 + 0.656377i \(0.772088\pi\)
\(720\) −12.8509 + 303.450i −0.0178485 + 0.421459i
\(721\) −934.776 −1.29650
\(722\) −591.125 + 414.554i −0.818733 + 0.574175i
\(723\) 305.911i 0.423114i
\(724\) −114.806 + 394.845i −0.158572 + 0.545365i
\(725\) 119.439 206.875i 0.164744 0.285345i
\(726\) −353.019 + 264.994i −0.486253 + 0.365006i
\(727\) 398.635 + 230.152i 0.548329 + 0.316578i 0.748448 0.663194i \(-0.230800\pi\)
−0.200119 + 0.979772i \(0.564133\pi\)
\(728\) 56.9879 69.5791i 0.0782801 0.0955758i
\(729\) −512.028 −0.702370
\(730\) −228.128 + 27.5813i −0.312504 + 0.0377826i
\(731\) −299.551 + 172.946i −0.409782 + 0.236588i
\(732\) −364.069 + 348.977i −0.497362 + 0.476745i
\(733\) 1375.87 1.87704 0.938520 0.345225i \(-0.112197\pi\)
0.938520 + 0.345225i \(0.112197\pi\)
\(734\) −47.0622 389.257i −0.0641174 0.530322i
\(735\) 764.257 441.244i 1.03980 0.600332i
\(736\) −991.189 + 77.4646i −1.34672 + 0.105251i
\(737\) −32.8448 56.8888i −0.0445655 0.0771897i
\(738\) 86.4755 202.678i 0.117175 0.274631i
\(739\) −948.158 547.419i −1.28303 0.740757i −0.305628 0.952151i \(-0.598866\pi\)
−0.977401 + 0.211394i \(0.932200\pi\)
\(740\) 868.768 213.189i 1.17401 0.288093i
\(741\) 8.56332 30.0102i 0.0115564 0.0404996i
\(742\) −60.8803 503.548i −0.0820489 0.678636i
\(743\) 599.054 + 345.864i 0.806264 + 0.465497i 0.845657 0.533727i \(-0.179209\pi\)
−0.0393928 + 0.999224i \(0.512542\pi\)
\(744\) −70.4132 + 429.108i −0.0946414 + 0.576757i
\(745\) −73.4094 127.149i −0.0985361 0.170669i
\(746\) −333.806 + 782.361i −0.447461 + 1.04874i
\(747\) −103.273 + 59.6248i −0.138251 + 0.0798190i
\(748\) −31.3119 127.599i −0.0418608 0.170587i
\(749\) 2055.04 2.74371
\(750\) 412.985 310.008i 0.550647 0.413343i
\(751\) −417.980 + 241.321i −0.556564 + 0.321332i −0.751765 0.659431i \(-0.770797\pi\)
0.195201 + 0.980763i \(0.437464\pi\)
\(752\) −378.786 725.320i −0.503704 0.964522i
\(753\) 531.348 0.705641
\(754\) −20.3559 27.1176i −0.0269972 0.0359651i
\(755\) 174.448 + 100.718i 0.231057 + 0.133401i
\(756\) −1010.93 1054.65i −1.33721 1.39504i
\(757\) 429.714 744.287i 0.567654 0.983206i −0.429143 0.903236i \(-0.641184\pi\)
0.996797 0.0799692i \(-0.0254822\pi\)
\(758\) −43.1357 18.4045i −0.0569072 0.0242803i
\(759\) 158.079i 0.208272i
\(760\) −234.067 + 496.413i −0.307983 + 0.653175i
\(761\) −301.943 −0.396771 −0.198386 0.980124i \(-0.563570\pi\)
−0.198386 + 0.980124i \(0.563570\pi\)
\(762\) 350.740 822.049i 0.460288 1.07880i
\(763\) 22.5470 + 13.0175i 0.0295505 + 0.0170610i
\(764\) −426.254 + 408.584i −0.557924 + 0.534796i
\(765\) 118.539 205.315i 0.154952 0.268385i
\(766\) 114.936 86.2766i 0.150047 0.112633i
\(767\) 62.6025i 0.0816199i
\(768\) −406.435 283.006i −0.529212 0.368497i
\(769\) −155.833 269.911i −0.202644 0.350989i 0.746736 0.665121i \(-0.231620\pi\)
−0.949379 + 0.314132i \(0.898287\pi\)
\(770\) 150.974 + 201.124i 0.196070 + 0.261200i
\(771\) 162.544i 0.210822i
\(772\) 709.601 174.131i 0.919173 0.225558i
\(773\) −131.689 228.092i −0.170361 0.295073i 0.768185