Properties

Label 76.3.g.c.11.4
Level $76$
Weight $3$
Character 76.11
Analytic conductor $2.071$
Analytic rank $0$
Dimension $28$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 76 = 2^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 76.g (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.07085000914\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 11.4
Character \(\chi\) \(=\) 76.11
Dual form 76.3.g.c.7.4

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.69874 + 1.05559i) q^{2} +(3.11547 + 1.79872i) q^{3} +(1.77146 - 3.58635i) q^{4} +(4.52938 - 7.84512i) q^{5} +(-7.19109 + 0.233096i) q^{6} -2.81904i q^{7} +(0.776454 + 7.96223i) q^{8} +(1.97077 + 3.41347i) q^{9} +O(q^{10})\) \(q+(-1.69874 + 1.05559i) q^{2} +(3.11547 + 1.79872i) q^{3} +(1.77146 - 3.58635i) q^{4} +(4.52938 - 7.84512i) q^{5} +(-7.19109 + 0.233096i) q^{6} -2.81904i q^{7} +(0.776454 + 7.96223i) q^{8} +(1.97077 + 3.41347i) q^{9} +(0.586964 + 18.1080i) q^{10} +11.6740i q^{11} +(11.9698 - 7.98681i) q^{12} +(-2.20531 - 3.81970i) q^{13} +(2.97575 + 4.78883i) q^{14} +(28.2223 - 16.2941i) q^{15} +(-9.72384 - 12.7062i) q^{16} +(-9.59663 + 16.6219i) q^{17} +(-6.95104 - 3.71829i) q^{18} +(9.06982 + 16.6955i) q^{19} +(-20.1117 - 30.1413i) q^{20} +(5.07066 - 8.78264i) q^{21} +(-12.3230 - 19.8312i) q^{22} +(-25.2864 + 14.5991i) q^{23} +(-11.9028 + 26.2027i) q^{24} +(-28.5306 - 49.4164i) q^{25} +(7.77829 + 4.16080i) q^{26} -18.1975i q^{27} +(-10.1101 - 4.99383i) q^{28} +(15.9091 + 27.5555i) q^{29} +(-30.7425 + 57.4707i) q^{30} -23.9508i q^{31} +(29.9308 + 11.3202i) q^{32} +(-20.9983 + 36.3701i) q^{33} +(-1.24363 - 38.3664i) q^{34} +(-22.1157 - 12.7685i) q^{35} +(15.7330 - 1.02103i) q^{36} +19.3382 q^{37} +(-33.0309 - 18.7873i) q^{38} -15.8669i q^{39} +(65.9815 + 29.9726i) q^{40} +(2.87159 - 4.97375i) q^{41} +(0.657108 + 20.2720i) q^{42} +(-12.4494 - 7.18768i) q^{43} +(41.8672 + 20.6801i) q^{44} +35.7054 q^{45} +(27.5445 - 51.4922i) q^{46} +(-36.4249 + 21.0299i) q^{47} +(-7.43951 - 57.0761i) q^{48} +41.0530 q^{49} +(100.630 + 53.8292i) q^{50} +(-59.7960 + 34.5232i) q^{51} +(-17.6054 + 1.14255i) q^{52} +(16.2901 + 28.2152i) q^{53} +(19.2091 + 30.9129i) q^{54} +(91.5841 + 52.8761i) q^{55} +(22.4459 - 2.18885i) q^{56} +(-1.77365 + 68.3282i) q^{57} +(-56.1128 - 30.0161i) q^{58} +(9.13465 + 5.27389i) q^{59} +(-8.44182 - 130.080i) q^{60} +(-53.5230 - 92.7045i) q^{61} +(25.2822 + 40.6862i) q^{62} +(9.62270 - 5.55567i) q^{63} +(-62.7942 + 12.3646i) q^{64} -39.9547 q^{65} +(-2.72117 - 83.9490i) q^{66} +(-109.917 + 63.4605i) q^{67} +(42.6117 + 63.8619i) q^{68} -105.039 q^{69} +(51.0472 - 1.65467i) q^{70} +(-3.89373 - 2.24805i) q^{71} +(-25.6486 + 18.3421i) q^{72} +(-12.5643 + 21.7620i) q^{73} +(-32.8507 + 20.4132i) q^{74} -205.274i q^{75} +(75.9426 - 2.95220i) q^{76} +32.9096 q^{77} +(16.7489 + 26.9538i) q^{78} +(70.4767 + 40.6897i) q^{79} +(-143.724 + 18.7336i) q^{80} +(50.4691 - 87.4150i) q^{81} +(0.372131 + 11.4803i) q^{82} -138.888i q^{83} +(-22.5152 - 33.7433i) q^{84} +(86.9336 + 150.573i) q^{85} +(28.7356 - 0.931453i) q^{86} +114.464i q^{87} +(-92.9513 + 9.06434i) q^{88} +(-24.1722 - 41.8675i) q^{89} +(-60.6543 + 37.6902i) q^{90} +(-10.7679 + 6.21685i) q^{91} +(7.56364 + 116.548i) q^{92} +(43.0807 - 74.6179i) q^{93} +(39.6776 - 74.1742i) q^{94} +(172.058 + 4.46625i) q^{95} +(72.8868 + 89.1047i) q^{96} +(-26.7563 + 46.3434i) q^{97} +(-69.7385 + 43.3351i) q^{98} +(-39.8489 + 23.0068i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28q - 5q^{2} - 11q^{4} + 6q^{5} - 3q^{6} - 62q^{8} + 20q^{9} + O(q^{10}) \) \( 28q - 5q^{2} - 11q^{4} + 6q^{5} - 3q^{6} - 62q^{8} + 20q^{9} + 26q^{12} + 30q^{13} - 30q^{14} - 19q^{16} + 38q^{17} - 60q^{18} - 44q^{20} + 80q^{21} + 45q^{22} + 17q^{24} - 16q^{25} - 56q^{26} + 54q^{28} + 6q^{29} + 96q^{30} - 45q^{32} - 176q^{33} - 20q^{34} + 30q^{36} + 104q^{37} - 258q^{38} + 94q^{40} - 2q^{41} - 2q^{42} + 201q^{44} - 360q^{45} + 164q^{46} - 17q^{48} - 20q^{49} + 490q^{50} - 102q^{52} - 242q^{53} - 13q^{54} + 276q^{56} - 254q^{57} + 96q^{58} + 10q^{60} - 58q^{61} - 36q^{62} - 74q^{64} - 260q^{65} + 167q^{66} + 396q^{68} + 340q^{69} + 60q^{70} - 422q^{72} - 82q^{73} - 136q^{74} + 123q^{76} - 144q^{77} + 224q^{78} - 174q^{80} + 410q^{81} - 305q^{82} + 252q^{84} + 714q^{85} + 166q^{86} - 718q^{88} + 150q^{89} - 272q^{90} - 588q^{92} + 344q^{93} - 488q^{94} - 122q^{96} + 94q^{97} + 307q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/76\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(39\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.69874 + 1.05559i −0.849372 + 0.527795i
\(3\) 3.11547 + 1.79872i 1.03849 + 0.599572i 0.919405 0.393312i \(-0.128671\pi\)
0.119085 + 0.992884i \(0.462004\pi\)
\(4\) 1.77146 3.58635i 0.442866 0.896588i
\(5\) 4.52938 7.84512i 0.905876 1.56902i 0.0861387 0.996283i \(-0.472547\pi\)
0.819737 0.572740i \(-0.194119\pi\)
\(6\) −7.19109 + 0.233096i −1.19852 + 0.0388494i
\(7\) 2.81904i 0.402720i −0.979517 0.201360i \(-0.935464\pi\)
0.979517 0.201360i \(-0.0645361\pi\)
\(8\) 0.776454 + 7.96223i 0.0970567 + 0.995279i
\(9\) 1.97077 + 3.41347i 0.218974 + 0.379274i
\(10\) 0.586964 + 18.1080i 0.0586964 + 1.81080i
\(11\) 11.6740i 1.06128i 0.847599 + 0.530638i \(0.178048\pi\)
−0.847599 + 0.530638i \(0.821952\pi\)
\(12\) 11.9698 7.98681i 0.997481 0.665567i
\(13\) −2.20531 3.81970i −0.169639 0.293823i 0.768654 0.639665i \(-0.220927\pi\)
−0.938293 + 0.345841i \(0.887593\pi\)
\(14\) 2.97575 + 4.78883i 0.212554 + 0.342059i
\(15\) 28.2223 16.2941i 1.88149 1.08628i
\(16\) −9.72384 12.7062i −0.607740 0.794136i
\(17\) −9.59663 + 16.6219i −0.564508 + 0.977756i 0.432588 + 0.901592i \(0.357601\pi\)
−0.997095 + 0.0761642i \(0.975733\pi\)
\(18\) −6.95104 3.71829i −0.386169 0.206571i
\(19\) 9.06982 + 16.6955i 0.477359 + 0.878708i
\(20\) −20.1117 30.1413i −1.00559 1.50706i
\(21\) 5.07066 8.78264i 0.241460 0.418221i
\(22\) −12.3230 19.8312i −0.560136 0.901418i
\(23\) −25.2864 + 14.5991i −1.09941 + 0.634744i −0.936066 0.351825i \(-0.885561\pi\)
−0.163343 + 0.986569i \(0.552228\pi\)
\(24\) −11.9028 + 26.2027i −0.495949 + 1.09178i
\(25\) −28.5306 49.4164i −1.14122 1.97665i
\(26\) 7.77829 + 4.16080i 0.299165 + 0.160031i
\(27\) 18.1975i 0.673982i
\(28\) −10.1101 4.99383i −0.361074 0.178351i
\(29\) 15.9091 + 27.5555i 0.548591 + 0.950188i 0.998371 + 0.0570486i \(0.0181690\pi\)
−0.449780 + 0.893139i \(0.648498\pi\)
\(30\) −30.7425 + 57.4707i −1.02475 + 1.91569i
\(31\) 23.9508i 0.772606i −0.922372 0.386303i \(-0.873752\pi\)
0.922372 0.386303i \(-0.126248\pi\)
\(32\) 29.9308 + 11.3202i 0.935338 + 0.353755i
\(33\) −20.9983 + 36.3701i −0.636311 + 1.10212i
\(34\) −1.24363 38.3664i −0.0365774 1.12842i
\(35\) −22.1157 12.7685i −0.631877 0.364815i
\(36\) 15.7330 1.02103i 0.437029 0.0283620i
\(37\) 19.3382 0.522655 0.261327 0.965250i \(-0.415840\pi\)
0.261327 + 0.965250i \(0.415840\pi\)
\(38\) −33.0309 18.7873i −0.869233 0.494403i
\(39\) 15.8669i 0.406843i
\(40\) 65.9815 + 29.9726i 1.64954 + 0.749315i
\(41\) 2.87159 4.97375i 0.0700389 0.121311i −0.828879 0.559428i \(-0.811021\pi\)
0.898918 + 0.438117i \(0.144354\pi\)
\(42\) 0.657108 + 20.2720i 0.0156454 + 0.482666i
\(43\) −12.4494 7.18768i −0.289521 0.167155i 0.348205 0.937419i \(-0.386791\pi\)
−0.637726 + 0.770263i \(0.720125\pi\)
\(44\) 41.8672 + 20.6801i 0.951527 + 0.470002i
\(45\) 35.7054 0.793453
\(46\) 27.5445 51.4922i 0.598793 1.11940i
\(47\) −36.4249 + 21.0299i −0.774998 + 0.447445i −0.834655 0.550774i \(-0.814333\pi\)
0.0596567 + 0.998219i \(0.480999\pi\)
\(48\) −7.43951 57.0761i −0.154990 1.18909i
\(49\) 41.0530 0.837816
\(50\) 100.630 + 53.8292i 2.01259 + 1.07658i
\(51\) −59.7960 + 34.5232i −1.17247 + 0.676926i
\(52\) −17.6054 + 1.14255i −0.338566 + 0.0219720i
\(53\) 16.2901 + 28.2152i 0.307360 + 0.532362i 0.977784 0.209616i \(-0.0672212\pi\)
−0.670424 + 0.741978i \(0.733888\pi\)
\(54\) 19.2091 + 30.9129i 0.355724 + 0.572461i
\(55\) 91.5841 + 52.8761i 1.66517 + 0.961384i
\(56\) 22.4459 2.18885i 0.400819 0.0390867i
\(57\) −1.77365 + 68.3282i −0.0311166 + 1.19874i
\(58\) −56.1128 30.0161i −0.967462 0.517520i
\(59\) 9.13465 + 5.27389i 0.154825 + 0.0893880i 0.575411 0.817865i \(-0.304842\pi\)
−0.420586 + 0.907253i \(0.638176\pi\)
\(60\) −8.44182 130.080i −0.140697 2.16799i
\(61\) −53.5230 92.7045i −0.877426 1.51975i −0.854156 0.520016i \(-0.825926\pi\)
−0.0232694 0.999729i \(-0.507408\pi\)
\(62\) 25.2822 + 40.6862i 0.407777 + 0.656230i
\(63\) 9.62270 5.55567i 0.152741 0.0881852i
\(64\) −62.7942 + 12.3646i −0.981160 + 0.193197i
\(65\) −39.9547 −0.614687
\(66\) −2.72117 83.9490i −0.0412299 1.27195i
\(67\) −109.917 + 63.4605i −1.64055 + 0.947172i −0.659911 + 0.751344i \(0.729406\pi\)
−0.980638 + 0.195828i \(0.937261\pi\)
\(68\) 42.6117 + 63.8619i 0.626643 + 0.939145i
\(69\) −105.039 −1.52230
\(70\) 51.0472 1.65467i 0.729246 0.0236382i
\(71\) −3.89373 2.24805i −0.0548413 0.0316626i 0.472329 0.881423i \(-0.343414\pi\)
−0.527170 + 0.849760i \(0.676747\pi\)
\(72\) −25.6486 + 18.3421i −0.356231 + 0.254751i
\(73\) −12.5643 + 21.7620i −0.172114 + 0.298110i −0.939159 0.343484i \(-0.888393\pi\)
0.767045 + 0.641594i \(0.221726\pi\)
\(74\) −32.8507 + 20.4132i −0.443928 + 0.275854i
\(75\) 205.274i 2.73698i
\(76\) 75.9426 2.95220i 0.999245 0.0388448i
\(77\) 32.9096 0.427397
\(78\) 16.7489 + 26.9538i 0.214730 + 0.345561i
\(79\) 70.4767 + 40.6897i 0.892110 + 0.515060i 0.874632 0.484788i \(-0.161103\pi\)
0.0174777 + 0.999847i \(0.494436\pi\)
\(80\) −143.724 + 18.7336i −1.79655 + 0.234170i
\(81\) 50.4691 87.4150i 0.623075 1.07920i
\(82\) 0.372131 + 11.4803i 0.00453818 + 0.140004i
\(83\) 138.888i 1.67336i −0.547696 0.836678i \(-0.684495\pi\)
0.547696 0.836678i \(-0.315505\pi\)
\(84\) −22.5152 33.7433i −0.268038 0.401706i
\(85\) 86.9336 + 150.573i 1.02275 + 1.77145i
\(86\) 28.7356 0.931453i 0.334135 0.0108308i
\(87\) 114.464i 1.31568i
\(88\) −92.9513 + 9.06434i −1.05627 + 0.103004i
\(89\) −24.1722 41.8675i −0.271598 0.470421i 0.697673 0.716416i \(-0.254219\pi\)
−0.969271 + 0.245995i \(0.920885\pi\)
\(90\) −60.6543 + 37.6902i −0.673937 + 0.418780i
\(91\) −10.7679 + 6.21685i −0.118329 + 0.0683170i
\(92\) 7.56364 + 116.548i 0.0822135 + 1.26682i
\(93\) 43.0807 74.6179i 0.463233 0.802343i
\(94\) 39.6776 74.1742i 0.422102 0.789087i
\(95\) 172.058 + 4.46625i 1.81114 + 0.0470131i
\(96\) 72.8868 + 89.1047i 0.759237 + 0.928174i
\(97\) −26.7563 + 46.3434i −0.275839 + 0.477767i −0.970346 0.241719i \(-0.922289\pi\)
0.694508 + 0.719485i \(0.255622\pi\)
\(98\) −69.7385 + 43.3351i −0.711618 + 0.442195i
\(99\) −39.8489 + 23.0068i −0.402514 + 0.232392i
\(100\) −227.765 + 14.7814i −2.27765 + 0.147814i
\(101\) −15.2493 26.4126i −0.150984 0.261511i 0.780606 0.625024i \(-0.214911\pi\)
−0.931589 + 0.363513i \(0.881577\pi\)
\(102\) 65.1358 121.766i 0.638586 1.19379i
\(103\) 56.0986i 0.544646i −0.962206 0.272323i \(-0.912208\pi\)
0.962206 0.272323i \(-0.0877920\pi\)
\(104\) 28.7010 20.5250i 0.275972 0.197356i
\(105\) −45.9339 79.5598i −0.437465 0.757712i
\(106\) −57.4563 30.7348i −0.542041 0.289951i
\(107\) 8.87585i 0.0829519i −0.999140 0.0414759i \(-0.986794\pi\)
0.999140 0.0414759i \(-0.0132060\pi\)
\(108\) −65.2627 32.2362i −0.604284 0.298483i
\(109\) −2.29522 + 3.97543i −0.0210570 + 0.0364718i −0.876362 0.481653i \(-0.840036\pi\)
0.855305 + 0.518125i \(0.173370\pi\)
\(110\) −211.393 + 6.85223i −1.92176 + 0.0622930i
\(111\) 60.2477 + 34.7840i 0.542772 + 0.313369i
\(112\) −35.8192 + 27.4119i −0.319815 + 0.244749i
\(113\) 174.766 1.54660 0.773301 0.634039i \(-0.218604\pi\)
0.773301 + 0.634039i \(0.218604\pi\)
\(114\) −69.1136 117.944i −0.606259 1.03460i
\(115\) 264.500i 2.30000i
\(116\) 127.006 8.24235i 1.09488 0.0710548i
\(117\) 8.69228 15.0555i 0.0742930 0.128679i
\(118\) −21.0845 + 0.683445i −0.178682 + 0.00579191i
\(119\) 46.8577 + 27.0533i 0.393762 + 0.227339i
\(120\) 151.651 + 212.061i 1.26376 + 1.76717i
\(121\) −15.2830 −0.126306
\(122\) 188.780 + 100.983i 1.54737 + 0.827729i
\(123\) 17.8927 10.3304i 0.145469 0.0839868i
\(124\) −85.8959 42.4279i −0.692709 0.342161i
\(125\) −290.434 −2.32347
\(126\) −10.4820 + 19.5953i −0.0831905 + 0.155518i
\(127\) 145.773 84.1618i 1.14782 0.662691i 0.199461 0.979906i \(-0.436081\pi\)
0.948354 + 0.317214i \(0.102747\pi\)
\(128\) 93.6194 87.2892i 0.731402 0.681947i
\(129\) −25.8572 44.7860i −0.200443 0.347178i
\(130\) 67.8728 42.1757i 0.522098 0.324429i
\(131\) −106.509 61.4929i −0.813044 0.469411i 0.0349677 0.999388i \(-0.488867\pi\)
−0.848012 + 0.529977i \(0.822200\pi\)
\(132\) 93.2383 + 139.735i 0.706350 + 1.05860i
\(133\) 47.0652 25.5682i 0.353874 0.192242i
\(134\) 119.732 223.830i 0.893525 1.67037i
\(135\) −142.762 82.4234i −1.05749 0.610544i
\(136\) −139.798 63.5045i −1.02793 0.466945i
\(137\) 40.8518 + 70.7574i 0.298188 + 0.516477i 0.975721 0.219015i \(-0.0702844\pi\)
−0.677533 + 0.735492i \(0.736951\pi\)
\(138\) 178.434 110.878i 1.29300 0.803462i
\(139\) 16.6104 9.59003i 0.119499 0.0689930i −0.439059 0.898458i \(-0.644688\pi\)
0.558558 + 0.829465i \(0.311355\pi\)
\(140\) −84.9695 + 56.6958i −0.606925 + 0.404970i
\(141\) −151.308 −1.07310
\(142\) 8.98747 0.291325i 0.0632920 0.00205159i
\(143\) 44.5913 25.7448i 0.311827 0.180034i
\(144\) 24.2087 58.2329i 0.168116 0.404395i
\(145\) 288.234 1.98782
\(146\) −1.62821 50.2309i −0.0111521 0.344047i
\(147\) 127.899 + 73.8427i 0.870064 + 0.502332i
\(148\) 34.2570 69.3537i 0.231466 0.468606i
\(149\) 33.0378 57.2232i 0.221730 0.384048i −0.733603 0.679578i \(-0.762163\pi\)
0.955333 + 0.295530i \(0.0954962\pi\)
\(150\) 216.685 + 348.707i 1.44456 + 2.32472i
\(151\) 12.6319i 0.0836552i −0.999125 0.0418276i \(-0.986682\pi\)
0.999125 0.0418276i \(-0.0133180\pi\)
\(152\) −125.891 + 85.1793i −0.828229 + 0.560390i
\(153\) −75.6508 −0.494450
\(154\) −55.9050 + 34.7390i −0.363019 + 0.225578i
\(155\) −187.897 108.482i −1.21224 0.699885i
\(156\) −56.9042 28.1076i −0.364771 0.180177i
\(157\) 22.5170 39.0005i 0.143420 0.248411i −0.785362 0.619037i \(-0.787523\pi\)
0.928782 + 0.370625i \(0.120857\pi\)
\(158\) −162.673 + 5.27299i −1.02958 + 0.0333734i
\(159\) 117.205i 0.737137i
\(160\) 224.376 183.537i 1.40235 1.14711i
\(161\) 41.1555 + 71.2834i 0.255624 + 0.442754i
\(162\) 6.54030 + 201.770i 0.0403722 + 1.24550i
\(163\) 80.7645i 0.495488i 0.968826 + 0.247744i \(0.0796892\pi\)
−0.968826 + 0.247744i \(0.920311\pi\)
\(164\) −12.7507 19.1094i −0.0777481 0.116520i
\(165\) 190.218 + 329.468i 1.15284 + 1.99677i
\(166\) 146.609 + 235.936i 0.883188 + 1.42130i
\(167\) −164.130 + 94.7605i −0.982814 + 0.567428i −0.903119 0.429391i \(-0.858728\pi\)
−0.0796954 + 0.996819i \(0.525395\pi\)
\(168\) 73.8665 + 33.5544i 0.439682 + 0.199729i
\(169\) 74.7732 129.511i 0.442445 0.766338i
\(170\) −306.622 164.019i −1.80366 0.964820i
\(171\) −39.1149 + 63.8624i −0.228742 + 0.373464i
\(172\) −47.8312 + 31.9153i −0.278088 + 0.185554i
\(173\) −66.4142 + 115.033i −0.383897 + 0.664930i −0.991616 0.129223i \(-0.958752\pi\)
0.607718 + 0.794153i \(0.292085\pi\)
\(174\) −120.827 194.445i −0.694409 1.11750i
\(175\) −139.307 + 80.4288i −0.796039 + 0.459593i
\(176\) 148.332 113.516i 0.842797 0.644980i
\(177\) 18.9725 + 32.8613i 0.107189 + 0.185657i
\(178\) 85.2572 + 45.6062i 0.478973 + 0.256215i
\(179\) 71.2078i 0.397809i 0.980019 + 0.198904i \(0.0637384\pi\)
−0.980019 + 0.198904i \(0.936262\pi\)
\(180\) 63.2507 128.052i 0.351393 0.711400i
\(181\) −74.3514 128.780i −0.410781 0.711494i 0.584194 0.811614i \(-0.301411\pi\)
−0.994975 + 0.100120i \(0.968077\pi\)
\(182\) 11.7295 21.9273i 0.0644476 0.120480i
\(183\) 385.091i 2.10432i
\(184\) −135.875 190.001i −0.738452 1.03261i
\(185\) 87.5902 151.711i 0.473460 0.820058i
\(186\) 5.58284 + 172.232i 0.0300153 + 0.925980i
\(187\) −194.044 112.031i −1.03767 0.599098i
\(188\) 10.8954 + 167.886i 0.0579541 + 0.893012i
\(189\) −51.2995 −0.271426
\(190\) −296.998 + 174.036i −1.56315 + 0.915979i
\(191\) 158.757i 0.831187i −0.909550 0.415594i \(-0.863574\pi\)
0.909550 0.415594i \(-0.136426\pi\)
\(192\) −217.874 74.4275i −1.13476 0.387643i
\(193\) −154.059 + 266.837i −0.798231 + 1.38258i 0.122536 + 0.992464i \(0.460897\pi\)
−0.920767 + 0.390113i \(0.872436\pi\)
\(194\) −3.46736 106.969i −0.0178730 0.551388i
\(195\) −124.478 71.8672i −0.638346 0.368550i
\(196\) 72.7239 147.231i 0.371040 0.751176i
\(197\) 44.2927 0.224836 0.112418 0.993661i \(-0.464140\pi\)
0.112418 + 0.993661i \(0.464140\pi\)
\(198\) 43.4074 81.1467i 0.219229 0.409832i
\(199\) 198.448 114.574i 0.997225 0.575748i 0.0897989 0.995960i \(-0.471378\pi\)
0.907426 + 0.420212i \(0.138044\pi\)
\(200\) 371.312 265.536i 1.85656 1.32768i
\(201\) −456.590 −2.27159
\(202\) 53.7856 + 28.7713i 0.266265 + 0.142432i
\(203\) 77.6800 44.8485i 0.382660 0.220929i
\(204\) 17.8861 + 275.606i 0.0876770 + 1.35101i
\(205\) −26.0131 45.0560i −0.126893 0.219785i
\(206\) 59.2171 + 95.2971i 0.287461 + 0.462607i
\(207\) −99.6672 57.5429i −0.481484 0.277985i
\(208\) −27.0898 + 65.1632i −0.130239 + 0.313285i
\(209\) −194.903 + 105.881i −0.932552 + 0.506610i
\(210\) 162.012 + 86.6644i 0.771487 + 0.412688i
\(211\) 123.613 + 71.3683i 0.585846 + 0.338238i 0.763453 0.645863i \(-0.223502\pi\)
−0.177607 + 0.984101i \(0.556836\pi\)
\(212\) 130.047 8.43970i 0.613429 0.0398099i
\(213\) −8.08720 14.0074i −0.0379681 0.0657627i
\(214\) 9.36925 + 15.0778i 0.0437815 + 0.0704570i
\(215\) −112.776 + 65.1114i −0.524541 + 0.302844i
\(216\) 144.893 14.1295i 0.670800 0.0654144i
\(217\) −67.5183 −0.311144
\(218\) −0.297438 9.17604i −0.00136439 0.0420919i
\(219\) −78.2875 + 45.1993i −0.357477 + 0.206389i
\(220\) 351.870 234.785i 1.59941 1.06720i
\(221\) 84.6541 0.383050
\(222\) −139.063 + 4.50767i −0.626410 + 0.0203048i
\(223\) 79.7297 + 46.0319i 0.357532 + 0.206421i 0.667998 0.744163i \(-0.267152\pi\)
−0.310466 + 0.950585i \(0.600485\pi\)
\(224\) 31.9120 84.3762i 0.142464 0.376680i
\(225\) 112.454 194.776i 0.499796 0.865672i
\(226\) −296.883 + 184.481i −1.31364 + 0.816289i
\(227\) 36.7352i 0.161829i 0.996721 + 0.0809145i \(0.0257841\pi\)
−0.996721 + 0.0809145i \(0.974216\pi\)
\(228\) 241.907 + 127.402i 1.06100 + 0.558780i
\(229\) 45.3630 0.198092 0.0990459 0.995083i \(-0.468421\pi\)
0.0990459 + 0.995083i \(0.468421\pi\)
\(230\) −279.203 449.317i −1.21393 1.95355i
\(231\) 102.529 + 59.1950i 0.443848 + 0.256255i
\(232\) −207.050 + 148.068i −0.892458 + 0.638223i
\(233\) −96.8854 + 167.810i −0.415817 + 0.720216i −0.995514 0.0946161i \(-0.969838\pi\)
0.579697 + 0.814832i \(0.303171\pi\)
\(234\) 1.12644 + 34.7509i 0.00481383 + 0.148508i
\(235\) 381.010i 1.62132i
\(236\) 35.0957 23.4176i 0.148711 0.0992270i
\(237\) 146.379 + 253.535i 0.617631 + 1.06977i
\(238\) −108.156 + 3.50585i −0.454439 + 0.0147304i
\(239\) 172.376i 0.721238i 0.932713 + 0.360619i \(0.117435\pi\)
−0.932713 + 0.360619i \(0.882565\pi\)
\(240\) −481.465 200.156i −2.00611 0.833982i
\(241\) 136.476 + 236.384i 0.566291 + 0.980845i 0.996928 + 0.0783202i \(0.0249556\pi\)
−0.430637 + 0.902525i \(0.641711\pi\)
\(242\) 25.9619 16.1326i 0.107281 0.0666635i
\(243\) 172.634 99.6703i 0.710428 0.410166i
\(244\) −427.285 + 27.7297i −1.75117 + 0.113646i
\(245\) 185.945 322.066i 0.758958 1.31455i
\(246\) −19.4905 + 36.4360i −0.0792298 + 0.148114i
\(247\) 43.7699 71.4626i 0.177206 0.289322i
\(248\) 190.702 18.5967i 0.768958 0.0749866i
\(249\) 249.821 432.703i 1.00330 1.73776i
\(250\) 493.373 306.579i 1.97349 1.22632i
\(251\) 206.313 119.115i 0.821965 0.474562i −0.0291287 0.999576i \(-0.509273\pi\)
0.851094 + 0.525014i \(0.175940\pi\)
\(252\) −2.87833 44.3521i −0.0114220 0.176000i
\(253\) −170.430 295.194i −0.673638 1.16678i
\(254\) −158.790 + 296.845i −0.625157 + 1.16868i
\(255\) 625.476i 2.45285i
\(256\) −66.8938 + 247.106i −0.261304 + 0.965257i
\(257\) −70.1915 121.575i −0.273119 0.473055i 0.696540 0.717518i \(-0.254722\pi\)
−0.969659 + 0.244463i \(0.921388\pi\)
\(258\) 91.2003 + 48.7853i 0.353490 + 0.189090i
\(259\) 54.5153i 0.210484i
\(260\) −70.7782 + 143.292i −0.272224 + 0.551121i
\(261\) −62.7064 + 108.611i −0.240254 + 0.416133i
\(262\) 245.842 7.96888i 0.938330 0.0304156i
\(263\) 140.437 + 81.0814i 0.533981 + 0.308294i 0.742636 0.669695i \(-0.233575\pi\)
−0.208655 + 0.977989i \(0.566909\pi\)
\(264\) −305.891 138.953i −1.15868 0.526339i
\(265\) 295.135 1.11372
\(266\) −52.9622 + 93.1154i −0.199106 + 0.350058i
\(267\) 173.916i 0.651370i
\(268\) 32.8782 + 506.618i 0.122680 + 1.89037i
\(269\) 117.202 203.000i 0.435695 0.754647i −0.561657 0.827370i \(-0.689836\pi\)
0.997352 + 0.0727237i \(0.0231691\pi\)
\(270\) 329.521 10.6813i 1.22045 0.0395603i
\(271\) −107.762 62.2163i −0.397645 0.229581i 0.287822 0.957684i \(-0.407069\pi\)
−0.685467 + 0.728103i \(0.740402\pi\)
\(272\) 304.516 39.6918i 1.11955 0.145926i
\(273\) −44.7294 −0.163844
\(274\) −144.087 77.0759i −0.525867 0.281299i
\(275\) 576.888 333.067i 2.09778 1.21115i
\(276\) −186.072 + 376.706i −0.674174 + 1.36488i
\(277\) 240.837 0.869447 0.434724 0.900564i \(-0.356846\pi\)
0.434724 + 0.900564i \(0.356846\pi\)
\(278\) −18.0937 + 33.8248i −0.0650853 + 0.121672i
\(279\) 81.7552 47.2014i 0.293029 0.169181i
\(280\) 84.4940 186.005i 0.301764 0.664302i
\(281\) 155.780 + 269.819i 0.554378 + 0.960211i 0.997952 + 0.0639730i \(0.0203772\pi\)
−0.443574 + 0.896238i \(0.646290\pi\)
\(282\) 257.033 159.719i 0.911464 0.566378i
\(283\) −342.914 197.981i −1.21171 0.699581i −0.248578 0.968612i \(-0.579963\pi\)
−0.963132 + 0.269031i \(0.913297\pi\)
\(284\) −14.9599 + 9.98196i −0.0526757 + 0.0351478i
\(285\) 528.009 + 323.399i 1.85266 + 1.13473i
\(286\) −48.5733 + 90.8040i −0.169837 + 0.317496i
\(287\) −14.0212 8.09515i −0.0488544 0.0282061i
\(288\) 20.3457 + 124.477i 0.0706446 + 0.432213i
\(289\) −39.6907 68.7463i −0.137338 0.237876i
\(290\) −489.636 + 304.257i −1.68840 + 1.04916i
\(291\) −166.717 + 96.2542i −0.572911 + 0.330770i
\(292\) 55.7891 + 83.6107i 0.191059 + 0.286338i
\(293\) −455.316 −1.55398 −0.776990 0.629513i \(-0.783254\pi\)
−0.776990 + 0.629513i \(0.783254\pi\)
\(294\) −295.216 + 9.56930i −1.00414 + 0.0325486i
\(295\) 82.7486 47.7749i 0.280504 0.161949i
\(296\) 15.0152 + 153.975i 0.0507272 + 0.520187i
\(297\) 212.438 0.715280
\(298\) 4.28138 + 132.082i 0.0143670 + 0.443228i
\(299\) 111.529 + 64.3910i 0.373005 + 0.215355i
\(300\) −736.183 363.634i −2.45394 1.21211i
\(301\) −20.2624 + 35.0954i −0.0673168 + 0.116596i
\(302\) 13.3341 + 21.4584i 0.0441528 + 0.0710544i
\(303\) 109.717i 0.362102i
\(304\) 123.942 277.587i 0.407704 0.913114i
\(305\) −969.703 −3.17935
\(306\) 128.511 79.8562i 0.419972 0.260968i
\(307\) 306.496 + 176.956i 0.998358 + 0.576403i 0.907762 0.419485i \(-0.137789\pi\)
0.0905962 + 0.995888i \(0.471123\pi\)
\(308\) 58.2981 118.025i 0.189279 0.383199i
\(309\) 100.905 174.773i 0.326555 0.565610i
\(310\) 433.701 14.0582i 1.39904 0.0453491i
\(311\) 508.683i 1.63564i −0.575475 0.817819i \(-0.695183\pi\)
0.575475 0.817819i \(-0.304817\pi\)
\(312\) 126.336 12.3199i 0.404923 0.0394869i
\(313\) −227.534 394.101i −0.726946 1.25911i −0.958168 0.286206i \(-0.907606\pi\)
0.231222 0.972901i \(-0.425728\pi\)
\(314\) 2.91798 + 90.0206i 0.00929293 + 0.286690i
\(315\) 100.655i 0.319540i
\(316\) 270.774 180.674i 0.856881 0.571753i
\(317\) −299.225 518.273i −0.943927 1.63493i −0.757886 0.652387i \(-0.773768\pi\)
−0.186041 0.982542i \(-0.559566\pi\)
\(318\) −123.720 199.101i −0.389057 0.626104i
\(319\) −321.683 + 185.724i −1.00841 + 0.582206i
\(320\) −187.417 + 548.632i −0.585679 + 1.71448i
\(321\) 15.9651 27.6524i 0.0497356 0.0861446i
\(322\) −145.159 77.6490i −0.450803 0.241146i
\(323\) −364.549 9.46287i −1.12864 0.0292968i
\(324\) −224.097 335.852i −0.691657 1.03658i
\(325\) −125.837 + 217.956i −0.387191 + 0.670635i
\(326\) −85.2542 137.198i −0.261516 0.420854i
\(327\) −14.3013 + 8.25689i −0.0437350 + 0.0252504i
\(328\) 41.8318 + 19.0024i 0.127536 + 0.0579342i
\(329\) 59.2842 + 102.683i 0.180195 + 0.312107i
\(330\) −670.915 358.889i −2.03308 1.08754i
\(331\) 282.230i 0.852657i −0.904568 0.426329i \(-0.859807\pi\)
0.904568 0.426329i \(-0.140193\pi\)
\(332\) −498.103 246.036i −1.50031 0.741071i
\(333\) 38.1111 + 66.0104i 0.114448 + 0.198229i
\(334\) 178.787 334.228i 0.535289 1.00068i
\(335\) 1149.75i 3.43208i
\(336\) −160.900 + 20.9723i −0.478869 + 0.0624176i
\(337\) −39.3112 + 68.0891i −0.116651 + 0.202045i −0.918438 0.395564i \(-0.870549\pi\)
0.801788 + 0.597609i \(0.203882\pi\)
\(338\) 9.68989 + 298.936i 0.0286683 + 0.884426i
\(339\) 544.478 + 314.355i 1.60613 + 0.927300i
\(340\) 694.009 45.0393i 2.04120 0.132469i
\(341\) 279.602 0.819948
\(342\) −0.966261 149.775i −0.00282533 0.437939i
\(343\) 253.863i 0.740126i
\(344\) 47.5635 104.706i 0.138266 0.304378i
\(345\) −475.760 + 824.041i −1.37901 + 2.38852i
\(346\) −8.60664 265.518i −0.0248747 0.767392i
\(347\) −155.605 89.8386i −0.448429 0.258901i 0.258737 0.965948i \(-0.416694\pi\)
−0.707167 + 0.707047i \(0.750027\pi\)
\(348\) 410.509 + 202.769i 1.17962 + 0.582670i
\(349\) −93.3245 −0.267405 −0.133703 0.991021i \(-0.542687\pi\)
−0.133703 + 0.991021i \(0.542687\pi\)
\(350\) 151.747 283.679i 0.433562 0.810511i
\(351\) −69.5091 + 40.1311i −0.198032 + 0.114334i
\(352\) −132.152 + 349.413i −0.375431 + 0.992651i
\(353\) 474.560 1.34436 0.672182 0.740386i \(-0.265357\pi\)
0.672182 + 0.740386i \(0.265357\pi\)
\(354\) −66.9174 35.7958i −0.189032 0.101118i
\(355\) −35.2724 + 20.3645i −0.0993588 + 0.0573648i
\(356\) −192.972 + 12.5233i −0.542055 + 0.0351779i
\(357\) 97.3225 + 168.567i 0.272612 + 0.472178i
\(358\) −75.1662 120.964i −0.209961 0.337888i
\(359\) −409.552 236.455i −1.14081 0.658649i −0.194182 0.980966i \(-0.562205\pi\)
−0.946632 + 0.322316i \(0.895539\pi\)
\(360\) 27.7236 + 284.294i 0.0770099 + 0.789707i
\(361\) −196.477 + 302.850i −0.544257 + 0.838919i
\(362\) 262.243 + 140.280i 0.724429 + 0.387515i
\(363\) −47.6137 27.4898i −0.131167 0.0757294i
\(364\) 3.22088 + 49.6304i 0.00884858 + 0.136347i
\(365\) 113.817 + 197.137i 0.311828 + 0.540101i
\(366\) 406.498 + 654.170i 1.11065 + 1.78735i
\(367\) 48.5847 28.0504i 0.132383 0.0764316i −0.432346 0.901708i \(-0.642314\pi\)
0.564729 + 0.825276i \(0.308981\pi\)
\(368\) 431.380 + 179.334i 1.17223 + 0.487321i
\(369\) 22.6370 0.0613468
\(370\) 11.3508 + 350.177i 0.0306779 + 0.946424i
\(371\) 79.5399 45.9224i 0.214393 0.123780i
\(372\) −191.290 286.685i −0.514221 0.770659i
\(373\) −491.645 −1.31808 −0.659042 0.752106i \(-0.729038\pi\)
−0.659042 + 0.752106i \(0.729038\pi\)
\(374\) 447.890 14.5182i 1.19757 0.0388187i
\(375\) −904.838 522.408i −2.41290 1.39309i
\(376\) −195.727 273.695i −0.520552 0.727911i
\(377\) 70.1691 121.536i 0.186125 0.322378i
\(378\) 87.1448 54.1512i 0.230542 0.143257i
\(379\) 401.210i 1.05860i 0.848434 + 0.529301i \(0.177546\pi\)
−0.848434 + 0.529301i \(0.822454\pi\)
\(380\) 320.813 609.150i 0.844244 1.60303i
\(381\) 605.533 1.58933
\(382\) 167.582 + 269.687i 0.438696 + 0.705987i
\(383\) −74.9428 43.2682i −0.195673 0.112972i 0.398963 0.916967i \(-0.369370\pi\)
−0.594636 + 0.803995i \(0.702704\pi\)
\(384\) 448.677 103.552i 1.16843 0.269667i
\(385\) 149.060 258.179i 0.387169 0.670596i
\(386\) −19.9645 615.911i −0.0517215 1.59562i
\(387\) 56.6609i 0.146411i
\(388\) 118.806 + 178.053i 0.306200 + 0.458900i
\(389\) 303.042 + 524.884i 0.779028 + 1.34932i 0.932502 + 0.361164i \(0.117621\pi\)
−0.153474 + 0.988153i \(0.549046\pi\)
\(390\) 287.318 9.31329i 0.736712 0.0238802i
\(391\) 560.409i 1.43327i
\(392\) 31.8757 + 326.873i 0.0813157 + 0.833861i
\(393\) −221.217 383.158i −0.562892 0.974958i
\(394\) −75.2419 + 46.7549i −0.190969 + 0.118667i
\(395\) 638.431 368.598i 1.61628 0.933160i
\(396\) 11.9196 + 183.668i 0.0300999 + 0.463808i
\(397\) −85.6583 + 148.365i −0.215764 + 0.373714i −0.953509 0.301366i \(-0.902558\pi\)
0.737745 + 0.675080i \(0.235891\pi\)
\(398\) −216.169 + 404.111i −0.543138 + 1.01535i
\(399\) 192.620 + 4.99998i 0.482757 + 0.0125313i
\(400\) −350.467 + 843.031i −0.876166 + 2.10758i
\(401\) 133.478 231.191i 0.332864 0.576537i −0.650208 0.759756i \(-0.725318\pi\)
0.983072 + 0.183219i \(0.0586517\pi\)
\(402\) 775.629 481.971i 1.92943 1.19893i
\(403\) −91.4849 + 52.8188i −0.227010 + 0.131064i
\(404\) −121.739 + 7.90051i −0.301333 + 0.0195557i
\(405\) −457.187 791.871i −1.12886 1.95524i
\(406\) −84.6167 + 158.184i −0.208416 + 0.389617i
\(407\) 225.755i 0.554681i
\(408\) −321.311 449.304i −0.787527 1.10124i
\(409\) 62.1792 + 107.697i 0.152027 + 0.263319i 0.931973 0.362529i \(-0.118087\pi\)
−0.779945 + 0.625848i \(0.784753\pi\)
\(410\) 91.7502 + 49.0795i 0.223781 + 0.119706i
\(411\) 293.923i 0.715141i
\(412\) −201.189 99.3765i −0.488323 0.241205i
\(413\) 14.8673 25.7510i 0.0359984 0.0623510i
\(414\) 230.051 7.45700i 0.555678 0.0180121i
\(415\) −1089.60 629.079i −2.62553 1.51585i
\(416\) −22.7670 139.291i −0.0547284 0.334835i
\(417\) 68.9990 0.165465
\(418\) 219.324 385.603i 0.524697 0.922496i
\(419\) 248.914i 0.594068i 0.954867 + 0.297034i \(0.0959974\pi\)
−0.954867 + 0.297034i \(0.904003\pi\)
\(420\) −366.700 + 23.7978i −0.873094 + 0.0566615i
\(421\) −162.941 + 282.223i −0.387034 + 0.670362i −0.992049 0.125852i \(-0.959834\pi\)
0.605015 + 0.796214i \(0.293167\pi\)
\(422\) −285.323 + 9.24864i −0.676121 + 0.0219162i
\(423\) −143.570 82.8901i −0.339409 0.195958i
\(424\) −212.008 + 151.613i −0.500018 + 0.357578i
\(425\) 1095.19 2.57692
\(426\) 28.5242 + 15.2583i 0.0669582 + 0.0358176i
\(427\) −261.338 + 150.883i −0.612032 + 0.353357i
\(428\) −31.8319 15.7232i −0.0743736 0.0367365i
\(429\) 185.231 0.431773
\(430\) 122.847 229.653i 0.285691 0.534077i
\(431\) −401.407 + 231.752i −0.931338 + 0.537708i −0.887235 0.461319i \(-0.847377\pi\)
−0.0441038 + 0.999027i \(0.514043\pi\)
\(432\) −231.221 + 176.950i −0.535233 + 0.409606i
\(433\) 138.967 + 240.698i 0.320940 + 0.555884i 0.980682 0.195608i \(-0.0626679\pi\)
−0.659742 + 0.751492i \(0.729335\pi\)
\(434\) 114.696 71.2715i 0.264277 0.164220i
\(435\) 897.985 + 518.452i 2.06433 + 1.19184i
\(436\) 10.1914 + 15.2738i 0.0233748 + 0.0350316i
\(437\) −473.082 289.757i −1.08257 0.663059i
\(438\) 85.2785 159.421i 0.194700 0.363976i
\(439\) 675.968 + 390.271i 1.53979 + 0.888999i 0.998850 + 0.0479384i \(0.0152651\pi\)
0.540941 + 0.841061i \(0.318068\pi\)
\(440\) −349.901 + 770.270i −0.795230 + 1.75061i
\(441\) 80.9058 + 140.133i 0.183460 + 0.317762i
\(442\) −143.806 + 89.3599i −0.325352 + 0.202172i
\(443\) −563.843 + 325.535i −1.27278 + 0.734842i −0.975511 0.219950i \(-0.929411\pi\)
−0.297273 + 0.954792i \(0.596077\pi\)
\(444\) 231.474 154.451i 0.521338 0.347862i
\(445\) −437.940 −0.984135
\(446\) −184.031 + 5.96529i −0.412626 + 0.0133751i
\(447\) 205.857 118.851i 0.460529 0.265887i
\(448\) 34.8563 + 177.020i 0.0778043 + 0.395133i
\(449\) 170.370 0.379444 0.189722 0.981838i \(-0.439241\pi\)
0.189722 + 0.981838i \(0.439241\pi\)
\(450\) 14.5730 + 449.580i 0.0323843 + 0.999067i
\(451\) 58.0637 + 33.5231i 0.128744 + 0.0743306i
\(452\) 309.592 626.773i 0.684937 1.38667i
\(453\) 22.7213 39.3544i 0.0501574 0.0868751i
\(454\) −38.7773 62.4037i −0.0854125 0.137453i
\(455\) 112.634i 0.247547i
\(456\) −545.422 + 38.9315i −1.19610 + 0.0853761i
\(457\) 131.115 0.286903 0.143451 0.989657i \(-0.454180\pi\)
0.143451 + 0.989657i \(0.454180\pi\)
\(458\) −77.0602 + 47.8847i −0.168254 + 0.104552i
\(459\) 302.476 + 174.635i 0.658990 + 0.380468i
\(460\) 948.589 + 468.551i 2.06215 + 1.01859i
\(461\) 41.3870 71.6845i 0.0897767 0.155498i −0.817640 0.575730i \(-0.804718\pi\)
0.907417 + 0.420232i \(0.138051\pi\)
\(462\) −236.656 + 7.67110i −0.512242 + 0.0166041i
\(463\) 211.533i 0.456874i −0.973559 0.228437i \(-0.926639\pi\)
0.973559 0.228437i \(-0.0733615\pi\)
\(464\) 195.426 470.089i 0.421178 1.01312i
\(465\) −390.257 675.946i −0.839263 1.45365i
\(466\) −12.5554 387.338i −0.0269429 0.831197i
\(467\) 522.505i 1.11885i 0.828879 + 0.559427i \(0.188979\pi\)
−0.828879 + 0.559427i \(0.811021\pi\)
\(468\) −38.5962 57.8438i −0.0824705 0.123598i
\(469\) 178.898 + 309.860i 0.381445 + 0.660682i
\(470\) −402.190 647.239i −0.855724 1.37710i
\(471\) 140.302 81.0033i 0.297881 0.171982i
\(472\) −34.8993 + 76.8271i −0.0739393 + 0.162769i
\(473\) 83.9092 145.335i 0.177398 0.307262i
\(474\) −516.289 276.176i −1.08922 0.582649i
\(475\) 566.262 924.528i 1.19213 1.94638i
\(476\) 180.029 120.124i 0.378213 0.252362i
\(477\) −64.2078 + 111.211i −0.134607 + 0.233147i
\(478\) −181.958 292.823i −0.380666 0.612600i
\(479\) 428.067 247.144i 0.893668 0.515959i 0.0185273 0.999828i \(-0.494102\pi\)
0.875140 + 0.483869i \(0.160769\pi\)
\(480\) 1029.17 168.216i 2.14410 0.350451i
\(481\) −42.6467 73.8663i −0.0886626 0.153568i
\(482\) −481.362 257.493i −0.998677 0.534217i
\(483\) 296.108i 0.613061i
\(484\) −27.0732 + 54.8102i −0.0559364 + 0.113244i
\(485\) 242.379 + 419.813i 0.499751 + 0.865594i
\(486\) −188.050 + 351.545i −0.386934 + 0.723344i
\(487\) 872.042i 1.79064i −0.445422 0.895321i \(-0.646946\pi\)
0.445422 0.895321i \(-0.353054\pi\)
\(488\) 696.576 498.143i 1.42741 1.02078i
\(489\) −145.273 + 251.619i −0.297081 + 0.514559i
\(490\) 24.0966 + 743.388i 0.0491768 + 1.51712i
\(491\) −31.5500 18.2154i −0.0642565 0.0370985i 0.467528 0.883979i \(-0.345145\pi\)
−0.531784 + 0.846880i \(0.678478\pi\)
\(492\) −5.35205 82.4695i −0.0108782 0.167621i
\(493\) −610.697 −1.23874
\(494\) 1.08126 + 167.600i 0.00218878 + 0.339271i
\(495\) 416.826i 0.842072i
\(496\) −304.323 + 232.894i −0.613554 + 0.469544i
\(497\) −6.33734 + 10.9766i −0.0127512 + 0.0220857i
\(498\) 32.3744 + 998.760i 0.0650088 + 2.00554i
\(499\) −61.2620 35.3696i −0.122769 0.0708810i 0.437358 0.899288i \(-0.355914\pi\)
−0.560127 + 0.828407i \(0.689248\pi\)
\(500\) −514.493 + 1041.60i −1.02899 + 2.08320i
\(501\) −681.789 −1.36086
\(502\) −224.737 + 420.128i −0.447683 + 0.836908i
\(503\) −236.493 + 136.539i −0.470166 + 0.271450i −0.716309 0.697783i \(-0.754170\pi\)
0.246143 + 0.969233i \(0.420837\pi\)
\(504\) 51.7071 + 72.3045i 0.102593 + 0.143461i
\(505\) −276.280 −0.547089
\(506\) 601.122 + 321.555i 1.18799 + 0.635484i
\(507\) 465.907 268.992i 0.918950 0.530556i
\(508\) −43.6033 671.881i −0.0858333 1.32260i
\(509\) 240.778 + 417.040i 0.473041 + 0.819331i 0.999524 0.0308545i \(-0.00982285\pi\)
−0.526483 + 0.850186i \(0.676490\pi\)
\(510\) −660.245 1062.52i −1.29460 2.08338i
\(511\) 61.3481 + 35.4193i 0.120055 + 0.0693137i
\(512\) −147.207 490.382i −0.287513 0.957777i
\(513\) 303.816 165.048i 0.592233 0.321731i
\(514\) 247.571 + 132.432i 0.481655 + 0.257649i
\(515\) −440.100 254.092i −0.854563 0.493382i
\(516\) −206.423 + 13.3963i −0.400045 + 0.0259619i
\(517\) −245.504 425.225i −0.474863 0.822486i
\(518\) 57.5457 + 92.6075i 0.111092 + 0.178779i
\(519\) −413.823 + 238.921i −0.797347 + 0.460348i
\(520\) −31.0230 318.128i −0.0596595 0.611785i
\(521\) 136.712 0.262403 0.131202 0.991356i \(-0.458116\pi\)
0.131202 + 0.991356i \(0.458116\pi\)
\(522\) −8.12614 250.694i −0.0155673 0.480257i
\(523\) 22.0583 12.7354i 0.0421764 0.0243506i −0.478764 0.877944i \(-0.658915\pi\)
0.520940 + 0.853593i \(0.325582\pi\)
\(524\) −409.211 + 273.046i −0.780938 + 0.521080i
\(525\) −578.675 −1.10224
\(526\) −324.155 + 10.5074i −0.616265 + 0.0199760i
\(527\) 398.106 + 229.847i 0.755420 + 0.436142i
\(528\) 666.309 86.8491i 1.26195 0.164487i
\(529\) 161.768 280.191i 0.305800 0.529661i
\(530\) −501.360 + 311.542i −0.945961 + 0.587815i
\(531\) 41.5744i 0.0782946i
\(532\) −8.32239 214.085i −0.0156436 0.402416i
\(533\) −25.3310 −0.0475253
\(534\) 183.584 + 295.438i 0.343789 + 0.553255i
\(535\) −69.6321 40.2021i −0.130153 0.0751441i
\(536\) −590.632 825.909i −1.10193 1.54087i
\(537\) −128.083 + 221.846i −0.238515 + 0.413121i
\(538\) 15.1883 + 468.562i 0.0282309 + 0.870933i
\(539\) 479.254i 0.889154i
\(540\) −548.496 + 365.983i −1.01573 + 0.677747i
\(541\) 311.445 + 539.439i 0.575685 + 0.997115i 0.995967 + 0.0897216i \(0.0285977\pi\)
−0.420282 + 0.907393i \(0.638069\pi\)
\(542\) 248.735 8.06263i 0.458920 0.0148757i
\(543\) 534.949i 0.985172i
\(544\) −475.397 + 388.870i −0.873892 + 0.714835i
\(545\) 20.7918 + 36.0125i 0.0381501 + 0.0660779i
\(546\) 75.9838 47.2159i 0.139165 0.0864760i
\(547\) 765.593 442.015i 1.39962 0.808072i 0.405269 0.914197i \(-0.367178\pi\)
0.994353 + 0.106125i \(0.0338445\pi\)
\(548\) 326.128 21.1649i 0.595124 0.0386220i
\(549\) 210.962 365.398i 0.384267 0.665569i
\(550\) −628.404 + 1174.75i −1.14255 + 2.13591i
\(551\) −315.758 + 515.534i −0.573063 + 0.935633i
\(552\) −81.5577 836.342i −0.147749 1.51511i
\(553\) 114.706 198.677i 0.207425 0.359271i
\(554\) −409.120 + 254.225i −0.738484 + 0.458890i
\(555\) 545.769 315.100i 0.983368 0.567748i
\(556\) −4.96849 76.5592i −0.00893613 0.137696i
\(557\) 309.026 + 535.249i 0.554805 + 0.960950i 0.997919 + 0.0644847i \(0.0205404\pi\)
−0.443114 + 0.896465i \(0.646126\pi\)
\(558\) −89.0559 + 166.483i −0.159598 + 0.298357i
\(559\) 63.4041i 0.113424i
\(560\) 52.8107 + 405.165i 0.0943048 + 0.723509i
\(561\) −403.025 698.061i −0.718405 1.24431i
\(562\) −549.449 293.914i −0.977667 0.522979i
\(563\) 169.277i 0.300670i −0.988635 0.150335i \(-0.951965\pi\)
0.988635 0.150335i \(-0.0480352\pi\)
\(564\) −268.036 + 542.642i −0.475241 + 0.962131i
\(565\) 791.582 1371.06i 1.40103 2.42666i
\(566\) 791.510 25.6565i 1.39843 0.0453294i
\(567\) −246.426 142.274i −0.434615 0.250925i
\(568\) 14.8762 32.7483i 0.0261904 0.0576555i
\(569\) −403.875 −0.709798 −0.354899 0.934905i \(-0.615485\pi\)
−0.354899 + 0.934905i \(0.615485\pi\)
\(570\) −1238.33 + 7.98898i −2.17251 + 0.0140158i
\(571\) 175.870i 0.308003i −0.988071 0.154001i \(-0.950784\pi\)
0.988071 0.154001i \(-0.0492160\pi\)
\(572\) −13.3381 205.526i −0.0233184 0.359311i
\(573\) 285.559 494.602i 0.498357 0.863180i
\(574\) 32.3636 1.04905i 0.0563826 0.00182762i
\(575\) 1442.87 + 833.042i 2.50934 + 1.44877i
\(576\) −165.959 189.978i −0.288123 0.329823i
\(577\) −386.929 −0.670587 −0.335293 0.942114i \(-0.608835\pi\)
−0.335293 + 0.942114i \(0.608835\pi\)
\(578\) 139.992 + 74.8853i 0.242201 + 0.129559i
\(579\) −959.929 + 554.216i −1.65791 + 0.957194i
\(580\) 510.596 1033.71i 0.880338 1.78226i
\(581\) −391.532 −0.673894
\(582\) 181.605 339.496i 0.312036 0.583327i
\(583\) −329.385 + 190.171i −0.564983 + 0.326193i
\(584\) −183.030 83.1428i −0.313407 0.142368i
\(585\) −78.7413 136.384i −0.134601 0.233135i
\(586\) 773.465 480.627i 1.31991 0.820182i
\(587\) −643.631 371.601i −1.09648 0.633050i −0.161182 0.986925i \(-0.551531\pi\)
−0.935293 + 0.353874i \(0.884864\pi\)
\(588\) 491.395 327.883i 0.835706 0.557623i
\(589\) 399.869 217.229i 0.678895 0.368810i
\(590\) −90.1380 + 168.506i −0.152776 + 0.285603i
\(591\) 137.992 + 79.6700i 0.233490 + 0.134805i
\(592\) −188.042 245.715i −0.317638 0.415059i
\(593\) 485.862 + 841.537i 0.819328 + 1.41912i 0.906178 + 0.422897i \(0.138987\pi\)
−0.0868496 + 0.996221i \(0.527680\pi\)
\(594\) −360.878 + 224.248i −0.607539 + 0.377521i
\(595\) 424.473 245.069i 0.713399 0.411881i
\(596\) −146.697 219.854i −0.246136 0.368882i
\(597\) 824.344 1.38081
\(598\) −257.429 + 8.34445i −0.430483 + 0.0139539i
\(599\) 256.016 147.811i 0.427405 0.246762i −0.270836 0.962626i \(-0.587300\pi\)
0.698241 + 0.715863i \(0.253967\pi\)
\(600\) 1634.44 159.385i 2.72406 0.265642i
\(601\) 790.283 1.31495 0.657474 0.753477i \(-0.271625\pi\)
0.657474 + 0.753477i \(0.271625\pi\)
\(602\) −2.62580 81.0069i −0.00436180 0.134563i
\(603\) −433.240 250.132i −0.718475 0.414812i
\(604\) −45.3026 22.3770i −0.0750043 0.0370480i
\(605\) −69.2225 + 119.897i −0.114417 + 0.198177i
\(606\) 115.816 + 186.381i 0.191116 + 0.307559i
\(607\) 370.431i 0.610265i 0.952310 + 0.305133i \(0.0987008\pi\)
−0.952310 + 0.305133i \(0.901299\pi\)
\(608\) 82.4721 + 602.381i 0.135645 + 0.990758i
\(609\) 322.679 0.529851
\(610\) 1647.28 1023.61i 2.70045 1.67805i
\(611\) 160.656 + 92.7549i 0.262940 + 0.151808i
\(612\) −134.013 + 271.311i −0.218975 + 0.443318i
\(613\) −180.132 + 311.998i −0.293854 + 0.508969i −0.974718 0.223441i \(-0.928271\pi\)
0.680864 + 0.732410i \(0.261604\pi\)
\(614\) −707.451 + 22.9317i −1.15220 + 0.0373481i
\(615\) 187.161i 0.304326i
\(616\) 25.5528 + 262.034i 0.0414818 + 0.425379i
\(617\) −11.3914 19.7305i −0.0184626 0.0319782i 0.856646 0.515904i \(-0.172544\pi\)
−0.875109 + 0.483926i \(0.839211\pi\)
\(618\) 13.0764 + 403.410i 0.0211592 + 0.652767i
\(619\) 362.401i 0.585462i 0.956195 + 0.292731i \(0.0945641\pi\)
−0.956195 + 0.292731i \(0.905436\pi\)
\(620\) −721.907 + 481.691i −1.16437 + 0.776922i
\(621\) 265.667 + 460.150i 0.427806 + 0.740982i
\(622\) 536.961 + 864.123i 0.863281 + 1.38927i
\(623\) −118.026 + 68.1424i −0.189448 + 0.109378i
\(624\) −201.607 + 154.287i −0.323089 + 0.247255i
\(625\) −602.221 + 1043.08i −0.963554 + 1.66892i
\(626\) 802.531 + 429.293i 1.28200 + 0.685772i
\(627\) −797.666 20.7056i −1.27219 0.0330233i
\(628\) −99.9817 149.842i −0.159207 0.238602i
\(629\) −185.582 + 321.437i −0.295043 + 0.511029i
\(630\) 106.250 + 170.987i 0.168651 + 0.271408i
\(631\) −667.833 + 385.574i −1.05837 + 0.611052i −0.924982 0.380011i \(-0.875920\pi\)
−0.133391 + 0.991063i \(0.542587\pi\)
\(632\) −269.259 + 592.745i −0.426043 + 0.937888i
\(633\) 256.743 + 444.691i 0.405597 + 0.702514i
\(634\) 1055.39 + 564.554i 1.66465 + 0.890464i
\(635\) 1524.80i 2.40126i
\(636\) 420.338 + 207.624i 0.660908 + 0.326453i
\(637\) −90.5345 156.810i −0.142126 0.246170i
\(638\) 350.409 655.063i 0.549231 1.02674i
\(639\) 17.7215i 0.0277332i
\(640\) −260.756 1129.82i −0.407432 1.76535i
\(641\) 22.1679 38.3960i 0.0345834 0.0599001i −0.848216 0.529651i \(-0.822323\pi\)
0.882799 + 0.469751i \(0.155656\pi\)
\(642\) 2.06893 + 63.8270i 0.00322263 + 0.0994191i
\(643\) 1034.78 + 597.433i 1.60931 + 0.929133i 0.989525 + 0.144358i \(0.0461118\pi\)
0.619781 + 0.784775i \(0.287222\pi\)
\(644\) 328.553 21.3222i 0.510175 0.0331090i
\(645\) −468.468 −0.726307
\(646\) 629.265 368.739i 0.974094 0.570804i
\(647\) 143.888i 0.222393i 0.993798 + 0.111196i \(0.0354683\pi\)
−0.993798 + 0.111196i \(0.964532\pi\)
\(648\) 735.205 + 333.973i 1.13458 + 0.515390i
\(649\) −61.5676 + 106.638i −0.0948653 + 0.164312i
\(650\) −16.3073 503.085i −0.0250881 0.773976i
\(651\) −210.351 121.446i −0.323120 0.186553i
\(652\) 289.650 + 143.071i 0.444249 + 0.219435i
\(653\) −604.063 −0.925058 −0.462529 0.886604i \(-0.653058\pi\)
−0.462529 + 0.886604i \(0.653058\pi\)
\(654\) 15.5784 29.1227i 0.0238203 0.0445301i
\(655\) −964.837 + 557.049i −1.47303 + 0.850457i
\(656\) −91.1203 + 11.8769i −0.138903 + 0.0181051i
\(657\) −99.0453 −0.150754
\(658\) −209.100 111.853i −0.317781 0.169989i
\(659\) −640.313 + 369.685i −0.971643 + 0.560978i −0.899737 0.436433i \(-0.856242\pi\)
−0.0719062 + 0.997411i \(0.522908\pi\)
\(660\) 1518.55 98.5500i 2.30084 0.149318i
\(661\) −364.477 631.293i −0.551403 0.955058i −0.998174 0.0604096i \(-0.980759\pi\)
0.446771 0.894649i \(-0.352574\pi\)
\(662\) 297.918 + 479.436i 0.450028 + 0.724223i
\(663\) 263.737 + 152.269i 0.397794 + 0.229666i
\(664\) 1105.86 107.840i 1.66545 0.162410i
\(665\) 12.5905 485.040i 0.0189331 0.729383i
\(666\) −134.421 71.9051i −0.201833 0.107966i
\(667\) −804.570 464.519i −1.20625 0.696430i
\(668\) 49.0944 + 756.492i 0.0734945 + 1.13247i
\(669\) 165.597 + 286.822i 0.247529 + 0.428733i
\(670\) −1213.66 1953.13i −1.81143 2.91511i
\(671\) 1082.24 624.829i 1.61287 0.931190i
\(672\) 251.190 205.471i 0.373794 0.305760i
\(673\) −630.954 −0.937525 −0.468762 0.883324i \(-0.655300\pi\)
−0.468762 + 0.883324i \(0.655300\pi\)
\(674\) −5.09435 157.162i −0.00755839 0.233179i
\(675\) −899.255 + 519.185i −1.33223 + 0.769163i
\(676\) −332.014 497.587i −0.491145 0.736076i
\(677\) −1243.47 −1.83673 −0.918365 0.395734i \(-0.870490\pi\)
−0.918365 + 0.395734i \(0.870490\pi\)
\(678\) −1256.76 + 40.7373i −1.85363 + 0.0600845i
\(679\) 130.644 + 75.4273i 0.192406 + 0.111086i
\(680\) −1131.40 + 809.098i −1.66382 + 1.18985i
\(681\) −66.0762 + 114.447i −0.0970282 + 0.168058i
\(682\) −474.972 + 295.145i −0.696441 + 0.432764i
\(683\) 903.750i 1.32321i −0.749854 0.661604i \(-0.769876\pi\)
0.749854 0.661604i \(-0.230124\pi\)
\(684\) 159.742 + 253.410i 0.233541 + 0.370482i
\(685\) 740.133 1.08049
\(686\) 267.975 + 431.249i 0.390634 + 0.628642i
\(687\) 141.327 + 81.5952i 0.205716 + 0.118770i
\(688\) 29.7283 + 228.076i 0.0432098 + 0.331506i
\(689\) 71.8491 124.446i 0.104280 0.180619i
\(690\) −61.6539 1902.04i −0.0893535 2.75658i
\(691\) 132.044i 0.191091i −0.995425 0.0955454i \(-0.969540\pi\)
0.995425 0.0955454i \(-0.0304595\pi\)
\(692\) 294.898 + 441.961i 0.426153 + 0.638672i
\(693\) 64.8571 + 112.336i 0.0935888 + 0.162101i
\(694\) 359.166 11.6422i 0.517530 0.0167755i
\(695\) 173.748i 0.249997i
\(696\) −911.390 + 88.8761i −1.30947 + 0.127696i
\(697\) 55.1153 + 95.4625i 0.0790750 + 0.136962i
\(698\) 158.534 98.5123i 0.227127 0.141135i
\(699\) −603.687 + 348.539i −0.863643 + 0.498625i
\(700\) 41.6693 + 642.080i 0.0595276 + 0.917257i
\(701\) 516.865 895.236i 0.737325 1.27708i −0.216371 0.976311i \(-0.569422\pi\)
0.953696 0.300773i \(-0.0972445\pi\)
\(702\) 75.7162 141.545i 0.107858 0.201632i
\(703\) 175.394 + 322.861i 0.249494 + 0.459261i
\(704\) −144.345 733.062i −0.205035 1.04128i
\(705\) −685.329 + 1187.03i −0.972098 + 1.68372i
\(706\) −806.156 + 500.941i −1.14186 + 0.709548i
\(707\) −74.4583 + 42.9885i −0.105316 + 0.0608041i
\(708\) 151.461 9.82944i 0.213928 0.0138834i
\(709\) 553.592 + 958.849i 0.780806 + 1.35240i 0.931473 + 0.363811i \(0.118525\pi\)
−0.150667 + 0.988585i \(0.548142\pi\)
\(710\) 38.4222 71.8273i 0.0541157 0.101165i
\(711\) 320.760i 0.451139i
\(712\) 314.590 224.973i 0.441840 0.315973i
\(713\) 349.660 + 605.629i 0.490407 + 0.849410i
\(714\) −343.264 183.620i −0.480762 0.257171i
\(715\) 466.432i 0.652353i
\(716\) 255.376 + 126.142i 0.356671 + 0.176176i
\(717\) −310.056 + 537.032i −0.432435 + 0.748999i
\(718\) 945.324 30.6423i 1.31661 0.0426773i
\(719\) −758.635 437.998i −1.05513 0.609177i −0.131045 0.991376i \(-0.541833\pi\)
−0.924080 + 0.382200i \(0.875167\pi\)
\(720\) −347.193 453.679i −0.482213 0.630109i
\(721\) −158.144 −0.219340
\(722\) 14.0785 721.863i 0.0194993 0.999810i
\(723\) 981.928i 1.35813i
\(724\) −593.563 + 38.5207i −0.819838 + 0.0532053i
\(725\) 907.794 1572.34i 1.25213 2.16875i
\(726\) 109.901 3.56241i 0.151379 0.00490690i
\(727\) 632.345 + 365.085i 0.869801 + 0.502180i 0.867282 0.497817i \(-0.165865\pi\)
0.00251881 + 0.999997i \(0.499198\pi\)
\(728\) −57.8608 80.9094i −0.0794791 0.111139i
\(729\) −191.328 −0.262453
\(730\) −401.442 214.741i −0.549920 0.294166i
\(731\) 238.945 137.955i 0.326874 0.188721i
\(732\) −1381.07 682.174i −1.88671 0.931931i
\(733\) 690.943 0.942624 0.471312 0.881967i \(-0.343781\pi\)
0.471312 + 0.881967i \(0.343781\pi\)
\(734\) −52.9233 + 98.9360i −0.0721026 + 0.134790i
\(735\) 1158.61 668.924i 1.57634 0.910100i
\(736\) −922.107 + 150.717i −1.25286 + 0.204779i
\(737\) −740.840 1283.17i −1.00521 1.74107i
\(738\) −38.4544 + 23.8953i −0.0521062 + 0.0323785i
\(739\) −514.152 296.846i −0.695741 0.401686i 0.110018 0.993930i \(-0.464909\pi\)
−0.805759 + 0.592243i \(0.798242\pi\)
\(740\) −388.925 582.879i −0.525574 0.787674i
\(741\) 264.905 143.910i 0.357497 0.194210i
\(742\) −86.6427 + 161.972i −0.116769 + 0.218291i
\(743\) −48.6881 28.1101i −0.0655291 0.0378332i 0.466877 0.884322i \(-0.345379\pi\)
−0.532407 + 0.846489i \(0.678712\pi\)
\(744\) 627.575 + 285.081i 0.843515 + 0.383173i
\(745\) −299.282 518.371i −0.401720 0.695800i
\(746\) 835.180 518.976i 1.11954 0.695678i
\(747\) 474.091 273.717i 0.634660 0.366421i
\(748\) −745.526 + 497.451i −0.996692 + 0.665041i
\(749\) −25.0214 −0.0334064
\(750\) 2088.54 67.6990i 2.78472 0.0902654i
\(751\) −119.216 + 68.8295i −0.158743 + 0.0916504i −0.577267 0.816555i \(-0.695881\pi\)
0.418524 + 0.908206i \(0.362548\pi\)
\(752\) 621.400 + 258.330i 0.826330 + 0.343523i
\(753\) 857.016 1.13814
\(754\) 9.09323 + 280.529i 0.0120600 + 0.372054i
\(755\) −99.0990 57.2149i −0.131257 0.0757813i
\(756\) −90.8752 + 183.978i −0.120205 + 0.243357i
\(757\) −452.623 + 783.966i −0.597916 + 1.03562i 0.395212 + 0.918590i \(0.370671\pi\)
−0.993128 + 0.117032i \(0.962662\pi\)
\(758\) −423.513 681.554i −0.558725 0.899148i
\(759\) 1226.22i 1.61558i
\(760\) 98.0341 + 1373.44i 0.128992 + 1.80715i
\(761\) −1082.43 −1.42238 −0.711190 0.703000i \(-0.751844\pi\)
−0.711190 + 0.703000i \(0.751844\pi\)
\(762\) −1028.65 + 639.194i −1.34993 + 0.838838i
\(763\) 11.2069 + 6.47031i 0.0146879 + 0.00848009i
\(764\) −569.358 281.232i −0.745233 0.368104i
\(765\) −342.651 + 593.490i −0.447910 + 0.775803i
\(766\) 172.982 5.60714i 0.225825 0.00732003i
\(767\) 46.5222i 0.0606548i
\(768\) −652.879 + 649.527i −0.850103 + 0.845738i
\(769\) −508.059 879.984i −0.660675 1.14432i −0.980439 0.196825i \(-0.936937\pi\)
0.319764 0.947497i \(-0.396396\pi\)
\(770\) 19.3167 + 595.927i 0.0250867 + 0.773931i
\(771\) 505.018i 0.655017i
\(772\) 684.063 + 1025.20i 0.886093 + 1.32798i
\(773\) 497.920 + 862.423i 0.644140 + 1.11568i 0.984499 + 0.175388i \(0.0561179\pi\)